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Abstract— Autonomous robots can survey and monitor large
environments. However, these robots often have limited compu-
tational and power resources, making it crucial to develop an ef-
ficient and adaptive informative path planning (IPP) algorithm.
Such an algorithm must quickly adapt to environmental data to
maximize the information collected while accommodating path
constraints, such as distance budgets and boundary limitations.

Current approaches to this problem often rely on maximizing
mutual information using methods such as greedy algorithms,
Bayesian optimization, and genetic algorithms. These methods
can be slow and do not scale well to large or 3D environments.
We present an adaptive IPP approach that is fully differentiable,
significantly faster than previous methods, and scalable to
3D spaces. Our approach also supports continuous sensing
robots, which collect data continuously along the entire path,
by leveraging streaming sparse Gaussian processes.

Benchmark results on two real-world datasets demonstrate
that our approach yields solutions that are on par with or
better than baseline methods while being up to two orders
of magnitude faster. Additionally, we showcase our adaptive
IPP approach in a 3D space using a system-on-chip embedded
computer with minimal computational resources. Our code is
available in the SGP-Tools Python library with a companion
ROS 2 package for deployment on ArduPilot-based robots.

I. INTRODUCTION

Informative Path Planning (IPP) is a fundamental problem
in robotics. It requires finding paths to obtain the maximal
amount of novel data about an underlying data field of
interest while ensuring that path constraints, such as dis-
tance budget limits and boundary constraints, are satisfied.
Additionally, the environment is often unexplored, and with
no training data available, necessitates adaptive IPP variants.
These adaptive variants can plan initial paths and update
them by learning from the data collected along the traversed
portion of the paths.

The IPP problem is particularly relevant for persistent
environmental monitoring, where robots must continuously
monitor the environment for tasks such as pollution tracking
in lakes and rivers. As such, adaptive approaches that detect
and adapt to changes in the data field are crucial [1], [2], [3].
The problem also arises in surface inspection tasks [4], where
robots inspect 3D structures like bridges, dams, aircraft
wings, and pipeline insulation.

Given the significance of the IPP problem, several authors
have addressed it [5], [6], [7], [3]. Many approaches com-
pute the informativeness of locations using mutual informa-
tion (MI) calculated with Gaussian processes (GPs). How-
ever, computing MI requires discretizing the environment
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into n candidate locations and has a computational cost of
O(n?), making it computationally expensive. Additionally,
prior approaches often use optimization methods such as
Bayesian optimization [8], POMDPs [9], and genetic algo-
rithms [10] to optimize the solutions. Such approaches are
computationally expensive and require numerous evaluations
of MI. Therefore, the aforementioned approaches do not
scale to large environments and 3D spaces.

We present an adaptive IPP approach that is fully dif-
ferentiable with respect to the sensing locations, signifi-
cantly faster to optimize, and scalable to large 3D envi-
ronments. This Adaptive-SGP-IPP approach generalizes our
prior sparse Gaussian process (SGP) based non-adaptive
SGP-IPP approach [11] to adaptive cases. Our approach
can also handle single and multi-robot IPP while accommo-
dating robots with discrete and continuous sensing models
and path constraints. Moreover, since our approach is fully
differentiable, we can use any gradient-based optimization
method [12] such as gradient descent and Newton’s method.
Our contributions are:

o We present a natural generalization of our fully differ-
entiable IPP approach to handle adaptive IPP.

o We address adaptive IPP for continuous sensing robots
by leveraging streaming sparse Gaussian processes.

« We demonstrate the adaptive IPP approach for a robot
in 3D space with a complex sensor model on a resource-
limited system-on-chip embedded computer.

« Our code is available in the SGP-Tools Python library'
with a companion ROS 2 package that can be deployed
on ArduPilot-based robots.

II. ADAPTIVE IPP PROBLEM

We are given an environment V C R? with a phenomenon
such as temperature to be monitored. We have r robots and
must find the set P of r paths, one for each robot, so that
the data y € R collected along the paths is sufficient to
accurately estimate the phenomenon at every location in the
environment. We use the root-mean-square error (RMSE) of
the estimates as the measure of accuracy. Since we cannot
directly minimize the RMSE, we formulate this problem
as one where we want to find the paths P that maximize
the amount of information /. Here, I is any function that
is a good proxy for accuracy and that can be computed
without the ground truth labels. Moreover, we also consider
constraints C such as distance budget limits and boundary
constraints on the paths:

Ihttps://github.com/itskalvik/SGP-Tools
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P* = argmax  I(U_,SAMPLE(P;)),
{P;ey,i=1,...,r} (1)

s.t. Constraints(P;=1,.. ,) < C

Here v is the space of paths contained within the en-
vironment V. The SAMPLE function returns the sensing
points at the robot path waypoints when modeling a discrete
sensing robot, and it returns all the sensed points along
the path when modeling a continuous sensing robot. In
addition, we also consider point sensors such as temperature
probes and non-point sensors that can have any field-of-
view (FoV) shape, such as a thermal vision camera with
a rectangular FoV. Moreover, we assume no training data
from the target environment is available. This adaptive IPP
problem® generalizes the IPP problem by requiring updates
to the solution paths in response to newly gathered data.

III. RELATED WORK

The Informative Path Planning (IPP) problem is known to
be NP-hard [13]. Therefore, only suboptimal solutions can be
found for most real-world problems. A dominant approach
is to select the sensing locations that maximize information
metrics, such as variance and mutual information (MI) [6],
[14]. Krause et al. [5] showed that variance-based approaches
are fast to compute but result in sensing locations close to
the environment’s boundaries, with high variance and low
information. They instead advocated the use of MI, which
resulted in more informative sensing locations albeit with
higher computation cost—O(|n|?), where n is the number
of discretized locations in the environment.

Krause et al. [5] addressed the compute cost issue by
leveraging the submodular property of MI and employing
greedy algorithms to select a subset of the discretized can-
didate sensing locations as the solution. Singh et al. [6]
introduced a recursive-greedy algorithm that maximized MI
for single and multi-robot IPP. Bottarelli et al. [15] developed
active learning-based IPP algorithms with a complexity of
O(|n]®). A key limitation of the above approaches is their
environment discretization requirement, which restricts the
solution sensing locations of the paths to be a subset of the
candidate locations.

Hollinger and Sukhatme [7] enabled IPP in continuous
spaces without limiting the sensing locations to a candidate
set by presenting IPP algorithms that maximized MI using
rapidly-exploring random trees (RRT) and derived asymp-
totically optimal guarantees. Hitz et al. [10] developed an
adaptive multi-robot IPP approach based on a genetic algo-
rithm that could optimize the sensing locations in continuous
spaces given a utility function. Ma et al. [1] solved the
adaptive IPP problem by maximizing MI using dynamic
programming and an online variant of sparse Gaussian pro-
cesses to learn the model hyperparameters. Francis et al. [8]
and Vivaldini et al. [16] leveraged Bayesian optimization for
single robot IPP in continuous spaces. A common aspect of
the above approaches is their use of MI and the ability to find

2Note that some authors refer to this problem as the online IPP problem.

paths with sensing locations in continuous spaces. However,
they also require numerous evaluations of MI, which is
expensive to compute and whose complexity depends on
the environment discretization resolution. Even though the
methods do not limit the sensing locations to the discretized
locations, a more accurate estimate of MI requires a higher
discretization resolution. As such, the methods do not scale
to large and 3D environments.

Given MI’s fundamental compute cost issue, multiple
authors have investigated alternative approaches to address
the adaptive IPP problem and its variants. Mishra et al. [17]
and Berget et al. [18] addressed adaptive IPP by selecting lo-
cations with high variance as the solution waypoints. Schmid
et al. [19] addressed adaptive IPP for 3D reconstruction.
They utilized a quadratic function of the distance from the
camera to model the uncertainty in the environment and
optimized it using RRTs in an adaptive algorithm. Zhu et
al. [4] also addressed IPP for 3D reconstruction and used
a probabilistic variance estimate as the uncertainty measure.
Moon et al. [20] addressed adaptive IPP using a sampling-
based method to reduce entropy. Ott et al. [21] leveraged
POMDPs to address the adaptive IPP with multi-modal
sensing problem. The above variance and entropy-based
approaches can be optimized with minimal computational
resources but result in less informative solutions compared
to MI-based methods [5].

Miller et al. [22] and Rao et al. [23] addressed continuous-
space non-adaptive and adaptive IPP using ergodic control
algorithms. These methods assume that we know the infor-
mation density in the environment, which is not always fea-
sible. Finally, Cao et al. [24] and Riickin et al. [25] leveraged
deep reinforcement learning (DRL). However, they require
simulating a diverse data set. For a more comprehensive
review of adaptive IPP, please refer to [3].

IV. FULLY DIFFERENTIABLE SGP-BASED IPP

Jakkala and Akella [26] presented an approach for fully
differentiable sensor placement and generalized their ap-
proach to address IPP [11]. They did this by first formulating
the sensor placement problem using variational inference.
The method leveraged a sparse variational distribution to
approximate the data field being monitored. The method was
fully differentiable with respect to the sensor placement loca-
tions, and the authors also showed that given the hyperparam-
eters, their formulation was equivalent to optimizing sparse
Gaussian processes (SGPs) in an unsupervised manner.

The sensor placement approach was generalized to handle
IPP by treating the SGP’s inducing points as an ordered
set, thereby retaining the order in which the waypoints were
visited. This also allowed them to add any differentiable path
length constraint to ensure that the solution path was within
the given distance budget. Moreover, they also showed that
the method could handle multi-robot IPP by using a separate
set of inducing points and a distance budget term for each
robot (Algorithm 1).

The method also allows us to efficiently model continuous
sensing robots, i.e., robots that sense continuously along the
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Algorithm 1: SGP-IPP [11]; 6 are the hyperparam-
eters, ® is a random distribution defined within the
boundaries of the environment V, s is the number
of specified waypoints, n is the number of random
unlabeled locations used to train the SGP, « is the
SGP learning rate, r is the number of robots, A is the
constraint weight factor, C are the path constraints.
VRP is the vehicle routing problem solver.

Input: 6, P, V, s, n, vy, r, A\, C

Output: Paths P = {P;|P; € V,i =1,...,1}
1 X~ ®(V) // Draw n unlabeled locations
2 X, ~ ®(V) // Draw rs inducing point locations
3 X,, = VRP(X,,,) // Get r initial paths P

// Add constraints to the SGP’s objective function
4 F = F — \Constraints(X,,) — C)

// Initialize SGP with the ordered inducing points
5 o = SGP(mean = 0,0; X,y = 0, X,,,, F)

// Optimize the inducing points
6 Loop until convergence:
7 Xy X + 7 VE(Xn)
8 return P = {{X,,,[¢,]lj =1,...,s}li =1,...,r}

path and robots with non-point sensors such as cameras.
They did this by leveraging the inherent property of their
variational formulation and, by extension, SGPs, that the in-
ducing points (i.e., the sensing locations or waypoints) can be
transformed using differentiable non-linear operations [27]
and still be optimized with respect to the evidence lower
bound (ELBO), i.e., the method’s objective function:

_ N(y|a7 Ur?oisel)pa'm)
1
~ 52 Ir(Kpr — Q) )

noise

o = ]E[f ‘ fm] - Kan:n,%nfm

Here, f are the noise-free latent variables corresponding to
the n training inputs X and their zero labels y. f,,, correspond
to the m inducing inputs X,,,, and q is the optimal variational
distribution. opeise s the data noise, and the subscripts of a
covariance matrix K indicate the variables to compute it.

This differentiability property allows us to interpolate
additional points between pairs of inducing points to ap-
proximate the information collected along the whole path
or transform an inducing point at a sensing location into
multiple points approximating a non-point sensor’s field-
of-view (FoV) area. Moreover, the method only needs to
optimize the original inducing points by leveraging back-
propagation, thereby retaining the path segment or FoV shape
with minimal additional compute requirements. Please refer
to [26] for more details.

However, the key advantage of the approach is its differ-
entiability, which allows us to use gradient-based approaches

such as gradient descent and Newton’s method to optimize
the sensing locations, while considering any differentiable
path constraints in an efficient manner.

V. METHOD: A FULLY DIFFERENTIABLE ADAPTIVE IPP

Adaptive IPP for Discrete Sensing Robots: We now
generalize the SGP-based IPP approach to perform adaptive
IPP by initializing the SGP’s hyperparameters with random
values and iteratively alternating between optimizing the
solution path(s) with the path planner (Algorithm 1) and
updating the SGP’s hyperparameters using a separate Gaus-
sian process trained on the data collected from the traversed
portion of the path(s) (Algorithm 2). Since the SGP-based
IPP approach is significantly faster than earlier discrete
optimization-based methods, this adaptive approach will also
be significantly faster than previous adaptive counterparts.

Algorithm 2: Adaptive-SGP-IPP
Input: Number of waypoints s
Output: Data (XPah yPath) from the traversed path
// SGP hyperparameters from a uniform distribution
10~U()
2 P = SGP-IPP(0, 5) // Get the initial path(s)
3 HParam-GP(0) // SSGP for continuous sensing
£ X ),y )
5 for j < 1to s do
6 ){batch7 ybatch — SAMPLE(P[]])
7 | 6 = HParam-GP.update(Xatch ybatch)
8
9

P = SGP-IPP.update(, j)
Xpalh — Xpath U Xbatch. ypath — ypalh U ybatch

10 return Xpah ypath

However, a naive implementation of this approach has
two key limitations. First, GPs are not designed to han-
dle streaming data; as such, we would need to train the
hyperparameter-learning GP from scratch after each data
point is collected. Also, the computational cost of training
a GP with the collected data will keep increasing until it
becomes infeasible after about 10,000 data samples. These
issues will not significantly impact the adaptive IPP approach
for discrete sensing robots with a point field-of-view (FoV),
i.e., robots that only sense the path’s vertices. But numer-
ous sensors, such as temperature probes and ocean salinity
sensors, continuously collect data along the path and operate
well above 10Hz. As such, the GP’s compute limit would be
quickly reached when modeling continuous sensing robots.

Adaptive IPP for Continuous Sensing Robots: We
address the hyperparameter estimation problem by leveraging
streaming sparse Gaussian processes (SSGPs) [28] rather
than using a full GP to estimate the hyperparameters. SSGPs
provide a principled method for handling streaming data,
which arrives sequentially in batches. With SSGPs, the hy-
perparameter updates can be computed using only the current
batch of data yy.w and the previously computed variational
distribution over all the past data y.q. Additionally, this
method leverages a sparse approximation, eliminating the
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need to access the entire dataset and significantly reducing
training time.

At each update step, to approximate all the data seen up to
the current update step, the method computes a new optimal
variational posterior distribution qnew(f' ), which replaces the
old variational distribution qold(f' ), using the new batch of
data ypew. The optimal distribution is obtained by minimizing

the following Kullback-Leibler divergence:

KL [Qnew(f”'p(ﬂymdaYnew)} . 3)

Here, f are all the latent variables corresponding to the
data. The above can be analytically minimized to obtain the
following optimal posterior variational distribution:

Gopt(b) = p(b)N (3;: K4, Kipib, X), where
q<a) = N<a7 msj, Sa)» p(Ynew|f) = N (Ynew; f7 O-r%()isel) )

Ynew K. — be
D.S;'m,| " fp K|’

2
> [J“‘ES“I 3] , and Dy = [S1 - K]

y

“4)
Here, a and b represent the latent variables corresponding
to the old inducing points (i.e., from the previous update
step) and the new inducing points of the posterior variational
distributions, respectively. The f denote the latents corre-
sponding to yew. The solution optimal posterior distribution
opt(b) includes a prior term p(b) to regularize the posterior
and a likelihood term A/ (y), which predicts the data labels
using the current inducing variables b and the old variational
distribution ¢(a). This formulation ensures that the infor-
mation from the old variational distribution g(a) is retained
while also incorporating the new information in ypew. For
details on the derivation, please refer to [28].

VI. EXPERIMENTS

In this section, we first evaluate our method’s performance
using benchmarks on two datasets with three baseline ap-
proaches. The benchmarks include single-robot and multi-
robot scenarios, as well as discrete sensing and continuous
sensing sensor models. We then demonstrate the adaptive
approach with a non-point sensing robot operating in a 3D
space, emulating a drone equipped with a camera. The ex-
periment demonstrates our method’s real-world applicability.

We used two datasets for our benchmarks—bathymetry
and elevation data. The bathymetry data [29] was col-
lected by the National Oceanic and Atmospheric Administra-
tion (NOAA) using an echosounder in the Mississippi Sound
region, Mississippi. The elevation data [30] was collected by
NOAA using an aerial lidar on Wrangell Island, Alaska.

Our benchmarks include three baselines—the adaptive and
non-adaptive variants of the Continuous-Space Informative
Path Planner (CIPP) [10], and SGP-IPP [31]. CIPP leverages
CMA-ES, a genetic algorithm, to find informative paths that
maximize mutual information (MI) in continuous spaces.
We selected this method as a baseline because it is closely

related and capable of handling adaptive multi-robot IPP in
continuous spaces. CIPP does not assume access to ideal
hyperparameters; instead, the hyperparameters are updated
after visiting each waypoint using the collected data. Non-
Adaptive-CIPP is the non-adaptive variant of CIPP; it as-
sumes access to ideal hyperparameters modeling the data
field in the environment and uses these hyperparameters in
a GP to measure MI. SGP-IPP is the non-adaptive variant of
our SGP-based approach. Similar to Non-Adaptive-CIPP, it
assumes access to the ideal hyperparameters and uses them
in the SGP to find the solutions. Please refer to [31] and [11]
for additional baselines that establish the performance of the
SGP-based approach.

An RBF kernel [27] was used to model the correlations of
the datasets in all our experiments. We evaluated the solution
paths by estimating the data field in the environment using
a GP. The GP was initialized with the kernel function hy-
perparameters learned from 1000 randomly sampled labeled
points from the dataset. The data collected from each solution
path was then used as the GP’s training set. GPs are non-
parametric; as such, they only use the hyperparameters and
data from the path to estimate the remaining data field. The
root-mean-square error (RMSE) between the ground truth
data and the GP’s estimate was used to quantify the solution
paths. The benchmarks were executed five times with random
initial hyperparameters on a node with 12 cores (Intel(R)
Xeon(R) Gold 6154 3.00GHz CPU) and 64 GB of RAM.

Single Robot with a Discrete Sensing Model: In this
benchmark, we configured all the IPP approaches to model
a single robot with a discrete sensing model, i.e., the robot
senses only at the vertices of the solution path. Note that
we do not enforce a distance budget in this benchmark,
making it a sequential adaptive sensor placement problem.
Both the non-adaptive approaches used a full GP to learn the
hyperparameters from the collected data. The GPs and the
SGPs in this and the following benchmarks were optimized
using a conjugate-gradient descent optimizer [32]. We re-
peated the experiment with different numbers of waypoints,
ranging from 5 to 100, in increments of 5. The mean
and standard deviation of the RMSE for each method on
both datasets are shown in Figure 1(a) and Figure 1(b).
In Figure 1(c) and Figure 1(d), we show the mean and
standard deviation of the total IPP runtime for the non-
adaptive approaches—SGP-IPP and Non-Adaptive-CIPP. For
the adaptive approaches—Adaptive-SGP-IPP and CIPP—we
report the mean and standard deviation of the average IPP
update runtime, i.e., the time taken to update the future way-
points using the data collected up to the current waypoint.

The Adaptive-SGP-IPP approach consistently finds so-
lutions with RMSE scores that are on par or better than
those of the baseline approaches, including the non-adaptive
approaches, which have access to significantly more prior
information about the environment since they are given the
optimal hyperparameters. Moreover, the Adaptive-SGP-IPP
approach is up to 125 times faster than CIPP, making it more
suitable for real-world robots with limited compute.

Single Robot with a Discrete Sensing Model and
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Fig. 1: Single robot adaptive IPP with a discrete sensing robot.
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Fig. 2: Single robot adaptive IPP with a discrete sensing robot and a distance budget. Mean and standard deviation of the
RMSE ((a) and (b)) and IPP update runtime ((c) and (d)); lower is better.
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Fig. 3: Four robot adaptive IPP with discrete sensing robots and distance budgets. Mean and standard deviation of the RMSE
((a) and (b)) and IPP update runtime ((c) and (d)); lower is better.
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Fig. 4: Four robot adaptive IPP with continuous sensing robots and a distance budgets. Mean and standard deviation of the
RMSE ((a) and (b)) and IPP update runtime ((c) and (d)); lower is better.

Distance Budget: We repeated the previous experiment with
an added distance budget constraint. We set the distance
budget to be proportional to the number of sensing locations;
please refer to our code for the details. Figure 2 shows the
results; the Adaptive-SGP-IPP approach finds solutions with
RMSE scores on par or better than the baselines while being
up to 70 times faster than CIPP.

Four Robots with a Discrete Sensing Model and
Distance Budget: Next, we benchmark the centralized multi-
robot IPP with a distance budget constraint. Since we collect
four times the data, we limit the maximum number of
waypoints to 50. We repeated the experiment ten times and

report the RMSE scores in Figure 3(a) and Figure 3(b) and
show the algorithm runtimes in Figure 3(c) and Figure 3(d).
Similar to the single-robot experiments, the Adaptive-SGP-
IPP approach consistently achieves good RMSE scores with
considerably lower runtimes.

Four Robots with a Continuous Sensing Model and
Distance Budget: We repeated the above experiment with a
continuous sensing model, i.e., the robots continuously sense
along the entire solution path. Depending on the distance
between each pair of waypoints, the number of data sam-
ples collected can exceed 1000, making it computationally
expensive to update the hyperparameters using a GP. There-
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Fig. 5: Adaptive-SGP-IPP solution for a discrete sensing robot with a square height-dependent FoV area sensor; the heat map
represents the data field reconstruction (elevation data). The waypoints in red are the visited locations, and the waypoints in
green are the future waypoints. The squares represent the FoV of the sensor at each waypoint. We observe that the optimized
waypoints balance the ground sampling resolution and the FoV area.

fore, we employ an SSGP optimized with the conjugate-
gradient descent algorithm to learn the hyperparameters in
both the adaptive approaches—Adaptive-SGP-IPP and CIPP
as detailed in Section V. Additionally, all the approaches
approximate continuous sensing robots by interpolating five
additional waypoints between each pair of original way-
points, all of which are then used to compute the objective
function: MI for CIPP-based approaches and the evidence
lower bound (ELBO) for the SGP-based approaches. All the
data collected along the traversed path is used to estimate the
data field in the environment during evaluation. We report the
results in Figure 4. The Adaptive-SGP-IPP approach shows
strong RMSE performance and lower computation times,
making it well-suited for adaptive IPP on real robots with
minimal computational power.

Adaptive IPP with a Non-Point FoV in a 3D Space:
Next, we demonstrate the Adaptive-SGP-IPP approach with
a single robot operating in a 3D space with a non-point
field-of-view (FoV) discrete sensing sensor model. The robot
is modeled to emulate an aerial drone equipped with a
stereo-vision depth camera for mapping the elevation in a
given area. This experiment used the elevation data from
the NOAA elevation dataset [30]. Additionally, the non-point
FoV was modeled to scale the 2D square area covered by
the camera on the ground to be quadratically proportional
to the height of the waypoint from the ground. Note that
in our non-point sensor model used in the IPP approach, the
uncertainty in the collected data is quadratically proportional
to the height from the ground. We configured the Adaptive-
SGP-IPP approach to visit 15 waypoints and used an SSGP
for the hyperparameters, as the camera model captures large
amounts of data at each waypoint. For additional technical
details, please refer to our code. To demonstrate the method’s
efficiency, we executed it on a Raspberry Pi 4 with 4 GB of
RAM, a system-on-chip (SoC) commonly used in robots.

Figure 5(a) shows the initial path of the robot, which
starts with uniformly distributed sensing locations close to
the ground. The SSGP was initialized with an RBF kernel
with a length scale of 1.0 m in both X and Y. Next, the
method used the data collected at the first waypoint to update
the hyperparameters using an SSGP and the path using the
SGP approach. The SSGP updated the X and Y length scales
to 4.53 m and 1.16 m respectively. Figure 5(b) shows the

updated path. We see that the waypoints have been shifted
to be higher from the ground to ensure good coverage. Also,
since the X-axis length scale is much larger than the Y-axis
length scale, the method distributed the waypoints farther
apart along the X-axis compared to the Y-axis.

Figure 5(d) shows the path at waypoint 8. The SSGP
converged to length scales of 3.73 m and 3.42 m along the
X and Y axes, respectively. Therefore, the waypoints are
evenly distributed along both axes while still ensuring that
the waypoints are high enough from the ground to ensure
full coverage of the environment. Figure 5(e) shows the final
traversed path, which captures all the critical regions of the
environment using only the given number of waypoints. On
average, the SSGP hyperparameter and path updates took
5.07 seconds and 8.17 seconds, respectively, demonstrating
our approach’s real-world feasibility. Moreover, we imple-
mented our code in Python; one can get even faster updates
by implementing the method in Jax or C++.

VII. CONCLUSION

This paper addressed the adaptive informative path plan-
ning (IPP) problem. Most earlier approaches relied on com-
putationally expensive discrete optimization methods, which
do not scale well to large or 3D environments. We introduced
a straightforward generalization of our fully differentiable
IPP algorithm to handle adaptive IPP with significant perfor-
mance benefits. The method accommodates both single and
multi-robot IPP, as well as discrete and continuous sensing
robots with path constraints. We provided benchmarks on
two real-world datasets to demonstrate our approach’s sig-
nificant computational efficiency and the informativeness of
its solutions. Additionally, we showcased our approach for
adaptive IPP in 3D space with a non-point sensing robot
on a Raspberry Pi 4 system-on-chip computing platform
with minimal computational resources. Our code is available
in the SGP-Tools Python library, along with a companion
ROS 2 package that can be deployed on ArduPilot-based
robots. Future work will involve demonstrating our approach
with real robots and exploring related problems, such as
adaptive IPP for 3D surface inspection, decentralized IPP,
and IPP with deep neural network-based path constraints to
address complex scenarios, such as ensuring tethered under-
water vehicles do not become entangled in the environment.
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