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ABSTRACT

Large language models (LLMs) have shown significant advancements in diverse
real-world applications, underscoring the necessity for comprehensive evalua-
tion methodologies. Existing research about LLM evaluation usually concen-
trates on supervised signal-based evaluation benchmarks on domain-specific tasks,
which utilize static labeled datasets to evaluate the abilities of LLMs. How-
ever, these methods often fall short in evaluating LLMs in dynamic real-world
scenarios, which can be viewed as goal-driven multi-agent scenarios. In these
scenarios, agents have to repeatedly obtain feedbacks and improve their outputs
through cooperative or adversarial interactions in order to gradually reach their
goals. To address this problem, inspired by game theory, we propose a novel
dynamic interaction-based LLM evaluation framework (DynaEval) for evaluating
abilities of LLMs in dynamic real-world scenarios. Specifically, we first stan-
dardize the definition of the interaction process in dynamic real-world scenar-
ios. Next, we prove that interaction processes in evaluation tasks are equivalent
to a class of dynamic games in game theory, which is beneficial to the fairness
and stability of evaluation. Inspired by game theory, we propose the message
pool and LLM-based referee components of DynaEval, leveraging the proper-
ties of dynamic games to ensure fairness and stability throughout the interaction
and evaluation process. Moreover, we propose the synchronous interaction al-
gorithm, which is suitable for all kinds of interactions in real-world tasks. Fi-
nally, we demonstrate the effectiveness of DynaEval through extensive experi-
ments across four interaction-based evaluation tasks stemming from real-world
scenarios. Our source code is available at https://anonymous.4open.
science/r/DynaEval-112F.

1 INTRODUCTION

The rapid development of Large Language Models (LLMs) has catalyzed their incorporation into
a wide array of real-world applications, such as machine translation (Lyu et al., 2023) and code
generation (Zheng et al., 2023). This progress in LLM-based applications has increased the necessity
for comprehensive LLM evaluations. Given the immense scale and limited interpretability of LLMs,
the primary focus of these evaluations centers on assessing their proficiency in domain-specific tasks.
Ultimately, the evaluation outcomes of LLMs serve as valuable guidance for users in selecting the
most suitable LLMs to meet their specific requirements.

In the literature, LLM evaluation methods traditionally fall into two categories: human-based and su-
pervised signal-based. Human-based methods (Thorleiksdóttir et al., 2022; Nguyen, 2018) involve
human interrogators engaging with LLMs, with the evaluation result depending on human judg-
ments. For instance, the Turing Test (Shieber, 2006) entails a human interrogator interacting with
two anonymous participants (one being an LLM and the other a human) and tasked with distinguish-
ing between them within a limited timeframe. In spite of their flexibility, human-based evaluation
methods suffer from heavy labors and huge time costs for large-scale LLM assessments across di-
verse tasks. Therefore, recent research about LLM evaluation mainly concentrates on supervised
signal-based evaluation benchmarks. In supervised signal-based evaluation methods (e.g., Chang
et al. (2023a); Maruf et al. (2022); Zhu et al. (2023)), LLMs are tasked with producing accurate
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outputs given dataset inputs. These methods offer greater automation compared to human-based
evaluations, as evaluation metrics can be automatically computed by comparing dataset labels to
LLM outputs. Consequently, supervised signal-based approaches have found extensive use in large-
scale LLM assessments. For instance, MMLU (Hendrycks et al., 2021b) provides a supervised
signal-based standardized benchmark to evaluate the performance of text models in multiple tasks.

Despite their utility and efficiency, supervised signal-based evaluation methods struggle to assess
the performance of LLMs in real-world scenarios characterized by dynamic interactions and diverse
roles. Specifically, in real-world scenarios, users dynamically interact with LLMs to implement their
requirements (e.g., generate logically-correct and well-styled Python codes), during which LLMs
repeatedly get feedback and optimize their output to gruadually meet users’ requirements. This is
essentially equivalent to a goal-driven multi-agent scenario (Xi et al., 2023a; Bang et al., 2023a; Xi
et al., 2023b), where agents (users-based and LLMs-based) propose and optimize solutions through
cooperative or adversarial interaction (Mandi et al., 2023; Fu et al., 2023) to reach their goals. In
these scenarios, the dynamic interaction environment (e.g., interaction context) highly affect the
performance of LLM-based agents. Therefore, LLMs need strong dynamic interaction abilities to
meet users’ requirements in these scenarios. However, abilities of LLMs in dynamic interactions
are hard to evaluate through conventional supervised signal-based evaluation techniques because
of the static evaluation environment. This limitation stems from the inherent inadequacy of static
datasets used in supervised signal-based approaches to capture the complexity of dynamic real-world
situations. Although some evaluation methods support multi-round conversations (e.g., Chan et al.
(2023)), they still fall short in providing from the dynamic interaction environment in multi-agent
scenarios, rendering them inadequate for evaluating LLMs in dynamic real-world scenarios.

To this end, we propose a novel dynamic interaction-based LLM evaluation framework (DynaE-
val). Inspired by research in LLM-based multi-agent systems (e.g., Hong et al. (2023); Xiong et al.
(2023)), we find that it is feasible to simulate dynamic interactions in real-world multi-agent scenar-
ios by dynamic interactions between LLM-based agents, where the variety of LLM output provides
the dynamic interaction environment. Moreover, we prove that the interaction process of LLMs in
these scenarios essentially belong to a class of dynamic games in game theory (Kreps & Wilson,
1982; Balbus et al., 2018), which is beneficial to the fairness and stablility of evaluation. To imple-
ment such an LLM evalution framework, we first establish the prior fairness and stability condition
of DynaEval based on game theory. Next, we propose the message pool, the LLM-based referee,
and the synchronous interaction algorithm for DynaEval. These components ensure the fairness
and stability of evaluation by keeping the consistency between the dynamic interaction process and
dynamic games in game theory. In the experiment, we implement four real scenario-based LLM
evaluation tasks in DynaEval, and show that DynaEval can effectively evaluate abilities of LLMs in
dynamic real-world scenarios and reveal interaction characteristics of LLMs.

2 METHODOLOGY

2.1 PRELIMINARIES

In this part, we introduce necessary mathematical notations and the goal for dynamic interaction-
based LLM evaluation. To begin with, let N denote the number of LLMs to be evaluated. Let
P = {P1, P2, . . . , PN} denote the set of LLMs where each element denotes an LLM. Let R denote
an interaction-based evaluation task. For example, in the Code Generation and Review (Code G&R)
task (Guo et al., 2023), programmers and reviewers listen and answer alternatively in order to gen-
erate logically correct and well-styled codes. Furthermore, let A denote the set interaction histories
(e.g., records of dialogues and codes in Code G&R). Let Θ = (θ1, θ2, . . . , θN ) denote abilities of
LLMs, where θi denotes the ability of Pi ∈ P . Then our goal is to evaluate LLMs’ abilities Θ from
observed interaction histories A.

2.2 FROM INTERACTIONS TO DYNAMIC GAMES

The first challenge of DynaEval lies in the variety of interaction in real-world scenarios, which
makes it difficult to uniformly model the interaction process in various tasks. Therefore, we aim
to extract the common ground of various interaction process and summarize as a uniform defini-
tion. We notice that any goal-driven multi-agent interaction in real-world scenarios consists of an
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interaction goal and an interaction rule. The former depicts “why to interact”, such as “producing
logically correct and well-styled codes” in Code G&R. The latter depicts “what and how to interact”,
such as “participants should generate codes and comments alternatively”. Based on these findings,
interaction process can be uniformly decomposed to four cyclical steps, as defined in the following.
Definition 1. Interaction process of DynaEval. Given a history set A = ∅ and an interaction-based
evaluation task R = (G,C), where G denotes the interaction goal and C denotes the interaction
rule, the interaction process is defined as the combination of four cyclical steps as follows:

1. Selection. Select a subset of LLMs P ∗ ⊆ P that can interact in the current interaction environ-
ment, i.e., receive messages and generate interaction outputs, according to C.

2. Interaction. Each LLM Pi ∈ P ∗ receives messages from A and generates interaction output
si = (Pi, wi, t

(env)) according to G. Here wi denotes the output content and t(env) denotes the
interaction environment identifier, such as the index of the round.

3. Recording. Interactions are recorded to the history set, i.e., A← A
⋃
{si|Pi ∈ P ∗}.

4. Circulation. If the interaction process comes to an end according to C, then score the perfor-
mance of LLMs according to A. Otherwise, the interaction process repeats.

For instance, in Code G&R, programmers can interact in odd-numbered rounds (index starts from 1),
while reviewers can interact in even-numbered rounds. Each time a programmer or reviewer interact,
its interaction output is recorded by the history set. This process repeats until the programmer and
the reviewer reach a consensus or the number of rounds exceeds the limitation.

The second challenge lies in the fairness and stability of evaluation. The fairness of LLM eval-
uation connotes that evaluation results Θ are only determined by LLMs’ true abilities. However,
interaction-based evaluation results can be easily affected by non-ability factors such as the infor-
mation asymmetry in multi-agent interaction. On the other hand, we hope to obtain stable evaluation
of LLMs. Paradoxically, dynamic interaction-based evaluation results are instable due to the vari-
ety of the observed interaction history. In pursuit of overcoming this challenge, we notice that the
interaction process of DynaEval is theoretically in alignment with extensive games with perfect in-
formation (EGPI) in dynamic game theory (Kreps & Wilson, 1982; Apt & Simon, 2021). EGPI is a
class of dynamic games where participants can dynamically take actions based on the current game
environment in order to maximize their own game score (namely “payoff” in game theory). Game
scores directly reflect abilities of LLMs. A formal proposition is given below. The corresponding
proof is available at Appendix A.2.
Proposition 1. The relationship of EGPI and interaction process of DynaEval. Let D denote the
set of all possible interaction process of DynaEval. Let E denotes the set of all EGPI. Then any
interaction process of DynaEval also belongs to EGPI, i.e., D ⊆ E .

By introducing EGPI from game theory, we can overcome the fairness and stability challenge using
game theory. Specifically, the fairness of the interaction process of LLMs can be ensured by the
inherent anonymity and perfect information in EGPI. In EGPI, anonymity means that the real iden-
tity of participants are invisible. The anonymity can prevent unfairness from two aspects. First, it
prevents targeted adversarial interaction policies to agents with known identities. Second, in eval-
uation tasks that depend on referee’s rating to obtain game scores, the anonymity can effectively
prevent biased rating of participants caused by revealing identities to the referee. On the other
hand, perfect information in EGPI connotes that every participant has the equal chance to collect
information and make decisions. The perfect information can be transformed to the synchronicity
of interaction in multi-agent scenarios, which ensures fairness from the aspect of information asym-
metry. To reach this goal, it is necessary to regularize the synchronicity of the interaction process of
dynamic interaction-based evaluation tasks. To this end, we propose the following fairness condition
for DynaEval:
Condition 1. Fairness condition. To ensure the fairness condition of DynaEval, 1) all participant
LLMs in the interaction process should be anonymous. 2) The delivery of LLMs’ messages should
be synchronous, i.e., in the selection phase of interaction process, all select LLMs Pi ∈ P ∗ should
synchronously receive messages and generate outputs according to the interaction rule C.

As for the stability issue, the stability of evaluation results of LLMs can be statistically ensured by
modeling the game score of LLMs in EGPI. Indeed, given the fairness condition, the game scores
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directly reflect the ability of LLMs. Therefore, the term Θ can also represent game scores of LLMs.
We next model Θ from the aspect of statistical distribution and illustrate the cause and solution of
the stability issue. Specifically, let Θi ∼ Pr(Pi) denote the random variable form of the ability of
LLM Pi ∈ P , with the probability density function (pdf) represented by f

(pdf)
i : R → R. Our goal

is to obtain the expectation of Θi (average game score) as the evaluation result, i.e.,

θi = E[Θi] =

∫
θ · f (pdf)

i (θ)dθ. (1)

Unfortunately, we cannot directly get sampling results of the full distribution of Θi from the interac-
tion process to calculate θi. The reason is that the performance of LLMs depends on the interaction
history, i.e., we can only get sampling results of the conditional distribution Θi|A ∼ Pr(Pi|A)
from the current interaction environment. Essentially, the stability issue stems from the variety of
the interaction history A (the interaction environment), which is common in goal-driven multi-agent
scenarios. However, we notice that by expanding the pdf of Θi with the law of total probability, the
full distribution can be obtained through multiple independent sampling:

f
(pdf)
i (θ) =

∑
A

f
(pdf)
i (θ|A)pT (A), (2)

where pT (·) denotes the pdf of A. Although all pdfs in equation 2 are intractable, we can still
estimate θi from game scores obtained by multiple independent running of the interaction process.
That is because each independent running of the interaction process indeed samples a history set
from pT (·) and the corresponding conditional game score from f

(pdf)
i (·|A). Therefore, the average

game score of an LLM obtained from multiple independent running of the interaction process is
the consistent estimation of the expectation of Θi, thus is the evaluation result of the LLM. In
conclusion, we summarize these requirements as the stability condition of DynaEval:
Condition 2. Stability condition. The dynamic interaction-based evaluation process should be run
independently for multiple times until evaluation results of LLMs converge in distribution. Then the
expectation of game scores are evaluation results of LLMs.

2.3 THE STRUCTURE OF DYNAEVAL

The dynamic interaction-based LLM evaluation framework (DynaEval) aims to implement the in-
teraction and evaluation process in dynamic interaction-based evaluation tasks. The structure of Dy-
naEval is shown in Figure 1. To meet the fairness and the stability condition in dynamic interaction-
based evaluation tasks, targeted components and mechanisms are utilized in DynaEval. For the
fairness condition, we propose the synchronous interaction algorithm, which utilizes the referee and
the message pool to ensure the anonymity and synchronicity of the interaction process. For the sta-
bility condition, as analysed above, DynaEval utilizes multiple independent running of evaluation
tasks to ensure the stability of evaluation results. In this part, we first introduce the two indispens-
able components of DynaEval, i.e., the referee and the message pool. Next, we describe in detail the
synchronous interaction algorithm and illustrate how it implements the interaction process.

Referee. The referee in DynaEval is the supervisor of the interaction process and the judge of
LLMs. In DynaEval, the referee is responsible for the selection, recording, and circulation in the
interaction process. Specifically, in the selection phase, the referee selects the next LLM to interact
based on the interaction rule C defined in the interaction-based evaluation task R = (G,C). In the
recording phase, the referee standardizes the format of LLM outputs to avoid unfairness stemming
from format bias. During the circulation phase, the referee determines whether the task has reached
its termination and is responsible for evaluating the ability of the LLMs. Specifically, in evaluation
tasks where obtaining rule-based scores is difficult (such as assessing code style quality), the referee
generates model-based evaluation scores for these anonymous LLMs based on the task rule.

Message Pool. The message pool in DynaEval is the channel of the interaction of LLMs and the
container of the interaction histories in the interaction process. In DynaEval, the message pool is
vital for the interaction and the recording of the interaction process. Specifically, in the interaction
phase, messages are read from the message pool by the referee and sent to the selected LLM. Next,
in the recording phase, the message pool receives and writes the output generated by the LLM. This
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LLM ID Programmer Reviewer

LLM 01 0.87, 0.85, 0.89 0.97, 0.93, 0.98

LLM 02 0.79, 0.75, 0.74 0.68, 0.69, 0.66

LLM 03 0.35, 0.41, 0.32 0.43, 0.39, 0.35

LLM 04 0.65, 0.67, 0.63 0.56, 0.59, 0.55

Task Name Task Description

Public 

goods game

Goal: Maximize 

Payoff by investment

Rule: …

Code G&R

Goal: Generate 

correct Python codes

Rule: …

Idioms 

Solitaire

Goal: Maximize 

winning rate

Rule: …

Translation 

& Polishing

Goal: Generate 

semantically correct 

translations 

Rule: …

… … 

The Structure of DynaEval

LLM 01 LLM 02

LLM 03 LLM 04

Select

Dynamic Interaction

Description

Referee

Message Pool

Interaction 

History 𝑨

Read Write

Selection Interaction Recording Circulation

Synchronous Interaction Algorithm

Multiple Independent Running

Aggregate 

Raw Scores

Model-based

Rule-based

Evaluation

Evaluation Results

Evaluation Tasks Raw Evaluation Scores

Figure 1: The dynamic interaction-based LLM evaluation framework. To evaluate LLMs, DynaEval
starts with selecting a dynamic interaction-based evaluation task and input its text description and
candidate LLMs to the synchronous interaction algorithm. Next, raw evaluation scores are collected
from the multiple independent running of the algorithm. Finally, raw scores are aggregated to obtain
LLMs’ evaluation results.

action is indeed equivalent to the recording of the interaction history. A detailed illustration of the
running of the message pool is presented in the synchronous interaction algorithm.

Synchronous interaction algorithm. The interaction process of LLMs is the core of DynaEval. In
the interaction process, the synchronicity is fundamental to the fairness of evaluation. To achieve
this, the synchronous interaction algorithm utilizes the message pool to decompose interactions into
“interaction in rounds” to meet the synchronicity, and utilizes the referee to implement the complex
interaction rule defined in the evaluation task.

Initially, the referee transmits the evaluation task rule to LLMs via the message pool. In the following
running of the interaction process, each interaction round encompasses two phases: the receiving
phase and the sending phase. In the receiving phase, which is equivalent to selection phase in the
interaction process, LLMs retrieve messages selected by the referee based on the task rule. In the
sending phase, which is equivalent to interaction and recording phase in the interaction process,
LLMs output their own messages (interaction) and dispatch them to the message pool (recording).
After each round, the referee assesses whether the task has concluded. If it has, a termination signal
is sent to LLMs, bringing the task to a close. This step is equivalent to the circulation phase in the
interaction process. Finally, the referee evaluates LLMs’ performance and produces the results. For
the pseudo-code, please refer to Appendix A.3.

2.4 IMPLEMENTATIONS OF EVALUATION TASKS

As a general LLM evaluation framework, DynaEval supports flexible design of evaluation tasks
and can be adapted to a host of real-world evaluation scenarios. Without loss of generality, we
propose four elaborately-designed evaluation tasks stemming from real-world scenarios to show the
feasibility of DynaEval. An overview of these tasks is shown in Figure 2. For more detail about how
to design evaluation tasks, please refer to Appendix A.4.

Public Goods Game. Public goods game (PGG) (Semmann et al., 2003; Dhami et al., 2019) is a
symmetric evaluation task (i.e., all participants act the same role that has the same action set and the
same goal) that requires the decision-making ability of LLMs. Specifically, at the start of a PGG,
each of N LLMs have the same amount of goods (e.g., dollar). In each round, all LLMs can decide
whether to invest (part of or all of) its goods to the public goods pool or not. Then all invested goods
will be summed and doubled by a constant factor. Then result goods are shared equally by all LLMs.
For example, if two of three LLMs invested 100 dollars in total and the constant factor is α = 1.2,
then the invested goods are doubled to 100×1.2 = 120 dollars, and every LLM will get 120/4 = 30
dollars, including those who did not invest. The payoff function of each LLM is the total amount of
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Here is my code:
```python

def sum(n):

r = 0

for i in range(n+1):

r += i

return r

```

Referee: Your task is to translate and 

proofread a French sentence to English: 

Être, ou ne pas être, c’est là la question.

Proofreader

Referee: Your task is to write and 

optimize a python function to summarize 

numbers from 1 to n.

Referee: The Blue loses this task, 

because the last word is not a solitaire 

according to the dictionary.

Referee: You need to give a Chinese 

idiom whose first character matches the 

last character of the last idiom.

Referee: Each of you get 6 coins in the 

last round. Now the new round begins.

Referee: Your goal is to earn the most 

coins. Now let’s start.

Public Goods Game Idioms Solitaire Code G&R Machine Translation

⋯ ⋯ ⋯

Programmer Reviewer Translator

⋯

Here are my suggestions:

1. Declare variable types.

2. Add comments to enhance the 

readability of the code.
```python

def sum(n: int)-> int:

# Initialization

result = 0

# Iteratively adding

for i in range(n+1):

result += i

return result

```

Here is my translation:

Existence or nonexistence, 

that's the problem.

Here is my proofreading:

To be, or not to be, that is 

the question.

I accept the proofreader’s 

suggestion. The polished 

result is easier to understand.    

空前绝后

人定胜天

敌不过

天下无敌

后发制人

I invest 5 coins because…

I invest 7 coins because…

I invest 5 coins because…

I invest 6 coins because…

I invest 3 coins because…

Figure 2: An overview of four implementations of dynamic interaction-based evaluation tasks.

its private goods. The PGG is a classical example in game theory, and massive studies have indicated
that the PGG require the decision making ability in complex scenarios of participants to maximize
their payoff. Here, we consider two task modes for the public goods game:

• Mode 1: After each round, the referee informs each participant the number of earnings they
received in that round.

• Mode 2: After each round, the referee informs each participant the ordered sequence of all invest-
ment amounts for that round.

Idiom Solitaire. Idiom solitaire (Sun, 2012; Dobrovol’skij & Piirainen, 2010) is a symmetric evalu-
ation task to evaluate the Chinese vocabulary of LLMs. Literally, idiom solitaire is a popular activity
in China, where two LLMs give Chinese idioms alternatively, while the first Chinese character of
the current idiom must be the last Chinese character of the last idiom. To win the idiom solitaire
task, LLMs needs not only enough Chinese idiom vocabulary, but the ability to retrieve appropriate
Chinese idioms that are not only consistent with the task rule, but difficult for other participants
to retrieve the next idiom. In the idiom solitaire task, LLMs are randomly assigned the speaking
order. LLMs then alternately give an idiom based on the last idiom given by other participants. The
evaluation score of idiom solitaire is the number of winning of LLMs.

Code Generation and Review. Inspired by code generation (Yin et al., 2023; Zhang et al., 2023;
Poesia et al., 2022) and code review (Li et al., 2022), Code Generation and Review (Code G&R)
is an asymmetric evaluation task (i.e., participants act different roles with different action sets and
goals) to evaluate the code generation ability and review ability of LLMs in real-world scenarios.
Specifically, the Code G&R task requires a programmer LLM who is responsible for generating
codes given natural language requirements, and a reviewer LLM who is responsible for fixing the
generated codes. Then both the performances of the programmer LLM and that of the reviewer LLM
are evaluated by the referee LLM. At the beginning of a Code G&R task, the referee broadcasts
the description of the coding requirement to both the programmer and the reviewer. During the
dynamic interaction process, the programmer and the reviewer alternatively communicates with
each other through the message pool until they reach a consensus about the solution. Finally, both
the performance of the programmer and the reviewer are rated by the referee.

Machine Translation. Machine translation (Maruf et al., 2022; Ranathunga et al., 2023) is an
asymmetric evaluation task to evaluate the natural language translation ability of LLMs in real-
world scenarios. In DynaEval, the machine translation consists of a translator and a proofreader. In
the machine translation task, the referee first broadcast the source text and the target language. Next,
the translator translates the source text to the text in the target language. Then, given the source text
and the translation, the proofreader polishes the latter to facilitate its correctness and readability.
Finally, both the performance of the translator and the reviewer are rated by the referee.
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3 EXPERIMENTS

In the experiment, we selected four models for the above task, namely ChatGPT, GPT-4, Claude-2,
and PaLM. For detailed information about these models, please refer to the Appendix A.6.

3.1 DATASETS AND EVALUATION METRICS

• Public Goods Game. For the two modes of this task, we conduct 10 repeated experiments for all
LLMs to assess their capabilities in this task. Ultimately, we use the payoff (earning) of the LLMs
at the end of the game as the evaluation metric.

• Idiom Solitaire. We randomly sample 30 idioms from an existing idiom database as the initial
idioms and conduct experiments on all model pairs. We also swap the order of the model pairs
during the experiments to evaluate the capabilities of all models under consideration. The final
evaluation metric is the number of times a model wins the task.

• Code Generation and Review. We use a popular code generation evaluation dataset MBPP
(Austin et al., 2021). For each sample in the test set, we assign each pair of models as program-
mer and reviewer. To validate the effectiveness of model-based evaluation scores, we ultimately
calculated two evaluation metrics. One is the commonly used Pass@K metric (Chen et al., 2021)
in the code generation tasks that assess the correctness of codes through sample tests, and the other
is the model-based rating score generate by the referee according to task rule. We then compare
the two metrics to see whether there exists any consistency between the two metrics.

• Machine Translation. We select a document-level dataset (Cettolo et al., 2017) and use three
language pairs for translation: English-Chinese, English-French, and German-English. We split
the dataset into paragraph-level segments for the test set. For each sample in the test set, we assign
each pair of models as translator and proofreader and switch roles. To validate the effectiveness of
model-based evaluation scores, we calculate two evaluation metrics. One is the commonly used
BLEU metric (Papineni et al., 2002) in machine translation tasks, and the other is the model-based
rating score generate by the referee according to task rule. We then compare the two metrics to
see whether there exists any consistency between the two metrics.

3.2 PUBLIC GOODS GAME
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(a) Payoff in Mode 1
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(b) Payoff in Mode 2

Figure 3: Evaluation results in PGG.

Evaluation results in the PGG are shown as the box plot of
payoffs in Figure 3. Both mode 1 and mode 2 are run for
10 times to satisfy the stability condition. We can acquire
several conclusions from Figure 3. First, in both mode
1 and mode 2, the performance of GPT-4 and Claude 2
exceeds that of PaLM and ChatGPT, which indicates that
GPT-4 and Claude 2 have better decision-making ability
in complex scenarios. Second, in mode 1, GPT-4 per-
forms best, while in Mode 2, Claude 2 is the most ad-
vanced LLM. Through case study analysis, we believe
this is because Claude 2 analyzes whether its previous
round of investments was excessive when observing the
investment situation of each participant, resulting in a rel-
atively conservative overall investment strategy. Third, in
terms of stability, GPT-4 is less stable than Claude 2 de-
spite its better average performance. In conclusion, both
the average ability and stability of LLMs differ a lot in
the dynamic PGG scenario.

3.3 IDIOMS SOLITAIRE

Evaluation results in Idioms Solitaire are shown in Table
1 and Table 4. The term “Early” denotes the early po-
sition in the interaction process, while the term “Late”
denotes the late position. sE and sL respectively denote
the score of the early participant and the score of the late
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Table 1: Evaluation results in Idioms Solitaire (winning rate).
Late

sEGPT-4 ChatGPT Claude 2
sE sL sE sL sE sL

Early
GPT-4 - - 0.33 0.67 0.57 0.43 0.45
ChatGPT 0.75 0.25 - - 0.78 0.22 0.77
Claude 2 0.3 0.7 0.25 0.75 - - 0.28

sL 0.48 0.71 0.33

Table 2: Evaluation results in Code G&R.
Prog

sRGPT-4 ChatGPT Claude 2 PaLM
sP sR sP sR sP sR sP sR

Rev

GPT-4 - - 8.57 8.83 8.73 8.77 8.20 8.72 8.77
ChatGPT 8.96 8.60 - - 8.83 8.89 8.96 8.73 8.74
Claude 2 8.97 8.73 8.94 8.78 - - 8.78 8.72 8.74
PaLM 8.99 8.09 9.04 8.98 9.01 8.5 - - 8.52
sP 8.97 8.85 8.86 8.65

participant. For example, in the first data row of Table 1, 0.33 denotes the winning rate of GPT-4
(the early position) versus ChatGPT (the late position), while 0.67 denotes that of ChatGPT. PaLM
is excluded in Idiom Solitaire because it does not support Chinese input and output.

From Table 1, we can observe that the discrepancy between sE and sL of same LLMs are small
because Idiom Solitaire is a symmetric evaluation task where different participants have the same
action set and goal. Moreover, we can observe that the average winning rate and successful hit
of ChatGPT are always the largest, while that of Claude 2 are always the lowest. These results
demonstrate that in terms of Chinese idiom vocabulary, ChatGPT is stronger than GPT-4, and GPT-
4 is stronger than Claude 2.

3.4 CODE GENERATION AND REVIEW
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Figure 4: Pass@K of in Code G&R.

Evaluation results are shown in Table 2 and Figure 4. In
Table 2, the term “Prog” denotes the programmer, and the
term “Rev” denotes the reviewer. sp and sR respectively
represent the scores of the programmer and the reviewer.
These scores are given by the referee using a judge model
(with a score range of 1-10). Different from Idioms Soli-
taire, Code G&R is an asymmetric task where roles of
LLMs differ. As a result, the average score of an LLM
as a programmer and that of the LLM as a reviewer dif-
fer more. Specifically, GPT-4 reaches the state-of-the-art
performance as both of the programmer and the reviewer.
ChatGPT and Claude 2 have similar coding and review-
ing abilities, which are better than the ability of PaLM.

The Figure 4 further shows the performance of LLMs
in different rounds of interaction. The top part shows
the Pass@K of LLMs as programmers averaged on
other LLMs as reviewers, while the right part shows the
Pass@K of LLMs of reviewers conditioned on ChatGPT
as the programmer. From the Figure 4 (a), we can ob-
serve that all participant LLMs gradually improve their
code quality as the interaction goes. This observation
demonstrates the significance of dynamic interaction in
real-world tasks for LLMs and the potential to keep im-
proving of LLMs. In addition, GPT-4 reaches the state-
of-the-art in this evaluation task, and it also makes the
highest progress in the three rounds, which illustrates its
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powerful code generation ability. In Figure 4 (b), we can observe that given ChatGPT as the pro-
grammer, the improvement of code quality differs a lot as the reviewer varies. Especially, GPT-4
and Claude-2 can significantly improve the quality of codes generated by ChatGPT, while such
improvement is limited if PaLM serves as the reviewer. This demonstrates the advantages of Dy-
naEval compared to previous evaluation methods, which can not only evaluate the ability of a model
for a specific static dataset but also evaluate the LLM’s improvement ability based on feedback in
dynamic interactive processes.

3.5 MACHINE TRANSLATION

Table 3: Evaluation results in Machine Translation (EN-ZH).
Trans

sPr/bPrGPT-4 ChatGPT Claude 2
sT sPr bT bPr sT sPr bT bPr sT sPr bT bPr

Proof
GPT-4 - - - - 7.87 9.01 0.284 0.296 7.71 8.95 0.278 0.287 8.98/0.292
ChatGPT 7.81 9.08 0.272 0.296 - - - - 7.84 9.09 0.275 0.293 9.09/0.295
Claude 2 7.84 9.05 0.275 0.290 7.98 9.0 0.286 0.293 - - - - 9.03/0.292

sT /bT 7.83/0.274 7.93/0.285 7.78/0.277

Evaluation results in Machine Translation are presented in Table 3 (English to Chinese). Results
in other languages are available at Appendix A.9. sT and sPr respectively denotes scores of the
translator (“Trans” in the tables) and proofreader (“Proof” in the tables) rated by the referee. These
scores are given by the referee using a judge model (with a score range of 1-10). bT and bPr

respectively denotes the BLEU score (Papineni et al., 2002) of the translator and the proofreader.
PaLM is excluded in this experiment because it supports only English. From Table 5 and Table 6, we
can observe that GPT-4 reaches the state-of-the-art performance in both tasks. This result indicates
that GPT-4 has a better translation and proofreading ability than ChatGPT and Claude 2. However,
GPT-4 does not perform so excellent in the English to Chinese translation and proofreading. From
Table 3, we can observe that ChatGPT reaches the state-of-the-art performance in the English to
Chinese translation and proofreading. Indeed, this result is consistent with experiment results in
Idioms Solitare, as shown in Table 1. In conclusion, considering both the aspect of idiom vocabulary
and translation-proofreading, ChatGPT is the state-of-the-art LLM among the three participants, and
GPT-4 ranks the second. From the experimental results, it can be seen that the ability of LLMs to
play different roles is consistent. We believe this is because the abilities required for translation and
polishing tasks are relatively similar.

4 CONCLUSION

In this paper, we studied the evaluation of large language models (LLMs) within dynamic real-world
scenarios and introduced the Dynamic Interaction-based LLM-Evaluation Framework (DynaEval).
We standardized the definition of the interaction process of dynamic interaction-based evaluation
tasks, and we noticed that the interaction process essentially belongs to a class of dynamic games in
game theory. To ensure the fairness and stability of evaluation, we introduced fairness and stability
conditions for DynaEval based on properties of dynamic games. We then presented the message
pool, referee, and synchronous interaction algorithm based on these studies. Furthermore, we pro-
vided four real-world scenario-based evaluation task implementations. Finally, we demonstrate the
effectiveness of DynaEval through extensive experiments on the four evaluation tasks. Experiment
results showed that DynaEval can effectively obtain fair and stable evaluation of the ability of various
LLMs in dynamic interaction scenarios, and the dynamic interaction can indeed improve the quality
of LLM outputs. For example, in the Code G&R task, the dynamic interaction between program-
mers and reviewers improves the correctness of generated codes, and the degree of improvement
differs from reviewers to reviewers given the same programmer.

This work also has some limitations. For example, in terms of stability, DynaEval depends on
multiple independent running of evaluation tasks to obtain the stable estimation of LLMs’ abilities.
This might be costly in some evaluation tasks with complicated interaction environments affected
by too many factors. In the future, we plan to empower the efficiency of DynaEval by improving
its sampling policy. Moreover, we plan to extend the range of use of DynaEval to adapt it to more
real-world tasks for LLM-based applications.
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A APPENDIX

A.1 RELATED WORK

Black box 1

(LLM)

Black box 2

(human)

Interrogator

(human)

Rating results (score from 0 to 5)
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Figure 5: An illustration of existing LLM evaluation methods. Left: Turing test, an example of
human-based evaluation methods. Right: Code generation, an example of supervised signal-based
evaluation methods.

A.1.1 THE EVALUATION OF LLMS

The recent advancement of LLMs many real-world tasks (e.g., code generation (Chowdhery et al.,
2022), machine translation (Moslem et al., 2023)) stimulates the requirement for the evaluation of
LLMs (Chang et al., 2023b). In the literature, the evaluation of LLMs can be human-based or
supervised signal-based. Specifically, human-based evaluation depends on human interrogators to
measure the performance of LLMs. For example, Likert scale (Petrillo et al., 2011) utilizes a rating
scale filled by human judgements to measure the performance of LLMs in different dimensions.
Despite their flexibility, human-based evaluations are costly and time-consuming, thus they are in-
capable for large-scale evaluation of LLMs. On the other hand, supervised signal-based evaluation
depends on expert-labelled datasets to evaluate LLMs. Supervised signal-based evaluations are ef-
ficient, and have been applied to large-scale evaluation of LLMs in many fields such as machine
translation(Bang et al., 2023b; Lyu et al., 2023; Wang et al., 2023), reasoning(Frieder et al., 2023;
Saparov et al., 2023; Orrù et al., 2023) and code generation(Kashefi & Mukerji, 2023; Zhuang et al.,
2023; Hendrycks et al., 2021a). Recently, there are also some studies committed to more automated
and general evaluation of LLMs. For instance, MT-Bench (Zheng et al., 2023) utilizes an LLM as a
judgement to automatically measure the performance of LLMs in multi-round conversations. How-
ever, conversations scenarios in this method are fixed limited to the static dataset. GameEval (Qiao
et al., 2023) utilizes conversational games to gain more distinguishable evaluation results of LLMs.
PromptBench (Zhu et al., 2023) focuses on the adversarial prompt resilience, and is able to evaluate
the adversarial robustness of LLMs. Despite their effectiveness in some domain-specific tasks, these
evaluation methods lack generality and are hard to be extended to any real-world domain.

A.1.2 GAME THEORY

Game theory (Kreps & Wilson, 1982; Balbus et al., 2018) is a branch of mathematics that stud-
ies strategic decision-making in situations where the outcomes of individuals or groups depend on
the choices made by others. It provides a framework for analysing and understanding interactions
between rational decision-makers, who are assumed to pursue their own self-interest. Especially,
dynamic game theory (Balbus et al., 2018) focuses on dynamic scenarios where participants can
interact with others for multiple rounds and dynamically make their own decision. Key concepts in
dynamic game theory include extensive-form games, which depict the sequential nature of decision-
making, and concepts like Nash equilibrium and subgame perfect equilibrium. Researchers use dy-
namic game theory to study issues like repeated games, bargaining, and learning in strategic settings.
This field has applications in various domains, including economics, biology, and computer science,
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offering insights into the dynamics of strategic decision-making in complex, evolving environments.
Recently, game theory has also gained attention in the research of large language models. For in-
stance, Xu et al. (2023) utilizes an empirical study on the werewolf game to explore the performance
of LLMs in communication games. Lorè & Heydari (2023) studies the strategic decision-making ca-
pabilities of GPT-3.5, GPT-4 and LLaMa-2 using four canonical two-player games. However, most
existing research stays in the level of empirical study on specific game cases, which lacks generality
and limits their range of application in real-world scenarios.

A.2 PROOF OF PROPOSITION 1

In this part, we first give the formal definition of extensive games with perfect information (EGPI)
(Kreps & Wilson, 1982). Next, we present the proof of Proposition 1.

Definition 2. Extensive games with perfect information. An extensive games with perfect informa-
tion is defined a collection of component listed as follows:

• A set Q = {Q1, Q2, . . . , QN} (the set of N players).

• A history set H of sequences (finite or infinite), which can be represented by a gaming tree. H
satisfies the following properties:

1. The empty sequence ∅ is a member of H , i.e., ∅ ∈ H , which serves as the root node of the
gaming tree.

2. If a sequence (ak)k=1,...,K ∈ H and L < K, then (ak)k=1,...,L ∈ H . Further, if
(ak)k=1,...,K+1 /∈ H , then (ak)k=1,...,K is a terminal history.

3. If an infinite sequence (ak)
∞
k=1 satisfies (ak)k=1,...,L ∈ H for every positive integer L, then

(ak)
∞
k=1 ∈ H .

• A terminal history set Z consisting of all terminal histories, i.e., Z = {(ak)k=1,...,K

|(ak)k=1,...,K ∈ H, (ak)k=1,...,K+1 /∈ H}.

• A player function Pf : H\Z → Q that assigns to each non-terminal history h ∈ H\Z a member
of player (Pf (h) is the next payer collecting information and making decisions given the history
sequence h).

• A payoff function ui : Z → R for every player Qi ∈ Q (ui(z) is the payoff of player Qi given the
terminal history z ∈ Z).

Then a dynamic interaction-based evaluation task can be represented as a tuple, i.e., E =
⟨Q, H, Z, Pf , U⟩, where U = {u1, . . . , uN} is the set of payoff functions.

Proof. A Proof of Proposition 1. Let R∗ = (G∗, C∗) be any interaction process of DynaEval, i.e.,
R∗ ∈ D. We aim to prove that there always exist an extensive game with perfect information E∗ =
⟨Q∗, H∗, Z∗, P ∗

f , U
∗⟩, E∗ ∈ E that equivalent to R∗. To this end, we show that each component of

E∗ corresponds to an equivalent component of R∗.

• Player set Q∗. Q∗ indicates the number and roles of players in E∗. This is indeed equivalent to
the LLM set P , which is first used in the selection phase of R∗.

• History set H∗. H∗ is the set of all possible interaction histories that are terminated or non-
terminated, and can be represented as a gaming tree. In this gaming tree, each node denotes an
interaction output of a player given the interaction environment represented by the sequence of
ancestor nodes. Indeed, any feasible path that starts from the root node (∅) of the gaming tree
represents a possible interaction history A in R∗. Because the space of all possible interaction
history is determined by interaction goal G∗ and interaction C∗, the interaction process R∗ indeed
implicitly contains the history set H .

• Terminal history set Z∗. Z∗ is a subset of H∗ that defines all possible outcome of the gaming
process. In the gaming tree of H∗, Z∗ represents the set of all paths that start from the root node
and end at a leaf node. Similar to H∗, Z∗ is also implicitly contained by R∗.
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• Player function P ∗
f . P ∗

f (h) is the next player to collect information and make decisions given
the history h. The use of P ∗

f in E∗ is equivalent to the selection phase of R∗ using C∗, where the
history h is equivalent to the interaction environment.

• Payoff function set U∗. U∗ is used to indicate the payoff (game score) of players given a termi-
nated history. This is equivalent to scoring the performance of LLMs in the circulation phase of
R∗, where the scoring rule is contained in the interaction rule C∗.

Therefore, each component of E∗ corresponds to an equivalent component of R∗. As a result, for
any interaction process of DynaEval, there always exist an extensive game with perfect information
that is equivalent to it.

A.3 THE SYNCHRONOUS INTERACTION ALGORITHM OF DYNAEVAL

The synchronous interaction algorithm of DynaEval is presented in Algorithm 1.

Algorithm 1 Synchronous Interaction

Input: Interaction-based evaluation task R, the set of LLM participants P
Output: Evaluation results Θ

1: Initialize referee P0

2: Initialize LLMs P1, P2, . . . , PN ∈ P
3: Initialize message pool Bmsg

4: for i in 1, 2, . . . , N do
5: P0.send(Pi, R.text) ▷ Broadcasting the task description to LLMs
6: end for
7: for j in R.receiveRoleSet(iround) do
8: Smsg ← Bmsg .read(Pj , R, iround) ▷ Selection: select LLMs to interact
9: P0.send(Pj , Smsg)

10: end for
11: for iround in 1, 2, . . . ,M do
12: for j in R.sendRoleSet(iround) do
13: smsg ← P0.getMessage(Pj) ▷ Interaction: LLMs interact and generate outputs
14: Bmsg .write(smsg) ▷ Recording: the interaction sequence grows
15: end for
16: if P0.judgeEnd(R,Bmsg) is True then
17: Break ▷ Circulation: continue or terminate the interaction process
18: end if
19: end for
20: Let Θ← P0.evaluate(Bmsg)
21: return Θ

A.4 HOW TO DESIGN EVALUATION TASKS

The design of evaluation tasks in DynaEval is significant because it decides what to evaluate and
how to evaluate. For the first aspect, the design of an evaluation task should be consistent with
real-world tasks and require relevant skills such as machine translation and Code G&R. For the
second aspect, the rule of the evaluation task regularizes the interaction of LLMs, thus defines how
to evaluate. To this end, inspired by game thory, we propose the symmetric design and asymmetric
design of evaluation tasks, which evaluate LLMs from different perspective.

• Symmetric evaluation task. In symmetric evaluation tasks, all LLMs act in the same role with
the same action set and task goals. This can refer to symmetric games, a typical class of games
in game theory, such as the prisoner’s dilemma. Because the task goals of LLMs are the equal
and often mutually exclusive, this type of evaluation task can evaluate the ability of LLMs in
a competitive manner. Symmetric evaluation tasks are suitable for non-generative abilities of
LLMs, such as vocabulary or decision-making.
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• Asymmetric evaluation task. In asymmetric evaluation tasks, LLMs play different roles with
different action sets and task goals. This type of evaluation task is close to real-world scenarios
and can evaluate the performance of LLMs from different aspects regarding of roles they act. Es-
pecially in generative tasks such as Code G&R and machine translation, the design of asymmetric
evaluation tasks can follow a writer-editor paradigm, which can evaluate the ability of LLMs in
a cooperative manner. In this paradigm, there are two participants in the evaluation task totally.
One LLM acts as a writer that generates outputs to meet the task requirement. The other LLM
acts as an editor that fixes and polishes the writer’s output to fit the task requirement better. The
writing-polishing process can run for multiple rounds until the writer and the editor reach a con-
sensus. Next, the two LLMs swap their role and repeat the task. Finally, the performance of
the two LLMs can be evaluated by comparing their score on the same role, thus both the writing
ability and the polishing ability can be evaluated simultaneously. Asymmetric evaluation tasks are
suitable for generative abilities of LLMs, such as code generation.

A.5 EVALUATION METRICS IN DYNAEVAL

A.5.1 SYMMETRIC EVALUATION TASKS

In symmetric evaluation tasks, suppose there are N LLMs. Let V = (vij)N×M denotes the payoff
matrix calculated by the referee, where M denotes the repeat times, and vij denotes LLM i’s payoff
in the j-th time of the task. Then all components of V are comparable, because LLMs have the same
role. So the evaluation result Θ = (θ1, θ2, . . . , θN ) is defined as the mean score of each LLM:

θi =
1

M

M∑
j=1

vij , i = 1, 2, . . . , N. (3)

A.5.2 ASYMMETRIC EVALUATION TASKS

In asymmetric evaluation tasks, not all components of the payoff matrix V are comparable because
LLMs’ roles differ. We assume that there are L roles in a task (2 ≤ L ≤ N ). Let S = (sij)N×M

denotes the role assignment matrix, where sij ∈ {1, 2, . . . , L} denotes LLM i’s role in the j-th time
of game. Then the evaluation result is a N ×L matrix, i.e., Θ = (θ1, . . . ,θN ) = (θil)N×L. The θil
denotes LLM i’s ability when acting the role l. Then θil is defined as the mean score of each LLM
given its role:

θil =

∑M
j=1 I(sij = l) · vij∑M

j=1 I(sij = l)
, i = 1, 2, . . . , N, (4)

where I(·) denotes the indicator function.

A.6 LLMS TO EVALUATE

• ChatGPT. ChatGPT is a large language model developed by OpenAI that can effectively follow
various human instructions. The model version used in our experiments is “gpt-3.5-turbo-0613.”

• GPT-4 (OpenAI, 2023). GPT-4 is OpenAI’s most advanced system, with stronger conversational
and reasoning capabilities compared to ChatGPT. It supports longer context inputs and performs at
a human-level across multiple tasks, with higher accuracy and greater creativity and collaboration.
The model version used in our experiments is “gpt-4-0613.”

• Claude 2 (Wu et al., 2023). Claude 2 is a large language model developed by Anthropic. It has
enhanced capabilities in code writing, text analysis, and mathematical reasoning. Claude 2 uses
a technique called “natural induction” for training, which allows the model to infer general rules
from a few examples. The model version used in our experiments is “claude-2.”

• PaLM (Chowdhery et al., 2022). PaLM is a large language model developed by Google, with 540
billion parameters. It excels in code writing, text analysis, and mathematical reasoning, and has
strong generative capabilities. The model version used in our experiments is “chat-bison-001.”
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A.7 INPUT RULE OF DIFFERENT LLMS

Both ChatGPT and GPT-4 support role-based messages as input. Users can create messages for
three different roles, including “system,” “user,” and “role.” Therefore, for models like ChatGPT
and GPT-4, their own utterances should be stored as “assistant messages” in the history, while all
other participants’ utterances, including those of the host, should be stored as “user messages.” For
the LLMs Claude 2 and PaLM, messages are distinguished using human tags and role tags. The
human tag and role tag for Claude 2 are “\n\nHuman:” and “\n\nAssistant:”, respectively. For
PaLM, the human tag and role tag are “\n\nUser:” and “\n\nBot:”, respectively.

A.8 PROMPTS OF EVALUATION TASKS

• Public Goods Game (PGG): For each participant, the initial prompts used are as follows:
Mode 1: “You are playing a game, there are n participants in this game, a total of 5 rounds. At the
beginning of each round, you will get 10 coins. You can choose to invest X (0 ≤ X ≤ 10) coins
in the public pool. At the end of each round, the coins in the public pool will be multiplied by α
times and be evenly distributed to all participants. Your goal is to have the most coins at the end
of the game.”
Mode 2: “You are playing a game, there are n participants in this game, a total of 5 rounds. At the
beginning of each round, you will be informed of the amount of invested coins in the last round,
which is represented by a descending sorted list where each element is the amount of a player’s
invested coins. Then you will get 10 coins, you can choose to invest X (0 ≤ X ≤ 10) coins in the
public pool. At the end of each round, the coins in the public pool will be multiplied by {α} times
and be evenly distributed to all participants. Your goal is to have the most coins at the end of the
game.”
After the end of round i, each participant receives the following prompt:
Mode 1: “In the last round you earned {income} coins. The i + 1 round starts, you get 10 coins.
Please give the amount of coins you want to invest and explain your decision reason.” Here,
‘income’ is calculated as the total investment in round i multiplied by α/n, and ‘sorted invest’
represents the ascending set of all players’ investment amounts in round i.
Mode 2: “In the last round the amount of invested coins is sorted invest where each element is
the amount of a player’s invested coins. The i + 1 round starts, you get 10 coins. Please give the
amount of coins you want to invest and explain your decision reason.”
After receiving each participant’s response, the referee uses the following prompt to format the re-
ply: “Your output must follow the json format below: {“reason”:“⟨reason⟩”, “coins”:⟨Investment
amount⟩}”

• Idiom Solitaire: In round i, the prompt received by the participant is:
“You are participating in an idiom chain game. In this game, you need to give a four-character
idiom where the first character matches the last character of the previous idiom. The idioms used
in the same game cannot be repeated. If the first character of your output is incorrect or if it is not
a Chinese idiom, your opponent wins. Your ultimate goal is to win the game. Next, I will provide
you with the context of the current idiom chain and connect them using ‘→’. Please provide an
appropriate idiom that follows these rules. Please note that you only need to provide the idiom
without any other response. {SI}” Here, SI represents the sequence of idioms used in the idiom
solitaire task so far, connected by ‘→’.

• Code Generation and Review (Code G&R): For the Programmer, the initial prompt is constructed
based on the programming question:
“You will play the role of a programmer, and you need to solve various programming problems
provided by users, and provide complete and executable solutions. Remember, you only need to
give pure Python code without any extra explanation. Question: {Q}” Here, Q represents the
current programming problem.
In subsequent tasks, the prompt is constructed based on the Reviewer’s code comments:
”Reviewer: {CR} Please give a revised solution based on the following review comments. Re-
member, you only need to give pure Python code without any extra explanation.” Here CR repre-
sents the Comments of the Reviewer.
For the Reviewer, the initial prompt is constructed based on the Programmer’s response to the
programming task:
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“You will play the role of a code reviewer. You need to review the code provided by the program-
mer and give your feedback. You must comment on the nature of the code in three aspects: Code
correctness, Code clarity, and Efficiency. Question: {Q} Programmer: {A}” Here, A represents
the current round Programmer’s response.

The subsequent prompt used is:

“Please continue to submit review comments according to the improved procedure. If you think
the programmer performs well in three aspects, please just output ‘over’ without any other output.
Programmer: {A}”
In the task of code generation, a judge model is employed to evaluate the performance of both the
Programmer and the Reviewer based on a specific prompt:

“You will play the role of a professional developer, and you will rate both a programmer and a
reviewer based on their conversation. The main criteria are: 1. Whether the code provided by the
programmer meets the requirements of the problem. 2. Whether the programmer has improved
the code according to the reviewer’s suggestions. 3. Whether the reviewer has given reasonable
and actionable feedback for improvement. Please note: 1. Points are given on a scale of 1-10.
2. You need to give not only a final grade, but also a specific basis for the grade. 3. Please
reply using the following format: {“Programmer”:{“evaluation”:⟨explain⟩, “score”:⟨ score ⟩},
“Reviewer”:{“evaluation”:⟨explain⟩, “score”:⟨score⟩}}”

• Machine Translation: For the Translator, the prompt is constructed based on the current source
language, target language, and content to be translated:

”You will play the role of a professional translator. Please translate the given text from {Ls}
(source language) to {Lt} (target language). Source language text: {Ts}” Here, Ls represents the
source language, Lt represents the target language, and Ts represents the content that needs to be
translated.

For the Proofreader, the prompt is constructed based on the Translator’s output:

”You will play the role of a professional translation editor. Your task is to polish the {Lt} transla-
tion provided by the translator for the given text in {Ls} (source language), making the translated
content more accurate. Note that you only need to reply with the polished sentence in the target
language, not any other reply. Source language text: {Ts} Translator: {Tt}” Here, Tt represents
the content translated by the Translator.

In machine translation, the referee uses a judge model to evaluate translator and proofreader per-
formance. The prompt used by the judge model is:

“You will play the role of a translation expert, and you will rate the dialogue between the translator
and the proofreader. The main criteria are: 1. Whether the translator’s translation of the given text
is semantically consistent with the original text. 2. Whether the proofreader’s polishing result
of the translator’s translation is more accurate. Please note: 1. Points are given on a scale of
1-10 2. Not only do you need to give a final grade, but you also need to give a specific basis for
the grade 3. Please reply using the following json format: {“Translator”:{“evaluation”:⟨explain⟩,
“score”:⟨score⟩}, “Proofreader”:{“evaluation”:⟨explain⟩, “score”:⟨score⟩}}”

A.9 MORE DETAILED EVALUATION RESULTS

This part shows more detailed evaluation results in idioms solitaire and machine translation.

Table 4: Evaluation results in Idioms Solitaire (successful hit).
Late

sEGPT-4 ChatGPT Claude 2
sE sL sE sL sE sL

Early
GPT-4 - - 0.89 1.11 1.29 1.14 1.09
ChatGPT 1.12 0.75 - - 1.11 0.78 1.12
Claude 2 0.8 1 0.75 1.25 - - 0.78
sL 0.88 1.18 0.96

19



Under review as a conference paper at ICLR 2024

Table 5: Evaluation results in Machine Translation (DE-EN).
Trans

sPr/bPrGPT-4 ChatGPT Claude 2
sT sPr bT bPr sT sPr bT bPr sT sPr bT bPr

Proof
GPT-4 - - - - 8.24 9.26 0.405 0.417 8.09 9.28 0.405 0.419 9.27/0.418
ChatGPT 8.27 9.26 0.410 0.421 - - - - 8.18 9.23 0.401 0.409 9.25/0.415
Claude 2 8.26 9.24 0.407 0.412 8.19 9.18 0.406 0.414 - - - - 9.21/0.411

sT /bT 8.27/0.409 8.22/0.406 8.14/0.403

Table 6: Evaluation results in Machine Translation (EN-FR).
Trans

sPr/bPrGPT-4 ChatGPT Claude 2
sT sPr bT bPr sT sPr bT bPr sT sPr bT bPr

Proof
GPT-4 - - - - 7.90 9.15 0.326 0.343 7.84 9.12 0.324 0.338 9.27/0.341
ChatGPT 8.02 9.01 0.338 0.351 - - - - 7.89 9.15 0.327 0.345 9.25/0.348
Claude 2 8.07 9.01 0.344 0.357 8.09 8.98 0.321 0.337 - - - - 9.21/0.347

sT /bT 8.27/0.341 8.22/0.324 8.14/0.326

A.10 CASE STUDY

A.10.1 A CASE WITH ILLUSTRATION

In Figure 6, we separately show case examples of Idiom Solitaire and Machine Translation to help
us better understand how our framework evaluates the capabilities of models in these tasks. Detailed
cases are shown in Appendix A.10.2. For Idiom Solitaire, the model primarily needs to know what
an idiom is and understand the rules of the Idiom Solitaire task. In the example, Claude 2 fails to
come up with an idiom that starts with the Chinese character resulting in a failed chain.

For Machine Translation: As a translator, the model needs to translate a paragraph from the source
language into the target language, while the proofreader needs to improve the translation. In the
example, GPT-4, acting as the translator, accurately captured the meaning of the original text but
still had some minor issues. Claude 2, serving as the proofreader, effectively improved GPT-4’s
translation. Using the word “perform” instead of “operate” in the sentence more accurately restored
the original text’s semantics.

高抬明镜 → 镜花水月 → 月下老人→ 人山人海 → 海阔天空 → 
空前绝后 → 后发制人 → 人定胜天 → 天下无敌 → 敌不过

So, the ability to work with prototypes is essential - but let's see how 
different teams operate. The average for most is about 50cm, business 
students manage half of that.

So the ability to work with prototypes is essential - but let's look at how
different teams perform. The average for most is around 50cm. Business 
students manage half of that.

So ist die Leistung, mit Prototypen zu arbeiten, wesentlich - aber sehen 
wir einmal, wie verschieden Teams agieren. Der Durchschnitt f̈ ¹r die 
meisten liegt bei ca. 50cm, BWL-Studenten schaffen die H\xe4lfte davon.Translate

(GPT-4)

Proofread
(Claude2)

Claude2

ChatGPT

Figure 6: Cases of Idioms Solitaire and Machine Translation.

A.10.2 OTHER CASES

In Figure 7 and 8, we observed that different models adopted different investment strategies in the
PGG task. GPT4 takes a more conservative approach by gradually increasing investments instead of
blindly adding to them. Conversely, PaLM and ChatGPT adopt more aggressive strategies, investing
all coins into the item pool in the second round after earning profits from their initial investment plan.

In Figure 9, we identified three reasons for task termination in the idiom solitaire task: 1. The final
output content length is not a four-character idiom; 2. The output is a four-character word rather
than an idiom; 3. The output is a correct idiom but does not match with the first and last characters
of the previous idiom.

In Figure 10, we can observe that in machine translation tasks, when the translation by the translator
is not satisfactory, the proofreader will improve and enhance the final translation result. However,
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there are instances where the Translator performs well initially but quality decreases after modifica-
tions by the proofreader.

In Figure 11, we can observe that in Code G&R tasks, when the programmer demonstrates insuf-
ficient understanding of Perrin definition; the Reviewer identifies errors and provides correct defi-
nitions while evaluating code correctness; on the other side, the programmer may write correct but
suboptimal code; in such cases reviewer may offer time complexity analysis and suggest better im-
plementation approaches. This task assesses the programmer’s programming abilities as well as the
Reviewer’s judgment and suggestions regarding code correctness, readability, and time complexity.

Figure 7: Cases of PGG (Part 1).
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Figure 8: Cases of PGG (Part 2).

高抬明镜 → 镜花水月 → 月下老人→ 人山人海 → 海阔天空 → 
空前绝后 → 后发制人 → 人定胜天 → 天下无敌 → 敌不过

Claude2

ChatGPT

养生送死 →死里逃生→生生世世→世界无敌

怀铅提椠 →植树造林 ChatGPT

GPT-4

Claude2

Figure 9: Cases of Idioms Solitaire.
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Source Text: We're evolving to be a more collaborative and hearty species. This 
is true. I believe this. So, consider this really interesting statistic; it was recently 
published by a researcher at Carnegie Mellon University: The average young 
person today in a country with a strong gamer culture will have spent 10,000 hours
playing online games by the age of 21. Now 10,000 hours is a really interesting 
number for two reasons. First of all, for children in the United States, from fifth 
grade to high school graduation, if you have perfect attendance.
GPT-4：我们正在演化为一个更具合作精神和活力的物种。这是真的，我相
信这一点。那么，考虑这个非常有趣的统计数据; 最近由卡内基梅隆大学的
一位研究者发布：在一个拥有强大游戏文化的国家，今天的平均年轻人到21
岁时将会花费10,000个小时在线玩游戏。现在，10,000个小时是一个非常有
趣的数字，有两个原因。首先，对于美国的孩子，从五年级到高中毕业，如
果你的出勤率完美无缺。
ChatGPT：我们正在演化成为一个更加合作和有活力的物种。这是确实的，
我相信这一点。所以，考虑一下这个非常有趣的统计数据吧；最近，卡内基
梅隆大学的一位研究员发布了一项数据：在一个有着强烈游戏文化的国家，
如今的年轻人在21岁之前平均会花费10,000个小时去玩在线游戏。现在，
10,000个小时这个数字非常有趣，有两个原因。首先，对于美国的孩子来说，
从五年级到高中毕业，在校期间如果你没有缺席的话，
gold：我们正不断发展成为一个更具有协作精神和更强健的物种，这是真的，
我深信不疑。来看一个有趣的调查，这份调查结果是由一位来自卡内基梅隆
大学的研究者发布的，在一个玩游戏氛围很强的国家，当今的年轻人 在一
个玩游戏氛围很强的国家，当今的年轻人 在其21岁前，平均每人花费在网
络游戏上的时间可达10000小时 现在，一万小时是一个很有趣的数值，主要
是因为有两个原因：首先，美国的儿童从五年级到高中毕业所需要的时间就
是10080个小时，当然你得表现良好（按时上课，出勤）

Source Text: That's not something we have in real life that easily, this sense that 
at our fingertips are tons of collaborators. And there's this epic story, this inspiring 
story of why we're there, and what we're doing, and we get all this positive 
feedback. You guys have heard of leveling up, +1 strength, +1 intelligence. We
don't get that kind of constant feedback in real life. When I get off this stage, I'm 
not going to have +1 speaking, and +1 crazy idea, +20 crazy idea.
ChatGPT：这不是我们在现实生活中轻易拥有的东西，这种感觉在我们的指
尖上有大量的合作者。还有这个史诗般的故事，这个鼓舞人心的故事告诉我
们为什么我们在这里以及我们正在做什么，我们得到了所有这些积极的反馈。
你们可能听说过升级，+1 力量，+1 智力。我们在现实生活中没有那种持续
的反馈。当我下台后，我的演讲技巧不会变成+1，我的疯狂想法也不会增加
+1 或是+20。
GPT-4：这不是我们在现实生活中容易获得的，那种只要动动手指，就能找
到许多合作伙伴的感觉。还有那个宏大的故事，那个触动人心的故事，向我
们诉说我们为何身处此地，我们在做什么，我们收到所有这些积极的反馈。
你们可能已经听说过升级，+1力量，+1智力这样的事情。然而，我们在现实
生活中是不会得到那种持续的反馈的。当我从这个讲台上下来时，我并不会
因为此次演讲而+1演讲技巧，也不会因为疯狂的想法而+1或者+20。
gold：在现实生活中就没有这么轻松了，这种在我们指尖间就有成千上万合
作伙伴的感觉，在现实生活中就没有这么简单了。在游戏中会有美妙的故事
情节，而这些情节 吸引了我们，并且激励着我们的所作所为。同时，对于
我们所做出的任何努力都会有一个积极肯定的回应。你们肯定听说过等级提
升， 伴随着等级提升力量加一点同时智力加一点 而我们在现实生活中就没
有这种持续的回馈。比如说，当我走下这个舞台的时候，我不会有演说能力
加一，疯狂的创意能力加一，更不用说疯狂的创意能力加20了。

Figure 10: Cases of Machine Translation.

Problem：Write a function to calculate the sum of perrin numbers.

PaLM:
def perrin(n):

if n == 0:
return 0

elif n == 1:
return 2

else:
return perrin(n - 2) + perrin(n - 1) - 2

def sum_perrin(n):
sum = 0
for i in range(n + 1):

sum += perrin(i)
return sum

GPT-4：
Code Correctness: The implementation of the perrin sequence in the code 
is incorrect. The recursive formula does not subtract 2, instead it is p(n - 2) 
+ p(n - 3) for n>=3 wherein p(0)=3, p(1)=0, p(2)=2. Hence, the existing 
implementation of 'perrin' function cannot produce correct results.
Code Clarity: The code is pretty straightforward, readable and easy to 
understand. Function and variable names are explanatory. However, the 
incorrect implementation of the perrin sequence detracts from its overall 
clarity.
Efficiency: The current implementation computed the perrin numbers in a 
recursive way which can cause an exponential amount of function calls for 
larger inputs. This is inefficient and can lead to a very slow runtime and 
even a stack overflow for large inputs. Caching previously computed 
values or using an iterative approach to compute the perrin numbers would 
greatly improve efficiency.
PaLM：
def perrin(n):

if n == 0:
return 3

elif n == 1:
return 0
elif n == 2:

return 2
else:

return perrin(n - 2) + perrin(n - 3)

def sum_perrin(n):
sum = 0
for i in range(n + 1):

sum += perrin(i)
return sum

GPT-4: over

Problem：Write a python function to find the number of divisors of a 
given integer.

Claude2：
def count_divisors(n):
count = 0
for i in range(1, n+1):
if n % i == 0:
count += 1

return count

ChatGPT:
Code correctness: The code is correct in terms of finding the number of 
divisors of a given integer. It uses a for loop to iterate through all numbers 
from 1 to n, and checks if n is divisible by each number. If it is, the count 
is incremented.
Code clarity: The code is clear and easy to read. The variable names are 
descriptive, and the purpose of each line is clear.
Efficiency: The code has a time complexity of O(n) because it iterates 
through all numbers from 1 to n. This can be improved to O(sqrt(n)) by 
iterating only up to the square root of n, as factors above the square root 
will already be accounted for by factors below the square root.
To improve efficiency, you can modify the for loop to iterate up to the 
square root of n, and count both divisors below and above the square root 
separately. You can then return the count multiplied by 2 to account for 
both sets of divisors.

Claude2:
import math

def count_divisors(n):
count = 0
for i in range(1, int(math.sqrt(n)) + 1):
if n % i == 0:
count += 1

count *= 2
return count

ChatGPT : over

Programmer Reviewer

Figure 11: Cases of Code G&R.
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