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ABSTRACT

We propose a novel framework and a solution to tackle the continual learning
(CL) problem with progressive evolution of neural networks. Most CL methods
focus on adapting a single network to a new task/class by modifying its weights.
However, with rapid progress in architecture design, the problem of adapting
existing solutions to novel architectures becomes relevant. For the first time, we
propose Heterogeneous Continual Learning (HCL) to address this problem, where
a wide range of evolving network architectures emerge continually together with
novel data/tasks. As a solution, we build on top of the distillation family of
techniques and modify it to a new setting where a weaker model takes the role of
a teacher; meanwhile, a new stronger architecture acts as a student. Furthermore,
we consider a setup of limited access to previous data and propose Quick Deep
Inversion (QDI) to recover prior task visual features to support knowledge transfer.
QDI significantly reduces computational costs compared to previous solutions
and improves overall performance. In summary, we propose a new setup for CL
with a modified knowledge distillation paradigm and design a quick data inversion
method to enhance distillation. Our evaluation of various benchmarks shows
that the proposed method can successfully progress over various networks while
outperforming state-of-the-art methods with a 2× improvement on accuracy.

1 INTRODUCTION

Over the past decade, we have seen a plethora of innovations in deep neural networks (DNNs)
that have led to remarkable improvement in performance on several applications (Ramesh et al.,
2021; Mehta et al., 2021; McGrath et al., 2021). AlexNet (Krizhevsky et al., 2012) was the first
breakthrough showing the potential of deep learning on the ImageNet benchmark (Deng et al.,
2009), it was followed by various architectural advances such as VGG (Simonyan & Zisserman,
2015), Inception (Szegedy et al., 2017), ResNet and its variants (He et al., 2016; Zagoruyko &
Komodakis, 2016; Xie et al., 2017), efficient architectures (Howard et al., 2017; Tan & Le, 2019), and
applications of Transformer (Vaswani et al., 2017) in computer vision (Dosovitskiy et al., 2021; Liu
et al., 2021b); however, all these architectures are trained from scratch and compared on ImageNet
classification (Deng et al., 2009). In real-world scenarios, the dataset size is not constant, yet storage
of billions of data instances and retraining the model representations from scratch is computationally
expensive and infeasible. Further, access to old datasets is often not available due to data privacy.
Thus, it is crucial to transfer the knowledge learned by the previous model representations to the
recent state-of-the-advances without forgetting knowledge and accessing prior datasets.

Continual learning (CL) (Thrun, 1996) is a common way to train representations on a data stream
without forgetting the learned knowledge. It is inspired by the learning process of humans who can
continuously learn from orthogonal experiences without mutual interference (Flesch et al., 2018).
This is likely possible because the human brain is continuously changing (especially structure of the
representation) during the learning process (Council, 2000; Flesch et al., 2018). However, all prior
CL techniques (Zenke et al., 2017; Ahn et al., 2019; Rusu et al., 2016; Rebuffi et al., 2017; Rolnick
et al., 2019; Buzzega et al., 2020; Madaan et al., 2022) assume the presence of a fixed representation
structure (see Figure 1) – a fully-connected network with two hidden layers for MNIST (LeCun, 1998)
and standard ResNet-18 (He et al., 2016) for all the other datasets. While recent works investigate the
effect of depth and width (Mirzadeh et al., 2022b) on continual learning, to our knowledge, no work
has focused on the real problem of learning on sequentially arriving tasks with changing network
architectures. Moreover, most works assume the weight transfer with the same architecture, in case
of the previous model being available only as black box, these methods are not applicable.
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Figure 1: Illustration of standard and heterogenous continual learning. Standard CL updates the same
representational structure while preserving previous information with incoming tasks. On the contrary, the goal
of HCL is to continuously evolve the network architecture while maintaining the accuracy of new data instances.

To address these limitations, we propose a novel CL framework called Heterogeneous Continual
Learning (HCL) to learn continual representations on a data stream without any restrictions on the
training configuration or network architecture of the representations (see Figure 1). In particular,
we consider the continual learner as a stream of learners, where we train each learner with the
same or different backbone architecture. To this end, we consider a diverse range of heterogeneous
architectures including LeNet (LeCun et al., 1998), ResNet and its variants (He et al., 2016; Zagoruyko
& Komodakis, 2016; Xie et al., 2017), and recent architectures such as RegNet (Xu et al., 2022) and
vision transformers (Liu et al., 2021b). However, due to the assumption of the same architectural
structure across different tasks, conventional regularization (Li & Hoiem, 2016; Zenke et al., 2017;
Schwarz et al., 2018; Ahn et al., 2019) and architectural methods (Rusu et al., 2016; Yoon et al.,
2018; Li et al., 2019) are not directly applicable in our HCL setting.

To continually learn heterogeneous representations, we revisit knowledge distillation (Hinton et al.,
2015) – a method to transfer the knowledge learned across different networks. While knowledge
distillation has been formulated for continual learning (Li & Hoiem, 2016; Rebuffi et al., 2017;
Buzzega et al., 2020), prior methods do not outperform the experience replay based methods (Re-
buffi et al., 2017; Rolnick et al., 2019; Aljundi et al., 2019; Buzzega et al., 2020). Moreover, the
distillation pipeline has not been considered for network evolution. This work shows that knowledge
distillation can outperform state-of-the-art methods with and without replay examples in standard
and heterogeneous continual learning settings with proper modifications. Our solution comes at the
cost of storing and reusing only the most recent model.

The continual learner might not have access to the prior data. Therefore, motivated by DeepInversion
(DI) (Yin et al., 2020), we consider data-free continual learning. In particular, DI optimizes random
noise to generate class-conditioned samples; however, it requires many steps to optimize a single
batch of instances. This increases its computational cost and slows CL. In response to this, we propose
Quick Deep Inversion (QDI), which utilizes current task examples as the starting point for synthetic
examples and optimizes them to minimize the prediction error on the previous tasks. Specifically,
this leads to an interpolation between the current task and previous task instances, which promotes
current task adaptation while minimizing catastrophic forgetting. We compare our proposed method
on various CL benchmarks against state-of-the-art methods, where it outperforms them across all
settings with a wide variety of architectures.
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In summary, the contributions of our work are:

• We propose a novel continual learning framework called Heterogeneous Continual Learning
(HCL) to learn a stream of different architectures on a sequence of tasks while transferring
the knowledge from past representations.

• We revisit knowledge distillation and propose Quick Deep Inversion (QDI), which inverts
the previous task parameters while interpolating the current task examples with minimal
additional cost.

• We benchmark existing state-of-the-art solutions in the new settings and outperform them
with our proposed method across a diverse stream of architectures for both class-incremental
and task-incremental continual learning.

2 RELATED WORK

Continual learning approaches can be categorized into three categories: Replay-based approaches for-
mulate different criterion (Rebuffi et al., 2017; Rolnick et al., 2019; Aljundi et al., 2019; Buzzega et al.,
2020) to select a representative subset that is revisited in future tasks. While most approaches (Rebuffi
et al., 2017; Rolnick et al., 2019; Aljundi et al., 2019) store the input examples, Buzzega et al. (2020)
retain the logits to preserve the knowledge from the past. However, all these methods are limited
in practical scenarios due to privacy concerns and excessive memory requirements to store the data
from previous tasks. Architectural methods consider the inclusion of task-dependent representations
to prevent catastrophic forgetting during continual learning (Rusu et al., 2016; Yoon et al., 2018; Li
et al., 2019; Dai et al., 2020; Yoon et al., 2020). Rusu et al. (2016) adds task-dependent sub-networks
and Yoon et al. (2020) decomposes each layer parameters to task-specific and task-shared parameters.
Regularization methods penalize the change in the representations by adding a regularization term in
the loss (Li & Hoiem, 2016; Zenke et al., 2017; Schwarz et al., 2018; Ahn et al., 2019). Li & Hoiem
(2016) minimizes the change in the output representations, and Zenke et al. (2017) estimates the
important parameters and restricts their change during training.

Prior works search for the most optimal architecture for continual learning. Lee et al. (2021)
formulated a data-driven layer-based transfer function to learn the layers that should be transferred to
mitigate forgetting. Mirzadeh et al. (2022a) showed that increasing the width mitigates forgetting,
whereas increasing the depth negatively affects forgetting, and Mirzadeh et al. (2022c) investigated
the effect of various components in an architecture. Carta et al. (2022) proposed Ex-Model Continual
Learning to learn the continual learner from a stream of trained models; however, their proposed
scheme is not directly applicable to the HCL setting as the architecture of their learner is fixed and it
requires an extra buffer to store the past expert and CL representations.

In contrast, we incorporate the recent advances in deep learning to train the continual learner without
any knowledge of prior data or its architecture. Our approach does not strictly require a buffer to store
data or representation, and we also do not assume that the learners’ architecture is fixed. To the best
of our knowledge, this is the first work that explores continual learning with different representational
structures while adapting to the current task and minimizing catastrophic forgetting.

3 HETEROGENEOUS CONTINUAL LEARNING

3.1 MOTIVATION

In real-world scenarios, the data distribution continuously evolves with time; thus, adapting the model
to the distribution shifts is essential while preserving past knowledge. Existing methods in the CL
literature (Zenke et al., 2017; Ahn et al., 2019; Rusu et al., 2016; Rebuffi et al., 2017; Rolnick et al.,
2019; Buzzega et al., 2020) either optimize the performance on a single architecture (He et al., 2016)
or find an optimal architecture for continual learning (Mirzadeh et al., 2022a;c). Meanwhile, deep
learning techniques are improving rapidly, providing better models with higher accuracy. Therefore,
it is important to be able to deploy state-of-the-art deep learning architectures and methods while
preserving the knowledge from previously learned representations. Our objective is to train the
continual learner with the current state-of-the-art deep-learning approaches while continuously
updating its structure and training it on the incoming stream of data.
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Figure 2: Average accuracy comparison between
standard CL – ResNet18 and LeNet trained with
buffer, ours with adaptive architectures without
buffer on CIFAR-10 dataset with two tasks con-
taining five classes each.

To motivate further, we provide a simple experiment
on CIFAR-10 split into two tasks demonstrating the
benefit of adapting to novel neural architectures in
Figure 2. With the new ability to switch the network
architecture, (e.g., from LeNet to ResNet) the perfor-
mance surpasses standard CL setup that is limited by
a rigid but weak architecture (HCL vs. CL LeNet).
More appealingly, it even approximates the stronger
model deployed throughout the CL process (HCL
vs. CL ResNet), while alleviating the requirement of
replay buffer to store prior data experiences (HCL is
data-free vs. CL with buffer), as we will show next
in methodology and experiment sections.

3.2 PROBLEM SETUP

The problem of standard continual learning considers the learning objective where the continual
learner fWt

: Xt → Yt learns a sequence of T tasks by updating the fixed representation structure
for each task. Each task t ∈ T contains training data Dt = {xi, yi}Nt

i=1 ∼ Xt×Yt, which is composed
of Nt identically and independently distributed examples. More formally, we minimize the following
objective for standard continual learning:

minimize
Wt

E(xi,yi)∼Dt
[ℓ (fWt(xi), yi)], (1)

where ℓ : Yt × Yt → R≥0 is the task-specific loss function. In this work, we consider the continual
learner as a stream of architectures {f1W1

, . . . , f tWt
}, where the learner can completely change the

backbone architecture to incorporate recent architectural developments (He et al., 2016; Dosovitskiy
et al., 2021; Liu et al., 2021b; Tolstikhin et al., 2021) in order to improve model performance.
However, when the architectures are different, there is no natural knowledge transfer mechanism, and
the network parameters are initialized randomly, which makes this problem challenging compared to
standard continual learning.

Particularly, each architectural representation f tWt
: Xt → Yt, ∀t ∈ {1, . . . , T} is trained on task

distribution Dt and our objective is to train these stream of networks on a sequence of tasks without
forgetting the knowledge of the previous set of tasks. Additionally, when the network structure
remains the same, we want to transfer the learned representations sequentially to train incoming tasks.
Overall, the learning objective of the HCL is:

minimize
Wt

E(xi,yi)∼Dt
[ℓ
(
f tWt

(xi), yi
)
], (2)

For notation simplicity, we discard Wt in f tWt
for the rest of the paper. In this work, we focus on

the CL setting, where the continual learner does not rely on task identifiers during training and uses
constant memory following prior works (Buzzega et al., 2020; De Lange et al., 2021). In particular,
we consider task-incremental (task-IL) and class-incremental learning (class-IL) during inference
but do not use task labels during training. In task-IL, we provide the task identity to select the
classification head, whereas class-IL uses a shared head across all classes. Consequently, class-IL is
more challenging due to an equal weight for all the tasks and prone to higher forgetting and lower
accuracy than task-IL; however, recent works (Cossu et al., 2022) also raise concerns regarding the
practicality of class-IL in real-world scenarios.

3.3 PROPOSED METHOD

We address the problem of HCL with our method summarized in Figure 3. As in the standard CL, new
task data and an optional buffer are used to directly train a new model (stronger student) initialized
from scratch with a task loss. Additionally, a knowledge transfer data (KDA) is collected given new
task data, (optional) buffer and (optional) synthesised samples by quick deep inversion. The KDA is
used to support network transfer via knowledge distillation between old and new models. To describe
our method, we first revisit knowledge distillation (Hinton et al., 2015) in Section 3.3.1 and propose
a training paradigm that outperforms state-of-the-art methods. Then, we introduce a quick deep
inversion in Section 3.3.2 to recover past visual features promptly. It inverts the previous task model
to generate synthetic examples with minimal cost.
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3.3.1 REVISITING KNOWLEDGE DISTILLATION
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Figure 3: Proposed method to perform con-
tinual learning with neural network architec-
ture change.

Due to a difference in model representations and the ab-
sence of the training data used to train previous models,
we concentrate on knowledge distillation (KD) (Hinton
et al., 2015) for HCL. However, our goal is orthogonal to
standard KD; instead of distilling the knowledge from a
large model (or ensemble) to a smaller (weaker) model
for efficient deployment we distill from the latter to the
former. Our motivation is to improve model performance
by transferring to a state-of-the-art model.

While KD has been adopted in CL (Li & Hoiem, 2016;
Rebuffi et al., 2017; Hou et al., 2019; Dhar et al., 2019;
Buzzega et al., 2020), it has been (i) limited to homoge-
neous architectures across different tasks, and (ii) consid-
ered a weak baseline in comparison to replay-based meth-
ods. Contrarily, we tackle the HCL setting and propose a
modified paradigm inspired by the recent advances in KD
to improve CL performance and lift both limitations.

First, we incorporate label-smoothing with low temper-
ature for training all the tasks to improve the efficiency
of distillation (Chandrasegaran et al., 2022). Second, we
leverage the recent use of data augmentation in KD (Beyer
et al., 2022) for CL, where we use the same set of augmen-
tations on the input presented to the previous and to the
current task models instead of precomputing and storing
those for the former. We remark that in contrast to standard knowledge distillation, we use the current
task instances for distillation, as the previous task data is often not available in real-world applications
due to data privacy and legal restrictions. Third, we do not use task identity and focus on task-free
continual learning during training. In addition, we do not use warmup before the current task as we
find that it is not essential to improve model performance. We conduct ablation experiments to justify
the design choices of every component in Table 3. Our overall objective for the lifelong learner is:

minimize
Wt

E(xi,yi)∼Dt
[ℓ
(
f t(xi), y

t
i(ψ)

)
] + α · KL

(
pti(τ), p

t−1
i (τ)

)
, (3)

where yti(ψ) = y(1 − ψ) + ψ/C, ψ denotes the mixture parameter to interpolate the hard targets
to uniform distribution defined using ψ, C is the number of classes, pt(τ) and pt−1(τ) denote the
temperature-scaled output probabilities for current task model and past-task model, respectively, with
τ as the corresponding temperature. α is the hyper-parameter that controls the strength of KD loss.

3.3.2 ENHANCING DATA EFFICIENCY

To further improve our data-free HCL paradigm, we extend DeepInversion (DI) (Yin et al., 2020),
which optimizes images x̃ initialized with Gaussian noise to improve knowledge transfer from the
prior tasks given only the trained models and no data. The objective of the optimization is to excite
particular features, or, as in our work, classes from previous tasks. The optimization is guided
by proxy image priors: (i) total variation Ltv, (ii) Lℓ2 of the generated samples and (iii) feature
distribution regularization Lfeature. DI requires many steps to generate examples prior to every task,
which increases the computational cost of CL method and, therefore, becomes less appealing.

To tackle this limitation, we propose Quick Deep Inversion (QDI) that initializes the synthetic
examples with the current task data prior to the optimization. There is no reason to believe that
randomly sampled Gaussian noise is an optimal starting point for generating past task examples. We
optimize the current task examples such that features will fall to the manifold learned by the previous
model and the domain shift is minimized. As a result such imags are classified as past task classes.
QDI generates examples x̃prior{f t−1, k} to approximate features from all prior tasks {1, . . . , t− 1}
by inverting the last model f t−1 with k optimization steps. Formally,

x̃prior{f t−1, k} = argmin
x̃

L(f t−1(x̃), ỹ) + αtvLtv(x̃) + αℓ2Lℓ2(x̃) + αfeatureLfeature, (4)
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where the synthesized examples are optimized towards prior classes ỹ ∼ Y{1,...,t−1} to minimize
forgetting. αtv, αℓ2 , αfeature denote the hyper-parameters that determine the strength of individual
losses. To improve synthesis speed, we initialize x̃ with the current task input image xt, which
provides a 4× speed-up and leads to more natural images:

x̃prior{f t−1, 0} = x̃prior, k=0 = xt.

The initialized x̃prior can then optimized using Equation 4, regularized for realism by the target model
f t−1, hence quickly unveiling previous task visual features on top of the current task image through

Lfeature =
∑
l∈L

[
d
(
µl(x̃prior),E

[
µl(x)|x ∼ X{1,...,t−1}

])
+ d

(
σl(x̃prior),E

[
σl(x)|x ∼ X{1,...,t−1}

])]
.

d(·, ·) denotes the distance metric for feature regularization. In this paper, we use the mean-squared
distance. Akin to Yin et al. (2020), we assume Gaussian distribution for feature maps and focus on
batch-wise mean µl(x) and variance σl(x) for the layer l. We note that these statistics are implicitly
captured through the batch normalization in f t−1 without storing input data for all previous tasks
{1, ..., t − 1}: E

[
µl(x)|x ∼ X{1,...,t−1}

]
≃ BNl(running mean), E

[
σl(x)|x ∼ X{1,...,t−1}

]
≃

BNl(running var). Otherwise, we approximate them using values calculated with post-convolution
feature maps given a current task batch to the target model, f t−1, leveraging its feature extraction
capability for previous tasks. This efficient QDI allows us to use it for continual learning with minimal
additional cost to existing methods.

In case of QDI, the learning objective in Equation 3 can be updated as:
minimize

Wt

E(xi,yi)∼Dt
[ℓ
(
f t(xi), y

t
i(ψ)

)
]+α ·KL

(
pti(τ), p

t−1
i (τ)

)
+ β ·KL

(
p̃ti(τ), p̃

t−1
i (τ)

)
, (5)

where p̃t(τ) and p̃t−1(τ) are the output probabilities of the generated examples scaled with tempera-
ture τ using the current and past task-models, β is the hyper-parameter to control the strength of QDI
knowledge distillation loss. QDI utilizes the generated examples to enhance knowledge distillation
with a four times speedup to prior data-inversion methods (Yin et al., 2020) due to the current task
being a better prior than pixel-wise Gaussian to learn the generated data.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets and architectures. We validate the proposed method on Split CIFAR-10 (Krizhevsky, 2012)
with five tasks, Split CIFAR-100 (Krizhevsky, 2012) with 20 tasks and Split Tiny-ImageNet with ten
tasks. For HCL, we consider various architectural innovations in the ImageNet challenge (Deng et al.,
2009) including LeNet (LeCun et al., 1989), AlexNet (Krizhevsky et al., 2012), VGG (Simonyan
& Zisserman, 2015) with batch normalization (Ioffe & Szegedy, 2015), InceptionNet (Szegedy
et al., 2017), ResNet (He et al., 2016), ResNeXt (Xie et al., 2017), DenseNet (Huang et al., 2017),
SENet (Hu et al., 2018), RegNet (Xu et al., 2022). We defer the details to Appendix A.1.1.

Baselines. We compare our designed KD paradigm (Equation 3), with QDI (Equation 5) agains stan-
dard fine-tuning (FINETUNE), SI Zenke et al. (2017), LWF (Li & Hoiem, 2016) ICARL (Rebuffi et al.,
2017) A-GEM (Chaudhry et al., 2019a), ER (Chaudhry et al., 2019b), DER and DER++ (Buzzega
et al., 2020), DI (Yin et al., 2020) and multi task training (MULTITASK), where all tasks are trained
jointly with ResNet18 – most prominent architecture in CL literature. For a fair comparison, we
extend our method with the classification loss using BUFFER in Equation 3. The buffer-size for
replay-based method is fixed to 200 for all the methods that use exemplar or generative replay.

Evaluation. To evaluate and compare our method in both standard CL and HCL setting, we use the
average accuracy and forgetting as two metrics.

1. Average accuracy. It is the average of the accuracy of all tasks after the completion of
training with the sequence of T tasks. More formally, average accuracy AT = 1

T

∑T
t=1 aT,t,

where ai,j is the accuracy of task j after completion of task i.
2. Average forgetting. It is the averaged difference in accuracy between the accuracy after

training and the maximum accuracy for each task. More formally, average forgetting
FT = 1

T−1

∑T
t=1 max

i∈{1,...,T}
(ai,t − aT,t)
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Table 1: Accuracy and forgetting with task-IL on standard CL and HCL. The best results are highlighted
in bold. B denotes replay-buffer, AT ,FT denote average accuracy and forgetting after the completion of
training.∗ denotes the methods whose numbers were used from Buzzega et al. (2020) and − indicates the
unaviliability of results. All other experiments are over three independent runs.

METHOD B SPLIT CIFAR-10 SPLIT CIFAR-100 SPLIT TINY-IMAGENET

AT (↑) FT (↓) AT (↑) FT (↓) AT (↑) FT (↓)
STANDARD CONTINUAL LEARNING

FINETUNE – 62.93 (± 1.41) 41.45 (± 2.39) 40.13 (± 3.60) 53.64 (± 3.65) 19.31 (± 0.71) 59.50 (± 0.81)

SI (Zenke et al., 2017)∗ – 68.05 (± 5.91) 38.76 (± 0.89) – – 36.32 (± 0.13) –
LWF (Li & Hoiem, 2016)∗ – 63.29 (± 2.35) 32.56 (± 0.56) – – 15.85 (± 0.58) –
DI (Yin et al., 2020) – 89.11 (± 3.70) 7.12 (± 2.43) 49.64 (± 0.59) 35.29 (± 0.75) 44.29 (± 1.88) 22.42 (± 3.23)

KD (OURS) – 95.01 (± 0.79) 0.87 (± 0.35) 87.13 (± 0.45) 4.26 (± 0.41) 65.48 (± 0.12) 7.33 (± 2.03)

KD W/ QDI (OURS) – 95.46 (± 0.15) 0.37 (± 0.09) 88.30 (± 0.17) 2.00 (± 0.15) 66.79 (± 0.45) 7.28 (± 0.49)

ICARL (Rebuffi et al., 2017)∗ ✓ 88.99 (± 2.13) 2.63 (± 3.48) – – 28.19 (± 1.47) –
A-GEM (Chaudhry et al., 2019a) ✓ 87.09 (± 0.84) 12.54 (± 1.23) 63.88 (± 1.23) 29.98 (± 1.40) 22.44 (± 0.24) 55.43 (± 0.71)

ER (Rolnick et al., 2019) ✓ 91.39 (± 0.41) 5.99 (± 0.43) 67.06 (± 1.01) 25.31 (± 1.27) 21.03 (± 2.41) 57.88 (± 2.63)

DER (Buzzega et al., 2020) ✓ 92.45 (± 0.26) 5.79 (± 0.20) 67.74 (± 0.88) 24.77 (± 0.94) 30.97 (± 0.14) 45.25 (± 0.48)

DER++ (Buzzega et al., 2020) ✓ 92.16 (± 0.68) 5.96 (± 0.74) 69.03 (± 0.74) 23.06 (± 0.69) 33.63 (± 0.10) 40.66 (± 0.83)

KD W/ BUFFER (OURS) ✓ 95.70 (± 0.25) 0.52 (± 0.18) 80.35 (± 0.53) 10.76 (± 0.65) 64.75 (± 0.29) 8.96 (± 0.81)

MULTITASK∗ ✓ 98.31 (± 0.12) N/A 93.89 (± 0.78) N/A 82.04 (± 0.10) N/A

HETEROGENEOUS CONTINUAL LEARNING

FINETUNE – 61.99 (± 1.98) 42.15 (± 2.94) 27.08 (± 1.20) 64.54 (± 1.45) 14.83 (± 0.53) 56.31 (± 0.60)

DI (Yin et al., 2020) – 81.16 (± 2.77) 15.84 (± 3.01) 38.33 (± 1.44) 47.08 (± 1.37) 31.69 (± 1.99) 32.42 (± 3.63)

KD (OURS) – 92.88 (± 0.61) 3.97 (± 0.72) 68.97 (± 0.72) 21.45 (± 0.91) 52.86 (± 2.78) 11.73 (± 2.59)

KD W/ QDI (OURS) – 93.24 (± 0.09) 3.09 (± 0.19) 76.44 (± 1.36) 12.31 (± 0.99) 53.39 (± 1.67) 13.66 (± 1.18)

A-GEM (Chaudhry et al., 2019a) ✓ 76.70 (± 0.67) 24.31 (± 1.03) 35.37 (± 1.29) 56.41 (± 2.19) 15.79 (± 0.60) 54.10 (± 1.00)

ER (Rolnick et al., 2019) ✓ 81.78 (± 2.15) 17.57 (± 2.86) 52.59 (± 1.03) 36.41 (± 0.54) 27.82 (± 1.43) 39.66 (± 1.24)

DER (Buzzega et al., 2020) ✓ 79.92 (± 0.51) 19.99 (± 0.64) 53.01 (± 0.61) 37.33 (± 0.58) 25.27 (± 1.34) 40.81 (± 0.57)

DER++ (Buzzega et al., 2020) ✓ 81.33 (± 0.76) 18.79 (± 0.75) 54.81 (± 1.65) 35.20 (± 1.63) 29.74 (± 1.40) 36.79 (± 2.16)

KD W/ BUFFER (OURS) ✓ 93.95 (± 0.22) 2.49 (± 0.44) 73.98 (± 0.13) 16.40 (± 0.18) 54.84 (± 0.87) 10.82 (± 0.80)

4.2 QUANTITATIVE RESULTS

Task-incremental continual learning. First, we compare the performance of our proposed method
with other baselines for task-IL on standard and heterogeneous continual learning settings. In Table 1,
we find that the performance of all the methods drop significantly by going from the SCL to the HCL
setting. Contrary, our proposed methods achieve the lowest drop across all methods; moreover, it
obtains the best performance with and without buffer across all considered scenarios. Additionally,
we show that in standard CL and HCL, QDI leads to a ∼ 40% and ∼ 22% absolute improvement in
average accuracy over state-of-the-art data-free methods for Split CIFAR-100 and Tiny-ImageNet.
Interestingly, we find that distillation with synthetic examples generated by QDI obtains comparable
or better performance to the replay buffer highlighting the flexibility of data-free continual learning.
Moreover, QDI improves synthesis speed by 4× for generating the synthetic examples in comparison
to DI (Yin et al., 2020) for each task. All variants of our method achieve the least forgetting in
comparison to the baselines across all datasets for both the standard CL and HCL scenarios.

Class-incremental continual learning. Next, we validate our proposed method on class-IL, where
task-labels are not provided during training or inference. In Table 2, we observe that all our methods
outperform the baselines with and without buffer in average accuracy and forgetting. Specifically,
we show that ours with QDI and BUFFER examples show a five to ten percent improvement in
average accuracy for Split CIFAR-100 and Tiny-ImageNet datasets. However, we find that buffer
is an important component of our method for class-IL; it is consistent to the observations in prior
works (Yin et al., 2020; Carta et al., 2022). Further, we observe that the synthetic examples generated
by QDI lead to unstable training for CIFAR-10, but improve the performance for other datasets.
We believe this is an outcome of the model’s dependence on domain over semantics (Smith et al.,
2021) and further investigation of data-free continual learning techniques for class-IL would be an
interesting direction for future work.
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Table 2: Accuracy and forgetting with class-IL on standard CL and HCL. The best results are highlighted
in bold. B denotes replay-buffer, AT ,FT denote average accuracy and forgetting after the completion of
training.∗ denotes the methods whose numbers were used from Buzzega et al. (2020) and − indicates the
unaviliability of results. All other experiments are over three independent runs.

METHOD B SPLIT CIFAR-10 SPLIT CIFAR-100 SPLIT TINY-IMAGENET

AT (↑) FT (↓) AT (↑) FT (↓) AT (↑) FT (↓)
STANDARD CONTINUAL LEARNING

FINETUNE – 19.60 (± 0.03) 96.66 (± 0.12) 6.93 (± 1.13) 60.53 (± 1.11) 6.78 (± 0.14) 40.67 (± 0.92)

DI (Yin et al., 2020) – 22.72 (± 1.02) 77.65 (± 0.30) 7.21 (± 0.75) 63.90 (± 2.87) 7.28 (± 2.05) 51.70 (± 0.63)

SI (Zenke et al., 2017)∗ – 19.48 (± 0.17) 95.78 (± 0.64) – – 6.58 (± 0.31) –
LWF (Li & Hoiem, 2016)∗ – 19.61 (± 0.05) 96.69 (± 0.25) – – 8.46 (± 0.22) –

KD (OURS) – 27.72 (± 0.52) 15.36 (± 1.31) 16.77 (± 0.63) 80.65 (± 0.99) 20.86 (± 0.14) 42.38 (± 0.95)

KD W/ QDI (OURS) – 19.75 (± 0.03) 0.08 (± 0.02) 22.53 (± 1.15) 16.50 (± 2.72) 24.21 (± 0.52) 36.58 (± 1.56)

ICARL (Rebuffi et al., 2017)∗ ✓ 49.02 (± 3.20) 28.72 (± 0.49) – – 7.53 (± 0.79) –
A-GEM (Chaudhry et al., 2019a) ✓ 21.98 (± 0.56) 92.18 (± 1.98) 5.04 (± 0.12) 91.93 (± 0.22) 7.49 (± 0.12) 72.04 (± 0.34)

ER (Rolnick et al., 2019) ✓ 48.56 (± 1.40) 58.11 (± 1.61) 9.65(± 0.95) 85.20 (± 1.27) 10.70 (± 0.27) 83.99 (± 0.18)

DER (Buzzega et al., 2020) ✓ 66.08 (± 1.18) 27.40 (± 2.16) 19.01 (± 0.74) 65.06 (± 0.15) 10.01 (± 1.52) 65.66 (± 3.60)

DER++ (Buzzega et al., 2020) ✓ 67.23 (± 1.36) 26.13 (± 0.28) 21.38 (± 0.48) 56.17 (± 3.37) 8.23 (± 0.31) 68.51 (± 1.17)

KD W/ BUFFER (OURS) ✓ 61.17 (± 3.37) 10.13 (± 2.19) 25.19 (± 0.15) 40.53 (± 0.73) 24.22 (± 0.65) 36.15 (± 1.41)

MULTITASK∗ – 92.20 (± 0.15) N/A 70.32 (± 0.48) N/A 59.99 (± 0.19) N/A

HETEROGENEOUS CONTINUAL LEARNING

FINETUNE – 21.45 (± 0.75) 91.24 (± 2.33) 5.27 (± 0.23) 72.99 (± 1.94) 7.90 (± 0.13) 57.23 (± 0.11)

DI (Yin et al., 2020) – 20.67 (± 1.10) 70.97 (± 2.13) 6.20 (± 1.40) 73.70 (± 1.49) 6.39 (± 0.60) 51.14 (± 0.87)

KD (OURS) – 30.56 (±1.61) 27.54 (±1.91) 12.94 (± 1.13) 58.89 (± 1.64) 14.18 (± 0.35) 46.91 (± 0.59)

KD W/ QDI (OURS) – 18.85 (± 0.30) 0.66 (± 0.38) 15.86 (±1.51) 32.73 (±0.77) 15.38 (±1.67) 37.27 (±1.31)

ER (Chaudhry et al., 2019a) ✓ 38.77 (± 1.99) 69.61 (± 2.20) 7.43 (± 0.36) 82.85 (± 0.20) 7.59 (± 0.12) 61.77 (± 0.31)

A-GEM (Chaudhry et al., 2019a) ✓ 19.67 (± 0.41) 89.26 (± 2.89) 4.62 (± 0.02) 88.78 (± 0.84) 6.93 (± 0.11) 63.93 (± 0.73)

DER (Buzzega et al., 2020) ✓ 44.13 (± 0.98) 57.64 (± 4.76) 10.11 (± 0.65) 80.92 (± 1.35) 8.11 (± 0.26) 56.73 (± 0.81)

DER++ (Buzzega et al., 2020) ✓ 48.82 (± 1.75) 50.11 (± 2.74) 10.97 (± 0.55) 73.62 (± 0.86) 8.88 (± 0.61) 55.54 (± 2.13)

KD W/ BUFFER (OURS) ✓ 65.40 (± 0.96) 10.13 (± 2.19) 21.00 (± 1.01) 38.49 (± 1.39) 18.77 (± 0.91) 8.76 (± 0.79)

4.3 ADDITIONAL ANALYSIS

Ablation studies. To dissect the contribution of different components in our proposed method
for HCL, we isolate and study them on Split CIFAR-10 in Table 3. First, we find that knowledge
distillation with augmented instances, in the contrast to a common setting of precomputed logits,
improves the performance by ∼ 8% and ∼ 13% for task-IL and class-IL respectively due to the
better generalization of current task representations. Next, we observe that label-smoothing improves
the task-IL performance while hurting the class-IL average accuracy highlighting the presence of a
trade-off between both the settings. Additionally, we measure the effect of warmup and task-identity
for HCL following prior works (Jung et al., 2016; Li & Hoiem, 2016) for standard CL, where we find
that warm-up of the linear head before current-task training and inclusion of task-identity hurt the
performance for HCL. Further, we conduct an ablation on different distance metrics used for KD in
Equation 3 for HCL. While, a modified version of cross entropy (CE) or mean-square distance (MSE)
are commonly used for knowledge distillation in CL (Li & Hoiem, 2016; Rebuffi et al., 2017; Buzzega
et al., 2020), we find the KL-divergence (KL) is more stable and often obtains better performance
in Table 4 for both class-IL and task-IL. We believe that the ablation of these design choices will
provide critical insights towards building future methods for standard and heterogeneous CL.

Transfer to vision transformer. To show the flexibility of our framework beyond convolutional
architectures, we design a two task experiment with CIFAR-10 consisting of five classes each. The
first task is trained with ResNet18 (He et al., 2016) followed by Swin-T (Liu et al., 2021b) on the
second task. Table 5 shows the comparison of our proposed method with only KD against FINETUNE,
DER++ trained with HCL and MULTITASK learned with CIFAR-10 on Swin-T (Liu et al., 2021b).
First, we remark that Swin-T (MULTITASK: 88.71± 0.40) achieves lower accuracy in comparison to
ResNet18 (MULTITASK: 98.31± 0.12) because ViTs are data-hungry (Liu et al., 2021a). Second,
we show that our proposed method with evolving architectures obtains performance similar to the
multitask baseline. Lastly, our proposed method obtains better average accuracy and lower forgetting
over the evaluated baselines showing the benefit of training with multiple architectures.
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Table 3: Ablation showing At to measure the
effect of various components with Split-CIFAR10.
The inclusion of distillation with augmented im-
ages (AUG-KD) and label-smoothing (LS) signif-
icantly improve performance, whereas WARMUP
and task-identity (TI) degrade performance. Blue
and red colors denote the components that were in-
cluded and excluded from the method respectively.

MODEL TASK-IL CLASS-IL

KD 83.43 (± 0.42) 21.11 (± 0.19)

+ AUG-KD 91.76 (± 2.03) 34.11 (± 1.07)

+ LS 93.13 (± 0.35) 30.21 (± 0.11)

+WARMUP 91.64 (± 1.37) 28.26 (± 0.28)

+ TI 90.14 (± 1.33) 22.04 (± 0.27)

Table 4: Ablation showing At using validation
set to measure the effect of different distance met-
rics. We measure the average accuracy and forget-
ting for HCL on Split-CIFAR10 dataset.

MODEL TASK-IL CLASS-IL

CE 91.06 (± 0.63) 20.99 (± 0.27)

MSE 89.68 (± 0.99) 20.09 (± 0.26)

KL 93.13 (± 0.35) 30.21 (± 0.11)

Table 5: Transformer analysis. Average accuracy
and forgetting for HCL with ResNet18 to Swin-T with
two tasks on CIFAR-10.

MODEL AT (↑) FT (↓)
FINETUNE 55.47 (± 2.06) 77.68 (± 3.68)
DER++ 69.05 (± 2.56) 51.99 (± 1.91)

KD (OURS) 88.77 (± 0.55) 10.95 (± 1.34)

MULTITASK 88.71 (± 0.40) –

0.5k optimization steps 4x faster2k optimization steps
DI (Yin et al.) QDI (ours)

Figure 4: Visualization of QDI and comparison to
prior art. Top: prior feature synthesis from current task
data. Bottom: samples for DI that start from N (0, 1)
and QDI from xt in pairs (left – optimization start point;
right – optimization convergence point) for ResNet18
on CIFAR-10 dataset.

Visualization of generated examples. We visualize the generated examples by DI and QDI in the
HCL setting for ResNet18 architecture with CIFAR-10 dataset in Figure 4. To explain the interplay
of the generated examples initialized with the current task instances and the past task examples, we
consider the example of a current task (e.g., a cat or bird) to invert the visual features of the past
task (car). We observe that the input-features swiftly generated by QDI have a combination of both
classes and superior in realism; in contrast, DI only contains the past-task features and requires more
optimization steps from random noise for full convergence. We believe this interpolation also helps
in current task-training while also alleviating catastrophic forgetting.

5 DISCUSSION AND CONCLUSION

In this paper, we propose a novel continual learning setting named Heterogeneous Continual Learning
(HCL), where the lifelong learner learns on a sequence of tasks while adopting the state-of-the-art
deep-learning techniques and architectures. We benchmark the state-of-the-art CL solutions in this
new setting, and observe a large degradation in performance. To tackle this limitation, we revisit
knowledge distillation and propose a modified paradigm inspired by the recent advances in knowledge
distillation. Additionally, we propose Quick Deep Inversion (QDI) that generates synthetic examples
using current task instances to enhance knowledge distillation performance in the data-free continual
learning setup. Our experimental evaluation shows that without tuning the training configurations, we
achieve an improvement for both the standard and heterogeneous continual learning settings across
all datasets highlighting the efficacy of our approach in practical scenarios.

Limitations. Although the proposed approach is applicable for general deep-learning architectures,
we found some limitations with the current approach/setup. First, in some cases, the recent archi-
tectures can be sub-optimal and degrade the model performance due to their training configuration,
model size, or hyper-parameter mismatch. We note that we did not tune the training configuration
or hyper-parameters for each model and a careful hyper-parameter tuning for different types of
architectures can further improve model performance. Second, our work is not yet applicable to
unsupervised continual learning with heterogeneous architectures, where the learner is expected
to learn on unlabelled data with changing architectures because model inversion and knowledge
distillation with unsupervised CL is not a trivial extension due to the absence of class-dependent
information to generate class-conditioned examples.
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Ethics statement. The continuous change of architectures makes continual learning extremely
powerful. Therefore, it might lead to unethical applications of these networks and it is essential to
regulate and audit the use of these models during deployment.

Reproducibility statement. We provide the details for all the datasets with the hyper-parameter
setups in Appendix A.1. We will release the source code to the community with all hyper-parameters
and scripts to facilitate reproducibility, further analysis, and future research.
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A SUPPLEMENTARY MATERIAL

Organization. In the supplementary material, we provide the implementation details and hyper-
parameter configurations in Appendix A.1. Further, we show additional visualization of examples
generated by QDI in Appendix A.2.

A.1 EXPERIMENTAL DETAILS

This section provide details on the datasets and architectures and implementation of HCL.

A.1.1 DATASETS AND ARCHITECTURES

In this subsection, we provide the details about the datasets and the architectures used for evaluation.

1. Split CIFAR-10 (Krizhevsky, 2012). It consists of CIFAR-10 sized 32× 32 split into five
tasks, where each task contains two different classes. In the HCL setting, we consider a
different architecture for each task: LeNet (LeCun et al., 1989), ResNet (He et al., 2016),
DenseNet (Huang et al., 2017), SENet (Hu et al., 2018), and RegNet (Xu et al., 2022).

2. Split CIFAR-100 (Krizhevsky, 2012). It is a split of CIFAR-100, where the 100 object
classes are divided into 20 tasks. We consider nine architectures in the HCL: LeNet (LeCun
et al., 1989), AlexNet (Krizhevsky et al., 2012), VGG (Simonyan & Zisserman, 2015)
with batch normalization (Ioffe & Szegedy, 2015), InceptionNet (Szegedy et al., 2017),
ResNet (He et al., 2016), ResNeXt (Xie et al., 2017), DenseNet (Huang et al., 2017),
SENet (Hu et al., 2018) for two tasks each and RegNet (Xu et al., 2022) for last four tasks.

3. Split Tiny-ImageNet. It is a variant of ImageNet (Deng et al., 2009) that consists of images
sized 64× 64 from 200 classes. It consists of 20 tasks, where each task contains 10 classes.
The set of architectures in HCL include LeNet (LeCun et al., 1989), ResNet (He et al.,
2016), ResNeXt (Xie et al., 2017), SENet (Hu et al., 2018),and RegNet (Xu et al., 2022)
architectures, where each architecture is used for two consecutive tasks.

A.1.2 HYPERPARAMETER SETUP

We follow the base hyper-parameter setup from Buzzega et al. (2020) for SCL and HCL experiments.
We use an SGD optimizer for experiments with base learning rate as 0.03 for all the models. For
each new task a total of 200 epochs are utilized to train the current model and we use early-stopping
on the validation set to store the best-model. Batch size is set as 32 and training is conducted
on one NVIDIA V100 GPU of 16G for CIFAR-10 experiment and 32G for Split CIFAR-100 and
Tiny-ImageNet datasets. QDI previous class target synthesis labels evenly sampled across previous
tasks. Optimization hyper-parameters for QDI are provided next for three datasets, each shared across
all networks during the training run:

• Split CIFAR-10 (Krizhevsky, 2012). Optimization based on Adam optimizer of learning
rate 0.005, αtv = 0.001, αℓ2 = 0, αfeature = 0, αfeature = 0.1 for 0.5K iterations.d(·, ·) is
MSE loss.

• Split CIFAR-100 (Krizhevsky, 2012). Optimization based on Adam optimizer of learning
rate 0.03, αtv = 0.003, αℓ2 = 0.003, αfeature = 0.2 for 0.5K iterations. d(·, ·) is MSE loss.

• Split Tiny-ImageNet. Optimization based on Adam optimizer of learning rate 0.05, αtv =
0.001, αℓ2 = 0.05, αfeature = 0.5 for 0.5K iterations. d(·, ·) is MSE loss.

For each dataset we found the QDI hyper-parameters based on a validation set obtainend by randomly
sampling 10% of the training set. All results in main paper are on the test set, with 3 independent
runs of the hyperset from random seeds for means and standard deviations.

A.2 ADDITIONAL VISUALIZATION

We provide extra visualization of QDI samples for the CIFAR-100 and Tiny-ImageNet datasets as
in Fig. A.5. It can be observed that the proposed method scales across datasets with high fidelity
in synthesized samples. More interestingly, the optimization step can find very close proxy of the
current task semantics in older domains and dream out visual features of high perceptual realism.
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CIFAR-100 Tiny-ImageNet

Figure A.5: More QDI visualization for CIFAR-100 and Tiny-ImageNet datasets. Best viewed in
color.
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