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ABSTRACT

Visual preference alignment involves training Large Vision-Language Models
(LVLMs) to predict human preferences between visual inputs. This is typically
achieved by using labeled datasets of chosen/rejected pairs and employing op-
timization algorithms like direct preference optimization (DPO). Existing visual
alignment methods, primarily designed for single-image scenarios, struggle to ef-
fectively handle the complexity of multi-image tasks due to the scarcity of di-
verse training data and the high cost of annotating chosen/rejected pairs. We
present Multi-Image Augmented Direct Preference Optimization (MIA-DPO),
a visual preference alignment approach that effectively handles multi-image in-
puts. MIA-DPO mitigates the scarcity of diverse multi-image training data by
extending single-image data with unrelated images arranged in grid collages or
pic-in-pic formats, significantly reducing the costs associated with multi-image
data annotations. Our observation reveals that attention values of LVLMs vary
considerably across different images. We use attention values to identify and filter
out rejected responses the model may have mistakenly focused on. Our attention-
aware selection for constructing the chosen/rejected pairs without relying on (i)
human annotation, (ii) extra data, and (iii) external models or APIs. MIA-DPO
is compatible with various architectures and outperforms existing methods on five
multi-image benchmarks, achieving an average performance boost of 3.0% on
LLaVA-v1.5 and 4.3% on the recent InternLM-XC2.5. Moreover, MIA-DPO has
a minimal effect on the model’s ability to understand single images.

1 INTRODUCTION

The new material added for the rebuttal discussion is in red.

Recent progress in Large Vision Language Models (LVLMs) marks a significant breakthrough in
AI research. While proprietary models (e.g., GPT-4o (OpenAI, 2024)) excel at handling multi-
image contexts, current open-source LVLMs (Liu et al., 2024b;a) yield promising results but are
primarily focused on single-image visual question answering. In real-world environments, such
as digital documents and web pages, multiple figures and texts are interleaved to convey complex
information effectively. The ability to understand multi-image contexts is a crucial direction for the
future development of LVLMs.

LVLMs typically have three stages: (1) Pre-Training, (2) Supervised Fine-Tuning (SFT), and (3)
Preference Alignment (i.e., Reinforcement Learning from Human Feedback (RLHF) (Ouyang et al.,
2022) or from AI Feedback (RLAIF) (Bai et al., 2022)). Correspondingly, to enhance the multi-
image ability of LVLMs, several recent multi-image pre-training (Awadalla et al., 2023a; 2024) and
instruction fine-tuning (Jiang et al., 2024; Li et al., 2024a; Chen et al., 2024b; Liu et al., 2024d)
datasets and evaluation benchmarks (Jiang et al., 2024; Fu et al., 2024; Song et al., 2024; Ma et al.,
2024) have been proposed. Pre-training and SFT on multi-image data can enhance the model’s
ability to handle multiple images to some extent. Nevertheless, similar to single-image scenarios,
hallucinations remain an inevitable issue. Additionally, incorporating multi-image data during SFT
may adversely affect performance on single-image tasks. For example, previous work (Jiang et al.,
2024) shows strong results on multi-image tasks after multi-image SFT but suffers a 4% average
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Prompt：
Image1:<Image>, Image2:<Image>, 
Image3:<Image>, Image4:<Image> 
What animals are in Image1? 

LVLM response: 
In Image1, there are two dogs 
and two sheep.

LVLM

ratio      
calculation

Chosen:
In Image1, there 
are two giraffes.

Rejected:
In Image1, there 
are two dogs and 
two sheep.Does LVLMs pay attention 

to the right area？

Single-Image(avg)

MMMU

BLINK

Mantis

NLVR2

MVBench

LLaVa-v1.5-7B

LLaVa-v1.5-7B+MIA-DPO

Xcomposer2.5

Xcomposer2.5+MIA-DPO

Instruction-
targeted image

image1 image2 image3 image4

Attention in the intermediate layer

(a) MIA-DPO Overview (b) Benchmark Results

Prompt: What animals are 
in image?
Ground Truth: There are 
two giraffes.  

Noisy/Unrelated ImagesSampled Data (LLaVa665k) Augmented Multi-Image Data

Sequence Grid Collage Pic-in-Pic

Figure 1: (a) Overview of MIA-DPO. We transform single-image data (e.g., LLaVA 665k) into multi-image
data by adding noisy or unrelated images and using language descriptions to specify the target image. Attention
values are then used to detect hallucinations in multi-image contexts, filtering out rejected data for DPO opti-
mization. (b) Benchmark Results. MIA-DPO excels across five multi-image benchmarks while maintaining
competitive performance on seven single-image benchmarks, demonstrating its robustness in both single and
multi-image tasks.

drop in single-image benchmarks. Besides pre-training and SFT, another option is preference align-
ment. A series of Direct Preference Optimization (DPO) (Rafailov et al., 2024) approaches in the
visual domain (Sun et al., 2023; Yu et al., 2024a;b; Zhou et al., 2024) have proven effective in miti-
gating hallucinations in single-image scenarios. However, visual preference alignment remains little
explored for multi-image fields.

Extending existing single-image preference alignment approaches to multi-image is non-trivial. A
preference alignment data workflow consists of two key components: collecting question prompts,
and selecting chosen/rejected response pairs. The transition to multi-image scenarios introduces the
following challenges: (1) Limited Question Prompts. Multi-image training data is still emerging,
with fewer instructions and less diversity than the extensive and varied single-image data. (2) High
Construction Costs. Previous single-image RLHF/RLAIF approaches require high costs when con-
structing chosen and rejected data pairs, such as using human annotation (Sun et al., 2023; Yu et al.,
2024a) or expensive GPT API (Zhao et al., 2023). Extending previous visual preference alignment
data workflow to multi-image scenarios amplifies the associated costs.

To address the aforementioned challenges, we present a multi-image visual preference alignment
method, dubbed as Multi-Image-Augmented DPO (MIA-DPO). As shown in Fig. 1(a), to gather
multi-image questions and answers, we extend single-image data to multi-image contexts by in-
corporating unrelated images, and a language description (e.g., in Image1) to specify the target
image. Additionally, we design three approaches to convert to data into a multi-image format: se-
quence, grid collage and pic-in-pic. This method uses existing single-image data, thereby reducing
the costs associated with data collection and annotation, and is easily scalable for diverse data.

As for constructing chosen/rejected pairs, MIA-DPO eliminates the need for manual annotation
or costly proprietary APIs. This is based on our observation that when LVLMs process multiple
images, the attention value distribution across different images varies significantly (see bottom left
of Fig. 1). We perform an Attention Aware Selection approach to filter out the rejected response
that the attention values are mistakenly focused on irrelevant images. Our data construction method
for DPO is also automated, cost-effective, and scalable for multi-image scenarios.

In summary, our key contributions are as follows:

(1) We first design a multi-image visual alignment pipeline MIA-DPO. Our MIA-DPO requires
no manual annotations and does not rely on APIs from larger models, offering a significant cost
advantage compared to existing visual alignment approaches.

(2) We contribute to the study of different types of multi-image hallucinations and propose to use
attention values as an indicator for detecting multi-image hallucinations.
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(3) Extensive experiments (Fig. 1(b)) demonstrate that MIA-DPO is agnostic to different LVLM
architectures (LLaVA-v1.5 (Liu et al., 2024a) and InternLM-XC2.5 (Zhang et al., 2024)), boosts
the performance on multiple multi-image benchmarks while maintaining the original single-image
understanding capabilities.

2 RELATED WORKS

Large Vision Language Models (LVLMs), like GPT-4V (Achiam et al., 2023), signify a major
breakthrough in the development of Large Language Models (LLMs) by incorporating both visual
and textual data (Bai et al., 2023; Wang et al., 2024a;b). LVLMs significantly enhance the quality
of human-AI interactions, making these exchanges more intuitive and seamless. To enable LVLMs
to handle multi-image tasks, several multi-image datasets suitable for pre-training and supervised
fine-tuning (SFT) have gradually emerged (Jiang et al., 2024; Liu et al., 2024d; Song et al., 2024).
However, due to the lag in the development of multi-image datasets, data and methods tailored for
multi-image tasks during the RLHF/RLAIF phase remain unexplored. Therefore, we designed a
dedicated MIA-DPO framework for multi-image tasks, aimed at improving the ability of LVLMs to
handle multi-image scenarios.

Visual Preference Alignment is a multi-modal extension of preference alignment techniques with
image inputs. Preference alignment aligns LLMs with human values and reduces hallucinations by
collecting pairs of preferred and rejected data, using optimization techniques including PPO (Schul-
man et al., 2017) and DPO (Rafailov et al., 2024) to guide the model’s adjustments. Earlier ap-
proaches, such as LLaVa-RLHF (Sun et al., 2023) and RLHF-V (Yu et al., 2024a), required human
labeling of preferred data, which incurs high labor costs. HA-DPO (Zhao et al., 2023) mitigates
this by using GPT-4’s API to generate the necessary DPO data, but it still faces high API costs.
RLAIF-V (Yu et al., 2024b) employs a text-splitting approach to scoring individual text segments
and using open-source LVLMs for data generation. POVID (Zhou et al., 2024) uses blurred images
and GPT-4 to inject hallucinations to construct the DPO data. The previous approaches focus solely
on single-image scenarios and require costly chosen/rejected data. Our MIA-DPO first enables vi-
sual preference alignment for multi-image scenarios and achieves low-cost DPO data construction.

3 METHODS

We first introduce the background of visual preference alignment in Sec. 3.1. We analyze the multi-
image hallucinations in Sec. 3.2. We present our MIA-DPO framework in Sec. 3.3.

3.1 PRELIMINARY

To enhance LVLMs’ understanding of multi-image inputs, we employ visual preference alignment.
This section introduces the concept of visual preference alignment and highlights the DPO approach
as a representative example.

Visual Preference Alignment Preference alignment aims to align a model’s preferences with
human preferences. Representative approaches include Reinforcement Learning from Human
Feedback (RLHF) (Ouyang et al., 2022) and Reinforcement Learning from AI Feedback
(RLAIF) (Bai et al., 2022). Given a dataset D1, where each sample consists of an input prompt x,
the chosen answers yw and the rejected output yl. We can represent D as follows: D = {x, yw, yl}.
The input prompt x can be an interleaved sequence of images v and texts t. When an LVLM pro-
cesses an input x and generates an output y, a reward r(x, y) is assigned. The reward model r
assesses the chosen (high value of r(x, y)) and rejected (low r(x, y)) samples. Visual preference
alignment aims to maximize the reward r(x, y):

max
θ

Ex∼D,y∼πθ(y|x) [r(x, y)] , (1)

while θ, πθ and πθ(y|x) refer to the parameter, policy, and output distribution of LVLM, respectively.

1For simplicity, we use a single sample in our formulations, which can be easily extended to a batch of
samples.
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Image1:<Image>\n Image2:<Image>\n Image3:<Image>\n Image4:<Image>\n Image5:<Image>\n 
What's the man doing in Image1?

In Image1, the man is standing next to a train, possibly waiting for it to depart or 
just observing the train.

Sequence Confusion

Element Interference
Image1:<Image>\n Image2:<Image>\n 
Image3:<Image>\n What color is the car in Image2?

The car in Image2 is red.

A
tt

en
ti
on

 

The model mistakenly identified Image4 when addressing the question 
and did not point to the correct Image1. The attention distribution 
mainly focused on Image4 and Image5 rather than Image1, highlighting 
this confusion.

The model incorrectly identified the color of the car by 
mixing up the visual details of the car (Image2) with 
those of the red motorcycle (Image3). The attention 
values indicate that the model's focus was distributed 
across various elements in Image2 and Image3, which 
led to interference.

A
tt

en
ti
on

 

Figure 2: Examples of Multi-Image Hallucinations. Top: Sequence Confusion that the model is confused
about the order in which the images should be referenced. Bottom: Element Interference. The model incor-
rectly identified the attributes due to visual element interference across different images. Attention values
illustrate how the model’s focus was dispersed across different images, resulting in the hallucination response.

To prevent over-fitting to the dataset D, preference alignment approaches incorporate a KL-
divergence loss DKL to regularize the difference between the model’s policy πθ(y|x) and a reference
model’s policy πref(y|x):

max
θ

[
Ex∼D,y∼πθ(y|x) [r(x, y)]− β ·DKL(πθ(y|x) ∥ πref(y|x))

]
, (2)

where the hyper-parameter β controls the influence of KL-divergence on the optimization objective.
The reference model is the model’s state prior to preference alignment.

Direct Preference Optimization (DPO) To optimize the preference alignment objective in
Eq. (2), we can use either an online reward model (e.g., PPO (Schulman et al., 2017)) or pre-
computed off-line chosen/rejected pairs (e.g., DPO (Rafailov et al., 2024)). Given its simplicity,
DPO has been widely adopted in previous visual alignment works (Sun et al., 2023; Yu et al., 2024a;
Zhao et al., 2023; Yu et al., 2024b). We reformulate Eq. (2) as the loss function of DPO:

LDPO(πθ;πref) = −E(x,yw,yl)∼D

[
log σ

(
β log

πθ(yw|x)
πref(yw|x)

− β log
πθ(yl|x)
πref(yl|x)

)]
, (3)

where σ(.) denotes the sigmoid function. As shown in Eq. (3), DPO-based alignment methods focus
on constructing input prompts x (see Sec. 3.3.1), and selecting chosen yw and rejected yl pairs (see
Sec. 3.3.2).

3.2 ANALYSIS ON MULTI-IMAGE HALLUCINATIONS

In this section, we conduct various studies to analyze the characteristics of multi-image hallucina-
tions in LVLMs and reveal that the attention mechanism is a proper indicator to determine when
hallucinations occur.

Two-types of Multi-Image Hallucinations Some previous studies (Li et al., 2023c; Ouali et al.,
2024) have explored different types of single-image hallucinations, such as object hallucination
which means the model incorrectly describes objects that are not present in the image. Compared to
single-image hallucinations, multi-image scenarios introduce more complex types of hallucinations.
As shown in Fig. 2, we categorize multi-image hallucinations into two-types:
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Response: A bottle of country club beer.

Dataset
(llava665k)

Original
LVLM

Inputs

Generate

Ground Truth 

Rules with attention selection

Is the LVLM attention aware ?
Ratio(I(gt))>Ratio(I(τ)) ?

Chosen: a few pencils wit
h the word country on it.

Rejected: A bottle of 
country club beer.

MIA-DPO 
Chosen&Rejected Pairs

Post-Selection

PPL(Perplexity):
A larger PPL is more 
likely to produce 
hallucinations.

Length ratio:
A large length disparity 
is detrimental to the 
effectiveness of DPO.

Edit Distance:
High similarity between 
chosen and rejected 
data hinders learning.

Stronger
LVLM

DPO
Prompt: Image1:<image>, 
Image2:<image>, Image3:
<image>, Image4:<image>. 
In Image2, provide a on
e-sentence caption for t
he provided image.

Sequeue Grid Collage Pic-in-Pic

Ground Trueh: a few pencils with the word country on it.

Selected Item Noisy/Unrelated images

Random Sample

Three Multi-Images Data Types

Image1 Image2 Image3 Image4

Prompt: Image1:<image>, 
Image2:<image>... In Ima
ge2, provide a one-sente
nce caption ...

Figure 3: MIA-DPO Framework. We extend the single-image dataset to multi-image datasets by
inserting irrelevant images and using attention values to filter out the hallucination responses for
rejected samples of the DPO algorithm.

(1) Sequence Confusion. When presented with multiple images, the model may fail to identify
which image the input prompt refers to. For instance, in the top case shown in Fig. 2, the question
is directed at Image 3 (birds and sky), but the model responds based on Image 4 (a train on tracks).

(2) Element Interference. The presence of multiple images significantly increases the number of
visual elements compared to a single image, leading to confusion between different elements by
LVLMs. For example, in the bottom case of Fig. 2, the question “What color is the car in Image2?”
should be answered with “white”. However, the LVLM incorrectly interpreted the color attribute of
the motorcycle in Image 3 as the color of the car in Image 2, resulting in an incorrect response.

Attention as an Indicator for Detecting Hallucinations The attention mechanism reveals where
the model is “looking” when making a decision. We observe that the attention mechanism provides
crucial clues for detecting multi-image hallucinations (Fig. 2). Ideally, attention values should focus
on areas of the referred input image relevant to the question. If the attention values are scattered
or not strongly focused on the correct visual element or region, it suggests the model is experi-
encing difficulty understanding multi-image sequences or distinguishing elements between different
images. Based on our observation, we design an attention-aware selection that uses the attention val-
ues to select the rejected sample that contains the hallucinations in the DPO algorithm (Sec. 3.3.2).

3.3 MIA-DPO FRAMEWORK

As illustrated in Fig. 3, MIA-DPO initially extends single-image prompts to multi-image prompts
(Sec. 3.3.1), followed by attention-based filtering of rejected data and post-selection processing
(Sec. 3.3.2). Finally, we apply the DPO algorithm (Sec. 3.3.3) to the constructed multi-image
prompts and chosen/rejected pairs, resulting in a stronger model.

3.3.1 FROM SINGLE-IMAGE PROMPTS TO MULTI-IMAGE PROMPTS

Rather than expending effort on collecting and annotating new multi-image prompts, we efficiently
convert existing single-image datasets, such as LLaVA-665k (Liu et al., 2024a), by incorporating
unrelated images. Our low-cost, scalable approach enriches data forms and allows us to comprehen-
sively explore the various types of multi-image hallucinations that LVLMs might produce.

As shown in Fig. 4, we construct multi-image prompts in three formats: (1) Sequence: Multiple
images are arranged sequentially, with questions targeting specific images. The number of images
varies from 2 to 5. (2) Grid Collage: Multiple images are merged into a single image, each labeled
with a number description. Questions focus on specific images based on language descriptions.
The number of images ranges from 2 to 9. (3) Pic-in-Pic: One image is resized and overlaid onto
another, and questions are asked about the combined image.

These three data types are specifically designed to address the two types of multiple-image halluci-
nations in Fig. 2. Sequence data extends the overall length of image tokens and introduces multiple

5
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Prompt: Image1:<image-placeholder> Image2:<image-placeholder> Image3:<image-placeholder> Image4:<image-placeholder> Image5:<image-placeholder>
In Image2, provide a one-sentence caption for the provided image.

Chosen: A train with the banner Barnes and home of the London Wetland Centre.
Rejected: A plane with the number 10 on the tail.

Prompt: <image-placeholder> In Image2, what type of structure or animal is 
carrying the people?

Chosen: The people are being carried by a large wooden elephant structure.
Rejected: In Image2, there is a large elephant carrying people.

Prompt: <image-placeholder> Regarding the 
middle image, is there a game being played in 
the image?

Chosen: Yes, a woman is playing a Wii game 
while other people observe her actions.

Rejected: No, there is no game being played 
in the image. The image shows a man talking 
on a cell phone while standing in front of a ta
ble with a potted plant on it.

(a) Sequence

(b) Grid Collage (c) Pic-in-pic

Squence Image Data: Input the images one by one. 
Designed to address the issue of Sequence Confusion.

Grid Col lage Image 
D a t a :  M e r g e  t h e 
images into one and 
i n p u t .  D e s i g n e d  t o 
address the issue of 
Element Interference.

Pic-in-Pic Data: Overlap the images 
and input. Designed to address the 
issue of Element Interference.

Figure 4: Multi-Images DPO Data Format. To address multi-image hallucinations mentioned in Fig. 2, we
construct our multi-image prompts in three formats: (a) Sequence. (b) Grid Collage. (c) Pic-in-Pic.

（b）Grid Collage
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（c）Pic-in-pic 
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（a）Sequence 
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2 images 3 images 4 images 5 images 2 images 3 images 4 images 6 images 9 images pic-in-pic images

Figure 5: Attention Ratio Statistic. We analyze the attention ratios distribution for different image
counts across various data types, and use dashed lines to indicate the thresholds for each data set.

unrelated images to confuse the LVLMs, challenging their ability to determine image order (Se-
quence Confusion in Fig. 2). Grid Collage and Pic-in-Pic data stack multiple images, increasing the
likelihood of LVLMs confusing image elements and failing to accurately locate the content based on
language descriptions (Element Interference in Fig. 2). Our diverse multi-image prompts enhance
data richness, address various types of multi-image hallucinations, and provide a strong foundation
for constructing chosen/rejected pairs.

3.3.2 ATTENTION-AWARE SELECTION FOR REJECTED SAMPLES

As we analyzed in Sec. 3.2, the model’s attention values are clues for detecting multi-image hal-
lucinations. Inspired by our observation, we present an attention-aware selection mechanism for
constructing the rejected samples of the DPO algorithm.

Given the input question x and a set of generated answers (y1, y2, . . .) ∼ πθ(y|x). For each answer
sample y, we compute the attention value metric R(y) =

Atarget

Asum
, where Atarget be the amount of

attention directed toward the target defined in x, and Atotal be the total amount of attention values.
By setting an attention ratio threshold τ , we can select cases yl that the LVLMs did not correctly
focus on the image or region specified:

yl = {y | y ∼ πθ(y|x) and R(y) ≤ τ}. (4)

We use yl as the rejected answer for the DPO algorithm. We use the ground truth of question x as
the chosen sample yw. Finally, we construct the DPO pair data D = {x, yw, yl} in Eq. (3).

Determining the Ratio Threshold The sequence data include sets of 2, 3, 4, and 5 images. For
each set, we calculated the proportion of attention focused on the image relevant to the question or

6
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instruction, relative to the total attention across all input images. Our statistical results are visualized
in Figure 5(a). As shown in Fig. 5(a), the average attention ratio decreases as the number of images
increases, though the overall distribution trend remains consistent. Based on our findings, we set
attention ratio thresholds at 0.7, 0.6, 0.5, and 0.5 for sets of 2, 3, 4, and 5 images, respectively. Data
below the thresholds is marked as rejected. We applied the same statistical approach for grid collage
data and pic-in-pic data, and visualized the results in Fig. 5(b) and 5(c). For grid collage image data
with 2, 3, 4, 6, and 9 images, we set the value of τ as 0.7, 0.6, 0.5, 0.4, and 0.4, respectively. For
pic-in-pic data, we set τ = 0.6.

Post-Selection for Data Cleaning Although our attention-aware selection is effective in con-
structing the DPO data, a small amount of noisy samples may be included and potentially causing
detrimental effects. To filter out the noisy samples, we incorporate a post-selection step using the
following three metrics: (1) Perplexity (PPL). The PPL metric measures the negative log-likelihood
of the generated sequence, and is a common metric for data cleaning (Albalak et al., 2024). A high
PPL value suggests that LVLMs have lower confidence and are more likely to contain hallucina-
tions. We use the PPL metric to filter out low confidence responses. (2) Length Ratio. Previous
studies (Singhal et al., 2023; Dubois et al., 2024) have shown that the reward model may favor
lengthier content. To mitigate the length bias, we compute the length difference between the chosen
and rejected data, excluding the samples where the difference value is too large. (3) Edit Distance.
We observed that some samples may not contribute meaningfully to the optimization process. For
example, the difference between “apple” (chosen) and “apples” (rejected) is minimal in terms of
edit distance, which is less useful for distinguishing patterns. We use the edit distance to ensure the
DPO process does not incorporate pairs with excessively small differences.

The post-selection approach will filter out approximately 5% of the data. We provide the ablation
studies in Sec. 4.4 to demonstrate that our post-selection helps maintain the high quality of data.

3.3.3 OPTIMIZATION

As discussed in Sec. 3.3.1 and Sec. 3.3.2, we have outlined how to construct multi-image input
prompts x, and select chosen yw and rejected yl pairs. By applying Eq. (3), we can update the
policy πθ.

To improve the stability of DPO training, following the approach in (Dubey et al., 2024; Pang et al.,
2024), we add a negative log-likelihood(NLL) loss LNLL(πθ) = − log πθ(yw|x). We use a parameter
γ to balance the LDPO and LNLL. The final loss Ltotal is defined in Eq. (5):

Ltotal = LDPO(πθ;πref) + γLNLL(πθ). (5)

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Benchmarks We evaluate our method on the following representative benchmarks. First, we se-
lect five multi-image benchmarks: MMMU (Yue et al., 2024), BLINK (Fu et al., 2024), Man-
tis (Jiang et al., 2024), NLVR2 (Suhr et al., 2018), and MVBench (Li et al., 2024c). The MMMU
benchmark includes questions involving both single-image and multi-image scenarios. Subse-
quently, we also test the model on several single-image benchmarks: MMStar (Chen et al., 2024a),
ScienceQA (Lu et al., 2022), MMVet (Yu et al., 2023), POPE (Li et al., 2023c), MMBench (Liu
et al., 2023), MathVista (Lu et al., 2023), AI2D (Kembhavi et al., 2016), and OCRBench (Liu et al.,
2024c). We evaluate our method on a diverse set of benchmarks, demonstrating its effectiveness
across both scenarios. These evaluations confirm the model’s improved performance, particularly in
multi-image contexts.

Baseline Methods We compare MIA-DPO with three preference optimization baselines. (1)
LLaVA-RLHF (Sun et al., 2023) improves model performance by augmenting GPT-4-generated data
with existing human-written image-text data.(2) HA-DPO (Zhao et al., 2023) uses GPT-4 to detect
and correct hallucinations in the model’s responses. (3) POVID (Zhou et al., 2024) prompts GPT-4V
to inject plausible hallucinations into correct answers, followed by image distortion to provoke the
LVLMs’ inherent tendency towards hallucinations.
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Table 1: Main results on multi-image benchmarks. We compare our MIA-DPO along with other DPO
algorithms across five multi-image benchmarks. Our method brings significant performance improvements to
both the classic LLaVa-v1.5 and the recent InternLM-XC2.5. In contrast, other single-image DPO methods
perform poorly on multi-image benchmarks.

Models Parameter MMMU BLINK Mantis NLVR2 MVBench Average
GPT-4V (Achiam et al., 2023) - 56.8 51.1 62.7 88.8 43.5 60.6

LLaVA-v1.6 (Li et al., 2024b) 7B 35.8 39.6 45.6 58.9 40.9 44.2
Qwen-VL-Chat (Bai et al., 2023) 7B 35.9 31.2 39.2 58.7 42.2 41.4
VideoLLaVA (Lin et al., 2023) 7B - 38.9 35.9 56.5 44.3 -
Fuyu (Bavishi et al., 2023) 8B 27.9 36.6 27.2 51.1 30.2 34.6
Idefics2 (Laurençon et al., 2024b) 8B 43.0 45.2 48.9 86.9 29.7 50.7
InstructBLIP (Dai et al., 2023) 13B 30.6 42.2 45.6 60.3 32.5 42.2
CogVLM (Wang et al., 2023) 17B 32.1 41.5 45.2 58.6 37.3 42.9
Emu2-Chat (Sun et al., 2024) 37B 36.3 36.2 37.8 58.2 39.7 41.6

LLaVA-v1.5 (Liu et al., 2024a) 7B 35.1 37.1 41.9 52.1 36.0 40.4
+ LLaVA-RLHF (Sun et al., 2023) 7B 34.6 40.8 30.4 51.8 38.0 39.1
+ HA-DPO (Zhao et al., 2023) 7B 35.8 38.6 34.6 51.6 40.6 40.2
+ POVID (Zhou et al., 2024) 7B 35.2 19.9 37.8 21.4 39.4 30.7
+ MIA-DPO (Ours) 7B 36.3 42.9 44.2 54.2 39.5 43.4
∆ - +1.2 +5.8 +2.3 +2.1 +3.5 +3.0
InternLM-XC2.5 (Zhang et al., 2024) 7B 41.4 46.9 49.3 70.7 59.5 53.6
+ HA-DPO (Zhao et al., 2023) 7B 42.0 46.9 51.6 71.6 58.0 54.0
+ POVID (Zhou et al., 2024) 7B 42.4 47.9 51.2 70.6 59.2 54.3
+ MIA-DPO (Ours) 7B 42.6 47.7 60.4 75.2 63.6 57.9
∆ - +1.2 +0.8 11.1 +4.5 4.1 +4.3

Implementation Details Our MIA-DPO is applicable to various LVLMs. We select two models in
our experiments: the classic LLaVA-v1.5 (Liu et al., 2024a) and the recent InternLM-XC2.5 (Zhang
et al., 2024). The models are trained on 3 epochs, with a learning rate of 5e−5, temperature param-
eter (in Eq. 3) β = 0.1, and NLL loss coefficient (in Eq. 5) γ = 0.1. For more experimental details,
please refer to appendix Sec. A.

4.2 RESULTS ON MULTI-IMAGES BENCHMARKS

Results on LLaVA-v1.5 As present in Tab. 1, applying MIA-DPO to LLaVA-v1.5 achieves im-
provements of 1.2%/5.8%/2.3%/2.1%/3.5% on five multi-image benchmarks, which demonstrates
the effectiveness of MIA-DPO. As for the challenging MMMU benchmark that requires complex
domain-specific knowledge, MIA-DPO enables LLaVA-v1.5 to achieve a 1.2% improvement. The
experimental results on MMMU demonstrate that MIA-DPO enhances the LLaVA-v1.5’s reasoning
ability on multi-image problems. Additionally, on the BLINK dataset that includes multi-view and
spatial relationship reasoning, MIA-DPO significantly boosts the performance of LLaVA-v1.5 by
5.8%. Such an improvement highlights the effectiveness of MIA-DPO in enhancing the model’s
ability to understand and reason under multi-image scenarios.

Comparison with Preference Optimization Baselines In Tab. 1, we compare MIA-DPO with
three preference optimization baselines (LLaVA-RLHF, HA-DPO, POVID) on LLaVA-v1.5. Thanks
to our multi-image attention-based method for constructing the DPO data, MIA-DPO achieves sig-
nificant advantages on the reported five multi-image benchmarks compared to the baselines.

More LVLM Architectures We also applied MIA-DPO to other LVLM architectures, such as
the recent InternLM-XC2.5 model. As shown in Tab. 1, MIA-DPO boosts the performance of
1.2%/0.8%/11.1%/4.5%/4.1% across the five benchmarks, resulting in an average improvement of
4.3%. The results on LLaVA-1.5 and InternLM-XC2.5 demonstrate that MIA-DPO is general and
effective for different LVLM architectures. Notably, despite the Supervised Fine-tuning (SFT) phase
of InternLM-XC2.5 involving multi-image data, our MIA-DPO still further boosts performance on
multi-image benchmarks.
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Table 2: Main results on single-image benchmarks. We compare MIA-DPO with other DPO approaches
across seven single-image benchmarks. MIA-DPO, which not only enhances multi-image performance but also
maintains strong proficiency in single-image tasks.

Models Parameter MMStar SQA MMVet POPE MMB Math AI2D OCR Average
LLaVA-v1.6 (Li et al., 2024b) 7B 37.6 87.5 40.2 70.3 69.8 31.5 67.0 53.7 57.2
Qwen-VL-Chat (Bai et al., 2023) 7B 34.5 68.8 47.3 74.9 61.8 15.5 63.0 48.8 51.8
Idefics2 (Laurençon et al., 2024b) 8B 49.5 88.7 34.0 86.2 75.7 51.4 72.3 - -
OpenFlamingo (Awadalla et al., 2023b) 9B 36.9 44.8 23.2 52.6 32.4 18.6 31.7 14.9 31.9
InstructBLIP (Dai et al., 2023) 13B 32.7 54.1 33.1 86.1 38.3 24.4 40.6 27.6 42.1
CogVLM (Wang et al., 2023) 17B 39.9 66.2 54.5 88.0 65.8 35.0 63.3 59.0 59.0
Emu2-Chat (Sun et al., 2024) 37B 40.7 68.2 31.0 88.0 63.4 30.7 49.7 43.6 51.9

LLaVA-v1.5 (Liu et al., 2024a) 7B 32.9 66.6 30.5 85.9 64.3 25.4 55.5 31.8 49.1
+ LLaVA-RLHF Sun et al. (2023) 7B 31.6 64.0 27.8 80.8 60.1 23.5 47.9 28.0 45.5
+ HA-DPO (Zhao et al., 2023) 7B 33.5 67.3 29.1 84.3 64.9 25.8 53.9 31.1 48.7
+ POVID (Zhou et al., 2024) 7B 36.2 68.8 31.8 86.3 64.9 24.4 55.2 31.6 49.9
+ MIA-DPO (ours) 7B 32.9 67.6 32.1 87.2 63.1 24.4 54.7 30.5 49.1

InternLM-XC2.5 (Zhang et al., 2024) 7B 59.7 96.3 48.7 87.9 81.9 63.3 81.5 69.0 73.5
+ HA-DPO (Zhao et al., 2023) 7B 59.6 96.2 53.3 84.4 81.4 62.6 81.8 68.2 73.4
+ POVID (Zhou et al., 2024) 7B 59.7 96.2 54.8 88.1 81.4 62.6 81.3 68.9 74.1
+ MIA-DPO (ours) 7B 61.1 96.2 46.7 86.9 80.4 61.7 81.6 67.4 72.8

4.3 RESULTS ON SINGLE-IMAGES BENCHMARKS

While MIA-DPO is effective in multi-image scenarios, we also report the performance on single-
image benchmarks. As shown in Tab. 2, MIA-DPO outperforms the LLaVA-v1.5 baseline and
DPO methods, including LLaVA-RLHF and HA-DPO, in average results across seven single-image
benchmarks. As for the InternLM-XC2.5 model, MIA-DPO achieves a 1.4% increase on MMStar
but performs slightly below baseline on average across all single-image benchmarks. The slight
degradation in InternLM-XC2.5’s single-image performance suggests that while the model benefits
greatly in multi-image scenarios, there may be a trade-off in optimizing for more complex, inter-
leaved inputs. Overall, our findings highlight the robustness of our MIA-DPO, which not only
excels in improving multi-image performance but also preserves proficiency on single-image tasks.
Our MIA-DPO serves as a strong candidate for real-world applications requiring versatile multi-
modal abilities across both single and multiple image tasks.

4.4 ABLATION STUDIES

Ablation Studies on Post-Selection In our ablation study, we experimented with the post-
selection process for DPO data. As illustrated in Fig. 3, our post-selection process includes three
components: perplexity (ppl), text length, and edit distance. We conduct ablation studies to compare
the impact of whether to use the post-selection or not. In Tab. 3, the results show that while MIA-
DPO without post-selection (row 1) still led to improvements across multiple multi-image bench-
marks, its performance was consistently lower than that of MIA-DPO with post-selection (row 2).
Our findings highlight that post-selection effectively removes outlier and low-quality data, further
enhancing the overall quality of the DPO pair data and boosting model performance.

Ablation Studies on Data Types In the process of constructing multi-image DPO data for MIA-
DPO, we created three types of data: Sequence, Grid Collage, and Pic-in-Pic Data. These three
types of data work together to specifically eliminate the two types of multi-image hallucinations we
identified: Sequence Confusion and Element Interference. To study the impact of each data type on
overall performance, we trained the LLaVa-v1.5 model separately with 20k instances of each data
type and summarized the results in Tab. 3.

The experimental results indicate that using each data type individually for DPO on LLaVa-v1.5
yields similar average scores of 42.6, 42.4, and 42.7 across five benchmarks. However, when com-
bining all three data types, the model achieves a higher average score of 43.4, as shown in Tab. 1.
This suggests that the three data types address different hallucination types, and their combination
produces better results than using them separately.
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# MMMU BLINK Mantis NLVR2 MVBench Average
35.1 37.1 41.9 52.1 36.0 40.4

1 w/o post sel. 35.3 38.7 44.2 53.7 39.4 42.3
2 w post sel. 36.3 42.9 44.2 54.2 39.5 43.4
3 sequence 37.3 39.5 44.2 51.7 40.1 42.6
4 grid collage 37.1 40.4 44.2 51.0 39.4 42.4
5 pic-in-pic 37.9 40.8 41.9 53.2 39.8 42.7

Table 3: Ablation Studies.
The top row refers to the LLaVA-
v1.5 baseline. We conduct ex-
periments about the impact of
without (w/o) and with (w) post-
selection techniques and dpo data
types.

Inputs Inputs

image 1 image 2 image 1 image 2 image 3

Prompt：Image1:<Image>, Image2:<Image>, Image3:<Image> 
What is the woman doing in Image2?

Inputs
Prompt：Image1:<Image>, 
Image2:<Image> In Image1, what is the 
person doing in the image ?

Prompt：Image1:<Image>, 
Image2:<Image> In Image1, what is the 
weather condition in the image?

image 1 image 2

O
ri
gi
na

l
M

IA
-D

PO
D
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ta

Figure 6: Attention Difference Before and After DPO. We present the attention distribution in the interme-
diate layers for the original LLaVA-v1.5 (top row), MIA-DPO + LLaVA-v1.5 (second row), and the difference
value (bottom row), respectively.

4.5 VISUALIZATION OBSERVATIONS

We visualize the reasoning process of the LLaVA-v1.5 model before and after applying MIA-DPO
on multi-image cases. In Fig. 6, we show the attention map of the generated text tokens relative to
the input image tokens. The top and second rows display the attention distribution before and after
applying MIA-DPO, respectively. The attention difference (delta value) in the third row indicates
which areas receive increased attention due to applying our preference optimization process.

Using MIA-DPO, the LLaVA-v1.5 model adjusts its focus to specific image regions corresponding
to the given instruction. In both the first and second cases, we observe an increased focus on the
instruction-targeted areas of Image 1 after applying MIA-DPO. In the third case, attention gravitates
more toward Image 2, which is specified in the language instruction. The visualization results in-
dicate that MIA-DPO effectively improves the model’s ability to correctly allocate attention to the
relevant image regions, reducing the likelihood of multi-image hallucinations.

5 CONCLUSION

Aligning models with human preferences is a critical goal. In this paper, we are the first to pro-
pose a multi-image DPO framework. We conducted an in-depth analysis of the differences be-
tween hallucinations in multi-image and single-image reasoning for LVLMs, exploring the root
causes of multi-image hallucinations through the lens of attention. Our findings reveal that a lack
of attention-aware capabilities is a key factor contributing to hallucinations in multi-image reason-
ing. Based on these insights, we introduced MIA-DPO (Multi-Image Augmented Direct Preference
Optimization). Results from tests on five multi-image benchmarks and seven single-image bench-
marks demonstrate that MIA-DPO significantly improves the model’s performance in multi-image
reasoning while maintaining its original single-image reasoning capabilities.
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APPENDIX

In this appendix, we provide additional supporting materials to facilitate a deeper understanding
of our work. First, in Sec. A, we further enrich the experiments, including ablation studies and
experimental details. In Sec. B, we list all the models and benchmarks we used, along with a
statistical overview of the amount and ratio of data utilized in MIA-DPO. In Sec. C, we present
more examples of the three data types: Sequence Data, Grid Collage Data, and Pic-in-Pic Data. In
Sec. D, we share our observations on the attention distribution in LVLMs multi-image reasoning,
explaining the basis for attention-aware selection.

A MORE EXPERIMENTS

A.1 ABLATION STUDIES

Ablation Studies on γ and Epochs We perform ablation studies on the key hyper-parameters,
including the NLL loss coefficient γ and the number of training epochs. As shown in Tab. 4, we
observe that a larger value of γ negatively impacts the training process, while the number of epochs
has a minor effect on the final results. Based on the experimental results, we set 3 epochs and
γ = 0.1 as the default values for the parameters.

GPT-4o-mini Selection and MIA-DPO To validate the effectiveness of MIA-DPO, we introduce
an ablation experiment using GPT-4o-mini for DPO data selection. The process begins with the
model generating answers to our multi-image questions, followed by presenting both the model’s
responses and the ground truth to GPT-4o-mini. GPT-4o-mini then assesses the accuracy of the
model’s responses and their similarity to the ground truth, assigning a score between 0 and 10 based
on various criteria. We classify responses with scores below 7 as rejected data and use them to
construct the DPO data. The results are presented in Tab. 5. Our observations indicate that MIA-
DPO not only offers a cost advantage over the GPT-4o-mini-based data selection method but also
outperforms it across five benchmarks.

The prompt we use to guide GPT-4o-mini in data selection is as follows:

Assume you are an expert in evaluating the accuracy of answers.You will
be provided with a question and two answers:one is the ground truth, and
the other is a model-generated response.You need to score the model’s
response based on its similarity to the ground truth, using a scale from 0
to 10.The specific requirements are as follows:

The closer the model’s response is to the ground truth, the higher the
score.

1.If there are obvious errors and the model’s response is completely
different from the ground truth, score 0-3.

2.If there are errors and the model’s response is far from the ground
truth, score 4-6.

3.If there are some errors, and they have some negative impact on the
overall response, score 6-8.

4.If the model’s answer is very close to the ground truth, score 9.

5.If the model’s response is identical to the ground truth, or even richer
in content and better expressed, score 10.

Please return the score directly in the following format without any
extra information, for example:"Score":"2".

A.2 EXPERIMENTS DETAILS

All single-image experimental results presented in Tab 2 are obtained using the VLMEvalKit (Duan
et al., 2024). For the five multi-image benchmarks, MMMU (Yue et al., 2024) is also tested using
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# MMMU BLINK Mantis NLVR2 MVBench Average
35.1 37.1 41.9 52.1 36.0 40.4

1 γ=0.1 35.9 41.3 46.1 53.2 39.9 43.3
2 γ=0.2 37.1 39.2 42.4 51.8 39.4 42.0
3 γ=0.3 35.8 39.8 42.9 52.0 39.7 42.0

4 epoch=1 35.9 41.3 46.1 53.2 39.9 43.3
5 epoch=2 37.0 38.5 45.2 52.0 39.6 42.5
6 epoch=3 36.3 42.9 44.2 54.2 39.5 43.4

Table 4: Ablation Studies.
The top row refers to the LLaVA-
v1.5 baseline. We conduct exper-
iments about the impact of hyper-
parameter γ, and training epochs.

# MMMU BLINK Mantis NLVR2 MVBench Average
35.1 37.1 41.9 52.1 36.0 40.4

1 GPT-Selection 36.3 41.7 42.9 53.0 39.5 42.7
2 MIA-DPO 36.3 42.9 44.2 54.2 39.5 43.4
3 ∆ 0.0 +1.2 +1.3 +1.2 0.0 +0.7

Table 5: Ablation Studies.
The top row refers to the LLaVA-
v1.5 baseline. We conducted
an ablation study using GPT-4o-
mini for data selection.

VLMEvalKit, while the remaining four multi-image benchmarks, which are not yet fully supported
by VLMEvalKit, are tested using the official evaluation code.

During the testing of Mantis, BLINK, and NLVR2, to avoid the model providing irrelevant answers,
we add a prompt suffix at the end of the question to guide the model to directly return the multiple-
choice option. This makes it easier to extract the answer from the model’s response. The prompts
we used are listed below: “Return the choice directly.” or “Answer:(”

Additionally, when testing multi-image benchmarks, we input the images into the model in se-
quence. Since the input consists of an image sequence rather than merged images, this significantly
increases the length of the image tokens, posing a greater challenge to the model. For Mantis-Eval
and MMMU, as they already have well-developed official evaluation codes, we used the official ones
for testing.

B MODEL AND DATA SOURCES

B.1 MODEL SOURCES

For the experimental section, we present the testing results of multiple LVLMs on several multi-
image and single-image benchmarks. The models involved in the experiments are listed in Tab. 6 of
the paper.

B.2 BENCHMARK SOURCES

The benchmarks involved in the experiments are diverse and include 5 multi-image benchmarks and
7 single-image benchmarks. These benchmarks cover various domains, allowing for a comprehen-
sive assessment of the models’ actual capabilities. We list all the benchmarks and their detailed
information in Tab. 7, along with a further introduction to some of the benchmarks:

MMMU MMMU (Yue et al., 2024) is a benchmark for assessing multimodal models on college-
level tasks that require advanced reasoning and domain-specific knowledge. It features 11,500 ques-
tions across six disciplines and includes diverse image types. Initial evaluations show that even
advanced model GPT-4V struggles, achieving only 56% accuracy, indicating substantial room for
improvement. In addition, MMMU includes both single-image and multi-image test questions.

BLINK BLINK (Fu et al., 2024) is a benchmark for multimodal language models (LLMs) that
tests core visual perception tasks solvable by humans “within a blink,” like depth estimation and vi-
sual correspondence. It reformats 14 classic computer vision tasks into 3,807 multiple-choice ques-
tions with images. While humans achieve 95.70% accuracy, top models like GPT-4V and Gemini
perform significantly worse, highlighting a gap in visual perception abilities among current LLMs.

NLVR2 NLVR2 (Suhr et al., 2018) is a dataset designed for joint reasoning involving natural
language and images, focusing on semantic diversity and visual reasoning challenges. It contains
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Table 6: Model Sources. We have compiled a list of all the models involved in the experiments along with
their sources. Models Parameter Release Time Source

GPT-4V (Achiam et al., 2023) - 2023-09 Source Link: OpenAI
Kosmos2 (Peng et al., 2023) 1.6B 2023-06 Source Link: Kosmos2
VideoLLaVA (Lin et al., 2023) 7B 2023-11 Source Link: Video-LLaVa
Fuyu (Bavishi et al., 2023) 8B 2023-10 Source Link: Fuyu-8B
VILA (Lin et al., 2024) 8B 2023-12 Source Link: VILA
Otter-Image (Li et al., 2023a) 9B 2023-05 Source Link: Otter
Idefics1 (Laurençon et al., 2024a) 9B 2023-08 Source Link: Idefices1
BLIP-2 (Li et al., 2023b) 13B 2023-01 Source Link: BLIP-2
OpenFlamingo (Awadalla et al., 2023b) 9B 2023-08 Source Link: OpenFlamingo
InstructBLIP (Dai et al., 2023) 13B 2023-05 Source Link: InstructBLIP
Qwen-VL-Chat (Bai et al., 2023) 7B 2023-8 Source Link: Qwen-VL-Chat
Emu2-Chat (Sun et al., 2024) 37B 2023-12 Source Link: Emu2-Chat
CogVLM (Wang et al., 2023) 17B 2023-10 Source Link: CogVLM
Idefics2 (Laurençon et al., 2024b) 8B 2024-04 Source Link: Idefices2
LLaVA-v1.6 (Li et al., 2024b) 7B 2024-01 Source Link: LLaVa-Next11
LLaVA-v1.5 (Liu et al., 2024a) 7B 2023-10 Source Link: LLaVa-v1.5
InternLM-XC2.5 (Zhang et al., 2024) 7B 2024-07 Source Link: InternLM-XC2d5

Table 7: Benchmark Sources. We have included information and links for all the multi-image and single-
image benchmarks tested in the paper in the table.

Setting Models Evaluation Metric Number Source

Multi-Images
Benchmark

MMMU (Yue et al., 2024) Multiple Choice 1,050 MMMU
BLINK (Fu et al., 2024) Multiple Choice 3,807 BLINK
NLVR2 (Suhr et al., 2018) Multiple Choice 6,967 NLVR2
Mantis-Eval (Jiang et al., 2024) Multiple Choice 217 Mantis-Eval
MVBench (Li et al., 2024c) Multiple Choice 4,000 MVBench

Single-Image
Benchmark

MMStar (Chen et al., 2024a) Multiple Choice 1,500 MMStar
Sci-QA (Lu et al., 2022) Multiple Choice 4,241 ScienceQA
MMVet (Yu et al., 2023) Subjective Questions 218 MM-Vet
POPE (Li et al., 2023c) Yes/No 9,000 POPE
MMB (Liu et al., 2023) Multiple Choice 1,164 MMBench
Math (Lu et al., 2023) Multiple Choice 6,141 MathVista
AI2D (Kembhavi et al., 2016) Multiple Choice 3,090 AI2D

107,292 examples of English sentences paired with web photographs, where the task is to determine
the truth of a caption regarding a pair of images.

Mantis-Eval Mantis-Eval (Jiang et al., 2024) comprises 217 reasoning examples involving mul-
tiple images, addressing various topics like size perception and weight comparisons. Curated by
annotators, the dataset features images sourced from Google Search, accompanied by questions that
necessitate a thorough understanding of the image content. It includes both multiple-choice and
short-answer formats.

MVBench MVBench (Li et al., 2024c) is a dataset that converts static tasks into dynamic video
tasks, requiring diverse temporal abilities, from perception to cognition. It automates the genera-
tion of multiple-choice questions from public video annotations, ensuring efficient creation and fair
evaluation using ground-truth data. The dataset features 20 examples of temporal tasks.

MMStar MMStar (Chen et al., 2024a) is a high-quality benchmark for evaluating multi-modal
performance, addressing issues of unnecessary visual content and data leakage in training. It com-
prises 1,500 carefully selected samples from an initial pool of 22,401, focusing on six core capa-
bilities with 18 detailed dimensions. Each capability features 250 balanced samples, ensuring a
comprehensive assessment of multi-modal models.
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Table 8: DPO Data Statistic. We listed in the table the data volume used for DPO with LLaVa-v1.5 and
InternLM-XC2d5, along with the proportion of each type of data.

Models Total Sequence Grid Collage Pic-in-Pic
LLaVa-v1.5 (Liu et al., 2024a) 28.9k 15.1k 9.3k 4.5k
InternLM-XC2d5 (Zhang et al., 2024) 23.1k 11.7k 7.8k 3.6k

ScienceQA ScienceQA (Lu et al., 2022) is a newly collected dataset designed for science question
answering, comprising 21,208 multiple-choice questions. Each question includes a multimodal con-
text, the correct option, general background knowledge, and a specific explanation, enabling models
to demonstrate multi-step reasoning and interpretability. This dataset addresses the limitations of
existing resources by providing detailed explanations alongside the answers.

MMVet MM-Vet (Yu et al., 2023) is designed to evaluate the capabilities of versatile models that
integrate various core visual language (VL) functions for solving complex tasks. It defines six key
VL abilities—recognition, OCR, knowledge, language generation, spatial reasoning, and mathe-
matical computation—and examines 16 interesting combinations of these functions. The evaluation
employs a large language model (LLM)-based open-output assessor, which produces a unified scor-
ing metric across different question types and answer styles.

POPE POPE (Li et al., 2023c) is a dataset designed to evaluate large vision language models
(LVLMs) by first extracting ground-truth objects from input images using human annotations or
automatic segmentation tools. It then conducts negative sampling for non-existent objects under
various settings, including Random, Popular, and Adversarial. Finally, these objects are organized
into question templates to assess the models’ performance.

MMBench MMBench (Liu et al., 2023) is a benchmark designed to evaluate vision-language
(VL) models by addressing the limitations of traditional evaluation methods. It features approxi-
mately 3,000 multiple-choice questions across 20 fine-grained ability dimensions, enabling a more
comprehensive assessment of model performance. By utilizing ChatGPT to match model predic-
tions with question choices, MMBench ensures robust evaluations that are less biased and more
reproducible.

MathVista MathVista (Lu et al., 2023) is a benchmark designed to assess the mathematical rea-
soning capabilities of large language and multimodal models in visual contexts. It includes 6,141
examples sourced from 28 existing multimodal datasets and three newly created datasets: IQTest,
FunctionQA, and PaperQA. The tasks in MathVista require fine-grained visual understanding and
compositional reasoning, posing significant challenges for state-of-the-art models.

AI2D AI2D (Kembhavi et al., 2016) is a dataset focused on diagram interpretation and reasoning,
addressing the challenge of understanding complex diagrams and their relationships. It includes
over 5,000 diagrams and 15,000 annotated questions and answers, providing extensive annotations
of diagram constituents and their semantics.

B.3 MIA-DPO DATA STATISTIC

In constructing our MIA-DPO dataset with three types of multi-image data (Sequence Data, Grid
Collage Data, and Pic-in-Pic Data), we used the LLaVa665k (Liu et al., 2024b) dataset as the founda-
tional single-image data. The LLaVa665k dataset contains 665k training samples, with a negligible
amount of pure text data, sourced from TextVQA (Singh et al., 2019), COCO (Lin et al., 2014),
GQA (Hudson & Manning, 2019), OCRVQA (Mishra et al., 2019), and others. By directly using
the existing LLaVa665k dataset, we avoided the high costs of building a multi-image dataset from
scratch for MIA-DPO.
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Prompt: Image1:<image> Image2:<image> 
Image3:<image> Image4:<image>

In Image1, provide a one-sentence capti
on for the provided image.

Chosen: A bowl with a salad and a half drunk glass bottle of sarsi cola.

Rejected: A cell phone with the word "Facebook" on the screen.

Image1 Image2 Image3 Image4

Image1 Image2 Image3 Image4

Prompt: Image1:<image> Image2:
<image> Image3:<image> Image4:<
image>

In Image1, provide a one-sentenc
e caption for the provided image.

Chosen: Several men are standing on a green, basketball court with posters on the wall around them advertising a touring 
club and henriod.

Rejected: A book is open to a page that says Mr Louise.

Image1 Image2

Prompt: Image1:<image> Image2:<image> 

In Image1, what are the cat and dog doing in the image?

Chosen: In the image, the dog is standing on a toilet, a
nd the cat is sitting on a counter or a cabinet. The dog 
sniffs the cat as they both sit in the bathroom.

Rejected: In the image, the cat and dog are sitting on a 
table in front of a computer.

Image1 Image2

Prompt: Image1:<image> Image2:<image> 

In Image1, what type of objects are present in 
this image?

Chosen: The image features a couple of stuffed to
y bears and a little doll, which appear to be abando
ned and have moss or vegetation growing on them. 
They are leaning against a stone wall, outside.

Rejected: In Image1, there are two street signs, 
a tree, and a group of teddy bears.

Image1 Image2 Image3

Prompt: Image1:<image> Image2:<image> Image3:<image>
 
In Image2, provide a one-sentence caption for the provided 
image.

Chosen: Backside of a silver rolex watch that shows the log
o on the chain.

Rejected: A bottle of Martin Codax sits next to another 
bottle.

Image1 Image2 Image3 Image4 Image5

Prompt: Image1:<image> Image2:<image> Image3:<im
age>In Image2, provide a one-sentence caption for 
the provided image.

Chosen: A baseball player on the field with the number 27.

Rejected: The number 27 is on the box.

Figure 7: Sequence Image Data Cases. The image displays several examples of Sequence data.

Considering that DPO requires only a small amount of data, we randomly sampled a portion of the
LLaVa665k dataset to construct the three types of data and employed attention selection in MIA-
DPO for filtering. The final data volume used for DPO is summarized in Tab. 8.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Image1 Image2
Prompt: <image> In Image1, what color is the airplane in the image?

Chosen: The airplane in the image is blue and white.

Rejected: In Image1, the airplane in the image is white.

Image1 Image2
Prompt: <image> In Image2, what kind of gathering 
could this scenario likely represent?

Rejected: In Image2, a man and a woman are standing in a 
kitchen, with a refrigerator, microwave, and oven visible. 
The presence of a penguin costume and a TV in the sc
ene suggests that this gathering could likely represent a 
themed party or a costume party. The attendees are dre
ssed up in costumes, and the penguin costume adds a f
un and quirky element to the event. The kitchen setting 
and the presence of the TV indicate that the party might 
be held in a home or a casual venue where people can mingl
e and enjoy the festivities.

Chosen: The scenario with two women standin
g in a kitchen while a person plays the violin co
uld represent an intimate social gathering or a 
small party among friends or family. This kind 
of gathering usually involves casual conversatio
ns, sharing of meals or drinks, and enjoying mu
sic together in a cozy, familiar environment. T
he presence of the refrigerator, microwave, ov
en, wine glasses, and chairs in the kitchen sugg
est that it is a home or an apartment where pe
ople come together for these types of casual e
vents. The violin music adds a touch of ambianc
e and entertainment to the gathering, emphasi
zing the personal connections and the relaxed 
atmosphere.

Image1 Image2 Prompt: <image> In Image1, what is the primary activity of the person 
in the image?

Chosen: The primary activity of the person in the image is flying 
a kite.

Rejected: In Image1, the primary activity of the person in the im
age is playing cricket. The person is holding a bat and is in the 
process of swinging it, likely attempting to hit a ball.

Prompt: <image> In Image2, provide a one-sentence caption for the 
provided image.

Chosen: A girl is dancing on a stage in front of a boy with a shirt 
that says Vote No.

Rejected: A man in a black and white shirt is standing on a street.

Image1 Image2

Image1 Image2Prompt: <image> In Image1, are the people in the image holding plat
es?

Chosen: Yes, a couple of people in the image are holding plates wi
th desserts on them, specifically slices of cake.

Rejected: No, the people in Image1 are not holding plates.

Prompt: <image> In Image2, what other items can be seen near the 
device being charged?

Chosen: Besides the small device being charged, which is an olde
r model white iPod connected through a USB cable, there is a cell 
phone and a remote control nearby in the image. The presence of 
these items suggests that it is a typical space where electronic d
evices are commonly used, stored, or charged.

Rejected: In Image2, besides the device being charged, there are a 
couple of apples and a pumpkin nearby. The apples are placed on t
he left side of the device, while the pumpkin is located on the rig
ht side.

Image1 Image2

Figure 8: Grid Collage Data Cases with Two Images. We present some examples of Grid Collage Data,
which consists of images created by stitching together 2 to 9 pictures. Here, we showcase examples of images
that combine two pictures.

From Tab. 8, we can see that InternLM-XC2.5 has inherent multi-image data in its pre-training set,
which enhances its multi-image capabilities compared to LLaVa-v1.5. As a result, InternLM-XC2.5
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Prompt: <image> Regarding the central subplot, what are the 
people in the photo doing?

Chosen: The people in the photo are gathered around a fenc
ed-off perimeter, waiting to watch an event or to see somet
hing. They are standing behind a gate and appear to be antici
pating something happening within the central square.

Rejected: In the photo, a man is talking on a cell phone while 
standing in a crowded area. The crowd consists of several pe
ople, including a little girl wearing a Krispy Kreme hat. The 
scene appears to be a busy location, possibly a restaurant or 
a public event, where people are gathered and engaged in var
ious activities.

Prompt: <image> With regards to the middle subplot, what is 
the overall setting of the image?

Chosen: The image features an old-fashioned villa with cobbl
estone streets, old stone facades, and iron balconies reminis
cent of Italian scenes. The streets are lined with charming b
uildings and there's an alleyway catching some sunlight.

Rejected: The overall setting of the image is a narrow alleyw
ay between two buildings, with a grassy area on the side.

Prompt: <image> In terms of the central subplot, what type 
of workspace is shown in the image?

Chosen: The image shows a cluttered office workspace with 
a two-tiered computer desk. There is a computer monitor, ke
yboard, and various items like memos, books, notebooks, pape
rs, pens, and electronic paraphernalia.

Rejected: The image shows a workspace with a computer, ke
yboard, and mouse, as well as a stack of books and a donu
t. The workspace is situated in a kitchen, which is an unus
ual setting for a computer workspace.

Prompt: <image> Concerning the plot at the center, what kin
d of video game are the man and the woman playing?

Chosen: The man and the woman are playing a boxing video g
ame together, likely using the motion-sensitive Wii remotes t
o control their characters on-screen.

Rejected: The man and the woman are playing a racing video 
game, as they are both holding Wii controllers and are engag
ed in a game that involves racing cars.

Prompt: <image> When it comes to the middle subplot, what i
s the main focus of the image?

Chosen: The main focus of the image is the bright and color
ful umbrellas and lights at a festival, along with a lively atmo
sphere filled with people enjoying the event.

Rejected: The main focus of the image is the colorful umbre
lla, which is decorated with faces and is placed in a field.

Prompt: <image> With respect to the central image, what is 
the main subject of the image?

Chosen: The main subject of the image is a truck with Furna
ri's life-size sculpture "Lunchtime on a Skyscraper" displaye
d on it.

Rejected: The main subject of the image is a baseball playe
r who is standing on a baseball field.

Figure 9: Pic-in-Pic Image Data Cases. The image displays several examples of Pic-in-Pic data.

exhibits better attention-aware abilities, leading to a smaller amount of DPO data selected through
attention-aware filtering compared to LLaVa-v1.5.
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C MIA-DPO DATA CASES

C.1 SEQUENCE IMAGE DATA

Sequence Image Data is the first type of MIA-DPO data we constructed, where multiple images
are combined into a sequence, and questions are posed about a randomly selected image within
that sequence. The number of images included in Sequence Image Data ranges from 2 to 5. This
approach increases the difficulty of answering questions for LVLMs by adding interference from
other images beyond the one indicated in the instructions. Additionally, inputting multiple images in
sequence significantly increases the length of image tokens, posing a greater challenge for LVLMs.
At the same time, the Sequence Image Data type is primarily designed to address the Sequence
Confusion type of multi-image hallucination, while also mitigating the Element Interference type of
hallucination to some extent. We provide several examples of Sequence Image Data in Fig. 7.

C.2 GRID COLLAGE IMAGE DATA

Grid Collage Image Data is the second type of MIA-DPO data we constructed, where multiple im-
ages are stitched together, and each image is assigned a label such as ’Image1’ to indicate which
image the instructions refer to for the LVLMs. The number of images in the Grid Collage Data
ranges from 2 to 9, forming a large image composed of 1 to 3 rows or columns of smaller images.
By combining multiple images, Grid Collage Image Data mixes a vast array of visual elements and
details, posing high demands on LVLMs. The instructions for Grid Collage Data involve question-
ing specific visual elements within the image, with other visual elements serving as interference
factors. This data type primarily targets the Element Interference type of hallucination, while the
numbered labels for each sub-image also assist the model in addressing the Sequence Confusion
type of hallucination. We provide several examples of Grid Collage Image Data in Fig. 8.

C.3 PIC-IN-PIC IMAGE DATA

Pic-in-Pic Image Data is the third type of MIA-DPO data we constructed. We randomly select two
images, resizing one to about half the size of the other, and then paste the smaller image in the center
of the larger one. The instructions for Pic-in-Pic Image Data involve questioning the central image,
while the background image adds numerous visual elements and details that serve as interference.
LVLMs need to carefully distinguish the relationships between these images and integrate the correct
visual information to generate answers. Pic-in-Pic Image Data is primarily designed to address the
Element Interference type of hallucination. We provide several examples of Pic-in-Pic Image Data
in Fig. 9.

D MORE OBSERVATION

D.1 ATTENTION OBSERVATION

In the MIA-DPO architecture, a key step is the selection of chosen and rejected data based on
attention. The core idea is to filter data according to the attention-aware capability of LVLMs. For
Sequence Data, we assess the ratio of attention between the instructed image and all images. For
Grid Collage Data, we evaluate the attention ratio between sub-images and the larger image. For
Pic-in-Pic Data, we analyze the attention ratio between the central area of the image and the entire
image.

To ensure the smooth execution of attention-based filtering, we visualized the image attention distri-
bution at each layer of the LVLMs, as shown in Fig. 10. The attention distribution of images varies
dynamically across different layers. In the early layers of the LVLMs, there are no distinct features
in the attention distribution of images, and the same is true for the later layers. However, in the
middle layers, there are significant differences in attention distribution among different images. At
this point, we can observe where the LVLMs’ attention is focused and filter out rejected data where
the LVLMs did not attend to the correct areas.
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Figure 10: Attention Observation. We studied the multi-layer attention of LVLMs and found that the atten-
tion of images is most pronounced in the middle layer.

D.2 HALLUCINATIONS OBSERVATION

In the context of multi-image reasoning, the types of hallucinations that LVLMs may produce are
more diverse and varied. Therefore, during the data construction process, we need to specifically
analyze these hallucination types. In addition to hallucinations that may occur in single-image tasks,
such as existence, attributes, and relation Hallucination, we believe that two unique types of hallu-
cinations may exist in multi-image tasks: Sequence Confusion and Element Interference. These
two types of hallucinations are primarily caused by an excessive number of input images that the
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Table 9: Comparison of only use LNLL on multi-image benchmarks.

Models Parameter MMMU BLINK Mantis NLVR2 MVBench Average
LLaVA-v1.5 7B 35.1 37.1 41.9 52.1 36.0 40.4
+ LNLL 7B 36.1 39.1 43.5 51.8 39.9 42.1
+ LDPO + LNLL 7B 36.3 42.9 44.2 54.2 39.5 43.4 (+3.0)

Table 10: Comparison of only use LNLL on single-image benchmarks.

Models Parameter MMStar SQA MMVet POPE MMB Math AI2D Average
LLaVA-v1.5 7B 32.9 66.6 30.5 85.9 64.3 25.4 55.5 51.6
+ LNLL 7B 33.7 67.6 28.2 76.9 61.8 24.9 56.3 49.9
+ LDPO + LNLL 7B 32.9 67.6 32.1 87.2 63.1 24.4 54.7 51.7

LVLMs cannot follow in sequence, as well as the overwhelming number of image tokens and visual
elements.

In the process of constructing DPO data, we take hallucination types as our starting point and thor-
oughly consider solutions for these two types of hallucinations. More hallucination cases are already
presented in Fig. 7, Fig. 8, Fig. 9.

E FURTHER EXPLORATION

In this section, we have included the experiments mentioned in the rebuttal, along with additional
cases and analyses.

E.1 COMPARISON WITH LNLL ONLY

The LNLL term in Eq. (5) plays a role of supervised fine-tuning (SFT) with only chosen answers. We
compare the baseline of fine-tuning with only the LNLL, and results are presented in Tab. 9 and 10
for multi-image and single-image benchmarks, respectively.

On multi-image benchmarks (Tab. 9), fine-tuning merely with the LNLL (second row) yields a per-
formance improvement over the LLaVA-v1.5 baseline. However, MIA-DPO (third row) consistently
outperforms the LNLL-only baseline, demonstrating the significant contribution of negative samples
to model improvement.

On single-image benchmarks (Tab. 10), the LNLL-only baseline (second row) leads to a performance
degradation compared to LLaVA-v1.5, highlighting the potential risks of incorporating multi-image
data during SFT may adversely affect performance on single-image tasks. By contrast, MIA-DPO
(third row) maintains performance parity with LLaVA-v1.5, thanks to the KL-divergence loss con-
straint in Eq. 3. This further demonstrates the advantages of MIA-DPO over the LNLL-only baseline.

E.2 COMPARISON WITH SFT ON MULTI-IMAGE DATA WITHOUT DPO

We conducted experiments comparing MIA-DPO with existing multi-image SFT methods including
Mantis (Jiang et al., 2024) or MMDU (Liu et al., 2024d). The results, presented in Tab. 11 and 12,
demonstrate that MIA-DPO effectively improves multi-image performance without compromising
performance on single-image benchmarks. In contrast, direct SFT on multi-image data can lead to
a slight degradation in single-image performance. This highlights the advantage of MIA-DPO in
maintaining a balance between both tasks.

E.3 ABLATION STUDIES ON THRESHOLD AND DATA RATIOS
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Table 11: Comparison of SFT on multi-image data with MIA-DPO on multi-image benchmarks.

Models Parameter MMMU BLINK Mantis NLVR2 MVBench Average
LLaVA-v1.5 7B 35.1 37.1 41.9 52.1 36.0 40.4
+ SFT on MMDU 7B 36.1 39.2 42.9 53.7 39.1 42.2
+ SFT on Mantis 7B 35.9 39.5 45.6 52.8 40.9 42.9
+ MIA-DPO (Ours) 7B 36.3 42.9 44.2 54.2 39.5 43.4

Table 12: Comparison of SFT on multi-image data with MIA-DPO on single-image benchmarks.

Models Parameter MMStar SQA MMVet POPE MMB Math AI2D Average
LLaVA-v1.5 7B 32.9 66.6 30.5 85.9 64.3 25.4 55.5 51.6
+ SFT on MMDU 7B 32.5 65.7 30.4 85.9 62.3 25.6 54.7 51.0
+ SFT on Mantis 7B 32.9 65.9 29.8 84 63.5 25.9 54.4 50.9
+ MIA-DPO (ours) 7B 32.9 67.6 32.1 87.2 63.1 24.4 54.7 51.7

Threshold Our attention-based selection method is inspired by our observation that attention dis-
tributions become more dispersed as the number of images increases. This necessitates the use of
different thresholds to effectively identify relevant information. While we acknowledge the potential
benefits of automatic threshold learning, our current approach is based on statistical analysis (see
Fig. 5): before setting the threshold, we analyze the attention ratio distributions for 1k samples of
each of the three data formats. Based on these distributions, we set the threshold to retain 50%-70%
of the samples. Furthermore, our experiments demonstrate that our MIA-DPO is relatively robust
to different threshold ranges. We agree the value of exploring automated techniques to optimize
threshold selection and will consider this as a promising direction for future research.

We have conducted multiple ablation experiments with different threshold ranges, see Tab. 13 and
Tab. 14. We observe that our MIA-DPO is relatively robust to different threshold ranges, and out
default choices (0.7/0.6/0.5/0.5) performs slightly better than other choices.

Additionally, we have added the baseline that uses uniform thresholds, and results are shown in
the fourth row of Tab. 13 and Tab. 14. The experimental results demonstrate that using a uniform
threshold can negatively impact performance. This observation is due to the attention ratio distri-
butions vary significantly depending on the number of images (see Fig. 5), which indicates that a
one-size-fits-all threshold is not optimal. By adjusting the threshold based on the number of images,
we can improve the model’s ability to generate accurate and coherent responses.

Data Ratios First, we conducted ablation experiments for each data type, as presented in Tab. 3 of
the paper. We explored the effects of using each data type individually, and the results show that
the performance improvements from using each data type alone are similar but do not surpass the
case where all three types of data are combined. Additionally, we have included ablation studies on
different data proportions in Tab. 13 and Tab. 14. We adjust the proportions of the three data types
and evaluate the results. The results indicate that the model’s performance on both multi-image and
single-image tasks remains stable, with only minor fluctuations. This demonstrates the robustness
of our model across different data proportion settings. In conclusion, none of the data types showed
a particularly significant advantage over others. When used in combination, the three data types
achieve better performance than any single type used individually.

E.4 ABLATION STUDIES ON MODEL SIZE

To explore the effectiveness of larger models, we used the LLaVa-v1.5-13B model. The results
indicate that the attention distribution patterns of the 13B model are largely consistent with those of
the 7B model. We have included the results of MIA-DPO + LLaVa-v1.5-13B on multi-image and
single-image benchmarks in Tab. 16 and Tab. 17. These results further validate our conclusions about
the effectiveness of MIA-DPO, demonstrating that it can consistently improve the performance of
larger-size models.
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E.5 VQA TEST SET AND LARGER IMAGE NUMBERS

We construct a VQA test set of 500 questions using images and questions from LLaVA-665k but
are mutually exclusive with the MIA-DPO training data. This test set includes questions with 2
to 5 images per question, allowing us to directly assess improvements in sequence confusion and
element interference. By evaluating the pre- and post-DPO versions of LLaVA and IXC2.5 on this
test set, we observed accuracy improvements of 5.8% and 1.9%, respectively (see Tab. 18). These
results further validate the effectiveness of MIA-DPO in enhancing multi-image understanding. We
plan to release this VQA test set in the final version of our paper to facilitate future research in this
area.

Additionally, We constructed a new VQA test set (the construction steps keep the same) consisting
of 50 questions each for 4, 6, 8, and 10 images. We report the performance of IXC 2.5 + MIA-
DPO in Tab. 19. Our MIA-DPO consists of improving the multi-image understanding abilities
as the number of images increases. However, the performance of LVLMs, such as IXC2.5, on
extremely large numbers of images will also be limited by factors like context window size. As a
result, the performance gains from MIA-DPO will gradually diminish with an increasing number of
images. These findings show potential for future research on long-context abilities, such as ROPE
extrapolation on LVLMs.

E.6 MORE BASELINE OF INTERNLM-XCOMPOSER2.5

Since the authors of POVID and HA-DPO have open-sourced their trained models based on LLaVa,
we directly tested their released models and report in Tab. 1 and Tab. 2. Additionally, we conducted
additional experiments by applying DPO to InternLM-XC2.5 using the datasets provided by POVID
and HA-DPO. As shown in Tab. 1 and Tab. 2, the performance improvements for applying POVID
and HA-DPO on multi-image benchmarks were limited. This suggests that while these previous
papers are designed for single-image scenarios, their direct application to multi-image settings may
not yield significant gains. We believe that the limitations observed in these experiments highlight
the unique challenges posed by multi-image hallucinations and the need for specialized techniques
like our proposed MIA-DPO approach.

E.7 ANALYSIS OF FAILURE CASES

We have provided some erroneous cases in Fig. 11. The cases presented are from the multi-image
QA of the MMMU benchmark. From the model’s responses, we can observe that although MIA-
DPO has improved the model’s multi-image understanding and reasoning capabilities, the model
may still make errors when encountering questions from out-of-domain knowledge (e.g., fine-
grained plant classification, medical image processing), which is not present in our training data.
We believe extending the training data to more diverse domains will alleviate these failure cases.

Table 13: Ablation Study on Data Ratios and Threshold of Multi-Image Benchmark. We compare our
MIA-DPO along with two sft baseline across five multi-image benchmarks. We conducted ablation experiments
on thresholds by setting different threshold ranges or using a unified threshold. Additionally, we performed
ablation experiments on data ratios by setting the ratios of the three data types to 3:2:1, 2:3:1, and 2:1:3,
respectively.

# Models Setting MMMU BLINK Mantis NLVR2 MVBench Average
LLaVA-v1.5 - 35.1 37.1 41.9 52.1 36.0 40.4

1 0.8/0.7/0.6/0.6 threshold 37.5 40.5 42.4 54.3 40.3 43.0
2 0.7/0.6/0.5/0.5 threshold 36.3 42.9 44.2 54.2 39.5 43.4
3 0.6/0.5/0.4/0.4 threshold 36.2 41.1 44.7 54.1 39.9 43.2
4 0.6/0.6/0.6/0.6 threshold 36.2 40.6 41.9 53.7 39.2 42.3

5 2:3:1 Data ratios 36.1 41.5 42.9 55.0 39.4 43.0
6 2:1:3 Data ratios 37.1 39.8 46.0 52.4 40.2 43.2
7 3:2:1 Data ratios 36.3 42.9 44.2 54.2 39.5 43.4
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Table 14: Ablation Study on Data Ratios and Threshold of Single-Image Benchmark. We compare MIA-
DPO with other two sft baseline across several single-image benchmarks. We conducted ablation experiments
on thresholds by setting different threshold ranges or using a unified threshold. Additionally, we performed
ablation experiments on data ratios by setting the ratios of the three data types to 3:2:1, 2:3:1, and 2:1:3,
respectively.

# Models Setting MMStar SQA MMVet POPE MMB Math AI2D Average
LLaVA-v1.5 - 32.9 66.6 30.5 85.9 64.3 25.4 55.5 51.6

1 0.8/0.7/0.6/0.6 threshold 32.2 67.7 31.1 86.8 63.8 25.0 55.1 51.7
2 0.7/0.6/0.5/0.5 threshold 32.9 67.6 32.1 87.2 63.1 24.4 54.7 51.7
3 0.6/0.5/0.4/0.4 threshold 33.1 67.3 32.2 87.1 63.2 24.6 54.7 51.7
4 0.6/0.6/0.6/0.6 threshold 33.0 67.1 32.3 86.4 62.5 25.5 54.7 51.6

5 2:3:1 Data ratios 32.2 67.0 32.6 87.1 63.2 24.5 54.6 51.6
6 2:1:3 Data ratios 32.1 67.5 32.0 87.4 63.3 24.7 54.7 51.6
7 3:2:1 Data ratios 32.9 67.6 32.1 87.2 63.1 24.4 54.7 51.7

Table 15: Ablation Study on Different Components of Post-Selection. We conducted ablation experiments
on different components of post-selection to explore their respective roles and contributions.

# Models MMMU BLINK Mantis NLVR2 MVBench Average
LLaVA-v1.5 35.1 37.1 41.9 52.1 36.0 40.4

1 w/o post sel. 35.3 38.7 44.2 53.7 39.4 42.3
2 w ppl 35.6 40.4 44.2 53.8 39.5 42.7
3 w length ratio 35.7 40.6 44.3 53.7 39.4 42.7
4 w edit distance 35.6 40.0 44.2 53.9 39.4 42.6

5 MIA-DPO 36.3 42.9 44.2 54.2 39.5 43.4

Table 16: Study on Model Size for Multi-Image Benchmarks. We conduct MIA-DPO on larger model
LLaVa-v1.5-13B (Liu et al., 2024b).

Models Parameter MMMU BLINK Mantis NLVR2 MVBench Average
LLaVA-v1.5 7B 35.1 37.1 41.9 52.1 36.0 40.4
+ MIA-DPO (Ours) 7B 36.3 42.9 44.2 54.2 39.5 43.4
∆ - +1.2 +5.8 +2.3 +2.1 +3.5 +3.0
LLaVA-v1.5 13B 37.0 40.9 47.0 62.5 40.6 45.6
+ MIA-DPO (Ours) 13B 38.8 42.4 46.5 64.5 42.0 46.8
∆ - +1.8 +1.5 -0.5 +2.0 +1.4 +1.2

Table 17: Study on Model Size for Single-Image Benchmark. We conduct MIA-DPO on larger model
LLaVa-v1.5-13B (Liu et al., 2024b).

Models Parameter MMStar SQA MMVet POPE MMB Math AI2D Average
LLaVA-v1.5 7B 32.9 66.6 30.5 85.9 64.3 25.4 55.5 51.6
+ MIA-DPO (ours) 7B 32.9 67.6 32.1 87.2 63.1 24.4 54.7 51.7

LLaVA-v1.5 13B 34.3 71.2 35.6 86.7 68.5 27.7 61.1 55.0
+ MIA-DPO (ours) 13B 33.4 69.7 36.9 85.1 68.2 25.1 59.4 54.0

# Accuracy Image Numbers LLaVa-v1.5 IXC2.5
1 Original 2-5 75.8 88.4
2 MIA-DPO 2-5 81.6 90.3

3 ∆ 2-5 +5.8 +1.9

Table 18: Results on Our
Own VQA Test Set. Our VQA
set consists of 500 questions,
each involving 2 to 5 images.

# Models 4-Images 6-Images 8-Images 10-Images

1 IXC2.5 76 74 68 10
2 + MIA-DPO 86 82 72 12

3 ∆ +10 +8 +4 +2

Table 19: Results with more
images. MIA-DPO continues
to improve multi-image under-
standing abilities as the number
of images increases, up to the
limit of the context window.
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Image1:<Image>\n Image2:<Image>\n What group of pat
hogens, often mistaken for regrowth following glyphosa
te treatment, can cause a growth habit in blackberry pl
ants that is near-identical to the 'little leaf' symptoms 
commonly witnessed post-glyphosate treatment?
Here are some choice: Nematodes, Fungi, Phytoplasmas
After chooseing the answer, explain the reasons.

The answer is Nematodes. Nematodes are small, elongat
ed, cylindrical animals that can cause a growth habit in b
lackberry plants that is near-identical to the 'little leaf
' symptoms commonly witnessed post-glyphosate treatm
ent. They can infect the roots of the plant, leading to s
tunted growth, yellowing leaves, and other symptoms. N
ematodes are often mistaken for regrowth following gly
phosate treatment due to their similar appearance.

Image1:<Image>\n Image2:<Image>\nThis two-year-old 
boy was brought to CHP with 3-week history of occipital 
headaches. The mother tells you he sleeps with his neck 
extended. During the last week prior to presenting to C
HP he vomited once/day. On neurologic exam there was 
no noticeable weakness, gait abnormality, balance or vis
ual changes. The mass lesion is partially resected. Your 
diagnosis? Here are some choice: Pilocytic astrocytoma, 
Subependymoma, Glioblastoma, Anaplastic ependymoma
After chooseing the answer, explain the reasons.

The answer is Pilocytic astrocytoma. This is a type of brain tumor that is characterized by its slow growth and benign nature. It is typically fou
nd in children and young adults and is composed of star-shaped cells called astrocytes. Pilocytic astrocytoma is often treated with surgery and s
ometimes with radiation therapy.

Ground Truth: 
Glioblastoma

Ground Truth: Phytoplasmas

Figure 11: Analysis of Failure Cases. Although MIA-DPO has improved the model’s multi-image
understanding and reasoning capabilities, the model may still make errors when encountering ques-
tions from out-of-domain unseen in training data (e.g., fine-grained plant classification, medical
image processing).

Is there a red double-decker bus in <Image1> and <Imag
e2>?
Options:
(A) There is a red double-decker bus in image 1 but not 
image 2
(B) There is a red double-decker bus in image 2 but not 
image 1
(C) There is a red double-decker bus in both images

The question pertains to the presence of a red double-d
ecker bus in two different images. Based on the descrip
tion of the first image, there is indeed a red double-dec
ker bus visible, making option (A) "There is a red double
-decker bus in image 1 but not image 2" the correct ans
wer. The second image does not contain a red double-de
cker bus.

Is the time shown in clock or watch in both <Image1> an
d <Image2> the same?
Options:
(A) Yes, they are both at 9 o'clock
(B) Yes, they are both at 12 o'clock
(C) No, they show different time

The watches in both images are set to the same time. In the top image, the 
watch on the pear shows the time as approximately 9 o'clock. In the bottom i
mage, the woman's watch also shows the time as approximately 9 o'clock. Th
erefore, the correct answer to the question is:
(A) Yes, they are both at 9 o'clock

Ground Truth: C

Ground Truth: C

Figure 12: Analysis of Mantis Benchmark. Original IXC2.5 provides lengthy descriptions instead
of concise answers for multiple-choice questions.
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