PATH-TRACING DISTILLATION: ENHANCING STABIL ITY IN TEXT-TO-3D GENERATION BY MITIGATING OUT OF-DISTRIBUTION ISSUES

Anonymous authors

006

008 009 010

011

013

014

015

016

017

018

019

021

025

026

027 028 029

030

Paper under double-blind review

Abstract

Text-to-3D generation techniques signify a pivotal advancement in creating 3D models from textual descriptions. Contemporary state-of-the-art methods utilize score distillation processes, leveraging 2D priors to generate 3D assets. However, these approaches frequently encounter instability during the initial generation phases, primarily due to an distribution discrepancy between the score prediction network and rendered images. Specifically, the raw rendered images of the initial 3D model lie out of the distribution (OOD) of the pretrained score prediction network, which is trained on high-fidelity realistic images. To address this OOD issue, we introduce an innovative Path-Tracing Distillation (PTD) technique that refines the distillation process. Our method sequentially optimizes the 3D model using intermediate score networks that exhibit closer distributional alignment, thereby accelerating the convergence during the early stages of training. This approach not only ensures a more stable increase in CLIP similarity initially but also preserves the visual quality and diversity of the generated models. Comprehensive experiments demonstrate that PTD significantly enhances both the stability and quality of text-to-3D generation, outperforming existing baselines in CLIP scores.

1 INTRODUCTION

The emergence of 3D asset generation (Qian et al., 2024) has precipitated transformative shifts within the graphics industry, promising a future where 3D models are increasingly synthesized rather than traditionally rendered. A 3D asset, meticulously detailed with intricate textural properties, serves as a foundational element for a myriad of applications spanning animation, virtual reality, gaming, and more. Among the diverse array of techniques, text-to-3D generation (Wang et al., 2023) stands out as a promising approach, offering an efficient and user-friendly mechanism to create 3D models from textual descriptions. This methodology not only streamlines the creative workflow but also democratizes 3D content creation, making it accessible to a broader creators.

Currently, there are two predominant strategies for generating 3D assets from textual descriptions: 040 directly training a generative model on 3D data and constructing 3D models based on 2D priors. 041 The latter approach leverages large-scale diffusion models such as Stable Diffusion (Rombach et al., 042 2022b) and Imagen (Saharia et al., 2022), which generate multi-view supervised signals to guide 043 the optimization of differentiably rendered images from an evolving 3D model. As the optimization 044 process iteratively refines the 3D model from various perspectives, it progressively converges toward a realistic and coherent representation. This iterative refinement is crucial for ensuring that the generated 3D models accurately reflect the semantic content of the input text while maintaining high 046 visual fidelity across different viewpoints. 047

At the forefront of these advancements is DreamFusion (Poole et al., 2022), which introduced Score
 Distillation Sampling (SDS) to predict scores in noisy images rendered from 3D models. Despite its
 innovative approach, DreamFusion's technique sometimes results in images exhibiting over-saturation
 or excessive smoothing, detracting from the model's realism and detail. To address these limitations,
 subsequent methods such as ProlificDreamer (Wang et al., 2023) introduced Variational Score
 Distillation (VSD), modeling the distribution of multiple generated 3D representations to enable more
 diverse and accurate 3D model creation. Additionally, LucidDreamer (Liang et al., 2024) proposed

Figure 1: Example 3D models generated by our proposed PathTracing Distillation. Rendered image in three views and the corresponding text prompts are presented. Best viewed magnified on screen.

Interval Score Matching (ISM), employing deterministic diffusing trajectories and interval-based
 score matching to mitigate the over-smoothing effect observed with SDS. More recently, Classifier
 Score Distillation (CSD) (Yu et al., 2023b) was developed as an implicit classification model for
 generation, achieving commendable results by refining the score prediction process. However, despite
 these advancements, existing methods still grapple with instability during the early stages of 3D
 model generation and require extended periods to achieve stable and high-quality outcomes.

096 We argue that the score prediction network struggles to accurately predict the noise added to initially rendered images. Such argument is supported by our empirical evidence. Our findings reveal a 098 substantial disparity between the scores predicted by Stable Diffusion and an approximated score (Xu 099 et al., 2023b), given images rendered from the initial raw 3D models. This discrepancy becomes increasingly pronounced when the added noise scale is small. In contrast, for images generated 100 directly by Stable Diffusion, the disparity between predicted and approximated scores is significantly 101 reduced. These observations conclude that the score prediction for images from the initial raw 3D 102 models is inaccurate. An intuitive explanation for this issue is that the rendered images from the 103 low-quality initial 3D model tend to fall outside the support of Stable Diffusion which is trained 104 exclusively on high-quality 2D images. 105

To address the identified issue, we propose Path-Tracing Distillation (PTD) method, which employs a series of score prediction networks instead of the solitary pretrained score network to perform score distillation. Our core insight is, while the pretrained score network suffers from discrepancy, there

are multiple intermediate distributions between the pretrained score network and the distribution of
rendered images. The 3D models may be guided by the intermediate score networks from close to far
and finally reach the pretrained score network. This is like when traveling to a remote city without
available direct flights, one may transfer several times through intermediate cities along the journey.
A planning of travel journey may start from the source to the destination, or from the destination back
to the source. We propose to obtain the intermediate score networks in a backward order.

114 Based on the above insight, we design a two-stage text-to-3D generation pipeline. In the first stage, 115 given a raw 3D model initialized by SF3D (Boss et al., 2024), we finetune the pretrained score 116 model to fit the initially rendered images, thereby gradually degrading the pretrained score network 117 from high-quality real images to low-quality rendered images. Checkpoints are saved during this 118 finetuning, and they are also score networks which altogether represent a transformation path of intermediate distributions connecting the high-quality pretrained score to the low-quality untrained 119 rendered image distribution. In the second stage, the 3D model is iteratively optimized using these 120 checkpoints of score networks as distillation targes in a reverse order one by one. The switch from 121 a current checkpoint to a next one occurs when rendered multi-view images nearly converges to 122 the current checkpoint. The end of the reverse path is the original pretrained score network, so the 123 proposed distillation approach share the same convergence target with other score distillation strategy. 124 This distillation approach encourages a more stable optimization process, effectively mitigating the 125 OOD issue and resulting in high-quality 3D models. 126

Compared to existing text-to-3D methods, our Path-Tracing Distillation approach predict more accurately score and accerlarate the convergence speed in 3D generation while maintaining both diversity and quality. The proposed approach can be integrated with other existing score distillation 3D generation methods. Our contributions are summarized as follows:

- 1. We identify the out-of-distribution (OOD) issue during the 3D generation process with empirical evidence.
- 2. We propose Path-Tracing Distillation (PTD) to mitigate the instability of score prediction in the early stages of generation.
- 3. Experiments demonstrate that our PTD approach exceeds SOTA methods in CLIP similarity, indicating higher quality of 3D assets.

2 PRELIMINARIES

131

132

133

134

135

136

137 138

139

146

159 160

The text-to-3D generation task aims to create a 3D model based on a given text prompt y. We denote the parameters of the 3D representation as θ . Our method renders images from specific camera angles c using volumetric rendering, represented as $x_0 := g(\theta, c, y)$. Given the distribution of the training images conditioned on the text prompt, our objective is to minimize the KL divergence between the training image distribution, $p(x_0 | y)$, and the rendered image distribution, $q^{\theta}(x_0)$:

$$\min_{\boldsymbol{\alpha}} \operatorname{KL}\left(q^{\theta}(\boldsymbol{x}_{0}) \parallel p(\boldsymbol{x}_{0} \mid \boldsymbol{y})\right) \tag{1}$$

147 Intuitively, this means that the rendered image x_0 should appear realistic from various viewpoints c148 compared to the training images given the specific prompt.

Advanced techniques typically employ implicit representations like Neural Radiance Fields (NeRF) (Mildenhall et al., 2021) or explicit representations such as 3D Gaussians (Kerbl et al., 2023) to model 3D objects or scenes. To sovle the Eq. (1) and avoid the high dimensional problem, an image x_0 undergoes a noise addition process: $x_t = \alpha_t x_0 + \sigma_t \epsilon$, where α_t and σ_t follow the diffusion model's schedule (Ho et al., 2020), and t represents the timestep.

¹⁵⁴ DreamFusion (Poole et al., 2022) introduces Score Distillation Sampling (SDS), which leverages a pre-trained model to predict noise $\epsilon_{\phi}(\boldsymbol{x}_t, t, y)$ on noisy images, guided by the text prompt y. SDS calculates gradients by comparing the predicted noise with the actual added noise, updating the 3D representation as follows:

$$\nabla_{\theta} \mathcal{L}_{\text{SDS}}(\theta) \coloneqq \mathbb{E}_{t,\epsilon,c} \left[\omega(t) \left(\boldsymbol{\epsilon}_{\text{pretrain}} \left(\boldsymbol{x}_{t}, t, y \right) - \boldsymbol{\epsilon} \right) \frac{\partial \boldsymbol{g}(\theta, c)}{\partial \theta} \right]$$
(2)

ProlificDreamer (Wang et al., 2023) further advances this by proposing Variational Score Distillation (VSD). This method models the distribution of 3D scenes using multiple particles and employs

an auxiliary score prediction network $\epsilon_{\phi}(\boldsymbol{x}_t, t, c, y)$ to model multiple images rendered from these particles. The auxiliary network is designed as a LoRA on the base network. The optimization of ϵ_{ϕ} and each particle's parameters $\theta^{(i)}$ is performed alternately, with the gradient of θ being:

166 167

168

169

170 171 172

$$\nabla_{\theta} \mathcal{L}_{\text{VSD}}(\theta) \coloneqq \mathbb{E}_{t,\epsilon,c} \left[\omega(t) \left(\epsilon_{\text{pretrain}} \left(\boldsymbol{x}_{t}, t, y \right) - \epsilon_{\phi} \left(\boldsymbol{x}_{t}, t, c, y \right) \right) \frac{\partial \boldsymbol{g}(\theta, c)}{\partial \theta} \right]$$
(3)

LucidDreamer (Liang et al., 2024) proposes Interval Score Matching to minimize the interval score between adjacent timestamps using DDIM (Song et al., 2020) which tackles the over-smooth issue:

$$\nabla_{\theta} \mathcal{L}_{\text{ISM}}(\theta) \coloneqq \min_{\theta \in \Theta} \mathbb{E}_{t,c} \left[\omega(t) (\epsilon_{\phi}(\boldsymbol{x}_{t}, t, y) - \epsilon_{\phi}(\boldsymbol{x}_{s}, s, \emptyset)) \frac{\partial \boldsymbol{g}(\theta, c)}{\partial \theta} \right].$$
(4)

Based on these problem formulation and advanced distillation techniques, our approach builds a
series of score prediction networks to address the out-of-distribution (OOD) issue, bridging the gap
between high-quality and low-quality image distributions during the 3D model generation process.

176 177 178

191

192

3 THE OUT-OF-DISTRIBUTION ISSUE

The out-of-distribution issue often refers to the machine learning model receives data which deviates significantly from the model's training set so the model fails to give reliable predictions. Specifically in our scenario, the OOD issue refers to the score prediction network s_{pretrain} may receive rendered images different from images in the training set so it gives unstable score. Intuitively, s_{pretrain} is a large-scale network trained on high-quality realistic images to capture 2D visual prior. Whereas, the initial 3D models, given different representation or initialization, are of low quality. Thus, s_{pretrain} may not predict scores of the noisy rendered images well enough.

To investigate the OOD issue, we compare the predicted score $s_{\text{pretrain}}(\boldsymbol{x}_t, t, y)$ with the approximated score $s_{\text{approx}}(\boldsymbol{x}_t, t, y)$. The approximated score is computed with Stable Target Field (Xu et al., 2023b) (Appendix G), which includes an additional reference batch of training samples used to calculate weighted conditional scores as the approximation. The comparison is reflected by a proposed matching loss between the predicted and approximated score, formally defined as

$$\mathcal{L}_{\text{matching}}(\boldsymbol{x}_t) = \mathbb{E}_{\boldsymbol{x}_0, t, \epsilon} \| s_{\text{pretrain}}(\boldsymbol{x}_t, t, y) - s_{\text{approx}}(\boldsymbol{x}_t, t, y) \|_2,$$
(5)

Here t indicates the timestep used for adding noise. If the noisy image given to the score prediction 193 network lies in the support of the training distribution, the predicted score is expectedly close to the 194 approximated score, and vice versa. The matching loss on the noisy rendered images x_t^{θ} from initial 195 3D models is 3.234 ± 0.042 . This is significantly higher than the loss value 1.687 ± 0.075 on noisy 196 generated images x_t^{pretrain} given by the pretrained model as a baseline. Detailedly, this difference 197 becomes more pronounced when t is small, and vice versa. This observation suggests the pre-trained model's score prediction accuracy for rendered images is markedly inferior to that for real images. 199 We argue that initially rendered images are out of the distribution of spretrain and the score prediction 200 is unstable. Thus, the early generation of 3D models are impeded. To solve this problem, we design 201 the path-tracing strategy as detailed in the next section. 202

- 4 Method
- 4.1 OVERVIEW

We design a two-stage text-to-3D generation pipeline (Figure 2). In the first stage of forming path, given a raw initialized 3D model, we finetune the pretrained score model to fit the initially rendered images and save checkpoints during this finetuning to form the transformation path. In the second stage of tracing path, the 3D model is iteratively optimized using these checkpoints of score networks as distillation targes in a reverse order one by one. The final target is the pretrained score network.

212

203

204 205

- 213 4.2 FORMING PATH 214
- The target of this stage is to obtain the transformation path of score networks connecting the pretrained score network s_{pretrain} and the initial rendered image distribution. To this end, we propose to finetune

232

233

239

Figure 2: The illustration of our proposed path-tracing distillation. Given a text prompt, a 3D model is first initialized with SF3D (Boss et al., 2024) and gives several raw rendered images. In Stage1, these images are used to finetune the pretrained score network s_{pretrain} , and checkpoints $s_{\text{pretrain}}^{(i)}$ are saved to form a transformation path. In Stage 2, these checkpoints are used in a reversed order as the optimization targets giving score to optimize the 3D model.

s_{pretrain} with rendered images to degrade the distribution and save intermediate checkpoints. Formally, 238 given s_{pretrain} parameterized by ψ and an initialized 3D representation by θ , x_0^{θ} is a rendered image of a view c and a prompt y. Then the finetuning (degrading) process is defined by

$$\min_{\boldsymbol{x}_{0}^{\theta}} \mathbb{E}_{\boldsymbol{x}_{0}^{\theta}, \boldsymbol{y}, t \sim \mathcal{U}(0, 1), \epsilon \sim \mathcal{N}(0, 1), c \sim p(c)} \left[\| \boldsymbol{\epsilon}_{\text{pretrain}}(\boldsymbol{x}_{t}^{\theta}, t, c, \boldsymbol{y}; \boldsymbol{\psi}) - \boldsymbol{\epsilon} \|_{2}^{2} \right].$$
(6)

Here we adopt the noise prediction strategy (Ho et al., 2020) to maintain optimization stabil-244 ity. Throughout this learning phase, we preserve checkpoints of the intermediate transformations 245 $\{s_{\text{pretrain}}^{(i)}|i=0,1,2,\ldots,n\}$ within a predefined interval. Particularly, $s_{\text{pretrain}}^{(0)}$ is equal to s_{pretrain} 246 247 and $s_{\text{pretrain}}^{(n)}$ represents the distribution of x_0^{θ} expectedly. Others are intermediate score networks 248 specifically retained for path tracing processes in the following stage. 249

We make several strong assumptions in the forming path stage. The first assumption is the implicit 250 connection between the parameter space of Stable Diffusion and the distribution space. This means 251 though not converged, each checkpoint (a vector field) is assumed to represent a score network 252 (a gradient field) of an unknown non-existent distribution. The second assumption is the steepest 253 descent or traversal in the parameter space builds a reasonable path in the distribution space. The 254 third assumption is the distance metric in the parameter space is translated to the similarity in the 255 distribution space. Such assumptions require further exploration to justify, but this is beyond the 256 scope of text-to-3D generation.

257 Several implementation details are introduced. We use Stable Fast 3D (SF3D) (Boss et al., 2024) to 258 initiate the 3D Gaussian θ , ensuring a plausible geometric and appearance configuration from text 259 prompts. We use Stable Diffusion 2.1 as the backbone and the finetuing is performed with LoRA Hu 260 et al. (2021) for parameter efficiency. Therefore, the saved checkpoints are only LoRA parameter 261 attached on the backbone. The finetuning is done in only 400 iterations, which requires trivial extra 262 computational cost.

263 264 265

4.3TRACING PATH

266 This stage is to optimize the 3D model with the trasformation path. Existing models (Wang et al., 267 2023; Liang et al., 2024) uses only the s_{pretrain} as the solitary target. In our design, the models 268 $\{s_{\text{pretrain}}^{(i)} | i = 0, 1, 2, \dots, n\}$ are employed in a reverse order replacing s_{pretrain} to predict the scores of 269 the noisy images x_{θ}^{θ} . We iteratively update the 3D Gaussian θ by back-propagating the gradient of

the score discrepancy using ISM (Liang et al., 2024):

272 273

$$\min_{\theta \in \Theta} \mathbb{E}_{t \sim \mathcal{U}(0,1), c \sim p(c)} \left[\omega(t) \| \epsilon_{\text{pretrain}}^{(i)}(\boldsymbol{x}_t, t, c, y) - \epsilon_{\text{pretrain}}^{(i)}(\boldsymbol{x}_s, s, c, \emptyset) \|_2^2 \right],$$
(7)

Here Θ is the space of θ with the Euclidean metric, $\omega(t)$ is a time-dependent weighting function and the noise prediction network $\epsilon_{\text{pretrain}}^{(i)}$ is used for approximating the score $s_{\text{pretrain}}^{(i)}$ by $s_{\text{pretrain}}^{(i)}(\boldsymbol{x}_t, t) \approx -\epsilon_{\text{pretrain}}^{(i)}(\boldsymbol{x}_t, t)/\sigma_t$.

278 During this process, to mitigate the Out-Of-Distribution (OOD) issue between s_{pretrain} and generated 279 samples, we use the penultimate score network $s_{\text{pretrain}}^{(n-1)}$ as target instead of s_{pretrain} so that $s_{\text{pretrain}}^{(n-1)}$ 280 can predict the score of generated samples more precisely. As the 3D Gaussian θ gets trained more 281 convergent, we switch the target from $s_{\text{pretrain}}^{(n-1)}$ to $s_{\text{pretrain}}^{(n-2)}$, and then iteratively towards $s_{\text{pretrain}}^{(0)}$ 282 *s*_{pretrain}. The switch occurs every several optimization steps but ensure noisy images tend to lie in the 284 distribution of s_{pretrain} avoiding the OOD issue. Throughout the stage of tracing path, the 3D Gaussian 285 θ is optimized with the guidance of the 2D score networks along the reversed transformation path.

Empirically, we find the transformation path Eq. 6 is not smooth, and changing LoRA target in 286 this path frequently leads to the 3D shape and appearance collapse, as detailed in Appendix I. To 287 get a more smooth path, we explore a more feasible strategy to implement path tracing. We only 288 use the final LoRA checkpoint instead of the intermediate ones which save more disk memory and 289 loading time. To avoid the shift of target problem, we provide the tracing path using weighted LoRA, 290 which means the intermediate score networks are the interpolations between the zero LoRA (the 291 pretrained score network) and the final LoRA with a coefficient $w \in [0, 1)$. In the case, the targets in 292 path tracing is obtained by forming an intermediate score network by varying w from 1 to 0. The 293 optimization with LucidDreamer in this case is

$$\min_{\theta \in \Theta} \mathbb{E}_{t \sim \mathcal{U}(0,1), c \sim p(c)} \left[\omega(t) \| \boldsymbol{\epsilon}_{\text{pretrain}}^{\boldsymbol{w}}(\boldsymbol{x}_t, t, c, y) - \boldsymbol{\epsilon}_{\text{pretrain}}^{\boldsymbol{w}}(\boldsymbol{x}_s, s, c, \emptyset) \|_2^2 \right],$$
(8)

Such variant promises a smooth enough and two-target transformation path. The final result in this case is less susceptible to the switch timing between intermediate score networks. The only parameter we need to control is the weight of the final LoRA, enhancing convenience and flexibility.

5 RELATED WORK

5.1 DIRECT 3D SHAPE GENERATION

304 Training neural networks using 3D models labeled with text description is a highly intuitive approach 305 to text-to-3D model, which meets people's demand for more controllable 3D generation. For such 306 pre-trained models, a 3D shape (Gao et al., 2022; Gupta et al., 2023; Nichol et al., 2022; Jun & 307 Nichol, 2023; He et al., 2024) or 4D motion (Dabral et al., 2023; Zhang et al., 2023; Kim et al., 308 2023) can be inferred within minutes or seconds by inputting text prompt. Relevant research includes Point-E (Nichol et al., 2022), Shap-E (Jun & Nichol, 2023), Mofusion (Dabral et al., 2023), etc. 309 Despite the high efficiency of these methods, the quality of outputs is often suboptimal, which is 310 primarily due to the fact that the scale of 3D datasets cannot compare with that of 2D datasets. There 311 are also works to improve quality of direct 3D shape generation by introducing novel frameworks 312 and using 3DGS (Kerbl et al., 2023) as way of representing 3D shapes (He et al., 2024). 313

314 315

295

296

297

298

299 300

301 302

303

5.2 OPTIMIZING 3D SHAPE WITH 2D PRIORS

316 Given the typically small size of 3D model training sets, applying the rich 2D knowledge stored 317 in pre-trained 2D models to the generation of 3D shapes has become a popular topic (Chen et al., 318 2024b; Jiang et al., 2023; Lorraine et al., 2023; Seo et al., 2023; Song et al., 2023; Yu et al., 2023a). 319 Dream3D (Xu et al., 2023a) employs the pre-trained CLIP (Radford et al., 2021a) model and explicit 320 three-dimensional shape priors to ensure that the rendered images have high semantic similarity 321 to the given text prompts. DreamFusion (Poole et al., 2022) proposed Score Distillation Sampling (SDS), which optimizes 3D shapes using a 2D diffusion model. Subsequently, the introduction of 322 CSD (Yu et al., 2023b) highlighted that the effectiveness of SDS stems from distilling knowledge 323 from an implicit classifier rather than relying on generative priors. ProlificDreamer (Wang et al., 2023)

1:	Input: 3D Gaussian θ , SF3D initialized θ_{SF3D} , score prediction network s_{pretrain}
	Output: Path checkpoints $\{s_{\text{pretrain}}^{(i)} i = 0, 1, 2, \dots, n\}$
:	$ heta \leftarrow heta_{ ext{SF3D}}$
:	while Not Converged do
:	$oldsymbol{x}_0 = g(heta,c)$
5 :	$oldsymbol{x}_t = lpha_t oldsymbol{x}_0 + \sigma_t \epsilon$
:	Optimize LoRA with Eq.(6): $\min_{\psi} \mathbb{E}_{t,\epsilon,c} \left[\ \epsilon_{\text{pretrain}}(\boldsymbol{x}^{\theta}_{t},t,c,y;\psi) - \epsilon\ _{2}^{2} \right].$
3:	Save path checkpoints $s_{\text{pretrain}}^{(i)}$
:	end while

Algorithm 2 Stage Two: Tracing Path

1: Input: 3D Gaussian θ , score prediction network s_{pretrain} , $s_{\text{pretrain}}^{\text{LoRA}}$, LoRA load strategy constant C2: Output: Well convergent θ 3: Define: Function to calculate weight: 4: weight(*iter*) = $\begin{cases} 1.0 - \left(\frac{iter-1}{1000}\right)^C$, if *iter* ≤ 1000 0, otherwise 5: while Not Converged do 6: $x_0 = g(\theta, c)$ 7: Calculate current weight: w = weight(iter)8: Optimize θ with Eq.(8): 9: $\min_{\theta \in \Theta} \mathbb{E}_{t,c} \left[\omega(t) \| \epsilon_{\text{pretrain}}^w(x_t, t, c, y) - \epsilon_{\text{pretrain}}^w(x_s, s, c, \theta) \|_2^2 \right].$ 10: end while

352 353

339

340 341

342

343

344 345

346

347

348

349

350

351

204

354 introduced Variational Score Distillation (VSD) to address the mode-seeking issues associated with 355 SDS. PlacidDreamer (Huang et al., 2024) introduced Balanced Score Distillation (BSD) decomposing 356 the SDS to avoid over-smoothing and over-saturation issues. Numerous other studies, such as 357 DreamAvatar (Cao et al., 2023), improving the network design for human-related 3D generation, are 358 dedicated to addressing the problems of low consistency and controllability of 3D model generation 359 in specific generative jobs. Single-view construction and multi-view generation are also other ways of using 2D priors (Long et al., 2023; Hu et al., 2023; Lin et al., 2023; Liu et al., 2023b;a; Qian et al., 360 2024; Shi et al., 2023; Tang et al., 2023). Considering that there is currently no method capable of 361 generating 3D models of sufficient quality for industrial applications, some research has shifted its 362 focus to texture generation (Chen et al., 2024a). 363

- 364 365
- 6 Experiment

368

6.1 Result

We qualitatively compare the proposed method PTD with Magic123 (Qian et al., 2024), Fantasia3D (Chen et al., 2023), ProlificDreamer (Wang et al., 2023), and LucidDreamer (Liang et al., 2024) (Figure 3). Images of other works are sourced from LucidDreamer (Liang et al., 2024). Results demonstrate the superior appearance and texture fidelity achieved by our method. In terms of generation speed, our approach employs the same architecture as LucidDreamer, ensuring no additional time is required. More generated results are in Figure 1.

We also quantitatively evaluate our model (Table 1) with CLIP similarity. We compute CLIP similarity based on 415 prompts from DreamFusion (Poole et al., 2022). CLIP similarity is calculated using OpenAI's ViT-L/14 (Radford et al., 2021b) and OpenCLIP's ViT-bigG-14 (Schuhmann et al., 2022). During computation, we set a camera radius of 4, elevations of 0 and 45 degrees, and select 8 evenly

³⁶⁶ 367

"A DSLR photo of a Schnauzer wearing a pirate hat.

Figure 3: Comparison of 3D generation quality across different methods. Our method enjoys similar time cost to LucidDreamer but has better visual quality.

spaced azimuth angles every 45 degrees, ranging from -180 to 180 degrees. For each prompt, we render 16 images to compute CLIP similarity. The comparison is done with DreamFusion (Poole et al., 2022), Instant3D (Li et al., 2023), ProlificDreamer (Wang et al., 2023), and LucidDreamer (Liang et al., 2024). Results of these methods are sourced from GaussianDreamer (Yi et al., 2024). In this comparison, our method demonstrates higher congruence between text and images, indicating superior image quality.

6.2 GENERALIZABILITY OF PATHTRACING DISTILLATION

To evaluate the generalizability of PathTracing 406

Distillation method, we compare the ISM (Liang 407 et al., 2024) and our method in different 3D 408 representations. In Figure 4, we generate the 409 3D asets with the same prompts in 3DGS and 410 NeRF representations respectively. As for the 411 outcomes of other work, we borrow figures from 412 LucidDreamer. We can intuitively see that the 413 3D assets our method generate is more detailed 414 and have more diversity. Even in NeRF represen-415 tation, our methods also work well to generate 3D assets with vivid appearance and good shape. 416

417

391 392

393 394

396 397

398

399

400

401

402 403

404 405

418 6.3 ABLATION STUDY 419

420 Effect of PathTracing Distillation We com-421 pare our Path Tracing Distillation (PTD) method 422 with the vanilla method in Figure 5. Addition-423 ally, we evaluate different rates of LoRA weight change and perform an ablation study on the 424

Table 1: Quantitative comparison of the proposed PTD with other methods. The best performance is highlighted in bold and the second best is underlined. Our method outperforms other methods with an average generation time cost of 1.5 hours. Our results are comparable with ProlificDreamer which takes about 8 hours, over 5 times of temporal cost as ours.

Methods	ViT-L/14 ↑	ViT-bigG-14↑
DreamFusion	23.60	37.46
ProlificDreamer	27.39	42.98
Instant3D	26.87	41.77
LucidDreamer	25.99	40.27
Ours	<u>27.16</u>	<u>42.36</u>

Path Tracing component. The results demonstrate that our PTD method achieves better convergence 425 within the same number of training steps. 426

427

428 **Initialization with SF3D Generator** 3D Gaussian is sensitive to the initialization of shape and appearance. We ablate SF3D method (Boss et al., 2024) and use PointE (Nichol et al., 2022) instead 429 to validate the advantage of using SF3D. In Figure 6, we can see a higher text and image matching 430 when using SF3D, indicating a better initial shape and appearance. This illustrates that SF3D method 431 could help to produce a better outcome.

Figure 5: Ablation study of the Path Tracing Distillation (PTD) method. The figure compares the convergence results of our PTD method with the vanilla method at the same training step. Different rates of LoRA weight change are also evaluated. It is evident that our PTD method achieves better convergence in detail.

Figure 7: Ablation of Finetune the pretrained score network. To avoid giving guidance of cropped objects from Stable Diffusion 2.1, we finetune it with images of whole objects generated by Stable Diffusion XL. Such finetuning helps in getting complete 3D models.

7 CONCLUSION

In this paper, we discuss the OOD issue in the current text-to-3D method with score distillation. We find rendered images from the initial 3D models lie out of the distribution of the pretrained score network, which is typically Stable Diffusion. Such issue cause unstable score prediction for the generation process. To solve this issue, we propose a path tracing method. Experimental results demonstrate that our proposed method enhances the generation process, achieving higher CLIP similarity and maintaining visual quality.

540 REFERENCES

567

568

569

- Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks.
 In *International Conference of Machine Learning*, International Conference of Machine Learning, pp. 214–223. JMLR, 2017.
- Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In *Proceedings of the 26th Annual International Conference on Machine Learning*, ICML '09, pp. 41–48, New York, NY, USA, 2009. Association for Computing Machinery. ISBN 9781605585161. doi: 10.1145/1553374.1553380. URL https://doi.org/10.1145/1553374.1553380.
- Mark Boss, Zixuan Huang, Aaryaman Vasishta, and Varun Jampani. Sf3d: Stable fast 3d mesh reconstruction with uv-unwrapping and illumination disentanglement, 2024. URL https://arxiv.org/abs/2408.00653.
- Yukang Cao, Yan-Pei Cao, Kai Han, Ying Shan, and Kwan-Yee K. Wong. Dreamavatar: Text-andshape guided 3d human avatar generation via diffusion models. *arXiv preprint arXiv:2304.00916*, 2023.
- Rui Chen, Yongwei Chen, Ningxin Jiao, and Kui Jia. Fantasia3d: Disentangling geometry and appear ance for high-quality text-to-3d content creation. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 22246–22256, 2023.
- Xi Chen, Sida Peng, Dongchen Yang, Yuan Liu, Bowen Pan, Chengfei Lv, and Xiaowei Zhou. Intrinsicanything: Learning diffusion priors for inverse rendering under unknown illumination. *arXiv preprint arXiv:2404.11593*, 2024a.
- Yiwen Chen, Chi Zhang, Xiaofeng Yang, Zhongang Cai, Gang Yu, Lei Yang, and Guosheng Lin. It3d:
 Improved text-to-3d generation with explicit view synthesis. *Proceedings of the AAAI Conference* on Artificial Intelligence, 38(2):1237–1244, Mar. 2024b. doi: 10.1609/aaai.v38i2.27886. URL https://ojs.aaai.org/index.php/AAAI/article/view/27886.
 - Rishabh Dabral, Muhammad Hamza Mughal, Vladislav Golyanik, and Christian Theobalt. Mofusion: A framework for denoising-diffusion-based motion synthesis. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 9760–9770, June 2023.
- Jun Gao, Tianchang Shen, Zian Wang, Wenzheng Chen, Kangxue Yin, Daiqing Li, Or Litany, Zan Gojcic, and Sanja Fidler. Get3d: A generative model of high quality 3d textured shapes learned from images. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Information Processing Systems, volume 35, pp. 31841–31854. Curran Associates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/cebbd24f1e50bcb63d015611fe0fe767-Paper-Conference.pdf.
- Anchit Gupta, Wenhan Xiong, Yixin Nie, Ian Jones, and Barlas Oğuz. 3dgen: Triplane latent diffusion
 for textured mesh generation. *arXiv preprint arXiv:2303.05371*, 2023.
- Xianglong He, Junyi Chen, Sida Peng, Di Huang, Yangguang Li, Xiaoshui Huang, Chun Yuan,
 Wanli Ouyang, and Tong He. Gvgen: Text-to-3d generation with volumetric representation. *arXiv preprint arXiv:2403.12957*, 2024.
- Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in neural information processing systems*, 33:6840–6851, 2020.
- Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 and Weizhu Chen. Lora: Low-rank adaptation of large language models. *arXiv preprint arXiv:2106.09685*, 2021.
- Shoukang Hu, Fangzhou Hong, Tao Hu, Liang Pan, Haiyi Mei, Weiye Xiao, Lei Yang, and Ziwei Liu. Humanliff: Layer-wise 3d human generation with diffusion model. *arXiv preprint arXiv:2308.09712*, 2023.
- Shuo Huang, Shikun Sun, Zixuan Wang, Xiaoyu Qin, xiongyanmin, zhangyuan, Pengfei Wan,
 Di ZHANG, and Jia Jia. Placiddreamer: Advancing harmony in text-to-3d generation. In ACM Multimedia 2024, 2024. URL https://openreview.net/forum?id=UsT1hTteBM.

594 595 596 597	Ruixiang Jiang, Can Wang, Jingbo Zhang, Menglei Chai, Mingming He, Dongdong Chen, and Jing Liao. Avatarcraft: Transforming text into neural human avatars with parameterized shape and pose control. In <i>Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)</i> , pp. 14371–14382, October 2023.
598 599 600	Heewoo Jun and Alex Nichol. Shap-e: Generating conditional 3d implicit functions. <i>arXiv preprint arXiv:2305.02463</i> , 2023.
601 602	Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splatting for real-time radiance field rendering. <i>ACM Transactions on Graphics</i> , 42(4):1–14, 2023.
603 604 605 606	Jihoon Kim, Jiseob Kim, and Sungjoon Choi. Flame: Free-form language-based motion synthesis & editing. Proceedings of the AAAI Conference on Artificial Intelligence, 37(7):8255–8263, Jun. 2023. doi: 10.1609/aaai.v37i7.25996. URL https://ojs.aaai.org/index.php/AAAI/ article/view/25996.
607 608 609	Yajing Kong, Liu Liu, Jun Wang, and Dacheng Tao. Adaptive curriculum learning. 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 5047–5056, 2021.
610 611 612	Jiahao Li, Hao Tan, Kai Zhang, Zexiang Xu, Fujun Luan, Yinghao Xu, Yicong Hong, Kalyan Sunkavalli, Greg Shakhnarovich, and Sai Bi. Instant3d: Fast text-to-3d with sparse-view generation and large reconstruction model. <i>arXiv preprint arXiv:2311.06214</i> , 2023.
613 614 615 616	Yixun Liang, Xin Yang, Jiantao Lin, Haodong Li, Xiaogang Xu, and Yingcong Chen. Luciddreamer: Towards high-fidelity text-to-3d generation via interval score matching. In <i>Proceedings of the</i> <i>IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)</i> , pp. 6517–6526, June 2024.
617 618 619 620	Yukang Lin, Haonan Han, Chaoqun Gong, Zunnan Xu, Yachao Zhang, and Xiu Li. Consistent123: One image to highly consistent 3d asset using case-aware diffusion priors. <i>arXiv preprint arXiv:2309.17261</i> , 2023.
621 622 623 624 625 626	 Minghua Liu, Chao Xu, Haian Jin, Linghao Chen, Mukund Varma T, Zexiang Xu, and Hao Su. One-2-3-45: Any single image to 3d mesh in 45 seconds without per-shape optimization. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural Information Processing Systems, volume 36, pp. 22226–22246. Curran Associates, Inc., 2023a. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/4683beb6bab325650db13afd05d1a14a-Paper-Conference.pdf.
627 628 629	Ruoshi Liu, Rundi Wu, Basile Van Hoorick, Pavel Tokmakov, Sergey Zakharov, and Carl Vondrick. Zero-1-to-3: Zero-shot one image to 3d object. In <i>Proceedings of the IEEE/CVF International</i> <i>Conference on Computer Vision (ICCV)</i> , pp. 9298–9309, October 2023b.
630 631 632 633	Xiaoxiao Long, Yuan-Chen Guo, Cheng Lin, Yuan Liu, Zhiyang Dou, Lingjie Liu, Yuexin Ma, Song-Hai Zhang, Marc Habermann, Christian Theobalt, et al. Wonder3d: Single image to 3d using cross-domain diffusion. <i>arXiv preprint arXiv:2310.15008</i> , 2023.
634 635 636 637	Jonathan Lorraine, Kevin Xie, Xiaohui Zeng, Chen-Hsuan Lin, Towaki Takikawa, Nicholas Sharp, Tsung-Yi Lin, Ming-Yu Liu, Sanja Fidler, and James Lucas. Att3d: Amortized text-to-3d object synthesis. In <i>Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)</i> , pp. 17946–17956, October 2023.
638 639 640 641	Weijian Luo, Tianyang Hu, Shifeng Zhang, Jiacheng Sun, Zhenguo Li, and Zhihua Zhang. Diff- instruct: A universal approach for transferring knowledge from pre-trained diffusion models. <i>ArXiv</i> , abs/2305.18455, 2023. URL https://api.semanticscholar.org/CorpusID: 258967550.
642 643 644 645	Paul C. Matthews. <i>Vector Calculus</i> . Springer undergraduate mathematics series. Springer, London, 1998. ISBN 978-3-540-76180-8. doi: doi.org/10.1007/978-1-4471-0597-8. ISBN: 978-3-540-76180-8.
646 647	Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. <i>Communications of the ACM</i> , 65(1):99–106, 2021.

648 Alex Nichol, Heewoo Jun, Prafulla Dhariwal, Pamela Mishkin, and Mark Chen. Point-e: A system 649 for generating 3d point clouds from complex prompts. arXiv preprint arXiv:2212.08751, 2022. 650 Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe 651 Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image 652 synthesis. arXiv preprint arXiv:2307.01952, 2023. 653 654 Ben Poole, Ajay Jain, Jonathan T. Barron, and Ben Mildenhall. Dreamfusion: Text-to-3d using 2d 655 diffusion. arXiv preprint arXiv:2209.14988, 2022. 656 657 Guocheng Qian, Jinjie Mai, Abdullah Hamdi, Jian Ren, Aliaksandr Siarohin, Bing Li, Hsin-Ying 658 Lee, Ivan Skorokhodov, Peter Wonka, Sergey Tulyakov, and Bernard Ghanem. Magic123: One image to high-quality 3d object generation using both 2d and 3d diffusion priors. In International 659 Conference of Learning Representation, 2024. 660 661 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, 662 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. 663 Learning transferable visual models from natural language supervision. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International Conference on Machine Learning, volume 139 665 of Proceedings of Machine Learning Research, pp. 8748–8763. PMLR, 18–24 Jul 2021a. URL 666 https://proceedings.mlr.press/v139/radford21a.html. 667 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, 668 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual 669 models from natural language supervision. In International conference on machine learning, pp. 670 8748-8763. PMLR, 2021b. 671 672 Barbara Roessle, Norman Müller, Lorenzo Porzi, Samuel Rota Bulò, Peter Kontschieder, and 673 Matthias Nießner. Ganerf: Leveraging discriminators to optimize neural radiance fields. ACM 674 Trans. Graph., 42(6), nov 2023. ISSN 0730-0301. doi: 10.1145/3618402. URL https: 675 //doi.org/10.1145/3618402. 676 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-677 resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Confer-678 ence on Computer Vision and Pattern Recognition (CVPR), pp. 10684–10695, June 2022a. 679 680 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. Highresolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Confer-682 ence on Computer Vision and Pattern Recognition (CVPR), pp. 10684–10695, June 2022b. 683 Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar 684 Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, Jonathan Ho, David J 685 Fleet, and Mohammad Norouzi. Photorealistic text-to-image diffusion models with deep language 686 understanding. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), 687 Advances in Neural Information Processing Systems, volume 35, pp. 36479–36494. Curran Asso-688 ciates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/ 689 2022/file/ec795aeadae0b7d230fa35cbaf04c041-Paper-Conference.pdf. 690 Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade W Gordon, Ross Wightman, Mehdi 691 Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, Patrick Schramowski, 692 Srivatsa R Kundurthy, Katherine Crowson, Ludwig Schmidt, Robert Kaczmarczyk, and Jenia 693 Jitsev. LAION-5b: An open large-scale dataset for training next generation image-text models. 694 In Thirty-sixth Conference on Neural Information Processing Systems Datasets and Benchmarks Track, 2022. URL https://openreview.net/forum?id=M3Y74vmsMcY. 696 697 Hoigi Seo, Hayeon Kim, Gwanghyun Kim, and Se Young Chun. Ditto-nerf: Diffusion-based iterative text to omni-directional 3d model. arXiv preprint arXiv:2304.02827, 2023. 699 Ruoxi Shi, Hansheng Chen, Zhuoyang Zhang, Minghua Liu, Chao Xu, Xinyue Wei, Linghao Chen, 700 Chong Zeng, and Hao Su. Zero123++: a single image to consistent multi-view diffusion base 701 model. arXiv preprint arXiv:2310.15110, 2023.

- 702 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv 703 preprint arXiv:2010.02502, 2020. 704 Liangchen Song, Liangliang Cao, Hongyu Xu, Kai Kang, Feng Tang, Junsong Yuan, and Yang Zhao. 705 Roomdreamer: Text-driven 3d indoor scene synthesis with coherent geometry and texture. arXiv 706 preprint arXiv:2305.11337, 2023. 707 708 Junshu Tang, Tengfei Wang, Bo Zhang, Ting Zhang, Ran Yi, Lizhuang Ma, and Dong Chen. Make-709 it-3d: High-fidelity 3d creation from a single image with diffusion prior. In Proceedings of the 710 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 22819–22829, October 2023. 711 Pascal Vincent. A connection between score matching and denoising autoencoders. Neural computa-712 tion, 23(7):1661–1674, 2011. 713 714 Xin Wang, Yudong Chen, and Wenwu Zhu. A survey on curriculum learning. IEEE Transactions on 715 Pattern Analysis and Machine Intelligence, 44(9):4555–4576, 2022. doi: 10.1109/TPAMI.2021. 716 3069908. 717 Zhengyi Wang, Cheng Lu, Yikai Wang, Fan Bao, Chongxuan LI, Hang Su, and Jun Zhu. Pro-718 lificdreamer: High-fidelity and diverse text-to-3d generation with variational score distilla-719 tion. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Ad-720 vances in Neural Information Processing Systems, volume 36, pp. 8406–8441. Curran Asso-721 ciates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/ 722 2023/file/1a87980b9853e84dfb295855b425c262-Paper-Conference.pdf. 723 Jiale Xu, Xintao Wang, Weihao Cheng, Yan-Pei Cao, Ying Shan, Xiaohu Qie, and Shenghua Gao. 724 Dream3d: Zero-shot text-to-3d synthesis using 3d shape prior and text-to-image diffusion models. 725 In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 726 pp. 20908–20918, June 2023a. 727 728 Yilun Xu, Shangyuan Tong, and Tommi Jaakkola. Stable target field for reduced variance score 729 estimation in diffusion models. In International Conference of Learning Representation, 2023b. 730 Taoran Yi, Jiemin Fang, Junjie Wang, Guanjun Wu, Lingxi Xie, Xiaopeng Zhang, Wenyu Liu, Qi Tian, 731 and Xinggang Wang. Gaussiandreamer: Fast generation from text to 3d gaussians by bridging 2d 732 and 3d diffusion models, 2024. 733 734 Chaohui Yu, Qiang Zhou, Jingliang Li, Zhe Zhang, Zhibin Wang, and Fan Wang. Points-to-3d: 735 Bridging the gap between sparse points and shape-controllable text-to-3d generation. In Pro-736 ceedings of the 31st ACM International Conference on Multimedia, MM '23, pp. 6841–6850, 737 New York, NY, USA, 2023a. Association for Computing Machinery. ISBN 9798400701085. doi: 10.1145/3581783.3612232. URL https://doi.org/10.1145/3581783.3612232. 738 739 Xin Yu, Yuan-Chen Guo, Yangguang Li, Ding Liang, Song-Hai Zhang, and Xiaojuan Qi. Text-to-3d 740 with classifier score distillation. arXiv preprint arXiv:2310.19415, 2023b. 741 742 Mingyuan Zhang, Xinying Guo, Liang Pan, Zhongang Cai, Fangzhou Hong, Huirong Li, Lei Yang, 743 and Ziwei Liu. Remodiffuse: Retrieval-augmented motion diffusion model. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 364–373, October 2023. 744 745 746 А LIMITATION AND POTENTIAL SOCIAL IMPACT 747 748 Our paper relies on the assumption that the intermediate checkpoints during the forwarding stage 749 are score functions representing existing or non-existent distributions. However, these checkpoints 750 at least only represent vector fields, and a vector field is a gradient field when several conditions 751 are satisfied, including path independence, continuous partial derivatives, and zero curls (Matthews, 752 1998). The violation may hinder the optimization in the generation process. 753
- 754 The claim of OOD issue may not be applicable when the pretrained score network s_{pretrain} includes 755 low-quality images similar to initial rendered images. Our claim is valid as current methods adopt Stable Diffusion as s_{pretrain} , which is trained on high-quality realistic images to form a 2D prior.

The proposed method introduces extra computational cost as in the forward path stage. However, empirically we find the cost is limited, but the path significantly reduce the cost in the path tracing stage. The generated 3D models reach nearly the same quality within 400 steps as those generated by Gaussian Dreamer with 1000 steps (Figure 1). The extra computational cost is balanced.

This paper aims to improve the generation speed of generative models, which could be used to generate fake 3D model for disinformation.

763 764 765

B ETHICS STATEMENT

In this study, human subjects participated in a user study aimed at evaluating the quality of 3D 766 models generated by our method compared to an existing method. We recruited five volunteers who 767 were thoroughly informed about the study's purpose, procedures, and any potential risks prior to 768 participation, ensuring that they provided their informed consent freely. Participants were briefed 769 on the ability to withdraw from the study at any time without negative consequences, underscoring 770 our commitment to their autonomy and well-being. During the study, each volunteer assessed 8-771 second videos of 3D models generated from 300 different prompts. Following their involvement, 772 we conducted a debriefing session to address any discomfort or questions, ensuring that participants 773 felt supported and valued. Privacy and confidentiality were maintained rigorously; no personally 774 identifiable information was collected, and responses were anonymized. All data were securely 775 stored in compliance with data protection regulations and were used exclusively for the research. We 776 identified no additional ethical concerns, such as bias, privacy, or conflicts of interest, in the course of our study, affirming our adherence to ethical research standards and practices. 777

C REPRODUCIBILITY STATEMENT

In our study on the 3D generation task, we identified an Out of Distribution (OOD) issue, validated in
Section 3. We provide an additional validation experiment in Appendix H to assess the mitigation of
this issue. To address the OOD problem, we propose a PathTracing Distillation method. Detailed
implementation information is available in Appendix E. The code is included in the supplemental
material and will be released shortly.

786 787

788

794

796 797

798

778 779

D RELATIONSHIP WITH PREVIOUS METHODS

The connection to GAN Score distillation is connected to Generative Adversarial Networks (GANs). The adversarial discriminator is also used in 3D reconstruction (Roessle et al., 2023). In this case, GAN does not suffer from the OOD issue. The reason lies in the difference between the adversarial training and diffusion training. Given the real image distribution q and the rendered image distribution p, the KL divergence follows

$$D_{\mathrm{KL}}(q \parallel p) = E_q \left[\log \frac{q}{p} \right] \tag{9}$$

An adversarial discriminator $D(\cdot)$ approximates $D(x) = \frac{q(x)}{q(x)+p(x)}$, and the connection between the adversarial discriminator and the scores can be summarized as Luo et al. (2023)

$$\log \frac{D(x)}{1 - D(x)} = \log \frac{q(x)}{p(x)} = \log q(x) - \log p(x) \approx s_{pt}(x) - s_{\phi}(x)$$
(10)

Therefore, both GAN and score distillation minizes the KL divergence to form the final 3D model. However, in the adversarial training, the discriminator D is directly trained on both real and generated data jointly, and it enjoys a support of both distribution but may suffer from gradient saturation (Arjovsky et al., 2017). On the other hand, in score distillation the networks $s_{pt}(x)$ and $s_{\phi}(x)$ are trained separately and they have different support. Therefore the score prediction is unstable in this case.

808

Curriculumn Learning Our path tracing method shares a similar spirit with Curriculumn Learning. Curriculum learning (CL) (Wang et al., 2022; Bengio et al., 2009) is a training strategy designed to

810 improve the learning process of machine learning models by organizing data in a way that mimics 811 the natural progression of complexity and difficulty, similar to how humans learn. This approach 812 involves training a model on easier data before moving to harder data, thereby enhancing the model's 813 generalization capacity and convergence rate.

814 The transformation path constructed in our method is indeed a curriculum with easier distributions at 815 the beginning of generation but harder distributions at the end. Specifically, those checkpoints in the 816 transformation path close to $s_{pt(n)}$ are easy distributions as they are nearly converged to the render 817 image distribution. Those checkpoints close to s_{pt} are difficult distributions as they are quite different 818 from the rendered image distribution and it may take quite a long time to learn. The target to learn is 819 iterated during the training similar to the adaptive curriculum learning (Kong et al., 2021).

820 821 822

823 824

827

829

830

E **IMPLEMENTATION DETAILS**

Our approach is meticulously crafted in PyTorch, leveraging the foundational structures of Lucid-825 Dreamer (Liang et al., 2024). We fintune the "stabilityai/stablediffusion-2-1-base" with the LoRA 826 rank of 4. The Unet is trained only with a learning rate of 0.0001. The LoRA used for forming path is the same configuration. We train the finetune-LoRA with 400 epochs and formaing-path-LoRA 828 with 200epochs. The LoRA load strategy we choose is 0.3. We use the PathTracing Distillation in the first 1000 steps.

For the 3D Gaussian initialization, we initiate from a SF3D (Boss et al., 2024)-initialized point cloud. Other configuration is the same with LucidDreamer. All experiments are executed on RTX 3090.

TWO TYPES OF OUT OF DISTRIBUTION ISSUES F

835 836 837

838

839

840

841

842

843 844

845

846

847 848

849

850

851

852

853

854

In the context of 3D generation, there are two primary types of out-of-distribution (OOD) issues. We have discussed one of it in the main context. Another type is associated with the inaccuracy of the score prediction network s_{ϕ} in predicting the score from the noisy rendered images x_t to the clear ones x_0 . This type of OOD problem often arises in works that employ two networks to optimize the 3D representation, such as ProlificDreamer (Wang et al., 2023), where one network s_{ϕ} is used to predict the score of noisy rendered images. It also has a close relationship with the initialization strategy of the score prediction network s_{ϕ} which typically follows by three approaches:

- 1. **Random Initialization**: This method initializes s_{ϕ} without any prior information, which often results in s_{ϕ} being initially distant from the distribution of rendered images, leading to inaccurate score predictions in the early stages.
- 2. LoRA Initialization: In this approach, s_{ϕ} is initially set as a Low-Rank Adaptation (LoRA) of a pretrained model s_{pretrain} , endowing it with robust prior knowledge. At the beginning of the training, the elements in the LoRA matrix B are zero, making s_{ϕ} identical to the pre-trained model. As training progresses, s_{ϕ} gradually adapts to fit the distribution of the rendered images. Notably, ProlificDreamer employs this initialization strategy. However, due to the initial suboptimal quality of the rendered images, s_{ϕ} fails to predict the score accurately, presenting another OOD challenge.
- 855 3. **Pre-training with 3D Model**: Before training the 3D model, s_{ϕ} is initialized by fitting it to the images rendered from the initial 3D model. This method ensures that s_{ϕ} starts with a distribution that closely matches the rendered images, facilitating accurate score predictions 858 from the onset. Similar to the second method, during the subsequent training process, the 859 optimization of the 3D model and s_{ϕ} alternates to ensure s_{ϕ} can consistently predict the noise accurately.
- 861

In methods using two score networks, the third initialization approach is necessary and advantageous 862 as it aligns s_{ϕ} 's distribution with that of the 3D model-rendered images, thereby ensuring accurate 863 and stable score predictions throughout the 3D generation process.

G SCORE APPROXIMATED THROUGH THE STABLE TARGET FIELD METHOD

To empirically investigate the OOD issue, we compare the predicted score $s_{\text{pretrain}}(\boldsymbol{x}_t, t, y)$ with the approximated score $s_{\text{approx}}(\boldsymbol{x}_t, \boldsymbol{x}_0^{\text{ref}})$ of rendered images $\boldsymbol{x}_t^{\theta}$ or generated images $\boldsymbol{x}_t^{\text{pretrain}}$. $\boldsymbol{x}_0^{\text{ref}}$ is the approximation required reference samples from the pretrained model. The rationale behind is that the score prediction network is trained to fit real scores by score matching (Vincent, 2011), and the matching loss is low when given in-distribution samples but high otherwise. The scores $s_{\text{real}}(\boldsymbol{x}_t)$, expectedly equaled to $\nabla_{\boldsymbol{x}_t} \log p_t(\boldsymbol{x}_t)$, is unknown but can be approximated through using Stable Target Field (STF) (Xu et al., 2023b). The approximation given by STF is to utilize the training data $\boldsymbol{x}_0^{\text{ref}}$ to perform a weighted sum of conditional score with reduced variance.

877 878

879

882

883

885

887 888

889 890

891

893

894

896

900

901

902

903

904

864

865 866

867

868

870

871

872

873

$$s_{\text{approx}}(\boldsymbol{x}_{t}, \boldsymbol{x}_{0}^{\text{ref}}) \approx \sum_{i=1}^{n} \frac{p_{t\mid0}\left(\boldsymbol{x}_{t} \mid \boldsymbol{x}_{0}^{\text{ref}(i)}\right)}{\sum_{j=1}^{n} p_{t\mid0}\left(\boldsymbol{x}_{t} \mid \boldsymbol{x}_{0}^{\text{ref}(j)}\right)} \nabla_{\boldsymbol{x}_{t}} \log p_{t\mid0}\left(\boldsymbol{x}_{t} \mid \boldsymbol{x}_{0}^{\text{ref}(i)}\right),$$
(11)

where n is the number of reference samples. Notice that the approximation does not use any network prediction.

H OUT OF DISTRIBUTION IN TRAINING 3D

Figure 8: The illustration of the matching loss given vanilla method and PathTracing Distillation (PTD) method in training. The loss of the vanilla method in blue is significantly higher than the loss of PTD method in green until closing to the end of training, indicating the score inaccurately predicted due to rendered images lying outside of the pretrained score network distribution in the vanilla method. Therefore, the PTD method could effectively help the stable 3D training.

905 906

907

In this section, we validate the effect of OOD mitigation using PathTracing Distillation (PTD). In Figure 8, we can intuitively observe the mitigation of OOD issue by plotting the curve of $\mathcal{L}_{matching}$ in the PTD method over the course of training 3D. x_0^{θ} are images rendered from 3D Gaussian θ in different steps of training and x_0^{ref} are images sampled from the guidance model. We use the specific guidance corresponding to training steps to calculate the $\mathcal{L}_{matching}$, where it is the $s_{pretrain}^{wLoRA}$ in our PTD method and $s_{pretrain}$ in the vanilla method. Since the $\mathcal{L}_{matching}$ of the vanilla method decline along with training steps and the $\mathcal{L}_{matching}$ of the PTD method is always lower, we can conclude that the following inequality holds:

915

$$\mathbb{E}_t \| s_{\text{pretrain}}^{\boldsymbol{w} \text{LOKA}}(\boldsymbol{x}_t, t, y) - s_{\text{approx}}(\boldsymbol{x}_t) \|_2 \le \mathbb{E}_t \| s_{\text{pretrain}}(\boldsymbol{x}_t, t, y) - s_{\text{approx}}(\boldsymbol{x}_t) \|_2.$$
(12)

Therefore, we can validate that the PTD method effectively reduce the OOD issue.

. ...

918 I SHIFT OF LORA IN TRAINING 3D

The traditional approach of changing LoRA target is to use the intermediate checkpoint of LoRA in training. But three drawbacks determine its unconveniency:

- 1. Shift of Targets: Over the course of training 3D, a stable and solid target pretrained model is important. If we change the LoRA of pretrained model just like changing a accessory, the final target θ is also changing even though the Exponential Moving Average (EMA) trick is used to train smooth LoRA. Reflected to current θ , the appearance and shape we construct in current LoRA is destroyed when changing to the next one (Huang et al., 2024).
 - 2. Limited Number of Checkpoints and Difficulty of Selecting Strategy of Loading LoRA: We always train LoRA using different batch size, dataset size and some other parameters. In some extreme situations, we only train several epochs which is so short to produce to provide feasible path. In addition, with some intermediate LoRAs, we may be confused to select the suitable interval to change LoRA and the LoRA step gap. It always needs parameter search which will consume a lot of time.
 - 3. **Resources consumed**: The intermediate LoRA checkpoints are needed to be saved locally, requiring extra disk memory. And loading new LoRA and setting configuration consume time. Both need resources to implement.

Base on these reasons, we adopt the new weighted LoRA method to trace path, showed in Section 4.3.

J MORE RESULTS

In Figure 9, we present additional generation results obtained using our PathTracing Distillation methods. These examples illustrate the versatility and efficacy of our approach in handling various object categories. The generated results showcase high-quality renderings across multiple domains, such as animals, plants, machinery, and food items. By closely examining the details, the robustness and precision of our framework in capturing the intricate features and appearances of different objects can be appreciated. The success in these diverse categories underscores the broad applicability and effectiveness of our method.

K FAILURE EXAMPLE

During the generation process, occasional failures can occur. As illustrated in the Figure 10, we present three examples stemming from different causes. The left image represents a case where the attributes of a 3D object were not correctly matched with the corresponding descriptive terms; for instance, the attribute "silver" was incorrectly applied to cheese instead of the intended plate, resulting in an erroneous sample. The middle image demonstrates the difficulty in accurately generating all objects and their corresponding attributes in the context of complex prompts. The right image depicts a scenario where the quantity of objects was incorrectly generated, leading to the omission of one object.

L MORE APPLICATIONS

Image to 3D Generation In this section, we expand our pipeline to some new application, showed in Figure 11(a). Since we use SF3D (Boss et al., 2024) for initialization of 3D Gaussian, we could also use it to reconstruct 3D Gaussian from images. Given a single image used for reconstruction, we automatically remove the background and get the image with only central objects. Then, a mesh will be reconstructed and we could use it to initialize the 3D Gaussian. With respective prompts, we transform it into vivid 3D Gaussian.

Mesh to 3D Generation Mesh is a popular representation for 3D. We could also use our pipeline to add more details or change style base on given coarse mesh. With the control prompt, the PathTracing Distillation method change it into different appearance and shape, as showed in Figure 11(b).

Figure 9: Additional examples generated by our PathTracing framework. The results demonstrate the framework's capability to produce high-quality renderings across a diverse range of object categories, including animals, plants, machinery, and food items. Please zoom in for a detailed view.

Figure 10: Examples of failures during the generation process. The left image shows incorrect attribute matching, where the silver attribute is assigned to cheese instead of a plate. The middle image illustrates the challenge of accurately generating all objects and their descriptions in complex prompts. The right image depicts an error in the number of generated objects, with one object missing.

