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ABSTRACT

Text-to-3D generation techniques signify a pivotal advancement in creating 3D
models from textual descriptions. Contemporary state-of-the-art methods utilize
score distillation processes, leveraging 2D priors to generate 3D assets. However,
these approaches frequently encounter instability during the initial generation
phases, primarily due to an distribution discrepancy between the score prediction
network and rendered images. Specifically, the raw rendered images of the initial
3D model lie out of the distribution (OOD) of the pretrained score prediction
network, which is trained on high-fidelity realistic images. To address this OOD
issue, we introduce an innovative Path-Tracing Distillation (PTD) technique that
refines the distillation process. Our method sequentially optimizes the 3D model
using intermediate score networks that exhibit closer distributional alignment,
thereby accelerating the convergence during the early stages of training. This
approach not only ensures a more stable increase in CLIP similarity initially but also
preserves the visual quality and diversity of the generated models. Comprehensive
experiments demonstrate that PTD significantly enhances both the stability and
quality of text-to-3D generation, outperforming existing baselines in CLIP scores.

1 INTRODUCTION

The emergence of 3D asset generation (Qian et al., 2024) has precipitated transformative shifts within
the graphics industry, promising a future where 3D models are increasingly synthesized rather than
traditionally rendered. A 3D asset, meticulously detailed with intricate textural properties, serves
as a foundational element for a myriad of applications spanning animation, virtual reality, gaming,
and more. Among the diverse array of techniques, text-to-3D generation (Wang et al., 2023) stands
out as a promising approach, offering an efficient and user-friendly mechanism to create 3D models
from textual descriptions. This methodology not only streamlines the creative workflow but also
democratizes 3D content creation, making it accessible to a broader creators.

Currently, there are two predominant strategies for generating 3D assets from textual descriptions:
directly training a generative model on 3D data and constructing 3D models based on 2D priors.
The latter approach leverages large-scale diffusion models such as Stable Diffusion (Rombach et al.,
2022b) and Imagen (Saharia et al., 2022), which generate multi-view supervised signals to guide
the optimization of differentiably rendered images from an evolving 3D model. As the optimization
process iteratively refines the 3D model from various perspectives, it progressively converges toward
a realistic and coherent representation. This iterative refinement is crucial for ensuring that the
generated 3D models accurately reflect the semantic content of the input text while maintaining high
visual fidelity across different viewpoints.

At the forefront of these advancements is DreamFusion (Poole et al., 2022), which introduced Score
Distillation Sampling (SDS) to predict scores in noisy images rendered from 3D models. Despite its
innovative approach, DreamFusion’s technique sometimes results in images exhibiting over-saturation
or excessive smoothing, detracting from the model’s realism and detail. To address these limitations,
subsequent methods such as ProlificDreamer (Wang et al., 2023) introduced Variational Score
Distillation (VSD), modeling the distribution of multiple generated 3D representations to enable more
diverse and accurate 3D model creation. Additionally, LucidDreamer (Liang et al., 2024) proposed
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“A beautiful dress made out of garbage 
bags, on a mannequin. Studio lighting, high 

quality, high resolution"

“A DSLR photo of a bulldozer 
clearing away a pile of snow"

“A DSLR photo of a blue jay 
standing on a large basket of 

rainbow macarons"

“A DSLR photo of a robot arm 
picking up a colorful block from a 

table"

“A DSLR photo of a baby dragon drinking 
boba"

“A DSLR photo of a small saguaro 
cactus planted in a clay pot"

“A DSLR photo of a mandarin duck 
swimming in a pond"

“A DSLR photo of a basil plant"“A DSLR photo of a stack of pancakes 
covered in maple syrup"

“A ceramic lion"

“A bumblebee sitting on a pink 
flower"

“A DSLR photo of a drying rack covered in 
clothes"

“A DSLR photo of a swan and its cygnets 
swimming in a pond"

“A DSLR photo of a baby dragon 
hatching out of a stone egg"

“A DSLR photo of a delicious 
chocolate brownie dessert with ice 

cream on the side"

“A DSLR photo of a Space Shuttle" “A crocodile playing 
a drum set"

“A DSLR photo of a porcelain 
dragon"

“A DSLR photo of a mouse playing 
the tuba"

“A DSLR photo of a frazer nash 
super sport car"

Figure 1: Example 3D models generated by our proposed PathTracing Distillation. Rendered image
in three views and the corresponding text prompts are presented. Best viewed magnified on screen.

Interval Score Matching (ISM), employing deterministic diffusing trajectories and interval-based
score matching to mitigate the over-smoothing effect observed with SDS. More recently, Classifier
Score Distillation (CSD) (Yu et al., 2023b) was developed as an implicit classification model for
generation, achieving commendable results by refining the score prediction process. However, despite
these advancements, existing methods still grapple with instability during the early stages of 3D
model generation and require extended periods to achieve stable and high-quality outcomes.

We argue that the score prediction network struggles to accurately predict the noise added to initially
rendered images. Such argument is supported by our empirical evidence. Our findings reveal a
substantial disparity between the scores predicted by Stable Diffusion and an approximated score (Xu
et al., 2023b), given images rendered from the initial raw 3D models. This discrepancy becomes
increasingly pronounced when the added noise scale is small. In contrast, for images generated
directly by Stable Diffusion, the disparity between predicted and approximated scores is significantly
reduced. These observations conclude that the score prediction for images from the initial raw 3D
models is inaccurate. An intuitive explanation for this issue is that the rendered images from the
low-quality initial 3D model tend to fall outside the support of Stable Diffusion which is trained
exclusively on high-quality 2D images.

To address the identified issue, we propose Path-Tracing Distillation (PTD) method, which employs a
series of score prediction networks instead of the solitary pretrained score network to perform score
distillation. Our core insight is, while the pretrained score network suffers from discrepancy, there
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are multiple intermediate distributions between the pretrained score network and the distribution of
rendered images. The 3D models may be guided by the intermediate score networks from close to far
and finally reach the pretrained score network. This is like when traveling to a remote city without
available direct flights, one may transfer several times through intermediate cities along the journey.
A planning of travel journey may start from the source to the destination, or from the destination back
to the source. We propose to obtain the intermediate score networks in a backward order.

Based on the above insight, we design a two-stage text-to-3D generation pipeline. In the first stage,
given a raw 3D model initialized by SF3D (Boss et al., 2024), we finetune the pretrained score
model to fit the initially rendered images, thereby gradually degrading the pretrained score network
from high-quality real images to low-quality rendered images. Checkpoints are saved during this
finetuning, and they are also score networks which altogether represent a transformation path of
intermediate distributions connecting the high-quality pretrained score to the low-quality untrained
rendered image distribution. In the second stage, the 3D model is iteratively optimized using these
checkpoints of score networks as distillation targes in a reverse order one by one. The switch from
a current checkpoint to a next one occurs when rendered multi-view images nearly converges to
the current checkpoint. The end of the reverse path is the original pretrained score network, so the
proposed distillation approach share the same convergence target with other score distillation strategy.
This distillation approach encourages a more stable optimization process, effectively mitigating the
OOD issue and resulting in high-quality 3D models.

Compared to existing text-to-3D methods, our Path-Tracing Distillation approach predict more
accurately score and accerlarate the convergence speed in 3D generation while maintaining both
diversity and quality. The proposed approach can be integrated with other existing score distillation
3D generation methods. Our contributions are summarized as follows:

1. We identify the out-of-distribution (OOD) issue during the 3D generation process with
empirical evidence.

2. We propose Path-Tracing Distillation (PTD) to mitigate the instability of score prediction in
the early stages of generation.

3. Experiments demonstrate that our PTD approach exceeds SOTA methods in CLIP similarity,
indicating higher quality of 3D assets.

2 PRELIMINARIES

The text-to-3D generation task aims to create a 3D model based on a given text prompt y. We denote
the parameters of the 3D representation as θ. Our method renders images from specific camera angles
c using volumetric rendering, represented as x0 := g(θ, c, y). Given the distribution of the training
images conditioned on the text prompt, our objective is to minimize the KL divergence between the
training image distribution, p(x0 | y), and the rendered image distribution, qθ(x0):

min
θ

KL
(
qθ(x0) ∥ p(x0 | y)

)
(1)

Intuitively, this means that the rendered image x0 should appear realistic from various viewpoints c
compared to the training images given the specific prompt.

Advanced techniques typically employ implicit representations like Neural Radiance Fields
(NeRF) (Mildenhall et al., 2021) or explicit representations such as 3D Gaussians (Kerbl et al.,
2023) to model 3D objects or scenes. To sovle the Eq. (1) and avoid the high dimensional problem,
an image x0 undergoes a noise addition process: xt = αtx0 + σtϵ, where αt and σt follow the
diffusion model’s schedule (Ho et al., 2020), and t represents the timestep.

DreamFusion (Poole et al., 2022) introduces Score Distillation Sampling (SDS), which leverages a
pre-trained model to predict noise ϵϕ(xt, t, y) on noisy images, guided by the text prompt y. SDS
calculates gradients by comparing the predicted noise with the actual added noise, updating the 3D
representation as follows:

∇θLSDS(θ) := Et,ϵ,c
[
ω(t) (ϵpretrain (xt, t, y)− ϵ)

∂g(θ, c)

∂θ

]
(2)

ProlificDreamer (Wang et al., 2023) further advances this by proposing Variational Score Distillation
(VSD). This method models the distribution of 3D scenes using multiple particles and employs
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an auxiliary score prediction network ϵϕ(xt, t, c, y) to model multiple images rendered from these
particles. The auxiliary network is designed as a LoRA on the base network. The optimization of ϵϕ
and each particle’s parameters θ(i) is performed alternately, with the gradient of θ being:

∇θLVSD(θ) := Et,ϵ,c
[
ω(t) (ϵpretrain (xt, t, y)− ϵϕ (xt, t, c, y))

∂g(θ, c)

∂θ

]
(3)

LucidDreamer (Liang et al., 2024) proposes Interval Score Matching to minimize the interval score
between adjacent timestamps using DDIM (Song et al., 2020) which tackles the over-smooth issue:

∇θLISM(θ) := min
θ∈Θ

Et,c
[
ω(t)(ϵϕ(xt, t, y)− ϵϕ(xs, s, ∅))

∂g(θ, c)

∂θ

]
. (4)

Based on these problem formulation and advanced distillation techniques, our approach builds a
series of score prediction networks to address the out-of-distribution (OOD) issue, bridging the gap
between high-quality and low-quality image distributions during the 3D model generation process.

3 THE OUT-OF-DISTRIBUTION ISSUE

The out-of-distribution issue often refers to the machine learning model receives data which deviates
significantly from the model’s training set so the model fails to give reliable predictions. Specifically
in our scenario, the OOD issue refers to the score prediction network spretrain may receive rendered
images different from images in the training set so it gives unstable score. Intuitively, spretrain is a
large-scale network trained on high-quality realistic images to capture 2D visual prior. Whereas, the
initial 3D models, given different representation or initialization, are of low quality. Thus, spretrain
may not predict scores of the noisy rendered images well enough.

To investigate the OOD issue, we compare the predicted score spretrain(xt, t, y) with the approximated
score sapprox(xt, t, y). The approximated score is computed with Stable Target Field (Xu et al., 2023b)
(Appendix G), which includes an additional reference batch of training samples used to calculate
weighted conditional scores as the approximation. The comparison is reflected by a proposed
matching loss between the predicted and approximated score, formally defined as

Lmatching(xt) = Ex0,t,ϵ∥spretrain(xt, t, y)− sapprox(xt, t, y)∥2, (5)

Here t indicates the timestep used for adding noise. If the noisy image given to the score prediction
network lies in the support of the training distribution, the predicted score is expectedly close to the
approximated score, and vice versa. The matching loss on the noisy rendered images xθt from initial
3D models is 3.234± 0.042. This is significantly higher than the loss value 1.687± 0.075 on noisy
generated images xpretrain

t given by the pretrained model as a baseline. Detailedly, this difference
becomes more pronounced when t is small, and vice versa. This observation suggests the pre-trained
model’s score prediction accuracy for rendered images is markedly inferior to that for real images.
We argue that initially rendered images are out of the distribution of spretrain and the score prediction
is unstable. Thus, the early generation of 3D models are impeded. To solve this problem, we design
the path-tracing strategy as detailed in the next section.

4 METHOD

4.1 OVERVIEW

We design a two-stage text-to-3D generation pipeline (Figure 2). In the first stage of forming path,
given a raw initialized 3D model, we finetune the pretrained score model to fit the initially rendered
images and save checkpoints during this finetuning to form the transformation path. In the second
stage of tracing path, the 3D model is iteratively optimized using these checkpoints of score networks
as distillation targes in a reverse order one by one. The final target is the pretrained score network.

4.2 FORMING PATH

The target of this stage is to obtain the transformation path of score networks connecting the pretrained
score network spretrain and the initial rendered image distribution. To this end, we propose to finetune
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Set as 

Target

Forwarding Path Tracing Path Trainable Parameters Frozen Parameters

Figure 2: The illustration of our proposed path-tracing distillation. Given a text prompt, a 3D model
is first initialized with SF3D (Boss et al., 2024) and gives several raw rendered images. In Stage1,
these images are used to finetune the pretrained score network spretrain, and checkpoints s(i)pretrain are
saved to form a transformation path. In Stage 2, these checkpoints are used in a reversed order as the
optimization targets giving score to optimize the 3D model.

spretrain with rendered images to degrade the distribution and save intermediate checkpoints. Formally,
given spretrain parameterized by ψ and an initialized 3D representation by θ, xθ0 is a rendered image of
a view c and a prompt y. Then the finetuning (degrading) process is defined by

min
ψ

Exθ
0,y,t∼U(0,1),ϵ∼N (0,1),c∼p(c)

[
∥ϵpretrain(x

θ
t , t, c, y;ψ)− ϵ∥22

]
. (6)

Here we adopt the noise prediction strategy (Ho et al., 2020) to maintain optimization stabil-
ity. Throughout this learning phase, we preserve checkpoints of the intermediate transformations
{s(i)pretrain|i = 0, 1, 2, . . . , n} within a predefined interval. Particularly, s(0)pretrain is equal to spretrain

and s(n)pretrain represents the distribution of xθ0 expectedly. Others are intermediate score networks
specifically retained for path tracing processes in the following stage.

We make several strong assumptions in the forming path stage. The first assumption is the implicit
connection between the parameter space of Stable Diffusion and the distribution space. This means
though not converged, each checkpoint (a vector field) is assumed to represent a score network
(a gradient field) of an unknown non-existent distribution. The second assumption is the steepest
descent or traversal in the parameter space builds a reasonable path in the distribution space. The
third assumption is the distance metric in the parameter space is translated to the similarity in the
distribution space. Such assumptions require further exploration to justify, but this is beyond the
scope of text-to-3D generation.

Several implementation details are introduced. We use Stable Fast 3D (SF3D) (Boss et al., 2024) to
initiate the 3D Gaussian θ, ensuring a plausible geometric and appearance configuration from text
prompts. We use Stable Diffusion 2.1 as the backbone and the finetuing is performed with LoRA Hu
et al. (2021) for parameter efficiency. Therefore, the saved checkpoints are only LoRA parameter
attached on the backbone. The finetuning is done in only 400 iterations, which requires trivial extra
computational cost.

4.3 TRACING PATH

This stage is to optimize the 3D model with the trasformation path. Existing models (Wang et al.,
2023; Liang et al., 2024) uses only the spretrain as the solitary target. In our design, the models
{s(i)pretrain|i = 0, 1, 2, . . . , n} are employed in a reverse order replacing spretrain to predict the scores of
the noisy images xθt . We iteratively update the 3D Gaussian θ by back-propagating the gradient of
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the score discrepancy using ISM (Liang et al., 2024):

min
θ∈Θ

Et∼U(0,1),c∼p(c)

[
ω(t)∥ϵ(i)

pretrain(xt, t, c, y)− ϵ
(i)
pretrain(xs, s, c, ∅)∥

2
2

]
, (7)

Here Θ is the space of θ with the Euclidean metric, ω(t) is a time-dependent weighting func-
tion and the noise prediction network ϵ

(i)
pretrain is used for approximating the score s

(i)
pretrain by

s
(i)
pretrain(xt, t) ≈ −ϵ

(i)
pretrain(xt, t)/σt.

During this process, to mitigate the Out-Of-Distribution (OOD) issue between spretrain and generated
samples, we use the penultimate score network s(n−1)

pretrain as target instead of spretrain so that s(n−1)
pretrain

can predict the score of generated samples more precisely. As the 3D Gaussian θ gets trained more
convergent, we switch the target from s

(n−1)
pretrain to s(n−2)

pretrain, and then iteratively towards s(0)pretrain i.e.
spretrain. The switch occurs every several optimization steps but ensure noisy images tend to lie in the
distribution of spretrain avoiding the OOD issue. Throughout the stage of tracing path, the 3D Gaussian
θ is optimized with the guidance of the 2D score networks along the reversed transformation path.

Empirically, we find the transformation path Eq. 6 is not smooth, and changing LoRA target in
this path frequently leads to the 3D shape and appearance collapse, as detailed in Appendix I. To
get a more smooth path, we explore a more feasible strategy to implement path tracing. We only
use the final LoRA checkpoint instead of the intermediate ones which save more disk memory and
loading time. To avoid the shift of target problem, we provide the tracing path using weighted LoRA,
which means the intermediate score networks are the interpolations between the zero LoRA (the
pretrained score network) and the final LoRA with a coefficient w ∈ [0, 1). In the case, the targets in
path tracing is obtained by forming an intermediate score network by varying w from 1 to 0. The
optimization with LucidDreamer in this case is

min
θ∈Θ

Et∼U(0,1),c∼p(c)
[
ω(t)∥ϵwpretrain(xt, t, c, y)− ϵwpretrain(xs, s, c, ∅)∥22

]
, (8)

Such variant promises a smooth enough and two-target transformation path. The final result in this
case is less susceptible to the switch timing between intermediate score networks. The only parameter
we need to control is the weight of the final LoRA, enhancing convenience and flexibility.

5 RELATED WORK

5.1 DIRECT 3D SHAPE GENERATION

Training neural networks using 3D models labeled with text description is a highly intuitive approach
to text-to-3D model, which meets people’s demand for more controllable 3D generation. For such
pre-trained models, a 3D shape (Gao et al., 2022; Gupta et al., 2023; Nichol et al., 2022; Jun &
Nichol, 2023; He et al., 2024) or 4D motion (Dabral et al., 2023; Zhang et al., 2023; Kim et al.,
2023) can be inferred within minutes or seconds by inputting text prompt. Relevant research includes
Point-E (Nichol et al., 2022), Shap-E (Jun & Nichol, 2023), Mofusion (Dabral et al., 2023), etc.
Despite the high efficiency of these methods, the quality of outputs is often suboptimal, which is
primarily due to the fact that the scale of 3D datasets cannot compare with that of 2D datasets. There
are also works to improve quality of direct 3D shape generation by introducing novel frameworks
and using 3DGS (Kerbl et al., 2023) as way of representing 3D shapes (He et al., 2024).

5.2 OPTIMIZING 3D SHAPE WITH 2D PRIORS

Given the typically small size of 3D model training sets, applying the rich 2D knowledge stored
in pre-trained 2D models to the generation of 3D shapes has become a popular topic (Chen et al.,
2024b; Jiang et al., 2023; Lorraine et al., 2023; Seo et al., 2023; Song et al., 2023; Yu et al., 2023a).
Dream3D (Xu et al., 2023a) employs the pre-trained CLIP (Radford et al., 2021a) model and explicit
three-dimensional shape priors to ensure that the rendered images have high semantic similarity
to the given text prompts. DreamFusion (Poole et al., 2022) proposed Score Distillation Sampling
(SDS), which optimizes 3D shapes using a 2D diffusion model. Subsequently, the introduction of
CSD (Yu et al., 2023b) highlighted that the effectiveness of SDS stems from distilling knowledge
from an implicit classifier rather than relying on generative priors. ProlificDreamer (Wang et al., 2023)
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Algorithm 1 Stage One: Forming Path

1: Input: 3D Gaussian θ, SF3D initialized θSF3D, score prediction network spretrain

2: Output: Path checkpoints {s(i)pretrain|i = 0, 1, 2, . . . , n}
3: θ ← θSF3D
4: while Not Converged do
5: x0 = g(θ, c)
6: xt = αtx0 + σtϵ

7: Optimize LoRA with Eq.(6): minψ Et,ϵ,c
[
∥ϵpretrain(x

θ
t , t, c, y;ψ)− ϵ∥22

]
.

8: Save path checkpoints s(i)pretrain
9: end while

Algorithm 2 Stage Two: Tracing Path

1: Input: 3D Gaussian θ, score prediction network spretrain, sLoRA
pretrain, LoRA load strategy constant C

2: Output: Well convergent θ
3: Define: Function to calculate weight:

4: weight(iter) =

{
1.0−

(
iter−1
1000

)C
, if iter ≤ 1000

0, otherwise
5: while Not Converged do
6: x0 = g(θ, c)
7: Calculate current weight: w = weight(iter)
8: Optimize θ with Eq.(8):
9: minθ∈Θ Et,c

[
ω(t)∥ϵwpretrain(xt, t, c, y)− ϵwpretrain(xs, s, c, ∅)∥22

]
.

10: end while

introduced Variational Score Distillation (VSD) to address the mode-seeking issues associated with
SDS. PlacidDreamer (Huang et al., 2024) introduced Balanced Score Distillation (BSD) decomposing
the SDS to avoid over-smoothing and over-saturation issues. Numerous other studies, such as
DreamAvatar (Cao et al., 2023), improving the network design for human-related 3D generation, are
dedicated to addressing the problems of low consistency and controllability of 3D model generation
in specific generative jobs. Single-view construction and multi-view generation are also other ways
of using 2D priors (Long et al., 2023; Hu et al., 2023; Lin et al., 2023; Liu et al., 2023b;a; Qian et al.,
2024; Shi et al., 2023; Tang et al., 2023). Considering that there is currently no method capable of
generating 3D models of sufficient quality for industrial applications, some research has shifted its
focus to texture generation (Chen et al., 2024a).

6 EXPERIMENT

6.1 RESULT

We qualitatively compare the proposed method PTD with Magic123 (Qian et al., 2024), Fanta-
sia3D (Chen et al., 2023), ProlificDreamer (Wang et al., 2023), and LucidDreamer (Liang et al.,
2024) (Figure 3). Images of other works are sourced from LucidDreamer (Liang et al., 2024). Results
demonstrate the superior appearance and texture fidelity achieved by our method. In terms of genera-
tion speed, our approach employs the same architecture as LucidDreamer, ensuring no additional
time is required. More generated results are in Figure 1.

We also quantitatively evaluate our model (Table 1) with CLIP similarity. We compute CLIP similarity
based on 415 prompts from DreamFusion (Poole et al., 2022). CLIP similarity is calculated using
OpenAI’s ViT-L/14 (Radford et al., 2021b) and OpenCLIP’s ViT-bigG-14 (Schuhmann et al., 2022).
During computation, we set a camera radius of 4, elevations of 0 and 45 degrees, and select 8 evenly

7
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“A DSLR photo of the Imperial State Crown of England.”

“A DSLR photo of a Schnauzer wearing a pirate hat.” 

Fantasia3D 
(~6h)

ProlificDreamer 
(~8hs)

LucidDreamer 
(~1.5h)

Magic3D
(~6h) 

Ours 
(~1.5h)

Figure 3: Comparison of 3D generation quality across different methods. Our method enjoys similar
time cost to LucidDreamer but has better visual quality.

spaced azimuth angles every 45 degrees, ranging from -180 to 180 degrees. For each prompt, we
render 16 images to compute CLIP similarity. The comparison is done with DreamFusion (Poole et al.,
2022), Instant3D (Li et al., 2023), ProlificDreamer (Wang et al., 2023), and LucidDreamer (Liang
et al., 2024). Results of these methods are sourced from GaussianDreamer (Yi et al., 2024). In
this comparison, our method demonstrates higher congruence between text and images, indicating
superior image quality.

6.2 GENERALIZABILITY OF PATHTRACING DISTILLATION

Table 1: Quantitative comparison of the pro-
posed PTD with other methods. The best perfor-
mance is highlighted in bold and the second best
is underlined. Our method outperforms other
methods with an average generation time cost
of 1.5 hours. Our results are comparable with
ProlificDreamer which takes about 8 hours, over
5 times of temporal cost as ours.

Methods ViT-L/14 ↑ ViT-bigG-14 ↑

DreamFusion 23.60 37.46
ProlificDreamer 27.39 42.98
Instant3D 26.87 41.77
LucidDreamer 25.99 40.27
Ours 27.16 42.36

To evaluate the generalizability of PathTracing
Distillation method, we compare the ISM (Liang
et al., 2024) and our method in different 3D
representations. In Figure 4, we generate the
3D asets with the same prompts in 3DGS and
NeRF representations respectively. As for the
outcomes of other work, we borrow figures from
LucidDreamer. We can intuitively see that the
3D assets our method generate is more detailed
and have more diversity. Even in NeRF represen-
tation, our methods also work well to generate
3D assets with vivid appearance and good shape.

6.3 ABLATION STUDY

Effect of PathTracing Distillation We com-
pare our Path Tracing Distillation (PTD) method
with the vanilla method in Figure 5. Addition-
ally, we evaluate different rates of LoRA weight
change and perform an ablation study on the
Path Tracing component. The results demonstrate that our PTD method achieves better convergence
within the same number of training steps.

Initialization with SF3D Generator 3D Gaussian is sensitive to the initialization of shape and
appearance. We ablate SF3D method (Boss et al., 2024) and use PointE (Nichol et al., 2022) instead
to validate the advantage of using SF3D. In Figure 6, we can see a higher text and image matching
when using SF3D, indicating a better initial shape and appearance. This illustrates that SF3D method
could help to produce a better outcome.
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“A 3D model of an adorable cottage 

with a thatched roof.”
“A plate piled high with

chocolate chip cookies.”

ProlificDreamer

PathTracing

(a). 3DGS

(b). NeRF

LucidDreamer

PathTracing

“A hamburger” “An ice cream” “A ripe strawberry”

Figure 4: Generalization of PathTracing Distillation. When accompanied with 3DGS or Nerf, our
proposed PathTracing Distillation can both achieve appealing visual quality.

Speed = 0.3 0.5 1 2 3 w/o PathTracing

“A Lego castle”

Figure 5: Ablation study of the Path Tracing Distillation (PTD) method. The figure compares the
convergence results of our PTD method with the vanilla method at the same training step. Different
rates of LoRA weight change are also evaluated. It is evident that our PTD method achieves better
convergence in detail.
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Initialization Results

Ours

(SF3D)

Point-E

PTD

"A silver platter piled high with fruits."

Figure 6: The ablation of SF3D. The initialization with SF3D is beneficial to final generated results.

Effect of Finetuned Pretrained Model We need to use the pretrained model to generate the the
whole described object. However the Stable Diffusion 2.1 model (Rombach et al., 2022a) tend to
generate images with cropped objects due to the dataset it used to train is through data augmentation.
Thus, we finetune the base model as the pretrained model with high quality images from Stable
Diffusion XL (Podell et al., 2023), ensuring the generation of complete objects. We ablate the
finetuned step and evaluate the outcome. From the Figure 7, we can compare the visual results. With
the finetuned model, the final 3D Gaussian shows more detailed appearance and complete shape.

Initialization Results

No Finetuned

Ours

PTD

"Michelangelo style statue of an astronaut."

Figure 7: Ablation of Finetune the pretrained score network. To avoid giving guidance of cropped
objects from Stable Diffusion 2.1, we finetune it with images of whole objects generated by Stable
Diffusion XL. Such finetuning helps in getting complete 3D models.

7 CONCLUSION

In this paper, we discuss the OOD issue in the current text-to-3D method with score distillation. We
find rendered images from the initial 3D models lie out of the distribution of the pretrained score
network, which is typically Stable Diffusion. Such issue cause unstable score prediction for the
generation process. To solve this issue, we propose a path tracing method. Experimental results
demonstrate that our proposed method enhances the generation process, achieving higher CLIP
similarity and maintaining visual quality.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks.
In International Conference of Machine Learning, International Conference of Machine Learning,
pp. 214–223. JMLR, 2017.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
Proceedings of the 26th Annual International Conference on Machine Learning, ICML ’09, pp.
41–48, New York, NY, USA, 2009. Association for Computing Machinery. ISBN 9781605585161.
doi: 10.1145/1553374.1553380. URL https://doi.org/10.1145/1553374.1553380.

Mark Boss, Zixuan Huang, Aaryaman Vasishta, and Varun Jampani. Sf3d: Stable fast 3d mesh
reconstruction with uv-unwrapping and illumination disentanglement, 2024. URL https://
arxiv.org/abs/2408.00653.

Yukang Cao, Yan-Pei Cao, Kai Han, Ying Shan, and Kwan-Yee K. Wong. Dreamavatar: Text-and-
shape guided 3d human avatar generation via diffusion models. arXiv preprint arXiv:2304.00916,
2023.

Rui Chen, Yongwei Chen, Ningxin Jiao, and Kui Jia. Fantasia3d: Disentangling geometry and appear-
ance for high-quality text-to-3d content creation. In Proceedings of the IEEE/CVF international
conference on computer vision, pp. 22246–22256, 2023.

Xi Chen, Sida Peng, Dongchen Yang, Yuan Liu, Bowen Pan, Chengfei Lv, and Xiaowei Zhou.
Intrinsicanything: Learning diffusion priors for inverse rendering under unknown illumination.
arXiv preprint arXiv:2404.11593, 2024a.

Yiwen Chen, Chi Zhang, Xiaofeng Yang, Zhongang Cai, Gang Yu, Lei Yang, and Guosheng Lin. It3d:
Improved text-to-3d generation with explicit view synthesis. Proceedings of the AAAI Conference
on Artificial Intelligence, 38(2):1237–1244, Mar. 2024b. doi: 10.1609/aaai.v38i2.27886. URL
https://ojs.aaai.org/index.php/AAAI/article/view/27886.

Rishabh Dabral, Muhammad Hamza Mughal, Vladislav Golyanik, and Christian Theobalt. Mofusion:
A framework for denoising-diffusion-based motion synthesis. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9760–9770, June 2023.

Jun Gao, Tianchang Shen, Zian Wang, Wenzheng Chen, Kangxue Yin, Daiqing Li, Or Litany, Zan
Gojcic, and Sanja Fidler. Get3d: A generative model of high quality 3d textured shapes learned
from images. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.),
Advances in Neural Information Processing Systems, volume 35, pp. 31841–31854. Curran Asso-
ciates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/
2022/file/cebbd24f1e50bcb63d015611fe0fe767-Paper-Conference.pdf.

Anchit Gupta, Wenhan Xiong, Yixin Nie, Ian Jones, and Barlas Oğuz. 3dgen: Triplane latent diffusion
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A LIMITATION AND POTENTIAL SOCIAL IMPACT

Our paper relies on the assumption that the intermediate checkpoints during the forwarding stage
are score functions representing existing or non-existent distributions. However, these checkpoints
at least only represent vector fields, and a vector field is a gradient field when several conditions
are satisfied, including path independence, continuous partial derivatives, and zero curls (Matthews,
1998). The violation may hinder the optimization in the generation process.

The claim of OOD issue may not be applicable when the pretrained score network spretrain includes
low-quality images similar to initial rendered images. Our claim is valid as current methods adopt
Stable Diffusion as spretrain, which is trained on high-quality realistic images to form a 2D prior.
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The proposed method introduces extra computational cost as in the forward path stage. However,
empirically we find the cost is limited, but the path significantly reduce the cost in the path tracing
stage. The generated 3D models reach nearly the same quality within 400 steps as those generated by
Gaussian Dreamer with 1000 steps (Figure 1). The extra computational cost is balanced.

This paper aims to improve the generation speed of generative models, which could be used to
generate fake 3D model for disinformation.

B ETHICS STATEMENT

In this study, human subjects participated in a user study aimed at evaluating the quality of 3D
models generated by our method compared to an existing method. We recruited five volunteers who
were thoroughly informed about the study’s purpose, procedures, and any potential risks prior to
participation, ensuring that they provided their informed consent freely. Participants were briefed
on the ability to withdraw from the study at any time without negative consequences, underscoring
our commitment to their autonomy and well-being. During the study, each volunteer assessed 8-
second videos of 3D models generated from 300 different prompts. Following their involvement,
we conducted a debriefing session to address any discomfort or questions, ensuring that participants
felt supported and valued. Privacy and confidentiality were maintained rigorously; no personally
identifiable information was collected, and responses were anonymized. All data were securely
stored in compliance with data protection regulations and were used exclusively for the research. We
identified no additional ethical concerns, such as bias, privacy, or conflicts of interest, in the course of
our study, affirming our adherence to ethical research standards and practices.

C REPRODUCIBILITY STATEMENT

In our study on the 3D generation task, we identified an Out of Distribution (OOD) issue, validated in
Section 3. We provide an additional validation experiment in Appendix H to assess the mitigation of
this issue. To address the OOD problem, we propose a PathTracing Distillation method. Detailed
implementation information is available in Appendix E. The code is included in the supplemental
material and will be released shortly.

D RELATIONSHIP WITH PREVIOUS METHODS

The connection to GAN Score distillation is connected to Generative Adversarial Networks
(GANs). The adversarial discriminator is also used in 3D reconstrucition (Roessle et al., 2023). In
this case, GAN does not suffer from the OOD issue. The reason lies in the difference between the
adversarial training and diffusion training. Given the real image distribution q and the rendered image
distribution p, the KL divergence follows

DKL(q ∥ p) = Eq

[
log

q

p

]
(9)

An adversarial discriminator D(·) approximates D(x) = q(x)
q(x)+p(x) , and the connection between the

adversarial discriminator and the scores can be summarized as Luo et al. (2023)

log
D(x)

1−D(x)
= log

q(x)

p(x)
= log q(x)− log p(x) ≈ spt(x)− sϕ(x) (10)

Therefore, both GAN and score distillation minizes the KL divergence to form the final 3D model.
However, in the adversarial training, the discriminator D is directly trained on both real and generated
data jointly, and it enjoys a support of both distribution but may suffer from gradient saturation (Ar-
jovsky et al., 2017). On the other hand, in score distillation the networks spt(x) and sϕ(x) are trained
separately and they have different support. Therefore the score prediction is unstable in this case.

Curriculumn Learning Our path tracing method shares a similar spirit with Curriculumn Learning.
Curriculum learning (CL) (Wang et al., 2022; Bengio et al., 2009) is a training strategy designed to
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improve the learning process of machine learning models by organizing data in a way that mimics
the natural progression of complexity and difficulty, similar to how humans learn. This approach
involves training a model on easier data before moving to harder data, thereby enhancing the model’s
generalization capacity and convergence rate.

The transformation path constructed in our method is indeed a curriculum with easier distributions at
the beginning of generation but harder distributions at the end. Specifically, those checkpoints in the
transformation path close to spt(n) are easy distributions as they are nearly converged to the render
image distribution. Those checkpoints close to spt are difficult distributions as they are quite different
from the rendered image distribution and it may take quite a long time to learn. The target to learn is
iterated during the training similar to the adaptive curriculum learning (Kong et al., 2021).

E IMPLEMENTATION DETAILS

Our approach is meticulously crafted in PyTorch, leveraging the foundational structures of Lucid-
Dreamer (Liang et al., 2024). We fintune the “stabilityai/stablediffusion-2-1-base” with the LoRA
rank of 4. The Unet is trained only with a learning rate of 0.0001. The LoRA used for forming path
is the same configuration. We train the finetune-LoRA with 400 epochs and formaing-path-LoRA
with 200epochs. The LoRA load strategy we choose is 0.3. We use the PathTracing Distillation in the
first 1000 steps.

For the 3D Gaussian initialization, we initiate from a SF3D (Boss et al., 2024)-initialized point cloud.
Other configuration is the same with LucidDreamer. All experiments are executed on RTX 3090.

F TWO TYPES OF OUT OF DISTRIBUTION ISSUES

In the context of 3D generation, there are two primary types of out-of-distribution (OOD) issues. We
have discussed one of it in the main context. Another type is associated with the inaccuracy of the
score prediction network sϕ in predicting the score from the noisy rendered images xt to the clear
ones x0. This type of OOD problem often arises in works that employ two networks to optimize
the 3D representation, such as ProlificDreamer (Wang et al., 2023), where one network sϕ is used
to predict the score of noisy rendered images. It also has a close relationship with the initialization
strategy of the score prediction network sϕ which typically follows by three approaches:

1. Random Initialization: This method initializes sϕ without any prior information, which
often results in sϕ being initially distant from the distribution of rendered images, leading to
inaccurate score predictions in the early stages.

2. LoRA Initialization: In this approach, sϕ is initially set as a Low-Rank Adaptation (LoRA)
of a pretrained model spretrain, endowing it with robust prior knowledge. At the beginning
of the training, the elements in the LoRA matrix B are zero, making sϕ identical to the
pre-trained model. As training progresses, sϕ gradually adapts to fit the distribution of the
rendered images. Notably, ProlificDreamer employs this initialization strategy. However,
due to the initial suboptimal quality of the rendered images, sϕ fails to predict the score
accurately, presenting another OOD challenge.

3. Pre-training with 3D Model: Before training the 3D model, sϕ is initialized by fitting it to
the images rendered from the initial 3D model. This method ensures that sϕ starts with a
distribution that closely matches the rendered images, facilitating accurate score predictions
from the onset. Similar to the second method, during the subsequent training process, the
optimization of the 3D model and sϕ alternates to ensure sϕ can consistently predict the
noise accurately.

In methods using two score networks, the third initialization approach is necessary and advantageous
as it aligns sϕ’s distribution with that of the 3D model-rendered images, thereby ensuring accurate
and stable score predictions throughout the 3D generation process.
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G SCORE APPROXIMATED THROUGH THE STABLE TARGET FIELD METHOD

To empirically investigate the OOD issue, we compare the predicted score spretrain(xt, t, y) with the
approximated score sapprox(xt,x

ref
0 ) of rendered images xθt or generated images xpretrain

t . xref
0 is the

approximation required reference samples from the pretrained model. The rationale behind is that
the score prediction network is trained to fit real scores by score matching (Vincent, 2011), and the
matching loss is low when given in-distribution samples but high otherwise. The scores sreal(xt),
expectedly equaled to ∇xt

log pt(xt), is unknown but can be approximated through using Stable
Target Field (STF) (Xu et al., 2023b). The approximation given by STF is to utilize the training data
xref
0 to perform a weighted sum of conditional score with reduced variance.

sapprox(xt,x
ref
0 ) ≈

n∑
i=1

pt|0

(
xt | x

ref(i)
0

)
∑n
j=1 pt|0

(
xt | x

ref(j)
0

)∇xt log pt|0

(
xt | x

ref(i)
0

)
, (11)

where n is the number of reference samples. Notice that the approximation does not use any network
prediction.

H OUT OF DISTRIBUTION IN TRAINING 3D

3D Generation Steps
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Figure 8: The illustration of the matching loss given vanilla method and PathTracing Distillation
(PTD) method in training. The loss of the vanilla method in blue is significantly higher than the
loss of PTD method in green until closing to the end of training, indicating the score inaccurately
predicted due to rendered images lying outside of the pretrained score network distribution in the
vanilla method. Therefore, the PTD method could effectively help the stable 3D training.

In this section, we validate the effect of OOD mitigation using PathTracing Distillation (PTD). In
Figure 8, we can intuitively observe the mitigation of OOD issue by plotting the curve of Lmatching

in the PTD method over the course of training 3D. xθ0 are images rendered from 3D Gaussian θ in
different steps of training and xref

0 are images sampled from the guidance model. We use the specific
guidance corresponding to training steps to calculate the Lmatching, where it is the swLoRA

pretrain in our PTD
method and spretrain in the vanilla method. Since the Lmatching of the vanilla method decline along
with training steps and the Lmatching of the PTD method is always lower, we can conclude that the
following inequality holds:

Et∥swLoRA
pretrain (xt, t, y)− sapprox(xt)∥2 ≤ Et∥spretrain(xt, t, y)− sapprox(xt)∥2. (12)

Therefore, we can validate that the PTD method effectively reduce the OOD issue.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

I SHIFT OF LORA IN TRAINING 3D

The traditional approach of changing LoRA target is to use the intermediate checkpoint of LoRA in
training. But three drawbacks determine its unconveniency:

1. Shift of Targets: Over the course of training 3D, a stable and solid target pretrained model
is important. If we change the LoRA of pretrained model just like changing a accessory, the
final target θ is also changing even though the Exponential Moving Average (EMA) trick is
used to train smooth LoRA. Reflected to current θ, the appearance and shape we construct
in current LoRA is destroyed when changing to the next one (Huang et al., 2024).

2. Limited Number of Checkpoints and Difficulty of Selecting Strategy of Loading LoRA:
We always train LoRA using different batch size, dataset size and some other parameters.
In some extreme situations, we only train several epochs which is so short to produce to
provide feasible path. In addition, with some intermediate LoRAs, we may be confused
to select the suitable interval to change LoRA and the LoRA step gap. It always needs
parameter search which will consume a lot of time.

3. Resources consumed: The intermediate LoRA checkpoints are needed to be saved locally,
requiring extra disk memory. And loading new LoRA and setting configuration consume
time. Both need resources to implement.

Base on these reasons, we adopt the new weighted LoRA method to trace path, showed in Section 4.3.

J MORE RESULTS

In Figure 9, we present additional generation results obtained using our PathTracing Distillation
methods. These examples illustrate the versatility and efficacy of our approach in handling various
object categories. The generated results showcase high-quality renderings across multiple domains,
such as animals, plants, machinery, and food items. By closely examining the details, the robustness
and precision of our framework in capturing the intricate features and appearances of different objects
can be appreciated. The success in these diverse categories underscores the broad applicability and
effectiveness of our method.

K FAILURE EXAMPLE

During the generation process, occasional failures can occur. As illustrated in the Figure 10, we
present three examples stemming from different causes. The left image represents a case where the
attributes of a 3D object were not correctly matched with the corresponding descriptive terms; for
instance, the attribute "silver" was incorrectly applied to cheese instead of the intended plate, resulting
in an erroneous sample. The middle image demonstrates the difficulty in accurately generating all
objects and their corresponding attributes in the context of complex prompts. The right image depicts
a scenario where the quantity of objects was incorrectly generated, leading to the omission of one
object.

L MORE APPLICATIONS

Image to 3D Generation In this section, we expand our pipeline to some new application, showed
in Figure 11(a). Since we use SF3D (Boss et al., 2024) for initialization of 3D Gaussian, we could
also use it to reconstruct 3D Gaussian from images. Given a single image used for reconstruction,
we automatically remove the background and get the image with only central objects. Then, a mesh
will be reconstructed and we could use it to initialize the 3D Gaussian. With respective prompts, we
transform it into vivid 3D Gaussian.

Mesh to 3D Generation Mesh is a popular representation for 3D. We could also use our pipeline to
add more details or change style base on given coarse mesh. With the control prompt, the PathTracing
Distillation method change it into different appearance and shape, as showed in Figure 11(b).
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“A DSLR photo of an iguana 
holding a balloon"

“A DSLR photo of an unstable rock 
cairn in the middle of a stream"

“A DSLR photo of an origami 
motorcycle"

“A DSLR photo of Mount Fuji, aerial view"

“A spanish galleon sailing on 
the open sea"

"A zoomed out DSLR photo of   
phoenix made of splashing water "

“A DSLR photo of a Space Shuttle"“A zoomed out DSLR photo of a 
cake in the shape of a train"

“A zoomed out DSLR photo of a colorful 
camping tent in a patch of grass"

“A DSLR photo of an ornate silver gravy boat 
sitting on a patterned tablecloth"

“A wide angle DSLR photo of a 
colorful rooster"

“A zoomed out DSLR photo of a 
construction excavator"

“A zoomed out DSLR photo of a 
hippo made out of chocolate"

“A zoomed out DSLR photo of a 
mouse holding a candlestick"

“A zoomed out DSLR photo of an 
amigurumi motorcycle"

“An opulent couch from the 
palace of Versailles"

“A DSLR photo of a steampunk 
space ship designed in the 18th 

century"

“A DSLR photo of a plate of 
fried chicken and waffles with 

maple syrup on them"

“A DSLR photo of a cauldron 
full of gold coins"

“A DSLR photo of a delicious croissant"

Figure 9: Additional examples generated by our PathTracing framework. The results demonstrate the
framework’s capability to produce high-quality renderings across a diverse range of object categories,
including animals, plants, machinery, and food items. Please zoom in for a detailed view.

“A wedge of cheese on a silver 
platter"

“A zoomed out DSLR photo of A punk rock squirrel in 
a studded leather jacket shouting into a microphone 

while standing on a stump and holding a beer"

“Fries and a hamburger"

Figure 10: Examples of failures during the generation process. The left image shows incorrect
attribute matching, where the silver attribute is assigned to cheese instead of a plate. The middle
image illustrates the challenge of accurately generating all objects and their descriptions in complex
prompts. The right image depicts an error in the number of generated objects, with one object
missing.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

(a). Image to 3D:

(b). Coarse Mesh to Detailed 3D:

"A brightly colored mushroom growing on a log"

“A ceramic upside down yellow octopus holding a blue green ceramic cup"

Figure 11: Demonstrations of our pipeline’s applications: (a) Image to 3D Generation showcases the
process where a single image is used to reconstruct a 3D Gaussian representation by first isolating
the central object and then transforming it into a detailed 3D model. (b) Coarse Mesh to Detailed 3D
Generation illustrates how our method can enhance or restyle a coarse mesh into a more detailed and
visually different 3D model through PathTracing Distillation. These examples highlight the versatility
and effectiveness of our pipeline in various 3D generation tasks.
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