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Abstract

Hallucinations is a major challenge for large
language models (LLMs), preventing adoption
in diverse fields. Uncertainty estimation could
be used for alleviating the damages of halluci-
nations. The skeptical emotion of human could
be useful for enhancing the ability of self esti-
mation. Inspirited by this observation, we pro-
pose a new approach called Skepticism Mod-
eling (SM), which is formalized by combining
the information of tokens and probabilities for
self estimation. We construct the doubt emo-
tion aware data, perform continual pre-training,
and then fine-tune the LLMs, improve their
ability of self estimation. Experimental results
demonstrate this new approach effectively en-
hances a model’s ability to estimate their uncer-
tainty, and validate its generalization ability of
other tasks by out-of-domain experiments.

1 Introduction

The generative nature of large language mod-
els (LLMs) bring the challenge of hallucination
(Huang et al., 2023; Bai et al., 2024), namely their
tendency to generate plausible-sounding but factu-
ally incorrect or nonsensical information. Hallu-
cination hinders LLM’s widespread adoption, par-
ticularly in domains that demand high levels of
accuracy and expertise, like healthcare, legal sector
and financial industry (Ji et al., 2023a; Zhang et al.,
2023). Uncertainty estimation could be used for
mitigating the damages of hallucinations (Huang
et al., 2023). Previous studies directly used the
model log-probabilities to estimate uncertainty, or
used the tokens information to teach the model
to express uncertainty (Huang et al., 2023). We
propose a novel method that use both information
for training, enhance the ability of self estimation,
which is called Skepticism Modeling (SM).
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Figure 1: Paradigm of Skepticism Modeling of LLM.
The emojis represent self-skepticism level of the previ-
ous token.The strange phrases will arouse suspicion.

The intense view of these manifold contradictions
and imperfections in human reason has so wrought
upon me, and heated my brain, that I am ready to
reject all belief and reasoning, and can look upon
no opinion even as more probable or likely than
another [Treatise, 1.4.7.8]

David Hume

Skepticism which means an attitude of doubt,
plays a crucial role in human cognition, influencing
information processing and decision-making. For
instance, when people are asked "How many eyes
does the finger have?" or "The capital of pigeon is
7", they will have skeptical emotion, which could
be useful for identifying wrong question. When
people are unfamiliar with a Mathematics question,
skeptical emotion could also help them estimate
the uncertainty of their own answer. The emotion-
as-information theory (Schwarz and Clore, 1983)
suggests that the skeptical feeling can lead to a
more careful information examination. Studies
have shown that skepticism is a core component
of critical thinking (Facione, 1990) and important
for meta-cognitive experiences (Koriat and Levy-
Sadot, 1999). In fact, deep skepticism allows hu-
mans to question their own judgement, resisting the
intense contemplation of the manifold contradic-
tions and imperfections inherent in human belief
and reasoning. As articulated by famously philoso-
pher David Hume (Hume, 1978). Therefore, it
is reasonable to implement LLM with skepticism



ability, which motivates this work.

In this paper, we propose an innovative paradigm
to augment LLM with skepticism thinking ability.
Firstly, we model the skepticism feeling as dis-
crete tokens. Starting from a pre-trained LLM,
we transform the skepticism token from the soft-
max probability associated with each preceding
text token. We then redefine the sequence with
each original text token followed by such a skep-
ticism token. LLLM learn such augmented text se-
quence by continual pre-training (CPT). We then
conduct the supervise finetuning (SFT) stage, given
question-answer samples with an extra rethink-
ing question-answer pair similar with R-tuning
(Zhang et al., 2024a). In the inference stage,
the model can combine text tokens and softmax
probability to enhance the ability of self estima-
tion and alleviate the damages of hallucinations.
Project code and model checkpoints can be found
in https://anonymous.4open.science/r/SM-1E76.

In summary, our contributions are:

* We design a new modeling paradigm to make
LLM have skepticism think, similar with hu-
manity. By two stages’ training, our LLM
can self-evaluate its skepticism measures and
provide more reasonable answer.

* We conduct substantial experiments to indi-
cate our SM approach can achieve state-of-
the-art (SOTA) performance in several QA
benchmarks, with out-of-domain generaliza-
tion abilities.

* We observe our SM approach have substantial
robustness even given some unreasonable and
implausible questions.

The rest of the paper is organized as follows. The
connection with previous works is first discussed
in Section 2. The SM methodology is stated in
Section 3. Experiment results are summarized in
Section 4. Finally Section 5 concludes this paper.

2 Related Works

2.1 Hallucination Detection

Many approaches in hallucination detection base
on internal states (Azaria and Mitchell, 2023;
Huang et al., 2023; Ling et al., 2024; Liu et al.,
2024; Su et al., 2024). By analyzing the minimal
token probability within key concepts, Varshney
et al. assess the uncertainty of the model towards
these concepts (Varshney et al., 2023). Our SM

method also use token probability, however, we
combine both token probability and token informa-
tion to estimate uncertainty. Inspired by cognitive
neuroscience, Zou et al. explore an approach to
Al transparency named representation engineering
(RepE), which provide traction on many problems
including hallucination (Zou et al., 2023).

Finetuning LLMs can be useful for uncertainty
estimation. Lin et al. train LLM to directly out-
put verbalized probability with CalibratedMath,
which is a suite of elementary mathematics prob-
lems. LLM’s empirical accuracy on each type of
question was used as the label (Lin et al., 2022).
Our SM method also need to finetune the LLMs,
but their method does not use token probability in-
formation, we combine both token probability and
token information to finetune the LLMs. kadavath
et al. add an additional value head to the LLMs,
and finetuned the models to predict the probability
that they can answer a question correctly (Kada-
vath et al., 2022). They only use question to train
the model, we use both question and answer. And
our SM method does not need to change the model
structure.

Several studies probe the uncertainty of LLMs
through their behavior (Huang et al., 2023; Lin
et al., 2023; Hou et al., 2024; Yehuda et al., 2024).
For instance, Manakul et al. propose SelfCheck-
GPT, a sample-based approach to detect hallucina-
tion via evaluating the consistency of multiple re-
sponses to the same prompt from a language model
(Manakul et al., 2023). Motivated by truth-seeking
mechanisms in law, Cohen et al. employ an “ex-
aminer” LM (EXAMINER). They leverage prompt
to generate questions which are related with initial
claim from LLMs, and discover factual inconsisten-
cies among different answers (Cohen et al., 2023).
Considering the reality that a single concept can
be formulated in numerous ways, Farquhar et al.
use semantic entropy to detect hallucinations by
calculating uncertainty at the level of semantics
rather than particular word sequences (Farquhar
et al., 2024).

2.2 Hallucination Mitigation

Many methods have been proposed for hallucina-
tions mitigation in LLM (Ji et al., 2023b; Dhuli-
awala et al., 2024; Zhang et al., 2024b,c) . No
matter whether LLMs knows the knowledge or not,
traditional fine-tuning approaches force LLMs to
complete a sentence. If the question is beyond the
inherent knowledge of LLMs, LLMs will try to fab-



ricate plausible-sounding but mistaken facts. Moti-
vated by this, Zhang et al. propose a method called
Refusal-Aware Instruction Tuning (R-Tuning), con-
structs a refusal-aware dataset by comparing the
prediction and label, and then finetune LLMs to
admit their uncertainty about the answer or refuse
questions beyond its internal knowledge (Zhang
et al., 2024a). Based on R-Tuning, our SM method
combine token and token probability information
to finetune LLMs.

RL finetuning can also mitigate hallucination
(Roit et al., 2023; Sun et al., 2023), However, when
face unfamiliar inputs, reward models may suffer
from hallucinations. To tackle this challenge, Kang
et al. propose a conservative reward models ap-
proach to avoid overestimate rewards for unfamil-
iar inputs. And then they use this approach to teach
LLMs to generate reliable long-form responses on
long text generation tasks (Kang et al., 2024).

Elaraby et al. explore teacher-student and knowl-
edge injection methods to mitigate hallucinations in
LLMs (Elaraby et al., 2023). Guan et al. presents
Knowledge Graph-based Retrofitting (KGR), an
approach that use knowledge graph to retrofit the
initial responses of LLMs (Guan et al., 2024). Our
SM method does not need external knowledge base.

3 Skepticism Modeling

In this section, we first introduce our Skepticism
Modeling (SM) method , which integrates skepti-
cal tokens into the vocabulary and includes three
stages: continual pre-training, supervised fine-
tuning and inference. Detailed framework of SM
is visualized in Figure 2.

3.1 Modeling and Tokenization of Skepticism

Each skeptical emotion token corresponds to the
generative probability about the previous generated
token in the text. We first augment the tokenizer
vocabulary with special tokens, [< sp >, < s1 >
,...,< Sg >|, indicating discretion of different
skepticism levels. From "< sgp >"to "< s9 >", the
skeptical emotion level is increasing which means
the generative probability about the previous gener-
ated token is decreasing. To make the rule for con-
verting the softmax probability to the skepticism
token, we refer to the likelihood corresponding to
adverbs indicating affirmation and doubt in natural
language. For example, adverb "certainly" often in-
dicates a probability greater than 0.8. We then use a
special token "< sg >" to represent "certainly", if

the softmax probability is more than 0.8, the skep-
ticism token will be "< sy >", which means the
lowest skeptical level. Adverb "probably" usually
indicates a probability between 0.6 and 0.8, We
then use a special token "< s; >" to represent
"probably", if the softmax probability is between
0.6 and 0.8, the skepticism token will be "< 51 >".
We reformulate our tokenization with each normal
text token followed by such a "skepticism token"
(Figure 1).

Given a pretraining dataset, first we perform a
forward pass of raw text corpus from a pretrained
LLM, to obtain the token logits. Then we record the
softmax probability for each token in the original
corpus, discretize it and convert it into the ground
truth skeptical token.

3.2 Continual Pre-Training

In this work, we conduct Continual Pre-Training
(CPT) with model load from a pretrained LLM. By
denoting the softmax probability of normal token
as p, the softmax probability of skeptical token as
s, and the previous inferenced probability is [, our
CPT loss can be expressed as

T
1
Lcpr = —7 ;bg(pi) )]

where T is the sequence length, ¢ is the token posi-
tion of either normal tokens or skeptical tokens.

3.3 Supervised Finetuning

During the Supervised finetuning(SFT) stage, we
create our the refusal-aware data, in a similar pro-
cess with R-tuning (Zhang et al., 2024a). Given
a question-answer (QA) pair from SFT data, we
first inference our CPT-version model, to obtain the
probability of the original answer and determine
our skepticism based on that result. We then aug-
ment the QA pair with another question "Are you
sure you accurately answered the question based on
your internal knowledge?" and the corresponding
answer "l am sure/unsure." which is determined by
the probability threshold. The probability thresh-
olds perform a critical role which helps the LLM
further align with the skeptical thinking.

We then perform the general Study by viewing p
and s tokens as a uniform sequence. The SFT loss
is

T,
1 1
Lsrr = —7 > log [Pr(yitilxi, y1.1,9)] ()

i=1
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Figure 2: Detailed framework of SM. Stage I: first learn the plausibility of tokens from pretrained LLM, then
continual pretraining on the corpus with vocabulary augmented with skepticism tokens. Stage II: augment the QA
pair with the question *Are you sure/unsure’, inference the continual pretrained LLM to answer this augmented

question, and finally finetune on these two QA pairs.

Stage III: first inference on the finetuned LLM, get the

most plausible answer, then concatenate with the augmented question, and inference the second time to obtain the

skepticism probability.

where x is the question tokens, y is the answer to-
kens and 7" is the number of tokens in the response.

3.4 Inference

In the inference stage, we integrate skeptical to-
kens to the query and generate the response by our
SFT version model. After that, we augment with
the prompt "Are you sure you accurately answered
the question based on your internal knowledge?"
(Zhang et al., 2024a) then perform the second gen-
eration to obtain the final confidence.

Note that we employ the "sure" or "unsure" to-
ken as the indicator of uncertainty for the answer
(Zhang et al., 2024a). The reason is when facing
the open-domain question-answering task rather
than multi-choice task, the answer contains mul-
tiple tokens instead of one choice token, which
makes the uncertainty estimation complicated.

4 Experiments

In this section, we first introduce the training and
evaluation datasets and tasks, then the comparable
baselines, the evaluation methodologies, and the
formal experiment results. We finally provide some
typical cases to highlight our approach’s ability.

4.1 Datasets

Table 1 list the sources and statistics of datasets
used in our CPT and SFT stages.

4.1.1 CPT:

Datasets used in the CPT stage include Gutenberg
books and wiki, which are from Dolma; as well as
Opensubtitle, arxiv abstract and pubmed abstract,
which are from Pile.

* Dolma (Soldaini et al., 2024): an open cor-
pus of 3 trillion tokens for language model
pretraining research. It encompass 5 billion
documents range of sources from the web, sci-
entific literature, code, public domain books,
social media, and encyclopedias. With all the
pretrained data and data curation toolkit open-
sourced, it faciliatates the transparency and
reproducibility of further research based on
Dolma.

* Pile (Gao et al., 2020): a substantial corpus
of English text, totaling 825 GiB. It composes
22 diverse and high-quality subsets, many
of which are derived from academic or pro-
fessional sources, such as PubMed Central,
ArXiv, GitHub, and the US Patent and Trade-
mark Office, among others. The construction
of this dataset aims to address the growing
need for data diversity in language modeling
process.



4.1.2 SFT:

Datasets used in the SFT stage are natually classi-
fied into the following two categories:

* Multiple-Choice: Given a question
with several choices, the model aims to
chooses one correct option. We include
MMLU (Hendrycks et al., 2020), WiCE
(Kamoi et al., 2023), and FEVER (Thorne
et al., 2018) in our experiments.

* Question-Answering: Given an open-domain
question, the model directly generate its
answer.  Such type of datasets include
ParaRel (Elazar et al., 2021) and HotpotQA
(Yang et al., 2018).

For ease of performance comparison, we download
the dataset from R-tuning (Zhang et al., 2024a)
and keep the same in-domain and out-of-domain
settings. For brevity, in the following context we
use ID and OOD to denote in-domain and out-of-
domain, respectively. We conduct sampling checks
to determine if the dataset contains privacy and
offensive information.

4.2 Baselines and tasks

We consider the following baselines:

* R-tuning: an instruction tuning approach that
teaches large language models to identify and
refrain from answering questions beyond their
parametric knowledge, thereby mitigating the
issue of hallucination and enhancing their
ability to express uncertainty (Zhang et al.,
2024a).

* VanillaFT: the vanilla approach which learns
from the corpus in the conventional paradigm
of LLM.

Similar with (Zhang et al., 2024a), two types
of experiments, single-task and multi-task, can be
analyzed. The single-task experiment studies the
performance on the individual dataset, while multi-
task experiment evaluates model generalization per-
formance by training on mixture of datasets. Due
to page limitations, here we only list results of
multi-choice datasets. One can refer to Appendix
to check results of Question-Answering datasets.

4.3 Evaluation

Models are measured with three metrics: accuracy,
Average Precision (AP) score and Area Under the
ROC Curve (AUC).

The accuracy is calculated as follows:

correctly answered questions
accuracy = .

3)

all questions

In the self-evaluation experiment, we first prompt
the model to output an answer and then prompt it
to provide its uncertainty. And we use AP score
to evaluate the performance for uncertainty estima-
tion.

The AP score is a way to summarize the
precision-recall curve into a single value represent-
ing the average of all precisions. which is calcu-
lated as follows:

n—1

AP =3 (R(k+1) = R(K)) x P(k) (4)
k=0

where n is the number of data, k£ is the number
of data we select for the current threshold. P and
R denote precision and recall. An ideal model
predicts the correct answers with high confidence
and the hallucinated wrong answers with relatively
low confidence, leading to a high AP score.

AUC (Area Under the ROC Curve) is the area
under the ROC (Receiver Operating Characteristic)
curve used to measure the performance of a classi-
fier. The closer the AUC value is to 1, the better the
classifier performance; On the contrary, the closer
the AUC value is to 0, the worse the classifier per-
formance. We also use the ROC-AUC score to
measure the performance for self-estimation. ROC
depicts the performance of the classifier at different
thresholds by taking the true positive rate (TPR)
and the false positive rate (FPR) as the horizontal
and vertical coordinates.

TP
TPR= ——
TP + FN ®)
FP
FPR= — (©)
FP + TN

TP (True Positive) represents the number of cor-
rectly recognized positive cases. For example,
when answer match label, the model output ’sure’.
FN (False Negative) represents the number of incor-
rectly recognized positive cases as negative cases.
FP (False Positive) represents the number of in-
correctly identified negative examples as positive,
while TN (True Negative) represents the number of
correctly identified negative examples.



Stage Datasets Size Format
gutenberg books 18G Raw-Text
wiki 16G Raw-Text
CPT opensubtitle 0.5G Raw-Text
arxiv abstract 4G Raw-Text
pubmed abstract 1G Raw-Text
MMLU (ID) 2439 Multiple-Choice
MMLU (OOD) 9155 Multiple-Choice
WiCE (Train) 3470 Multiple-Choice
WiCE (Test) 958 Multiple-Choice
SET FEVER (Train) 9999 Multiple-Choice
FEVER (Test) 9999 Multiple-Choice
ParaRel (ID) 5584  Question-Answering
ParaRel (OOD) 13974  Question-Answering
HotpotQA (Train) 10000 Question-Answering
HotpotQA (Test) 7405  Question-Answering

Table 1: Details of Training Datasets. Sizes of CPT datasets is the file gigasizes, while sizes of SFT datasets are
number of samples. SFT datasets are obtained from R-tuning (Zhang et al., 2024a)

Experiment | Stage | Parameters | Value
learning rate | Se-7

CPT | weight decay | 0.01

Single-Task batch size 1024
learning rate | le-6

SFT | weight decay | 0.01

batch size 128

learning rate | Se-7

CPT | weight decay | 0.01

Multi-Task batch size 1024
learning rate | le-6

SFT | weight decay | 0.01

batch size 128

Table 2: Hyper-parameters of experiments.

4.4 Implementation

We choose Qwen2-7B (Qwen Team, 2024) as the
base models in our experiments, which licensed
under the Apache License, Version 2.0. We use
accelerator ! and deepspeed ? to conduct pretrain-
ing and instruction tuning, setting epoch to 1. All
the experiments are implemented on Nvidia A100-
80GB GPUs. Table 2 lists the hyperparameters of
experiments.

"https://github.com/microsoft/DeepSpeed/blob/
master/deepspeed/accelerator
2https://github.com/microsoft/DeepSpeed

4.5 Single-task Results

Table 3 lists the results of single-task experiments.
The SM method demonstrates superior perfor-
mance across most of the benchmarks, with sel-
dom exceptions. Especially, SM is good at self-
evaluation from the AP and AUC results, and also
help the answering ACC from modeling of skep-
ticism. Performance of SM is also robust since
we consider both choice problems such as MMLU,
WiCE, Fever, and question-answering tasks such as
Parallel and HotpotQA. We also check the detailed
results overn the ID and OOD domains for MMLU
and Parallel.

Table 3 also lists results on the open-domain
question-answering datasets, including Parallel and
HotpotQA. Still, SM shows superiority comparing
with two baselines, indicating that SM is able to
build the skepticism on different scenarios and is
robust to different test formats.

4.6 Multi-task Experiments

Table 4 lists the choice-problem results of multi-
task experiments, also in terms of AP, AUC and
ACC scores. Similar with the single task exper-
iments, SM are also mostly the best, comparing
with VanillaFT and R-tuning, except one or two
exceptions. This result indicates that SM has good
generalization and scaling abilities. By training
with more datasets in different domains, one can
expect that SM can align with their knowledge and
emerge even better skepticism thinking.
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Figure 3: Multi-task Experimental Precision-Recall curves on MMLU, with ID and OOD domains.

Dataset Domain | Metric | VanillaFT  R-tuning SM
AP 37.04 86.89 88.83
ID AUC 56.40 7091 73.12
MMLU ACC 68.63 69.37 69.00
AP 37.71 85.78 88.18
OOD AUC 58.94 68.93 72.33
ACC 69.10 68.92 69.11
AP 67.14 89.43 85.79
WiCE FULL AUC 46.88 80.15 77.17
ACC 29.59 78.12 67.35
AP 47.59 90.08 96.99
Fever FULL AUC 63.28 73.37 78.55
ACC 56.75 73.34 91.64
AP 59.25 92.16 86.52
1D AUC 26.82 30.92 64.95
ACC 24.02 29.33 59.40

Parallel

AP 57.08 87.72 64.95
00D AUC 29.56 17.38 4597
ACC 19.31 11.47 37.96
AP 61.55 68.63 63.95
HotpotQA FULL AUC 29.56 17.38 4597
ACC 19.31 11.47 37.96

Table 3: Single-task experiments of SM, R-tuning and
VanillaFT on MMLU, WiCE, Fever, Parallel and Hot-
potQA datasets with AP, AUC and ACC scores (%).
MMLU and Parallel are classified into ID and OOD
domains, which denote in-domain and out-of-domain
settings, respectively.

We also conduct multi-task experiments and ex-
hibit the Precision-Recall curves on MMLU, with
ID and OOD domains, respectively. As indicated
by Figure 3, a higher AP score means better per-
formance. This result indicates our model perform
well in multi-task setting and show good general-
ization ability.

4.7 Abalation Study

To verify the effectiveness of each module, here
theare also implement the following ablation ap-
proaches and compare with SM:

* SM-noR: our SM method without the replay
mechanism. The "replay mechanism" here is
different with replay mechanism in continual
learning. It means to keep the inference ability
for vanilla data, tenth training data are not

Dataset | Domain | Metric | VanillaFT ~ R-tuning SM
AP 36.12 87.45 87.02
ID AUC 57.37 73.73 71.06
ACC 69.13 66.54 66.83
MMLU AP 37.99 86.70 86.88
OOD AUC 59.08 69.66 71.10
ACC 69.19 66.84 68.84
AP 31.12 63.14 67.62
WiCE FULL AUC 42.6 45.38 48.07
ACC 36.32 32.88 28.07
AP 59.94 87.43 91.10
Fever FULL AUC 46.41 77.61 76.60
ACC 35.83 74.38 75.96

Table 4: Multi-task experiments of SM, R-tuning and
VanillaFT on MMLU, WiCE and Fever datasets with AP,
AUC and ACC scores (%). MMLU results are classified
into ID and OOD domains, which denote in-domain and
out-of-domain settings, respectively.

Dataset Domain Metric SM-noR SM-noT SM
AP 66.99 70.24 69.55
b AUC 64.21 67.21 65.33
ACC 56.46 63.84 59.32
MMLU AP 61.59 68.75 74.11
AUC 53.50 57.56 64.12
00D | acc | 6107 6221 64.89

Table 5: Ablation results of SM on MMLU, comparing
with SM-noR and SM-noT.

processed with transition rule when we do the
skepticism modeling.

* SM-noT: our SM method without the skepti-
cism threshold.

Table 5 lists the ablation results. Result on the
MMLU dataset reveals the full SM method’s su-
periority over its variants, SM-noR and SM-noT,
across various metrics. These results emphasize the
effectiveness of the complete SM framework in un-
certainty estimation, especially when generalizing
to new domains.

4.8 Sensitivity Study

Since the skepticism threshold is a critical parame-
ter in our approach, here we further conduct its sen-
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Figure 4: Sensitivity plots of MMLU metrics as functions of skepticism thresholds. Left: the ID domain; Right: the

OOD domain.

sitivity analysis, as indicated in Figure 4. The sensi-
tivity plots illustrate the performance of the MMLU
metrics as functions of skepticism thresholds for
both ID and OOD domains. A lower threshold may
lead to more conservative predictions (higher skep-
ticism), while a higher threshold results in more
liberal predictions (lower skepticism). The peak of
each curve indicates the threshold that yields the
optimal metric score. Based on this analysis, We
determined that the threshold of 0.5 strikes an op-
timal balance, offering the best trade-off between
sensitivity and specificity for our model’s skeptical
estimation.

5 Conclusion

In this paper, we introduced a novel self-evaluation
and self-justification method for large language
models (LLMs) termed SM, by integrating the
skepticism tokens and learning from reasoning pro-
cess to enhance model’s skeptical thinking abil-
ity. Our approach empowers LLMs to acknowl-
edge their epistemic boundaries by responding with
"I am unsure" when faced with questions beyond
their knowledge boundary. This not only mitigates
the risk of LLM hallucination but also fosters a
more reliable interaction pattern with human users.
Through extensive quantitative analysis, we demon-
strated the superiority of our method across various
data formats, domains and tasks, comparing with
the vanilla fine-tuning method and R-tuning.

6 Limitations

The skepticism token models the self-skepticism
level of the previous normal token. If the vocabu-
lary size is small (less than 32000), the granularity
of the tokenization results tends to be small, with

many tokens representing individual letters, which
is not conducive to the effectiveness of our method.
The larger the vocabulary size, the greater the gran-
ularity of tokenization, and the easier it is for our
method to take effect. And we do not provide
strong justification for the choice of 10 skepticism
levels, fewer or more levels setting could be better
choices.

7 Ethics Statement

In this study, we have thoroughly evaluated the eth-
ical implications of our research and anticipate no
significant ethical concerns. All experiments have
been conducted using publicly available datasets
and pretrained model, mitigating potential ethical
issues. Additionally, we have strictly adhered to
all terms and conditions associated with the use of
these datasets and pretrained model.
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