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Abstract

Hallucinations is a major challenge for large001
language models (LLMs), preventing adoption002
in diverse fields. Uncertainty estimation could003
be used for alleviating the damages of halluci-004
nations. The skeptical emotion of human could005
be useful for enhancing the ability of self esti-006
mation. Inspirited by this observation, we pro-007
pose a new approach called Skepticism Mod-008
eling (SM), which is formalized by combining009
the information of tokens and probabilities for010
self estimation. We construct the doubt emo-011
tion aware data, perform continual pre-training,012
and then fine-tune the LLMs, improve their013
ability of self estimation. Experimental results014
demonstrate this new approach effectively en-015
hances a model’s ability to estimate their uncer-016
tainty, and validate its generalization ability of017
other tasks by out-of-domain experiments.018

1 Introduction019

The generative nature of large language mod-020

els (LLMs) bring the challenge of hallucination021

(Huang et al., 2023; Bai et al., 2024), namely their022

tendency to generate plausible-sounding but factu-023

ally incorrect or nonsensical information. Hallu-024

cination hinders LLM’s widespread adoption, par-025

ticularly in domains that demand high levels of026

accuracy and expertise, like healthcare, legal sector027

and financial industry (Ji et al., 2023a; Zhang et al.,028

2023). Uncertainty estimation could be used for029

mitigating the damages of hallucinations (Huang030

et al., 2023). Previous studies directly used the031

model log-probabilities to estimate uncertainty, or032

used the tokens information to teach the model033

to express uncertainty (Huang et al., 2023). We034

propose a novel method that use both information035

for training, enhance the ability of self estimation,036

which is called Skepticism Modeling (SM).037

The Capital of pigeon

“The Capital of France is Paris”

The Capital of France is Paris

“The Capital of pigeon…”

Skepticism

Figure 1: Paradigm of Skepticism Modeling of LLM.
The emojis represent self-skepticism level of the previ-
ous token.The strange phrases will arouse suspicion.

The intense view of these manifold contradictions
and imperfections in human reason has so wrought
upon me, and heated my brain, that I am ready to
reject all belief and reasoning, and can look upon
no opinion even as more probable or likely than
another [Treatise, 1.4.7.8]

David Hume

Skepticism which means an attitude of doubt, 038

plays a crucial role in human cognition, influencing 039

information processing and decision-making. For 040

instance, when people are asked "How many eyes 041

does the finger have?" or "The capital of pigeon is 042

?", they will have skeptical emotion, which could 043

be useful for identifying wrong question. When 044

people are unfamiliar with a Mathematics question, 045

skeptical emotion could also help them estimate 046

the uncertainty of their own answer. The emotion- 047

as-information theory (Schwarz and Clore, 1983) 048

suggests that the skeptical feeling can lead to a 049

more careful information examination. Studies 050

have shown that skepticism is a core component 051

of critical thinking (Facione, 1990) and important 052

for meta-cognitive experiences (Koriat and Levy- 053

Sadot, 1999). In fact, deep skepticism allows hu- 054

mans to question their own judgement, resisting the 055

intense contemplation of the manifold contradic- 056

tions and imperfections inherent in human belief 057

and reasoning. As articulated by famously philoso- 058

pher David Hume (Hume, 1978). Therefore, it 059

is reasonable to implement LLM with skepticism 060
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ability, which motivates this work.061

In this paper, we propose an innovative paradigm062

to augment LLM with skepticism thinking ability.063

Firstly, we model the skepticism feeling as dis-064

crete tokens. Starting from a pre-trained LLM,065

we transform the skepticism token from the soft-066

max probability associated with each preceding067

text token. We then redefine the sequence with068

each original text token followed by such a skep-069

ticism token. LLM learn such augmented text se-070

quence by continual pre-training (CPT). We then071

conduct the supervise finetuning (SFT) stage, given072

question-answer samples with an extra rethink-073

ing question-answer pair similar with R-tuning074

(Zhang et al., 2024a). In the inference stage,075

the model can combine text tokens and softmax076

probability to enhance the ability of self estima-077

tion and alleviate the damages of hallucinations.078

Project code and model checkpoints can be found079

in https://anonymous.4open.science/r/SM-1E76.080

In summary, our contributions are:081

• We design a new modeling paradigm to make082

LLM have skepticism think, similar with hu-083

manity. By two stages’ training, our LLM084

can self-evaluate its skepticism measures and085

provide more reasonable answer.086

• We conduct substantial experiments to indi-087

cate our SM approach can achieve state-of-088

the-art (SOTA) performance in several QA089

benchmarks, with out-of-domain generaliza-090

tion abilities.091

• We observe our SM approach have substantial092

robustness even given some unreasonable and093

implausible questions.094

The rest of the paper is organized as follows. The095

connection with previous works is first discussed096

in Section 2. The SM methodology is stated in097

Section 3. Experiment results are summarized in098

Section 4. Finally Section 5 concludes this paper.099

2 Related Works100

2.1 Hallucination Detection101

Many approaches in hallucination detection base102

on internal states (Azaria and Mitchell, 2023;103

Huang et al., 2023; Ling et al., 2024; Liu et al.,104

2024; Su et al., 2024). By analyzing the minimal105

token probability within key concepts, Varshney106

et al. assess the uncertainty of the model towards107

these concepts (Varshney et al., 2023). Our SM108

method also use token probability, however, we 109

combine both token probability and token informa- 110

tion to estimate uncertainty. Inspired by cognitive 111

neuroscience, Zou et al. explore an approach to 112

AI transparency named representation engineering 113

(RepE), which provide traction on many problems 114

including hallucination (Zou et al., 2023). 115

Finetuning LLMs can be useful for uncertainty 116

estimation. Lin et al. train LLM to directly out- 117

put verbalized probability with CalibratedMath, 118

which is a suite of elementary mathematics prob- 119

lems. LLM’s empirical accuracy on each type of 120

question was used as the label (Lin et al., 2022). 121

Our SM method also need to finetune the LLMs, 122

but their method does not use token probability in- 123

formation, we combine both token probability and 124

token information to finetune the LLMs. kadavath 125

et al. add an additional value head to the LLMs, 126

and finetuned the models to predict the probability 127

that they can answer a question correctly (Kada- 128

vath et al., 2022). They only use question to train 129

the model, we use both question and answer. And 130

our SM method does not need to change the model 131

structure. 132

Several studies probe the uncertainty of LLMs 133

through their behavior (Huang et al., 2023; Lin 134

et al., 2023; Hou et al., 2024; Yehuda et al., 2024). 135

For instance, Manakul et al. propose SelfCheck- 136

GPT, a sample-based approach to detect hallucina- 137

tion via evaluating the consistency of multiple re- 138

sponses to the same prompt from a language model 139

(Manakul et al., 2023). Motivated by truth-seeking 140

mechanisms in law, Cohen et al. employ an “ex- 141

aminer” LM (EXAMINER). They leverage prompt 142

to generate questions which are related with initial 143

claim from LLMs, and discover factual inconsisten- 144

cies among different answers (Cohen et al., 2023). 145

Considering the reality that a single concept can 146

be formulated in numerous ways, Farquhar et al. 147

use semantic entropy to detect hallucinations by 148

calculating uncertainty at the level of semantics 149

rather than particular word sequences (Farquhar 150

et al., 2024). 151

2.2 Hallucination Mitigation 152

Many methods have been proposed for hallucina- 153

tions mitigation in LLM (Ji et al., 2023b; Dhuli- 154

awala et al., 2024; Zhang et al., 2024b,c) . No 155

matter whether LLMs knows the knowledge or not, 156

traditional fine-tuning approaches force LLMs to 157

complete a sentence. If the question is beyond the 158

inherent knowledge of LLMs, LLMs will try to fab- 159
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ricate plausible-sounding but mistaken facts. Moti-160

vated by this, Zhang et al. propose a method called161

Refusal-Aware Instruction Tuning (R-Tuning), con-162

structs a refusal-aware dataset by comparing the163

prediction and label, and then finetune LLMs to164

admit their uncertainty about the answer or refuse165

questions beyond its internal knowledge (Zhang166

et al., 2024a). Based on R-Tuning, our SM method167

combine token and token probability information168

to finetune LLMs.169

RL finetuning can also mitigate hallucination170

(Roit et al., 2023; Sun et al., 2023), However, when171

face unfamiliar inputs, reward models may suffer172

from hallucinations. To tackle this challenge, Kang173

et al. propose a conservative reward models ap-174

proach to avoid overestimate rewards for unfamil-175

iar inputs. And then they use this approach to teach176

LLMs to generate reliable long-form responses on177

long text generation tasks (Kang et al., 2024).178

Elaraby et al. explore teacher-student and knowl-179

edge injection methods to mitigate hallucinations in180

LLMs (Elaraby et al., 2023). Guan et al. presents181

Knowledge Graph-based Retrofitting (KGR), an182

approach that use knowledge graph to retrofit the183

initial responses of LLMs (Guan et al., 2024). Our184

SM method does not need external knowledge base.185

3 Skepticism Modeling186

In this section, we first introduce our Skepticism187

Modeling (SM) method , which integrates skepti-188

cal tokens into the vocabulary and includes three189

stages: continual pre-training, supervised fine-190

tuning and inference. Detailed framework of SM191

is visualized in Figure 2.192

3.1 Modeling and Tokenization of Skepticism193

Each skeptical emotion token corresponds to the194

generative probability about the previous generated195

token in the text. We first augment the tokenizer196

vocabulary with special tokens, [< s0 >,< s1 >197

, . . . , < s9 >], indicating discretion of different198

skepticism levels. From "< s0 >" to "< s9 >", the199

skeptical emotion level is increasing which means200

the generative probability about the previous gener-201

ated token is decreasing. To make the rule for con-202

verting the softmax probability to the skepticism203

token, we refer to the likelihood corresponding to204

adverbs indicating affirmation and doubt in natural205

language. For example, adverb "certainly" often in-206

dicates a probability greater than 0.8. We then use a207

special token "< s0 >" to represent "certainly", if208

the softmax probability is more than 0.8, the skep- 209

ticism token will be "< s0 >", which means the 210

lowest skeptical level. Adverb "probably" usually 211

indicates a probability between 0.6 and 0.8, We 212

then use a special token "< s1 >" to represent 213

"probably", if the softmax probability is between 214

0.6 and 0.8, the skepticism token will be "< s1 >". 215

We reformulate our tokenization with each normal 216

text token followed by such a "skepticism token" 217

(Figure 1). 218

Given a pretraining dataset, first we perform a 219

forward pass of raw text corpus from a pretrained 220

LLM, to obtain the token logits. Then we record the 221

softmax probability for each token in the original 222

corpus, discretize it and convert it into the ground 223

truth skeptical token. 224

3.2 Continual Pre-Training 225

In this work, we conduct Continual Pre-Training 226

(CPT) with model load from a pretrained LLM. By 227

denoting the softmax probability of normal token 228

as p, the softmax probability of skeptical token as 229

s, and the previous inferenced probability is l̂, our 230

CPT loss can be expressed as 231

LCPT = − 1

T

T∑
i=1

log(pi) (1) 232

where T is the sequence length, i is the token posi- 233

tion of either normal tokens or skeptical tokens. 234

3.3 Supervised Finetuning 235

During the Supervised finetuning(SFT) stage, we 236

create our the refusal-aware data, in a similar pro- 237

cess with R-tuning (Zhang et al., 2024a). Given 238

a question-answer (QA) pair from SFT data, we 239

first inference our CPT-version model, to obtain the 240

probability of the original answer and determine 241

our skepticism based on that result. We then aug- 242

ment the QA pair with another question "Are you 243

sure you accurately answered the question based on 244

your internal knowledge?" and the corresponding 245

answer "I am sure/unsure." which is determined by 246

the probability threshold. The probability thresh- 247

olds perform a critical role which helps the LLM 248

further align with the skeptical thinking. 249

We then perform the general Study by viewing p 250

and s tokens as a uniform sequence. The SFT loss 251

is 252

LSFT = − 1

T

Ti∑
i=1

log [Pr(yi+1|xi, y1...t, ϕ)] (2) 253
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Q: Is Paris capital of USA?
A: No

Is <s5> Paris <s4> capital <s3> of <s3> USA <s7> ? <s6>

No <s2> Are <s3> you <s4> sure <s3> ? <s3> Sure <s1>

Q: Is Paris capital of USA?
A: No
Q: Are you sure?
A: Sure

Q: Which is France’s captal? A. Tokyo B. Paris C. Berlin

Which <s5> Is <s5> France <s6> ’s <s4> Capital <s2> ? <s3>

A <s9>

Are <s3> you <s4> sure <s3> ? <s3> Sure <s1>

A. <s3> Tokyo <s6> B. <s3> Paris <s2> C. <s3> Berlin <s6>

B <s1>

C <s8>

Q: Which is France’s captal? A. Tokyo B. Paris C. Berlin
A: B
Q: Are you sure?

Stage II: SFT

Stage III: Inference

The <s5> Capital <s4> of <s3> France <s2> is <s2> Paris <s1>

The Capital of France is Paris“The Capital of France is Paris”

Stage I: CPT

Figure 2: Detailed framework of SM. Stage I: first learn the plausibility of tokens from pretrained LLM, then
continual pretraining on the corpus with vocabulary augmented with skepticism tokens. Stage II: augment the QA
pair with the question ’Are you sure/unsure’, inference the continual pretrained LLM to answer this augmented
question, and finally finetune on these two QA pairs. Stage III: first inference on the finetuned LLM, get the
most plausible answer, then concatenate with the augmented question, and inference the second time to obtain the
skepticism probability.

where x is the question tokens, y is the answer to-254

kens and T is the number of tokens in the response.255

3.4 Inference256

In the inference stage, we integrate skeptical to-257

kens to the query and generate the response by our258

SFT version model. After that, we augment with259

the prompt "Are you sure you accurately answered260

the question based on your internal knowledge?"261

(Zhang et al., 2024a) then perform the second gen-262

eration to obtain the final confidence.263

Note that we employ the "sure" or "unsure" to-264

ken as the indicator of uncertainty for the answer265

(Zhang et al., 2024a). The reason is when facing266

the open-domain question-answering task rather267

than multi-choice task, the answer contains mul-268

tiple tokens instead of one choice token, which269

makes the uncertainty estimation complicated.270

4 Experiments271

In this section, we first introduce the training and272

evaluation datasets and tasks, then the comparable273

baselines, the evaluation methodologies, and the274

formal experiment results. We finally provide some275

typical cases to highlight our approach’s ability.276

4.1 Datasets277

Table 1 list the sources and statistics of datasets278

used in our CPT and SFT stages.279

4.1.1 CPT: 280

Datasets used in the CPT stage include Gutenberg 281

books and wiki, which are from Dolma; as well as 282

Opensubtitle, arxiv abstract and pubmed abstract, 283

which are from Pile. 284

• Dolma (Soldaini et al., 2024): an open cor- 285

pus of 3 trillion tokens for language model 286

pretraining research. It encompass 5 billion 287

documents range of sources from the web, sci- 288

entific literature, code, public domain books, 289

social media, and encyclopedias. With all the 290

pretrained data and data curation toolkit open- 291

sourced, it faciliatates the transparency and 292

reproducibility of further research based on 293

Dolma. 294

• Pile (Gao et al., 2020): a substantial corpus 295

of English text, totaling 825 GiB. It composes 296

22 diverse and high-quality subsets, many 297

of which are derived from academic or pro- 298

fessional sources, such as PubMed Central, 299

ArXiv, GitHub, and the US Patent and Trade- 300

mark Office, among others. The construction 301

of this dataset aims to address the growing 302

need for data diversity in language modeling 303

process. 304
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4.1.2 SFT:305

Datasets used in the SFT stage are natually classi-306

fied into the following two categories:307

• Multiple-Choice: Given a question308

with several choices, the model aims to309

chooses one correct option. We include310

MMLU (Hendrycks et al., 2020), WiCE311

(Kamoi et al., 2023), and FEVER (Thorne312

et al., 2018) in our experiments.313

• Question-Answering: Given an open-domain314

question, the model directly generate its315

answer. Such type of datasets include316

ParaRel (Elazar et al., 2021) and HotpotQA317

(Yang et al., 2018).318

For ease of performance comparison, we download319

the dataset from R-tuning (Zhang et al., 2024a)320

and keep the same in-domain and out-of-domain321

settings. For brevity, in the following context we322

use ID and OOD to denote in-domain and out-of-323

domain, respectively. We conduct sampling checks324

to determine if the dataset contains privacy and325

offensive information.326

4.2 Baselines and tasks327

We consider the following baselines:328

• R-tuning: an instruction tuning approach that329

teaches large language models to identify and330

refrain from answering questions beyond their331

parametric knowledge, thereby mitigating the332

issue of hallucination and enhancing their333

ability to express uncertainty (Zhang et al.,334

2024a).335

• VanillaFT: the vanilla approach which learns336

from the corpus in the conventional paradigm337

of LLM.338

Similar with (Zhang et al., 2024a), two types339

of experiments, single-task and multi-task, can be340

analyzed. The single-task experiment studies the341

performance on the individual dataset, while multi-342

task experiment evaluates model generalization per-343

formance by training on mixture of datasets. Due344

to page limitations, here we only list results of345

multi-choice datasets. One can refer to Appendix346

to check results of Question-Answering datasets.347

4.3 Evaluation348

Models are measured with three metrics: accuracy,349

Average Precision (AP) score and Area Under the350

ROC Curve (AUC).351

The accuracy is calculated as follows: 352

accuracy =
correctly answered questions

all questions
. (3) 353

In the self-evaluation experiment, we first prompt 354

the model to output an answer and then prompt it 355

to provide its uncertainty. And we use AP score 356

to evaluate the performance for uncertainty estima- 357

tion. 358

The AP score is a way to summarize the 359

precision-recall curve into a single value represent- 360

ing the average of all precisions. which is calcu- 361

lated as follows: 362

AP =
n−1∑
k=0

(R(k + 1)−R(k))× P (k) (4) 363

where n is the number of data, k is the number 364

of data we select for the current threshold. P and 365

R denote precision and recall. An ideal model 366

predicts the correct answers with high confidence 367

and the hallucinated wrong answers with relatively 368

low confidence, leading to a high AP score. 369

AUC (Area Under the ROC Curve) is the area 370

under the ROC (Receiver Operating Characteristic) 371

curve used to measure the performance of a classi- 372

fier. The closer the AUC value is to 1, the better the 373

classifier performance; On the contrary, the closer 374

the AUC value is to 0, the worse the classifier per- 375

formance. We also use the ROC-AUC score to 376

measure the performance for self-estimation. ROC 377

depicts the performance of the classifier at different 378

thresholds by taking the true positive rate (TPR) 379

and the false positive rate (FPR) as the horizontal 380

and vertical coordinates. 381

TPR =
TP

TP + FN
(5) 382

383

FPR =
FP

FP + TN
(6) 384

TP (True Positive) represents the number of cor- 385

rectly recognized positive cases. For example, 386

when answer match label, the model output ’sure’. 387

FN (False Negative) represents the number of incor- 388

rectly recognized positive cases as negative cases. 389

FP (False Positive) represents the number of in- 390

correctly identified negative examples as positive, 391

while TN (True Negative) represents the number of 392

correctly identified negative examples. 393
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Stage Datasets Size Format

CPT

gutenberg books 18G Raw-Text
wiki 16G Raw-Text

opensubtitle 0.5G Raw-Text
arxiv abstract 4G Raw-Text

pubmed abstract 1G Raw-Text

SFT

MMLU (ID) 2439 Multiple-Choice
MMLU (OOD) 9155 Multiple-Choice
WiCE (Train) 3470 Multiple-Choice
WiCE (Test) 958 Multiple-Choice

FEVER (Train) 9999 Multiple-Choice
FEVER (Test) 9999 Multiple-Choice
ParaRel (ID) 5584 Question-Answering

ParaRel (OOD) 13974 Question-Answering
HotpotQA (Train) 10000 Question-Answering
HotpotQA (Test) 7405 Question-Answering

Table 1: Details of Training Datasets. Sizes of CPT datasets is the file gigasizes, while sizes of SFT datasets are
number of samples. SFT datasets are obtained from R-tuning (Zhang et al., 2024a)

Experiment Stage Parameters Value

Single-Task

CPT
learning rate 5e-7
weight decay 0.01

batch size 1024

SFT
learning rate 1e-6
weight decay 0.01

batch size 128

Multi-Task

CPT
learning rate 5e-7
weight decay 0.01

batch size 1024

SFT
learning rate 1e-6
weight decay 0.01

batch size 128

Table 2: Hyper-parameters of experiments.

4.4 Implementation394

We choose Qwen2-7B (Qwen Team, 2024) as the395

base models in our experiments, which licensed396

under the Apache License, Version 2.0. We use397

accelerator 1 and deepspeed 2 to conduct pretrain-398

ing and instruction tuning, setting epoch to 1. All399

the experiments are implemented on Nvidia A100-400

80GB GPUs. Table 2 lists the hyperparameters of401

experiments.402

1https://github.com/microsoft/DeepSpeed/blob/
master/deepspeed/accelerator

2https://github.com/microsoft/DeepSpeed

4.5 Single-task Results 403

Table 3 lists the results of single-task experiments. 404

The SM method demonstrates superior perfor- 405

mance across most of the benchmarks, with sel- 406

dom exceptions. Especially, SM is good at self- 407

evaluation from the AP and AUC results, and also 408

help the answering ACC from modeling of skep- 409

ticism. Performance of SM is also robust since 410

we consider both choice problems such as MMLU, 411

WiCE, Fever, and question-answering tasks such as 412

Parallel and HotpotQA. We also check the detailed 413

results overn the ID and OOD domains for MMLU 414

and Parallel. 415

Table 3 also lists results on the open-domain 416

question-answering datasets, including Parallel and 417

HotpotQA. Still, SM shows superiority comparing 418

with two baselines, indicating that SM is able to 419

build the skepticism on different scenarios and is 420

robust to different test formats. 421

4.6 Multi-task Experiments 422

Table 4 lists the choice-problem results of multi- 423

task experiments, also in terms of AP, AUC and 424

ACC scores. Similar with the single task exper- 425

iments, SM are also mostly the best, comparing 426

with VanillaFT and R-tuning, except one or two 427

exceptions. This result indicates that SM has good 428

generalization and scaling abilities. By training 429

with more datasets in different domains, one can 430

expect that SM can align with their knowledge and 431

emerge even better skepticism thinking. 432
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Figure 3: Multi-task Experimental Precision-Recall curves on MMLU, with ID and OOD domains.

Dataset Domain Metric VanillaFT R-tuning SM

MMLU

ID
AP 37.04 86.89 88.83

AUC 56.40 70.91 73.12
ACC 68.63 69.37 69.00

OOD
AP 37.71 85.78 88.18

AUC 58.94 68.93 72.33
ACC 69.10 68.92 69.11

WiCE FULL
AP 67.14 89.43 85.79

AUC 46.88 80.15 77.17
ACC 29.59 78.12 67.35

Fever FULL
AP 47.59 90.08 96.99

AUC 63.28 73.37 78.55
ACC 56.75 73.34 91.64

Parallel

ID
AP 59.25 92.16 86.52

AUC 26.82 30.92 64.95
ACC 24.02 29.33 59.40

OOD
AP 57.08 87.72 64.95

AUC 29.56 17.38 45.97
ACC 19.31 11.47 37.96

HotpotQA FULL
AP 61.55 68.63 63.95

AUC 29.56 17.38 45.97
ACC 19.31 11.47 37.96

Table 3: Single-task experiments of SM, R-tuning and
VanillaFT on MMLU, WiCE, Fever, Parallel and Hot-
potQA datasets with AP, AUC and ACC scores (%).
MMLU and Parallel are classified into ID and OOD
domains, which denote in-domain and out-of-domain
settings, respectively.

We also conduct multi-task experiments and ex-433

hibit the Precision-Recall curves on MMLU, with434

ID and OOD domains, respectively. As indicated435

by Figure 3, a higher AP score means better per-436

formance. This result indicates our model perform437

well in multi-task setting and show good general-438

ization ability.439

4.7 Abalation Study440

To verify the effectiveness of each module, here441

theare also implement the following ablation ap-442

proaches and compare with SM:443

• SM-noR: our SM method without the replay444

mechanism. The "replay mechanism" here is445

different with replay mechanism in continual446

learning. It means to keep the inference ability447

for vanilla data, tenth training data are not448

Dataset Domain Metric VanillaFT R-tuning SM

MMLU

ID
AP 36.12 87.45 87.02

AUC 57.37 73.73 71.06
ACC 69.13 66.54 66.83

OOD
AP 37.99 86.70 86.88

AUC 59.08 69.66 71.10
ACC 69.19 66.84 68.84

WiCE FULL
AP 31.12 63.14 67.62

AUC 42.6 45.38 48.07
ACC 36.32 32.88 28.07

Fever FULL
AP 59.94 87.43 91.10

AUC 46.41 77.61 76.60
ACC 35.83 74.38 75.96

Table 4: Multi-task experiments of SM, R-tuning and
VanillaFT on MMLU, WiCE and Fever datasets with AP,
AUC and ACC scores (%). MMLU results are classified
into ID and OOD domains, which denote in-domain and
out-of-domain settings, respectively.

Dataset Domain Metric SM-noR SM-noT SM

MMLU

ID

AP 66.99 70.24 69.55
AUC 64.21 67.21 65.33
ACC 56.46 63.84 59.32

OOD

AP 61.59 68.75 74.11
AUC 53.50 57.56 64.12
ACC 61.07 62.21 64.89

Table 5: Ablation results of SM on MMLU, comparing
with SM-noR and SM-noT.

processed with transition rule when we do the 449

skepticism modeling. 450

• SM-noT: our SM method without the skepti- 451

cism threshold. 452

Table 5 lists the ablation results. Result on the 453

MMLU dataset reveals the full SM method’s su- 454

periority over its variants, SM-noR and SM-noT, 455

across various metrics. These results emphasize the 456

effectiveness of the complete SM framework in un- 457

certainty estimation, especially when generalizing 458

to new domains. 459

4.8 Sensitivity Study 460

Since the skepticism threshold is a critical parame- 461

ter in our approach, here we further conduct its sen- 462
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Figure 4: Sensitivity plots of MMLU metrics as functions of skepticism thresholds. Left: the ID domain; Right: the
OOD domain.

sitivity analysis, as indicated in Figure 4. The sensi-463

tivity plots illustrate the performance of the MMLU464

metrics as functions of skepticism thresholds for465

both ID and OOD domains. A lower threshold may466

lead to more conservative predictions (higher skep-467

ticism), while a higher threshold results in more468

liberal predictions (lower skepticism). The peak of469

each curve indicates the threshold that yields the470

optimal metric score. Based on this analysis, We471

determined that the threshold of 0.5 strikes an op-472

timal balance, offering the best trade-off between473

sensitivity and specificity for our model’s skeptical474

estimation.475

5 Conclusion476

In this paper, we introduced a novel self-evaluation477

and self-justification method for large language478

models (LLMs) termed SM, by integrating the479

skepticism tokens and learning from reasoning pro-480

cess to enhance model’s skeptical thinking abil-481

ity. Our approach empowers LLMs to acknowl-482

edge their epistemic boundaries by responding with483

"I am unsure" when faced with questions beyond484

their knowledge boundary. This not only mitigates485

the risk of LLM hallucination but also fosters a486

more reliable interaction pattern with human users.487

Through extensive quantitative analysis, we demon-488

strated the superiority of our method across various489

data formats, domains and tasks, comparing with490

the vanilla fine-tuning method and R-tuning.491

6 Limitations492

The skepticism token models the self-skepticism493

level of the previous normal token. If the vocabu-494

lary size is small (less than 32000), the granularity495

of the tokenization results tends to be small, with496

many tokens representing individual letters, which 497

is not conducive to the effectiveness of our method. 498

The larger the vocabulary size, the greater the gran- 499

ularity of tokenization, and the easier it is for our 500

method to take effect. And we do not provide 501

strong justification for the choice of 10 skepticism 502

levels, fewer or more levels setting could be better 503

choices. 504

7 Ethics Statement 505

In this study, we have thoroughly evaluated the eth- 506

ical implications of our research and anticipate no 507

significant ethical concerns. All experiments have 508

been conducted using publicly available datasets 509

and pretrained model, mitigating potential ethical 510

issues. Additionally, we have strictly adhered to 511

all terms and conditions associated with the use of 512

these datasets and pretrained model. 513
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