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ABSTRACT

The non-robustness of neural network policies to adversarial examples poses a
challenge for deep reinforcement learning. One natural approach to mitigate the
impact of adversarial examples is to develop methods to detect when a given input
is adversarial. In this work we introduce a novel approach for detecting adversarial
examples that is computationally efficient, is agnostic to the method used to gen-
erate adversarial examples, and theoretically well-motivated. Our method is based
on a measure of the local curvature of the neural network policy, which we show
differs between adversarial and clean examples. We empirically demonstrate the
effectiveness of our method in the Atari environment against a large set of state-of-
the-art algorithms for generating adversarial examples. Furthermore, we exhibit
the effectiveness of our detection algorithm with the presence of multiple strong
detection-aware adversaries.

1 INTRODUCTION

Since Mnih et al. (2015) showed that deep neural networks can be used to parameterize reinforce-
ment learning policies, there has been substantial growth in new algorithms and applications for
deep reinforcement learning. While this progress has resulted in a variety of new capabilities for
reinforcement learning agents, it has at the same time introduced new challenges due to the non-
robustness of DNNs to imperceptible adversarial perturbations originally discovered by Szegedy
et al. (2014). In particular, Huang et al. (2017); Kos & Song (2017) showed that the non-robustness
of DNNs to adversarial perturbations extends to the deep reinforcement learning domain, where ap-
plications such as self-driving cars or automatic financial trading cannot tolerate such a vulnerability.

In the setting of image classification there has been significant effort to make DNNs robust to ad-
versarial perturbations Goodfellow et al. (2015); Madry et al. (2018). At the same time, there is a
line of work focused on showing the inevitability of adversarial examples and the intrinsic difficulty
of learning robust classifiers Dohmatob (2019); Mahloujifar et al. (2019); Gourdeau et al. (2019).
Given that it may not be possible to make DNNs completely robust to adversarial examples, a natu-
ral objective is to instead attempt to detect the presence of adversarial examples Pang et al. (2018);
Yang et al. (2020); Cintas et al. (2020). Additional work has shown that many adversarial defense
and detection methods fail in the white-box setting where the adversary is aware of both the trained
model and the method used to detect examples Athalye et al. (2018); Carlini & Wagner (2017b).

In this paper we propose a novel detection method for adversarial examples in deep reinforcement
learning. This is the first method for detecting adversarial examples in this setting, where compu-
tational efficiency is paramount since the method must be applied in real-time to every state en-
countered by the agent. Our approach relies on differences in the curvature of the neural policy in
the neighborhood of an adversarial example when compared to a natural example. At a high level
our method is based on the intuition that while natural examples have neighborhoods determined
by an optimization procedure intended to learn a policy that works well across all states, each ad-
versarial example is the output of some local optimization in the neighborhood of one particular
state. Our proposed method is computationally efficient, requiring only one gradient computation
and two policy evaluations, requires no training that depends on the adversarial attack method, and
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is theoretically well-founded. In summary, we focus on detection of adversarial examples and make
the following contributions:

• Our paper is the first to focus on detection of adversarial examples in the deep reinforcement
learning domain.

• We propose a novel method, Detection of Adversaries with Taylor Approximation (DATA),
to detect adversarial examples based on the local curvature of the neural network policy.
DATA is computationally efficient, independent of the method used to generate the adver-
sarial example, and theoretically justified.

• We conduct experiments in various games of the Arcade Learning Environment that
demonstrate the effectiveness of DATA in detecting examples generated by several state-
of-the-art adversarial attack methods.

• Furthermore, we demonstrate the effectiveness of DATA in the white-box setting where the
adversary is aware of the detection method used.

2 RELATED WORK AND BACKGROUND

Deep Reinforcement Learning: In this paper we focus on discrete action set Markov Decision
Processes (MDPs) which are given by a continuous set of states S, a discrete set of actions A, a
transition probability function P : S × A × S → R, and a reward function r : S × A → R. A
policy π : S → P(A) assigns a probability distribution on actions π(·|s) to each state s. In deep
reinforcement learning the policy π is parameterized by a deep neural network.

Adversarial Examples: Goodfellow et al. (2015) introduced the fast gradient method (FGM) for
producing adversarial examples for image classification. The method is based on taking the gradient
of the training cost function J(x, y) with respect to the input image, and bounding the perturbation
by ε where x is the input image and y is the output label. Later, an iterative version of FGM called
I-FGM was proposed by Kurakin et al. (2016). This is also often referred to as Projected Gradient
Descent (PGD) as in Madry et al. (2018) where the I-FGM update is

xN+1
adv = clipε(x

N
adv + αsign(∇xJ(xNadv, y))). (1)

where x0adv = x. Dong et al. (2018) further modified I-FGM by introducing a momentum term
in the update, yielding a method called MI-FGSM. Korkmaz (2020) later proposed a Nesterov-
momentum based approach for the deep reinforcement learning domain. The DeepFool method of
Moosavi-Dezfooli et al. (2016) is an alternative approach to those based on FGSM. DeepFool per-
forms iterative projection to the closest separating hyperplane between classes. Another alternative
approach proposed by Carlini & Wagner (2017a) is based on finding a minimal perturbation that
achieves a different target class label. The approach is based on minimizing the loss

min
sadv∈S

c · J(sadv) +
∥∥sadv − s

∥∥


(2)

where s is the clean input, sadv is the adversarial example, and J(s) is a modified version of the cost
function used to train the network. Chen et al. (2018) proposed a variant of the Carlini & Wagner
(2017a) formulation that adds an `1-regularization term to produce sparser adversarial examples,

min
sadv∈S

c · J(sadv) + λ
∥∥sadv − s

∥∥


+ λ
∥∥sadv − s

∥∥


(3)

Adversarial Deep Reinforcement Learning: The adversarial problem initially has been investi-
gated by Huang et al. (2017) and Kos & Song (2017) concurrently. In this work the authors show
that perturbations computed via FGSM result in extreme performance loss on the learnt policy. Lin
et al. (2017) and Sun et al. (2020) focused on timing strategies in the adversarial formulation and uti-
lized the Carlini & Wagner (2017a) method to produce the perturbations. While there is a reasonable
body of work focused on finding efficient and effective adversarial perturbations, a substantial body
of work focused on building agents robust to these perturbations. Mandlekar et al. (2017) proposed
to utilize FGSM perturbations during training time to obtain more robust agents. Pinto et al. (2017)
modeled the adversarial interaction as a zero sum game and proposed a joint training strategy to
increase robustness in continuous action space setting. Recently, Gleave et al. (2020) considered an
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adversary who is allowed to take natural actions in a given environment instead of `p-norm bounded
perturbations and modeled the adversarial relationship as a zero sum Markov game. However, re-
cent concerns have been raised about adversarial training methods by Korkmaz (2021). In this paper
the authors show that the state-of-the-art adversarial training techniques introduce a new set of non-
robust features. Thus, with the rising concerns on robustness of recent proposed adversarial training
techniques our work aims to solve the adversarial problem from a different perspective by detecting
adversarial perturbations.

Detection of Adversarial Examples: There has been a long line of work on detection of adver-
sarial examples for image classification. Metzen et al. (2017) proposed augmenting standard neural
network image classifiers with a sub-network trained specifically to detect adversarial examples.
However, this method has a cost of separately training a binary classifier to be able to detect the
adversarial examples. Pang et al. (2018) proposed a modified neural network training strategy that is
combined with a test-time thresholding method to distinguish adversarial from clean examples with
additional training cost. Yang et al. (2020) studied detection of adversarial examples via feature
attribution, utilizing the Leave-One-Out (LOO) attribution method proposed by Li et al. (2016). The
LOO method is based on erasing each pixel of the image and observing how the output of the neural
network changes, and so requires a number of neural network classifier evaluations equal to the res-
olution of the input image. Finally, Roth et al. (2019) suggest a statistical test based on measuring
the average change in the odds ratio between classes under random perturbations. Evaluation of the
neural classifier at hundreds of randomly perturbed samples are required in order for this method
to get sufficiently accurate estimates of the average change in order to detect adversarial examples.
In contrast to prior methods, our detection method does not require modifying the training of the
neural network, does not require any training specific to the attack method used, and uses only two
neural network function evaluations and one gradient computation.

3 DETECTION OF ADVERSARIES WITH TAYLOR APPROXIMATION (DATA)

In this section we give the high-level motivation for and formal description of our detection method.
We begin by introducing necessary notation and definitions. We denote an original clean state by s̄
and an adversarially perturbed state by sadv.
Definition 3.1. The cost of a state, J(s, τ), is defined as the cross entropy loss between the policy
π(a|s) of the agent, and a target distribution on actions τ(a).

J(s, τ) = −
∑
a

τ(a) log(π(a|s)) (4)

Definition 3.2. The argmax policy, π∗(a|s), is defined as the distribution which puts all probability
mass on the highest weight action of π(a|s).

π∗(a|s) = 1(a = arg max
a′

π(a′|s)) (5)

We use the following notation for the gradient and Hessian with respect to states s:

∇sJ(s0, τ0) = ∇sJ(s, τ)|s=s0,τ=τ0 ∇2
sJ(s0, τ0) = ∇2

sJ(s, τ)|s=s0,τ=τ0

3.1 FIRST-ORDER DETECTION OF ADVERSARIES WITH TAYLOR APPROXIMATION
(FO-DATA)

As a naive baseline we first describe a detection method based on estimating how much the cost
function J(s, τ) varies under small perturbations. Prior work on detection of adversarial examples
Roth et al. (2019); Hu et al. (2019) has shown that the behavior of DNN classifiers under small,
random perturbations is different at clean versus adversarial examples. Therefore, a natural baseline
detection method is: given an input state s0 sample a small random perturbation η ∼ N (0, εI) and
compute,

K(s0, η) = J(s0 + η, π∗(·|s0))− J(s0, π
∗(·|s0)). (6)

The first-order detection method proceeds by first estimating the mean and the variance of K over
a clean run of the agent in the environment. Next a threshold t is chosen so that a desired false
positive rate (FPR) is achieved (i.e. some desired fraction of the states in the clean run lie more
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than t standard deviations from the mean). Finally, at test time a state encountered by the agent is
classified as adversarial if it is at least t standard deviations away from the mean. Otherwise the
state is classified as clean. As a first attempt, the first-order method can be naturally interpreted
as a finite-difference approximation to the magnitude of the gradient at s0. If we assume that the
first-order Taylor approximation of J is accurate in a ball of radius r > ε centered at s0, then

J(s0 + η, π∗(·|s0)) ≈ J(s0, π
∗(·|s0)) +∇sJ(s0, π

∗(·|s0)) · η.
Therefore,

K(s0, η) ≈ ∇sJ(s0, π
∗(·|s0)) · η. (7)

Thus, for η ∼ N (0, εI) the test statistic K(s0, η) is approximately distributed as a Gaussian with
mean 0 and variance ε2‖∇sJ(s0, π

∗(·|s0))‖2. Under this interpretation one would expect the test
statistics for clean and adversarial states to have the same mean with potentially different standard
deviations, possibly making it hard to distinguish clean from adversarial. However, this is not what
we observe empirically, and in fact the first-order method does a decent job of detecting adversarial
examples. The method works because, in fact, the mean of K(s̄, η) for clean examples s̄ is rea-
sonably well separated from the mean of K(sadv, η) for adversarial examples sadv. The empirical
performance of the first-order method thus indicates that the assumption of accuracy for the first-
order Taylor approximation of J does not hold in practice. This leads naturally to the consideration
of information on the second derivatives of J in order to detect adversarial examples.

3.2 SECOND-ORDER DETECTION OF ADVERSARIES WITH TAYLOR APPROXIMATION
(SO-DATA)

The second-order detection method is based on measuring the local curvature of the cost function
J(s, τ). The method exploits the fact that J(s, τ) will have larger negative curvature at a clean
example as compared to an adversarial example. In particular, the high level theoretical motiva-
tion for this approach is that adversarial examples are the output of a local optimization procedure
which attempts to find a nearby perturbed state sadv with a low value for the cost J(sadv, τ) for some
τ 6= π∗(·|s̄). A direction of large negative curvature for J(sadv, τ) indicates that a very small pertur-
bation along this direction could dramatically decrease the cost function. Therefore, such points are
likely to be unstable for local optimization procedures attempting to minimize the cost function in a
small neighborhood. On the other hand, the curvature of J(s, τ) at a clean state s̄ is determined by
the overall algorithm used to train the deep reinforcement learning agent. This algorithm optimizes
the parameters of the neural network policy while considering all states visited during training, and
thus is not likely to be heavily overfit to the state s̄. In particular, we expect larger negative curva-
ture at s̄ than at an adversarial example sadv. We make the connection between negative curvature
and instability for local optimization formal in Section 3.3. Based on the above discussion, a natural
choice of metric for distinguishing adversarial versus clean examples is the most negative eigenvalue
of the Hessian λmin

(
∇2
sJ(s0, π

∗(·|s0)
)
. While this is the most natural measurement of curvature, it

requires computing the eigenvalues of a matrix whose number of entries are quadratic in the input
dimension. Since the input is very high-dimensional, and we would like to perform this computa-
tion in real-time for every state visited by the agent, computing the value λmin is computationally
prohibitive. Instead we approximate this value by measuring the curvature along a direction which
is correlated with the negative eigenvectors of the Hessian. Given this direction, the value that we
measure is the accuracy of the first order Taylor approximation of the cost of the given state J(s, τ).
We denote the first order Taylor approximation at the state s0 in direction η by

J̃(s0, η) = J(s0, π
∗(·|s0)) +∇sJ(s0, π

∗(·|s0)) · η.
The metric we will use to detect adversarial examples is the finite-difference approximation

L(s0, η) = J(s0 + η, π∗(·|s0))− J̃(s0, η). (8)

To see formally that Equation (8) gives an approximation of the most negative eigenvector of the
Hessian, we will assume that the cost function J(s, τ) is well approximated by its second-order
Taylor approximation at the point s0 i.e.

J(s0 + η, π∗(·|s0)) ≈ J(s0, π
∗(·|s0)) +∇sJ(s0, π

∗(·|s0)) · η + η>∇2
sJ(s0, π

∗(·|s0))η (9)

for a small enough perturbation η. Substituting the above formula into Equation (8) yields

L(s0, η) ≈ η>∇2
sJ(s0, π

∗(·|s0))η (10)
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Algorithm 1: SO-DATA
Input: Mean L̄ and variance σ2(L) from clean run. Detection threshold t > 0. Parameter ε > 0.
for states si visited by agent do

ηi = ε
sign(∇sJ(si, π

∗(·|si)))
‖∇sJ(si, π∗(·|si))‖2

J̃(si, ηi) = J(si, π
∗(·|si)) +∇sJ(si, π

∗(·|si)) · ηi
L(si, ηi) = J(si + ηi, π

∗(·|si))− J̃(si, ηi)
if |L(si, ηi)− L̄| > t · σ(L) then

Label state si as an adversarial example
end if

end for

The above quadratic form is minimized when η lies in the same direction as the most negative
eigenvector of the Hessian, in which case

L(s0, η) ≈ λmin
(
∇2
sJ(s0, π

∗(·|s0))
)
‖η‖22 (11)

We choose the sign of the gradient direction for measuring the accuracy of the first order Taylor
approximation. To motivate this choice note that −∇sJ(s, τ) is locally the direction of steepest
decrease for the cost function. If the gradient direction additionally has negative curvature of large
magnitude, then small perturbations along this direction will result in even more rapid decrease in
the cost function value than predicted by the first-order gradient approximation. Note that this can
be true even if the gradient itself has small magnitude, as long as the negative curvature is large
enough. Thus, by the discussion at the beginning of Section 3.2, adversarial examples are likely to
have relatively smaller magnitude negative curvature in the gradient direction than clean examples.
Formally, for ε > 0 we set

η(s0) = ε
sign (∇sJ(s0, π

∗(·|s0)))

‖∇sJ(s0, π∗(·|s0))‖2
. (12)

To calibrate the detection method we record the mean L̄ = Es[L(s, η(s))] and variance σ2(L) =
Vars[L(s, η(s))] of our proposed test statistic over states from a clean run of the policy in the MDP.
Then at test time we set a threshold t > 0, and for each state si visited by the agent test if

|L(si, η(si))− L̄| > tσ(L). (13)

If the threshold of t standard deviations is exceeded we classify the state si as adversarial, and
otherwise classify it as clean. Pseudo-code for the second order method is given in Algorithm 1.

3.3 NEGATIVE CURVATURE AND INSTABILITY OF LOCAL OPTIMIZATION

In this section we formalize the connection between negative curvature and instability for local
optimization procedures that motivated our definition of L(s, η). Given a state s0 and a target dis-
tribution τ 6= π∗(·|s0), we assume the adversary is trying to find a state sadv minimizing J(sadv, τ)
among all states close to s0 by some metric. Formally, let Ds0(s) ≥ 0 be a convex function of s that
should be thought of as measuring distance to s0. One standard choice for the distance function is
Ds0(s) = ‖s− s0‖pp. We model the adversary as minimizing the loss

f(s) = J(s, τ) +Ds0(s). (14)

In particular, we make the following assumption:
Assumption 3.1. The adversarial state sadv is a local minimum of f(s).

Of course this assumption is violated in practice since different adversarial attack methods optimize
objective functions other than f , and do not necessarily always converge to a local minimum. Nev-
ertheless the assumption allows us to make formal qualitative predictions about the behavior of the
second-order detection method that correspond well with empirical results across a broad variety of
adversarial attacks. We now state our main result lower bounding the curvature of J(sadv, τ).
Proposition 3.1. For c > 0 assume that the maximum eigenvalue of the Hessian ∇2

sDs0(s) is
bounded by c. If s∗ is a local minimum of f(s) then λmin(∇2

sJ(s∗, τ)) ≥ −c
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Figure 1: L(s) for our proposed method SO-DATA vs visited states with corresponding TPR values
for the following attack methods: FGSM, MI-FGSM, Nesterov, DeepFool, Carlini&Wagner, Elastic
Net Method. TPR values shown in the upper right box of the figure when FPR is equal to 0.01.

Proof. Let v be the eigenvector of∇2
sJ(s∗, τ) corresponding to the minimum eigenvalue. At a local

minimum s∗ of f(s) the Hessian∇2
sf(s∗) must be positive semi-definite. Therefore,

0 ≤ v>∇2
sf(s∗)v = v>∇2

sJ(s∗, τ)v + v>∇2
sDs0(s∗)v

≤ λmin(∇2
sJ(s∗, τ)) + c

Rearranging the above inequality completes the proof.

In summary, the second order conditions for a local minimum of f imply a lower bound on
the smallest eigenvalue of ∇2

sJ(s∗, τ). Thus, by Assumption 3.1, we obtain a lower bound on
λmin(∇2

sJ(sadv, τ)). The assumption that the maximum eigenvalue of the Hessian ∇2
sDs0(s) is

bounded by c is satisfied for example whenDs0(s) = c
2‖s−s0‖

2
2. In contrast, the local curvature of

the cost function J(s, τ) at a clean example is determined by an optimization procedure that updates
the weights θ of the neural network policy rather than the states s. If we write Jθ(s, τ) to make
explicit the dependence on the weights, then the second order conditions for optimizing the original
neural network apply to the Hessian with respect to weights∇2

θJθ(s, τ) rather than the Hessian with
respect to states ∇2

sJθ(s, τ). Additionally, first order optimality conditions can help to justify the
choice of ∇sJ(s, τ) as a good direction to check for negative curvature. Indeed by the first order
conditions, at a local optimum s∗ of f(s) we have

0 = ∇sf(s∗) = ∇sJ(s∗, τ) +∇sDs0(s∗). (15)

Therefore, ∇sJ(s∗, τ) = −∇sDs0(s∗). So assuming the adversary finds a local optimum,
∇sJ(s, τ) points in a direction that decreases the distance function Ds0(s∗). Thus sufficiently
negative curvature in the direction of ∇sJ(s, τ) implies not only that s is not a local minimum of
f , but also that the distance function Ds0(s) can be decreased by moving along this direction of
negative curvature. To summarize, we have shown that second order optimality conditions arising
from computing an adversarial example give rise to lower bounds on the smallest eigenvalue of the
Hessian λmin

(
∇2
sJ(s, τ)

)
. The function L(s, η) used to detect adversarial examples for SO-DATA

is a finite difference approximation to

η>∇2
sJ(s, τ)η ≥ λmin

(
∇2
sJ(s, τ)

)
‖η‖2 .

Therefore the results of this section imply that L(s, η) should be larger at adversarial examples than
clean examples.

4 EXPERIMENTS

In our experiments agents are trained with DDQN Wang et al. (2016) in the Atari environment
Bellemare et al. (2013) from OpenAI Brockman et al. (2016). For a baseline we compare FO-DATA
and SO-DATA with the detection method of Roth et al. (2019), which is based on estimating the
average change in the odds ratio between classes under noise. In Figure 1 we plot the value of
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Figure 2: ROC curves of FO-DATA, SO-DATA and Roth et al. (2019) for the following attack meth-
ods: FGSM, MI-FGSM, Nesterov Momentum, DeepFool, Carlini&Wagner, Elastic Net Method in
RoadRunner. TPR values shown in the lower right box of the figure when FPR is equal to 0.01.

Table 1: True Positive Rates (TPR) for FGSM, MI-FGSM, Nesterov Momentum, Carlini&Wagner,
Elastic-Net and DeepFool when False Positive Rate (FPR) is equal to 0.01. The proposed methods
SO-DATA and FO-DATA are evaluated, and compared with Roth et al. (2019) in Riverraid, Road-
Runner, Alien, Seaquest, Boxing, Pong, and Robotank games. More results for different FPR values
are reported in the supplementary material.

Detection Method-Attack Method RiverRaid RoadRunner Alien Seaquest Boxing Pong Robotank

SO-DATA FGSM 0.997 1.0 1.0 0.995 0.994 1.0 0.999
FO-DATA FGSM 0.990 0.843 0.803 0.931 0.793 0.622 0.413
Roth et al. FGSM 0.681 0.767 0.885 0.403 0.264 0.424 0.911

SO-DATA M-IFGSM 0.998 1.0 1.0 0.985 0.910 1.0 0.985
FO-DATA M-IFGSM 0.952 0.863 0.991 0.981 0.827 0.622 0.470
Roth et al. M-IFGSM 0.775 0.554 0.929 0.581 0.499 0.679 0.777

SO-DATA Nesterov Momentum 0.995 0.989 0.996 0.952 0.865 1.0 0.954
FO-DATA Nesterov Momentum 0.990 0.714 0.997 0.979 0.746 0.633 0.574
Roth et al. Nesterov Momentum 0.785 0.646 0.925 0.671 0.517 0.687 0.753

SO-DATA Carlini&Wagner 0.910 0.988 0.945 0.723 0.856 0.850 0.713
FO-DATA Carlini&Wagner 0.695 0.594 0.642 0.516 0.785 0.494 0.119
Roth et al. Carlini&Wagner 0.036 0.118 0.018 0.004 0.016 0.028 0.032

SO-DATA Elastic Net 0.777 0.943 0.875 0.687 0.770 0.736 0.815
FO-DATA Elastic Net 0.685 0.454 0.561 0.502 0.743 0.361 0.212
Roth et al. Elastic Net 0.124 0.210 0.060 0.014 0.150 0.092 0.056

SO-DATA DeepFool 0.914 0.996 0.993 0.860 0.951 0.889 0.900
FO-DATA DeepFool 0.841 0.847 0.936 0.777 0.928 0.796 0.268
Roth et al. DeepFool 0.397 0.447 0.611 0.234 0.381 0.367 0.607

L(s) over states for various games without an adversarial attack and under adversarial attack with
the following methods: Carlini & Wagner, Elastic Net, Nesterov Momentum, DeepFool, MIFGSM
and FGSM. We show in the legends of Figure 1 the true positive rate (TPR) values for the different
attacks when false positive rate (FPR) is equal to 0.01. The value of L(s) for clean states is generally
well-concentrated and negative. On the other hand, for states computed by the different adversarial
attack methods L(s) is clearly larger, matching the predictions of Proposition 3.1. The fact that
L(s) is consistently larger at adversarial examples across a wide variety of adversarial perturbation
methods indicates that Assumption 3.1 qualitatively captures the behavior of these methods. In
particular the FGSM-based methods and DeepFool do not explicitly optimize an objective function
of the form f(s) = J(s, τ) + Ds0(s) as in Assumption 3.1. However, by enforcing a constraint on
the distance of the adversarial example from the original clean example, these methods implicitly
solve an optimization problem of the form given in (14), and thus exhibit the qualitative behavior
predicted by Proposition 3.1.

7



Under review as a conference paper at ICLR 2022

Figure 3: ROC curves of FO-DATA, SO-DATA and Roth et al. (2019) for the following attack meth-
ods: FGSM, MI-FGSM, Nesterov Momentum, DeepFool, Carlini&Wagner, Elastic Net Method in
Robotank. TPR values are reported in the lower right box of the figure when FPR is equal to 0.01.

In Table 1 we show TPR values for FO-DATA, SO-DATA, and the Roth et al. (2019) method under
the FGSM, MI-FGSM, Nesterov Momentum, DeepFool, Carlini&Wagner, and Elastic-Net attacks
when FPR is equal to 0.01. For all of the attack methods in all of the environments SO-DATA is
able to detect adversarial perturbations with large TPR. SO-DATA outperforms the other detection
methods in all cases except for Nesterov Momentum in Alien and Seaquest where FO-DATA has
TPR 0.997 and 0.980 while SO-DATA has 0.996 and 0.952. We also observe that while the pertur-
bations computed by FGSM, MI-FGSM, Nesterov Momentum can generally be detected with large
TPR values by all the detection methods, the perturbations computed by Carlini&Wagner and the
Elastic-Net method are more difficult to detect. Despite the difficulty, SO-DATA achieves TPR val-
ues ranging from 0.713 to 0.988 for Carlini&Wagner, and TPR values ranging from 0.687 to 0.943
for Elastic-Net when FPR is equal to 0.01. In Figure 2 and Figure 3 we show ROC curves for each
detection method under the FGSM, MI-FGSM, Nesterov Momentum, DeepFool, Carlini&Wagner
and Elastic-Net method for RoadRunner and Robotank respectively. In Robotank the Roth et al.
(2019) method outperforms FO-DATA and even approaches the TPR of SO-DATA for high FPR
under FGSM, MI-FGSM, Nesterov Momentum and DeepFool. However for the Carlini&Wagner
and Elastic-Net attacks, SO-DATA has a much higher TPR across a wide range of FPR levels.

5 DETECTION AWARE ADVERSARY

Recently, Tramer et al. (2020) introduced a comprehensive methodology for tailoring the optimiza-
tion procedure used to produce adversarial examples in order to overcome detection and defense
methods. In particular, the high level idea is to keep the attack as simple as possible while still
accurately targeting the detection method. More specifically, the methodology is based on designing
an attack based on gradient descent on some loss function. Further, minimizing the loss function
should correspond closely to subverting the full detection method while still being possible to op-
timize. Critically, the authors highlight that while the choice of loss function to optimize can be a
difficult task, the use of “feature matching” Gowal et al. (2019) can circumvent most of the current
detection methods. We now describe how we applied the methodology from Tramer et al. (2020) to
design detection aware adversaries for SO-DATA. As a first attempt, we tested the “feature match-
ing” approach that was used to break the Roth et al. (2019) detection method in Tramer et al. (2020).
This approach attempts to match the logits of the adversarial example to those of a clean example
from a different class in order to evade detection. To optimize the loss for this method we used up
to 1000 PGD iterations, and we searched step size varying from 0.01 to 10−6. We find that this
method succeeds in reducing the TPR of the Roth et al. (2019) method to nearly zero. It is also
able to slightly reduce the TPR of our SO-DATA method (see results in Table 2). However, as we
will see next, a larger reduction in the TPR of SO-DATA can be achieved by optimizing a modified
version of the loss from Carlini & Wagner (2017b). Our next attempt is based on a modification of
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Table 2: TPR for Feature Matching for SO-DATA and Roth et al. (2019) OAO FPR=0.01

Feature Matching Riverraid RoadRunner Alien Seaquest Boxing Robotank

SO-DATA 0.882 0.863 0.9016 0.955 0.988 0.8978
Roth et al. (2019) 0.0088 0.006 0.007 0.0146 0.0106 0.0158

the Carlini & Wagner (2017b) formulation to additionally minimize the cost function L(s) used in
SO-DATA,

min
sadv∈S

c · J(sadv) +
∥∥sadv − s

∥∥


+ λ · L(sadv). (16)

Recall that L(s) is consistently larger at adversarial examples than at clean examples. Thus the
above optimization problem attempts to find adversarial examples with as small values of L(s) as
possible. Since the function L(s) involves taking the sign of the gradient, we use Backwards Pass
Differentiable Approximation (BPDA) as introduced in Carlini & Wagner (2017b) to compute the
gradients. However, we also tried designing an adversary with a fully differentiable cost function
by using a perturbation in the gradient direction (without the sign). We found that this fully dif-
ferentiable adversary performed significantly worse than the one based on BPDA. We conducted
exhaustive grid search over all the parameters in this optimization method: learning rate, iteration
number, confidence parameter κ, and objective function parameter λ. In C&W we used up to 30000
iterations to find adversarial examples to bypass detection methods. We searched the confidence
parameter from 0 to 50, the learning rate from 0.001 to 0.1, and λ from 0.001 to 10. In our grid
search over these hyperparameters we found that there is a trade-off between the attack success rate
and the detection of the perturbations. In other words, if we optimize the perturbation to be unde-
tectable the success rate of the perturbation (i.e. the rate at which the perturbation actually makes
the agent choose a non-optimal action) decreases. Therefore, when finalizing the hyperparameters
for the SO-DATA detection-aware adversary we restricted our search to a setting where the decrease
in the success rate of the attack was at most 10%. Since FO-DATA is based on sampling a random

Table 3: TPR values of DATA in the presence of a detection aware adversary when FPR=0.01.

Detection Method RiverRaid RoadRunner Alien Seaquest Boxing Pong Robotank

SO-DATA — C&W 0.650 0.849 0.445 0.381 0.710 0.712 0.657
FO-DATA — C&W 0.346 0.348 0.351 0.193 0.621 0.325 0.0973

perturbation, we use another approach introduced by Carlini & Wagner (2017b) to minimize the
expectation of the original loss function when averaged over the randomness used in the detection
method. In particular, we estimate the expectation by computing the empirical mean of the loss over
50 samples from the same noise source. As for the case of SO-DATA we grid search over hyper-
parameters to achieve as low a TPR as possible while losing at most 10% in the success rate of the
attack. Table 3 shows the TPR in the adversary-aware setting with the best hyperparameters found
for each method. The fact that SO-DATA still performs quite well in the adversary-aware setting is
an indication that there is a fundamental trade-off between computing an adversarial example and
minimizing L(s). This trade-off makes sense in light of Proposition 3.1, which shows that searching
for an adversarial example in a small neighborhood will tend to increase L(s).

6 CONCLUSION

In this paper we introduced DATA, the first method for detection of adversarial attacks in deep re-
inforcement learning. Our method was theoretically motivated by the fact that local optimization
objectives corresponding to the construction of adversarial examples lead naturally to lower bounds
on the curvature of the cost function J(s, τ). We have further shown empirically that the curvature
of J(s, τ) is significantly larger at adversarial examples than at clean examples, leading to a highly
effective method SO-DATA for detecting adversarial examples in deep reinforcement learning. We
additionally demonstrate that SO-DATA remains effective in the adversary-aware setting, and con-
nect this fact to our original theoretical motivation. We believe that due to the strong empirical
performance and solid theoretical motivation SO-DATA can be an important step towards producing
robust deep reinforcement learning agents.

9



Under review as a conference paper at ICLR 2022

REFERENCES

Anish Athalye, Nicholas Carlini, and David A. Wagner. Obfuscated gradients give a false sense
of security: Circumventing defenses to adversarial examples. In Jennifer G. Dy and Andreas
Krause (eds.), Proceedings of the 35th International Conference on Machine Learning, ICML
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Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.),
Advances in Neural Information Processing Systems 32: Annual Conference on Neural Informa-
tion Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pp.
5210–5221, 2019.

Ajay Mandlekar, Yuke Zhu, Animesh Garg, Li Fei-Fei, and Silvio Savarese. Adversarially robust
policy learning: Active construction of physically-plausible perturbations. In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3932–3939,
2017.

Jan Hendrik Metzen, Tim Genewein, Volker Fischer, and Bastian Bischoff. On detecting adversarial
perturbations. In 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, arc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas Fidjeland, Georg Ostrovski, Stig Petersen, Charles
Beattie, Amir Sadik, Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg,
and Demis Hassabis. Human-level control through deep reinforcement learning. Nature, 518:
529–533, 2015.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: A simple and
accurate method to fool deep neural networks. In 2016 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, pp. 2574–2582. IEEE
Computer Society, 2016.

11

http://arxiv.org/abs/1612.08220


Under review as a conference paper at ICLR 2022

Tianyu Pang, Chao Du, Yinpeng Dong, and Jun Zhu. Towards robust detection of adversarial ex-
amples. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-
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2018, Montréal, Canada, pp. 4584–4594, 2018.

Lerrel Pinto, James Davidson, Rahul Sukthankar, and Abhinav Gupta. Robust adversarial reinforce-
ment learning. International Conference on Learning Representations ICLR, 2017.

Kevin Roth, Yannic Kilcher, and Thomas Hofmann. The odds are odd: A statistical test for detecting
adversarial examples. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of
the 36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long
Beach, California, USA, volume 97 of Proceedings of Machine Learning Research, pp. 5498–
5507. PMLR, 2019.

Jianwen Sun, Tianwei Zhang, Lei Xiaofei, Xie Ma, Yan Zheng, Kangjie Chen, and Yang. Liu.
Stealthy and efficient adversarial attacks against deep reinforcement learning. Association for the
Advancement of Artificial Intelligence (AAAI), 2020.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dimutru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. In Proceedings of the International
Conference on Learning Representations (ICLR), 2014.

Florian Tramer, Nicholas Carlini, Wieland Brendel, and Aleksander Madry. On adaptive attacks to
adversarial example defenses. NeurIPS, 2020.

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Van Hasselt, Marc Lanctot, and Nando. De Fre-
itas. Dueling network architectures for deep reinforcement learning. Internation Conference on
Machine Learning ICML., pp. 1995–2003, 2016.

Puyudi Yang, Jianbo Chen, Cho-Jui Hsieh, Jane-Ling Wang, and Michael I. Jordan. ML-LOO:
detecting adversarial examples with feature attribution. In The Thirty-Fourth AAAI Conference
on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial
Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in
Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 6639–6647.
AAAI Press, 2020.

12


	Introduction
	Related Work and Background
	Detection of Adversaries with Taylor Approximation (DATA)
	First-Order Detection of Adversaries with Taylor Approximation (FO-DATA)
	Second-Order Detection of Adversaries with Taylor Approximation (SO-DATA)
	Negative Curvature and Instability of Local Optimization

	Experiments
	Detection Aware Adversary
	Conclusion

