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Abstract

We explore the use of large language models
(LLMs) for zero-shot semantic parsing. Seman-
tic parsing involves mapping natural language
utterances to task-specific meaning representa-
tions. LLMs are generally trained on publicly
available text and code and cannot be expected
to directly generalize to domain-specific pars-
ing tasks in a zero-shot setting. In this work, we
propose ZEROTOP, a zero-shot task-oriented
parsing method that decomposes semantic pars-
ing problem into a set of abstractive and extrac-
tive question-answering (QA) problems. For
each utterance, we prompt the LLM with ques-
tions corresponding to its top-level intent and a
set of slots and use the LLM generations to con-
struct the target meaning representation. We ob-
serve that current LLMs fail to detect unanswer-
able questions; and as a result, cannot handle
questions corresponding to missing slots. We
address this by fine-tuning a language model
on public QA datasets using synthetic nega-
tive samples. Experimental results show that
our QA-based decomposition paired with the
fine-tuned LLM can zero-shot parse ≈ 16% of
utterances in the MTOP dataset.

1 Introduction

Large language models (LLMs) are trained on pub-
licly available text (Raffel et al., 2020; Sanh et al.,
2021; Brown et al., 2020) and code (Chen et al.,
2021) and have been shown to attain reasonable
zero-shot generalization on a diverse set of NLP
tasks (Wang et al., 2019). However, they are not
expected to generalize to domain-specific semantic
parsing tasks in a similar way, where the inductive
bias from pre-training is less helpful. In this work,
we propose ZEROTOP that decomposes the seman-
tic parsing task into one of answering a series of
extractive and abstractive questions, corresponding
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to its top-level intent and a set of relevant slots,
and leverage the LLM’s ability to zero-shot answer
reading comprehension questions.

As illustrated in Figure 1, we cast top-level in-
tent classification as an abstractive QA task. To
address LLMs’ bias towards predicting labels com-
mon in the pretraining data (Zhao et al., 2021),
we propose to generate an intent description in an
unconstrained manner and infer the intent label
most similar to the generated description. We view
slot value prediction as an extractive QA problem.
Most utterances do not mention all the slots. It is
therefore essential for the model to abstain from
prediction when corresponding slots are not men-
tioned. Through our analyses, we observe that
most LLMs frequently hallucinate text for miss-
ing slots with high confidence, resulting in poor
performance. To address this, we fine-tune an LM
on a collection of public QA datasets augmented
with synthetic unanswerable samples. We call our
trained model Abstainer, as it is capable of identi-
fying unanswerable questions and abstaining from
prediction. We hierarchically prompt for nested
slots using the Abstainer, and infer nested intents
if their corresponding slots are detected. We empir-
ically show that this QA based decomposition of
ZEROTOP is an effective way to leverage LLMs
for domain specific semantic parsing, outperform-
ing several strong baselines in the zero shot setting.

2 Related Work

LLMs are increasingly used for semantic parsing in
low-data scenarios utilizing canonical representa-
tions (Shin et al., 2021; Yang et al., 2022), and
prompt-tuning (Schucher et al., 2022; Drozdov
et al., 2022). The closest work to ours is Zhao
et al. (2022) where they decompose parsing into
QA tasks. However, they assume access to some an-
notated data whereas we focus on a strict zero-shot
setting where only the schema information is avail-
able along with some natural language prompts for
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Figure 1: ZEROTOP hierarchically prompts LLMs for identifying intents, slots, and nested intents, and combines
LLM generations to create meaning representation. First, we identify top-level intent. Next, we prompt for each slot.
If a slot can accommodate nested intents (in red), we prompt for nested slots and infer nested intents.

schema entities. Our work is also related to ap-
proaches towards zero-shot dialog state tracking
using LLMs (Gao et al., 2020; Lin et al., 2021a,b).
Specifically, Lin et al. (2021a) uses an Abstainer
to handle missing slots. Our method differs in that,
we focus on semantic parsing where the Abstainer
needs to be applied multiple times along with intent
detection to create nested meaning representations.

3 ZEROTOP: Zero-Shot Task-Oriented
Semantic Parsing

Problem Formulation We focus on task-
oriented parsing with hierarchical intent-slot
schema. Let I = {I1, I2, . . . , In} and S =
{S1,S2, . . . ,Sm} be the set of all possible top-
level intents and slots respectively. Each intent
Ij has a set of slots Sj = {Sj

1 ,S
j
2 , . . . ,S

j
n} that

can be filled. Possible slots in an intent are rep-
resented by the intent-to-slot mapping I2S: I →
P(S), where P(·) is the powerset operator. Sim-
ilarly, the inverse slot-to-intent mapping is repre-
sented by S2I: S → I. The input in our setting
consists of I2S and S2I, but no annotated data.
ZEROTOP requires users to provide a question per
slot Q = {QS1 ,QS2 , . . . ,QSk

}, that represents
their purpose. In a real-life setting, this can be
obtained from a domain developer.

Unconstrained Generation for Zero-Shot Intent
Classification We view zero-shot intent classi-
fication as an abstractive QA problem. One intu-
itive way is to prime the LLM with a QA prompt
and then constrain the generation to search over
only valid intent labels (Shin et al., 2021). How-
ever, LLMs are known to be biased towards text
sequences (Zhao et al., 2021) more common in pre-
training data. For example, in the MTOP dataset,
the T0-3B model predicts CREATE_CALL (make

Algorithm 1: ZEROTOP: Our proposed
Zero-shot semantic parsing method.

Input: Set of intents I, Set of slots S, Slot questions
Q, intent-to-slot mapping I2S, slot-to-intent
mapping S2I, slot-to-candidate-nested-intent
mapping S2NI, Intent-model MI , Abstainer Mabs,
and Utterance u

Output: Predicted meaning representations MR
intent = MI(u)
slotValues = {}
for slot Si ∈ I2S(intent) do

slotValues[Si] = Mabs(u,QSi)
for candidate N.intent Ij ∈ S2NI(Si) do

for slot Sj ∈ I2S(Ij) do
if Mabs(slotValues[Si],QSj ) is not

NONE then
Update slotValues[Si] with

nested intent Ij ,
Mabs(slotValues[Si],QSj )

MR = Construct representation with intent,
slotValues

Return MR

call) as intent for 92% of the data in the call do-
main. Therefore, we propose to first generate an
intent description in an unconstrained fashion by
priming the LM with the following prompt.
Answer the following question depending on the context.
context: A user said, {utterance}.
question: What did the user intend to do?
answer:

Then, we choose the intent label that is most simi-
lar to generated answer using RoBERTa sentence
similarity (Reimers and Gurevych, 2019). Unlike
Zhao et al. (2022), our approach does not require
enumerating choices in the prompt allowing us to
handle a large number of intents and slots as found
in datasets like MTOP.

Leveraging QA datasets for Slot Value Predic-
tion Slot value prediction involves extracting
phrases for a slot from the user utterance. We cast
this as an extractive QA problem. All slots might



not be mentioned in an input utterance. For exam-
ple, in the MTOP dataset, on average, only one-
third of possible slots are mentioned per utterance.
The QA model needs to abstain from prediction
for such missing slots. To analyze the abstaining
capability of pre-trained QA models, we consider a
few top-performing zero-shot LLMs T0-3B, GPT-
3, and Codex with their corresponding prompts and
experiment on a 500 sample subset of unanswer-
able questions from the SQuAD dataset (Rajpurkar
et al., 2018). We observe the accuracy of all mod-
els to be < 5% and notice that they frequently
hallucinate and generate answers for unanswerable
questions. In section 4, we also consider a log-
likelihood-based threshold for abstaining and show
that this threshold is difficult to tune using public
QA datasets.

To address this challenge, we leverage multiple
publicly available QA datasets1 to train Abstainer,
a QA model capable of abstaining from prediction.
Specifically, we generate synthetic unanswerable
training samples by modifying existing QA data,
and train a QA model jointly on existing datasets
and synthetic unanswerable questions. For every
(question, answer, context) triplet, we generate syn-
thetic unanswerable questions by either (1) remov-
ing the sentence containing the answer span from
the context, or (2) randomly sampling a context
that doesn’t have the same question. After training
the Abstainer, we prompt it for each slot with its
corresponding question for slot value prediction, in
the following format:

Answer the following question depending on the context.
context: A user said, {utterance}.
question: {slot question}
answer:

Nested Intents To identify nested intents, we as-
sume knowledge of candidate nested intents that
can be accommodated by each slot, represented by
the slot-to-candidate-nested-intent mapping S2NI:
S → P(I). Our method assumes that depth of out-
put representations is at most 4 i.e. nested intents
cannot further have more nested intents. One intu-
itive way is to prompt the LLM for nested intent
with the intent prediction prompt. However, our un-
constrained generation-based intent model would
predict many false positive nested intents. We in-
stead use Abstainer to prompt for their respective
slots. If any slot value is identified, we consider its
corresponding intent via S2I to be present as well.

1The QA datasets details are mentioned in Appendix A.1

ZEROTOP: Putting it all together The pseudo-
code of ZEROTOP is mentioned in Algorithm-1.
ZEROTOP employs a top-down, greedy prompting
strategy, where we first prompt for intent and then,
its respective slots. First, we obtain the top-level in-
tent using the intent model. Based on the predicted
intent, we prime the Abstainer for corresponding
slots using their respective questions as prompts.
For each identified slot value, we prompt the Ab-
stainer for slots of candidate nested intents. We
use the same prompt format for this step with the
identified slot value now considered as the input
utterance. Finally, we combine predicted intent,
identified slot values, and nested intents to create
the meaning representation.

4 Experiments

We experiment on the English language subset of
MTOP (Li et al., 2021) dataset. MTOP is a multi-
lingual task-oriented semantic parsing dataset com-
prising data from 6 languages and 11 domains. The
test set has 4386 samples with 113 distinct intents
and 74 slots. On average, each intent has 3.6 slots
and 33% of possible slots are filled per utterance.
Experiment Settings. We evaluate on the zero-
shot setting, therefore we have no training data.
We manually create questions for slots Q using one
example per slot. For training Abstainer, we fine-
tune T0-3B on the extractive and abstractive QA
datasets for 1 epoch with a constant learning rate
of 10−4. We use complete meaning representation
match accuracy as the performance metric. More
details in Appendix A.2.
Baselines. We compare ZEROTOP with con-
strained T0-3B, GPT-3 and Codex as intent mod-
els where they are primed with intent generation
prompt and are constrained to search over valid
intent labels. We also compare with calibrated
constrained T0-3B (Zhao et al., 2021) whose log-
its are adjusted to counter LM biases. We con-
sider an ablation of ZEROTOP where we assign in-
tent labels based only on their similarity with user
utterance using RoBERTa sentence transformer.
ZEROTOP-Intent represents our proposed intent
prediction method.

We compare with constrained T0-3B, GPT-3,
and Codex as slot models as well, however, when
primed with a question corresponding to a slot, the
output is constrained to be either from the utter-
ance or from their corresponding phrases indicat-
ing that question cannot be answered. We com-



Intent Model Accuracy(%)

T0-3B constrained 34.02
T0-3B constrained calibrated 36.64
GPT-3 constrained 40.44
Codex constrained 48.02
RoBERTa sentence 47.14
ZEROTOP-Intent 49.58

Table 1: Top-level intent classification results.

Intent Model Slot Model Acc(%)

GPT-3 constrained GPT-3 constrained 3.00*

Codex constrained Codex constrained 5.40*

T0-3B constrained
T0-3B constrained 2.42
Abstainer 11.81

RoBERTa sentence
T0-3B constrained 3.88
Abstainer 12.90

ZEROTOP-Intent

T0-3B constrained 4.10
T0-3B constrained-MTQA 4.63
T0-3B constrained-SEQZERO 8.39

Abstainer-MTQA 13.12
Abstainer-SEQZERO 13.68
Abstainer 15.89

Table 2: Complete meaning representation match eval-
uation. To limit API cost, we limit GPT-3 and Codex
evaluation on a 500-example subset, and hence their
results are not directly comparable.

pare with two kinds of prompting for slot values.
MTQA (Zhao et al., 2022) propose prompting an
LLM to identify filled slots and then prime for
their respective values. SEQZERO (Yang et al.,
2022) introduce prompting each slot sequentially
and using the previously identified slot value for
prompting the next one. Abstainer is our finetuned
T0-3B that abstains from prediction. We prompt
for each slot independently.

Results and Discussion From zero-shot intent
classification results in Table 1, we observe
that ZEROTOP-Intent performs significantly bet-
ter than constrained T0-3B, GPT-3, and Codex.
We found that constrained T0-3B is biased to-
wards certain labels. For example, it predicts
CREATE_CALL (make call), SEND_MESSAGE
(send message), CREATE_REMINDER (create re-
minder), as intent for more than 90% of the data in
call, message, reminder domains respectively. Our
proposed unconstrained formulation lets the model
freely express the intent and, computing similarity
later with the intent labels addresses this bias.

As shown in Table 2, the combination of
ZEROTOP-Intent and Abstainer demonstrates su-

perior performance than alternative combinations.
We observe that T0-3B, GPT-3, and Codex fail to
abstain frequently. The T0-3B model abstains only
for 38% of unanswerable slot questions whereas
Abstainer does for 89%. As a result, we observe
a notable performance gain by plugging in Ab-
stainer as the slot model for each intent model base-
line. Moreover, we observe MTQA and SEQZERO
prompting methods, which are originally proposed
for custom-finetuned & few-shot models, offer lit-
tle assistance in zero-shot settings. For instance,
when applying MTQA prompting to the T0-3B
model, we observe marginal improvements. This
indicates that the pre-trained T0-3B is unable to
accurately identify fillable slots, demonstrating the
necessity of Abstainer. Similarly, while SEQZERO
prompting improves the performance of T0-3B,
its effectiveness remains significantly inferior to
Abstainer. Finally, we see similar performance of
MTQA and SEQZERO prompting with Abstainer.
However, our approach of independently prompt-
ing for each slot outperforms them.

Annotation Effort Analysis We use 74 samples
i.e. one per slot to design questions for slots. To
analyze annotation effort, we train an utterance-to-
meaning representation T5-3B (Raffel et al., 2020)
parser using these 74 samples and compare it with
our method. The match accuracy of T5-3B parser
on the MTOP dataset is 8.19% and of ZEROTOP
is 15.89%, justifying our annotation effort.

Greedy vs Beam search ZEROTOP follows a
greedy strategy where we hierarchically prompt for
top-level intent and for its corresponding slots. We
compare it with the beam search strategy with beam
size 3. Specifically, we consider 3 top-level intents
and prompt for their corresponding slots, consider
top-3 slot values for every slot and finally compute
the best meaning representation based on their ag-
gregated NLL scores. The NLL score of intent Im,
its slots Sj ∈ I2S(Im), and their corresponding
slot values slotValues[Sj ] is computed:

α log p(Im) + (1− α)
∑
Sj

log p(slotValues[Sj ]|Im)

where α is tuned on a held-out validation set. Note
that p(slotValues|Im) is computed recursively for
its nested intents. The complete match accuracy of
the greedy prompting strategy on MTOP dataset
is 15.89% and of beam search strategy is 16.86%.
This demonstrates that beam search can improve
performance with validation data. Without valida-
tion data and setting α to 0.5, performance drops



1 2 3 4 5
NLL Threshold

5
10
15
20
25
30
35
40

F1
 sc

or
e

F1 score vs NLL Threshold on MTOP-EN

T0-3B
GPT3
Codex
Abstainer

(a) F1 score vs NLL threshold on MTOP dataset

1 2 3 4 5
NLL Threshold

0
5

10
15
20
25

F1
 sc

or
e

Codex F1 vs NLL Threshold on SQuAD

Answerable
Unanswerable
All

(b) F1 score vs NLL threshold on SQuAD dataset

Figure 2: We consider negative log-likelihood (NLL) as
a confidence score and vary the threshold to abstain from
prediction and plot F1 scores on the MTOP dataset. We
show that this NLL threshold is difficult to tune using
public QA datasets such as SQuAD as performance
on answerable and unanswerable subsets is mutually
exclusive.

to 12.36% i.e. 3% less than greedy. Therefore, we
believe greedy prompting is a better choice.

Confidence score-based Abstainer study We
can alternatively have LLMs abstain from predic-
tion based on a confidence score based threshold.
We consider negative log likelihood (NLL) of the
predicted slot value as the confidence score and
abstain from prediction if it is greater than the
threshold. We experiment on slot value predic-
tion task with T0-3B, Codex, and GPT3 as LLMs
and plot macro F1 scores for multiple NLL thresh-
olds on a randomly sampled subset of 500 samples
from MTOP dataset in Figure 2(a). Specifically,
we consider the gold intent of each sample and
prime LLM for extracting slot values for each slot
of the gold intent. We consider F1 score as the met-
ric due to the label imbalance across possible slot
values. We present the F1-score of the Abstainer
for reference. First, we observe that Abstainer is
significantly better than T0-3B and GPT3 for all
confidence thresholds. Second, we notice that there

is no threshold that consistently results in good per-
formance for all LLMs, which implies that this has
to be individually tuned for each LLM. Finally, we
observe Codex performs better than Abstainer for
some thresholds. As our problem setting includes
no annotated data, we investigate whether we can
infer the optimal threshold for Codex using public
QA datasets. Specifically, we consider 500 answer-
able and 500 unanswerable QA pairs from SQuAD
dataset and plot F1 scores with a range of confi-
dence thresholds in Figure 2(b). We can observe
that the performance on answerable and unanswer-
able subsets is mutually exclusive i.e. there is no
threshold where the performance on both answer-
able and unanswerable subsets is high. The range
of thresholds that result in the best performance
on the whole set (highlighted in green) does not
transfer to MTOP and is achieved at the cost of
unanswerable set where the F1 score is less than
5%. Given the difficulty in tuning threshold and
the API costs of Codex, we believe using Abstainer
as the slot model to be a better choice.

5 Conclusion

In this paper, we propose ZEROTOP that decom-
poses semantic parsing into abstractive and extrac-
tive QA tasks. ZEROTOP identifies top-level intent
by generating in an unconstrained fashion and infer-
ring the intent label most similar to the generated
description. We train Abstainer using public QA
datasets, that is capable of identifying unanswer-
able questions and abstaining from prediction.

6 Limitations

ZEROTOP assumes that the meaning representa-
tions are of a limited depth i.e. nested intents can-
not further have more nested intents and this is
one of the limitations. Moreover, we also assume
that it is possible to write natural questions corre-
sponding to slots. A slot for which a natural ques-
tion cannot be expressed, the LLM can’t handle it
without additional supervision. Finally, we believe
there is a huge scope for improvement in the perfor-
mance of LLMs and ZEROTOP in domain-specific
tasks such as zero-shot semantic parsing and on the
MTOP dataset.

7 Ethics Statement

This paper proposes a zero-shot semantic parsing
method using large language models. The aim
of the paper is to minimize the human effort in



annotation by leveraging language models. The
output of our method is a meaning representation
that doesn’t contain any harmful content. Hence,
we do not anticipate any major ethical concerns.
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Type Dataset # Samples

Extractive

Adversarial QA (Bartolo et al., 2020) 36000
QA-SRL (He et al., 2015) 8597
DuoRC (Saha et al., 2018) 186089
ROPES (Lin et al., 2019) 14000
SQuADv2 (Rajpurkar et al., 2018) 150000
Quoref (Dasigi et al., 2019) 24000

Abstractive

ReCoRD (Wang et al., 2019) 121000
DREAM (Sun et al., 2019) 10197
QuaRTz (Tafjord et al., 2019) 3864
Tweet-QA (Xiong et al., 2019) 10692

Table 3: Relevant statistics of the QA dataset used to
train Abstainer.

A Appendix

A.1 QA Datasets for Training Abstainer

Publicly available QA datasets have been
previously leveraged for generating synthetic
data (Mekala et al., 2022b) in weakly (Mekala and
Shang, 2020; Mekala et al., 2020) and minimally
supervised settings (Mekala et al., 2021, 2022a). In
this paper, we use multiple extractive and abstrac-
tive QA datasets to generate synthetic unanswer-
able samples and train Abstainer. The details about
datasets are mentioned in Table 3.

A.2 Experimental Settings

We use the OpenAI API text-davinci-001
for GPT-3 and code-davinci-002 for Codex.
The Abstainer is fine-tuned on 411732 answerable
and 435898 unanswerable samples. The batch size
is 32 and each batch contains an equal number of
answerable and unanswerable samples. We used 8
× NVIDIA Tesla V100 for our experiments.

A.3 Frequently Asked Questions

What is the scope of the presented ideas? We
believe our idea can be easily extended to any se-
mantic parsing tasks involving natural language
interfaces; we considered Task-oriented parsing
as a first step because of its simpler representa-
tion. Through this work, we wanted to highlight an
important real-life task that LLMs such as GPT3,
Codex, and T0 underperform. Therefore, we be-
lieve this is useful and hope our work motivates
more researchers to focus on this shortcoming.

Why didn’t you extract all syntactic phrases of a
certain type in the tree for slot-value detection?
Syntactic phrase-based extraction of slot values re-
quires users to manually enter rules (a.k.a. labeling
functions) for each slot. When the number of slots

increases (e.g. 74 in MTOP), it demands significant
manual effort from users, which our paper aims to
reduce. Moreover, such rules would generally pre-
dict many false positives/negatives, and classifying
or identifying the appropriate ones accurately re-
quires training data, which is not available in our
zero-shot setting. Therefore, we compare against
strong LLMs that are known for their impressive
zero-shot performance such as GPT3, Codex, T0.

The baseline LLMs such as GPT3 and Codex
are not trained for semantic parsing. Wouldn’t
this make the performance improvement us-
ing ZEROTOP less significant? We compare
against the T0 model which is fine-tuned on several
QA datasets like our Abstainer model. We cannot
fine-tune the GPT3 and Codex models on these
datasets separately. However, these instruction-
tuned GPT3 and Codex are known to perform
well on several question-answering & reading com-
prehension benchmarks (Robinson and Wingate,
2023). Therefore, we consider them as competitive
baselines. In this paper, we show that these per-
form worse on zero-shot task-oriented parsing even
when it is converted into a QA task, for which they
are known to perform well. The reason behind their
poor performance is because (1.) they are biased to-
ward predicting labels common in the pre-training
data, and (2.) they frequently hallucinate text for
unanswerable questions. Through our work, we
present this shortcoming, analyze the cause, and
propose a method to fix it.

Why did you choose one prompt per slot and
not multiple? We can possibly consider multi-
ple prompts per slot and ensemble the predictions,
which would intuitively boost the performance.
However, multiple prompts per slot imply more
annotations. Our motivation behind this work is to
minimize the human annotations, thus we chose a
single prompt per slot.


