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ABSTRACT

Large language models (LLMs) are increasingly used for text embedding, yet most
decoder-only architectures remain underexplored for this purpose. We present a
unified instruction-based framework that adapts decoder-only LLMs into general-
purpose text encoders without architectural modifications. Our approach inte-
grates four complementary techniques: (i) in-context learning with structured in-
structions to generate context-aware embeddings without costly fine-tuning, (ii)
soft supervision via knowledge distillation from a high-performance teacher re-
trieval pipeline, (iii) adaptive margin-based hard-negative mining to stabilize con-
trastive learning, and (iv) a principled two-stage curriculum learning strategy that
first builds a semantic foundation on Semantic Textual Similarity (STS) before
specializing on retrieval tasks.

Our analysis shows that this sequential curriculum is critical for robust perfor-
mance, substantially outperforming simultaneous multi-task training. Evaluated
on the 41 diverse tasks of the MTEB (English, v2) benchmark, our model achieved
the state-of-the-art results, and consistently ranks among the very top models
demonstrating both strong overall performance and robustness compared to larger
or fully fine-tuned models. Notably, it excels in semantically demanding cate-
gories such as Retrieval, Semantic Textual Similarity, and Summarization. These
results highlight the effectiveness of strategically combining instruction-based
prompting, soft-label distillation, adaptive sampling, and curriculum learning to
unlock the potential of decoder-only LLMs as powerful and flexible text embed-
ding models.

1 INTRODUCTION

Text embeddings are a cornerstone of modern NLP, and the advent of large language models (LLMs)
has catalyzed a shift toward using them as powerful, general-purpose text encoders. Models like
Llama2Vec (BehnamGhader et al.,2024), ES-Mistral (Wang et al.,[2023)) and NV-Embed (Lee et al.}
2024a) have demonstrated remarkable performance by fine-tuning decoder-only LLMs. However,
these successes often hinge on full-parameter fine-tuning or significant architectural modifications,
which can be computationally expensive and may constrain the models’ intrinsic generalization
abilities. Furthermore, the efficacy of contrastive learning, a standard training paradigm, is often
hampered by supervision quality, including noisy labels and the presence of false negatives.

To address these limitations, we propose a unified framework designed to generate high-quality
embeddings by harnessing the latent strengths of LLMs with minimal intervention. Our approach
is built on several synergistic innovations. First, we leverage in-context learning (ICL), guiding
the model with task-specific instructions and few-shot examples to produce specialized embeddings
without updating its weights, thus maximizing flexibility and efficiency. Second, we tackle the
supervision quality problem by incorporating soft labeling, distilling continuous-valued relevance
scores from a state-of-the-art teacher retrieval pipeline. These nuanced signals provide richer seman-
tic guidance than traditional binary labels. Third, we introduce an adaptive margin-based strategy
for hard-negative mining, which dynamically filters out ambiguous examples to stabilize training
and sharpen the model’s discriminative power.
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Beyond what the model learns from, we identify that how the model learns is equally critical. Our
investigation into curriculum learning reveals that a structured, sequential training strategy is a key
driver of performance. We demonstrate that a two-stage curriculum, which first establishes a strong
semantic foundation with a Semantic Textual Similarity (STS) task before specializing on a discrim-
inative retrieval task, is significantly more effective than conventional multi-task learning.

This paper makes the following key contributions:

* We present a unified, instruction-tuned framework that synergistically combines in-context
learning, soft-label distillation, and adaptive negative sampling to train a powerful text
embedder from a frozen decoder-only LLM.

* We demonstrate that knowledge distillation from a hybrid teacher pipeline, which provides
continuous relevance scores, significantly improves the semantic quality of embeddings
over training with hard labels alone.

» Through extensive ablation studies, we provide a systematic analysis of curriculum learn-
ing, revealing that a two-stage curriculum—first training on semantic similarity (STS) and
then on retrieval tasks—is critical for achieving balanced, state-of-the-art performance and
substantially outperforms simultaneous multi-task learning.

* Our proposed model achieves a top-tier Borda rank on the comprehensive MTEB bench-
mark, validating its robust generalization across 41 tasks and outperforming strong base-
lines in key areas like retrieval and summarization.

2 RELATED WORKS

LLM-based Text Embedding Models Recent research has increasingly explored the use of large
language models (LLMs) as backbone encoders for text embedding tasks. This shift is evident in
models such as Llama2Vec(BehnamGhader et al.| [2024), which introduced two pretraining objec-
tives to better align LLMs with embedding tasks, yielding substantial performance improvements
on retrieval benchmarks like BEIR. However, its performance on the MTEB leaderboard remains
relatively modest. Other models such as E5-Mistral(Wang et al.|[2023)), Linq(Kim et al., [2024]), and
Gecko(Lee et al., 2024b) have leveraged large-scale synthetic data to effectively fine-tune LLMs,
achieving strong results across both retrieval and non-retrieval tasks. NV-Embed(Lee et al., 2024a)
further advances this line of work by incorporating a latent attention pooling mechanism and a two-
stage training strategy to mitigate false negatives, leading to significant improvements in retrieval
robustness. In contrast, our framework achieves stronger performance without architectural changes
or full fine-tuning. By preserving the frozen backbone and relying on instruction-driven embedding
generation, we maximize efficiency and retain the LLM’s inherent generalization capacity.

Shift Toward In-Context Learning Despite the strong performance of LLM-based embedding
models, prior approaches have often relied heavily on architectural modifications—such as replac-
ing unidirectional attention with bidirectional mechanisms—or full model fine-tuning. These strate-
gies, while effective, tend to overlook the inherent generalization capabilities of LLMs and require
substantial computational resources. Recently, however, there has been a shift toward leveraging in-
context learning (ICL) as a more efficient alternative. Models such as BGE-en-icl (Li et al.l [2024])
demonstrate that task-specific prompts and demonstrations can be used to condition LLMs for em-
bedding generation without modifying model weights. This emerging paradigm highlights the po-
tential of ICL for building flexible and adaptive embedding systems that generalize well across tasks
while minimizing the cost of training and deployment.

High-Quality Supervision via Soft Labeling and Hard-Negative Mining. Recent advances in
embedding model training highlight the importance of soft labeling and hard-negative mining. In
particular, soft supervision signals derived from high-capacity reranker models—often implemented
via teacher-student frameworks—have proven effective in guiding embedding models toward bet-
ter alignment with semantic similarity objectives (Mandal et al., [2024). Meanwhile, hard-negative
mining strategies play a critical role in closing the semantic gap between positive and negative pairs
and in mitigating the risk of false negatives during contrastive learning. Building on these insights,
our goal is to develop a generalized embedding model that preserves the inherent strengths of LLMs
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by leveraging in-context learning. Without requiring architectural modifications or full-scale fine-
tuning, our approach aims to achieve strong adaptability across both retrieval and non-retrieval tasks,
while maintaining efficiency in training and deployment.

3 TRAINING DATASET

Retrieval Datasets Following the common approaches taken by top-performing models on the
English MTEB leaderboard (Enevoldsen et al.|[2025)), we employ a set of publicly available retrieval
datasets, including MSMARCO (Nguyen et al.,[2016)), HotpotQA (Yang et al.,[2018), Natural Ques-
tions (Kwiatkowski et al., 2019), SQuAD (Rajpurkar et al.,[2016)), ELIS (Fan et al.,2019), ArguAna
(Wachsmuth et al., [2018)), FIQA (Maia et al., 2018), FEVER (Thorne et al., |2018)), Quora Duplicate
Questions (Sharma et al.| [2019). These retrieval datasets are annotated not only with hard labels,
such as positive and negative pairs, but are also enhanced with soft labels, which are described in
detail in the following section Furthermore, they are processed through a sophisticated hard-
negative mining strategy, which will also be detailed in the subsequent section .3]

Non-Retrieval Datasets Similar to other models (Lee et al.|[2024a; L1 et al., [2024), we also incor-
porate publicly available datasets from non-retrieval benchmarks, particularly those associated with
classification, clustering, reranking, and semantic textual similarity (STS) within the MTEB tasks.
Importantly, we use only the training data and omit test splits to maintain evaluation integrity.

For classification tasks, we utilize a range of benchmark datasets, including AmazonCounterfactual-
Classification (O’Neill et al., [2021), AmazonReviewsClassification (McAuley & Leskovec, |2013)),
Banking77Classification (Casanueva et al., 2020), EmotionClassification (Saravia et al.,|2018)), Imd-
bClassification (Maas et al.| [2011), MTOPIntentClassification (Li et al., 2020), ToxicConversation-
sClassification (cjadams et al., [2019), and TweetSentimentExtractionClassification (Maggie et al.,
2020).

We utilize a range of clustering datasets such as ArxivClustering{ﬂ BiorxivClustering E[, Medrx-
ivClusteringﬂ TwentyNewsgroupsClustering (Lang, [1995), RedditClustering (Geigle et al., 2021},
StackExchangeClustering (Geigle et al., 2021)).

For reranking tasks, we incorporate SciDocsRR (Cohan et al., [2020) and StackOverflowDupQues-
tions (Liu et al., 2018) into our training corpus. Additionally, we include the training splits of
three widely used semantic textual similarity datasets—STS12 (Agirre et al., |2012), STS22 (Chen
et al., 2022), and STS-Benchmark (Chen et al., [2022)—to enhance the model’s ability to capture
fine-grained semantic relations.

Overall, our training corpus covers retrieval, classification, clustering, reranking, and STS tasks,
providing diverse supervision to improve generalization. A full list of task-specific instruction tem-
plates is provided in Appendix B.2.

Data Conversion To unify heterogeneous supervision across tasks, we convert certain datasets
into a common instruction-response format. In particular, natural language inference (NLI) data are
reformulated into semantic textual similarity (STS) style sentence pairs, allowing the model to learn
fine-grained semantic relationships in a consistent way across tasks. Pairs labeled as entailment
are converted to positive pairs with high similarity scores, and contradiction pairs are converted
to negative pairs, while pairs labeled as neutral are excluded from training due to their ambiguous
semantic alignment. Further details of this conversion process, including the mapping strategy and
examples, are provided in Appendix B.3.

4 PROPOSED METHODS

Our framework integrates multiple components including a hybrid retrieval pipeline, soft-label dis-
tillation, instruction-based embedding generation, and curriculum learning. To provide an overview
of how these components interact, we illustrate the overall architecture in Figure|[T]

"https://www.kaggle.com/datasets/Cornell-University/arxiv
*https://api.biorxiv.org/
3https://api.medrxiv.org/
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Figure 1: Overall architecture of our framework. A hybrid retrieval and reranking pipeline produces
soft labels, which supervise the training of a decoder-only LLM via contrastive learning, yielding
the final embedding model.

4.1 KNOWLEDGE DISTILLATION VIA SOFT LABELING

To enhance the semantic discrimination capability of our embedding model, we employ soft-label
distillation using similarity scores generated by our retrieval pipeline system. These continuous-
valued relevance signals serve as soft targets, guiding the embedding model to learn nuanced se-
mantic relationships through contrastive learning. We opted for this pipeline-based approach as it
provides a strong balance of high performance and computational efficiency, especially when com-
pared to more resource-intensive alternatives like large language models (LLMs). A more detailed
discussion on this design choice and future directions is presented in Section [6]

Unlike hard labels, which provide binary relevance judgments, soft labels offer richer information
by capturing the teacher model’s confidence across different candidates. This approach aligns with
recent theoretical insights: Mandal et al. (Mandal et al., [2024) demonstrate that soft label supervi-
sion allows student models to generalize more effectively and requires fewer neurons to approximate
the teacher’s decision boundaries compared to hard-labeled training targets.

For soft-label distillation in this study, we employ a two-stage retrieval pipeline, as illustrated in
Figure [2| The pipeline integrates both lexical and semantic retrieval components, followed by a
reranker to generate relevance scores. In the first stage, candidate passages are retrieved using both
lexical search and semantic retrieval. In the second stage, the retrieved candidates are re-ranked
using the reranker, which assigns fine-grained relevance scores based on contextual alignment with
the query. The final ranked list is used for downstream tasks or soft-label distillation.

We employ three scoring functions to estimate the relevance between a query ¢ and a document d:

¢ Lexical Search (BM25):
The BM25 score is computed based on exact token overlap, using the formula:

f(gi,d) - (k1 +1)
f(qiad)+k1 ’ (1 —b+b- avl;len)

Lexical score(d, q) Z IDF(g;)

¢ Semantic Search (Dense Retrieval):
Semantic similarity is estimated via the dot product between dense query and document
embeddings:

Semantic score(q,d) = ¢q-d = Z q; - d;

¢ Reranker (Cross-Encoder):
Fine-grained semantic relevance is captured by a cross-encoder model fy, which takes both
query and document as input:

Reranker score(q, d) = fo([CLS], ¢, d)

To integrate the individual rankings from these components—denoted as L (lexical), S (semantic),
and R (reranker)—we adopt the Reciprocal Rank Fusion (RRF) algorithm (Cormack et al., |2009).
The combined score for a document d is computed as:

Ficorea Z L +l + Z k_|_ Z kE+r(d

leL
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Figure 2: Overview of the two-stage retrieval pipeline for soft labeling. In the first stage, candidate
passages are retrieved using both lexical and semantic search. The second stage employs a cross-
encoder reranker to refine the results by scoring query-document pairs for final ranking, which are
then used as soft labels.

where k is a constant hyperparameter, typically set to 60 as recommended by the original paper.

In our implementation, we adopt the standard InfoNCE loss (Izacard et al., 2021) as the contrastive
training objective. Given a batch of queries g¢;, their corresponding positive passages p;, and a group
of hard negatives corresponding to each query {n; ; }, the loss is calculated as:

N . .
=1 exp(sim(gi, ni j)/7) + exp(sim(q;, pi) /7)

N .
L=-3N 1o exp(sim(gi, pi)/7)
25

where sim(-) denotes cosine similarity and 7 is a temperature parameter.

Using soft targets from a strong teacher model, our embedding model is able to internalize fine-
grained semantic cues encoded in teacher output, leading to improved retrieval performance and
robustness across multiple tasks.

4.2 CONTEXT-AWARE EMBEDDING GENERATION VIA STRUCTURED INSTRUCTIONS

Traditional embedding models typically generate representations by directly encoding input text us-
ing an encoder or a language model. While this approach is simple and computationally efficient,
it lacks the flexibility to capture diverse user intents and domain-specific nuances, thereby limiting
generalization capabilities. In contrast, large language models (LLMs) with decoder only, such as
Mistral-7B (Jiang et al.| |2023)), have shown strong abilities to utilize contextual information from
structured inputs. In particular, decoder-only LLMs possess strong in-context learning (ICL) capa-
bilities, and a recent study has explored fine-tuning methods that effectively exploit the in-context
learning capabilities of decoder-only LLMs (Li et al., [2024)).

In our approach, we enable context-aware embedding generation by incorporating structured instruc-
tions along with few-shot examples. Each query is augmented with a task-specific instruction and
a set of demonstration pairs (query-passage), designed to simulate the semantics of the target task.
The input sequence is terminated with an [EOS] token, and the final embedding is extracted from
the representation of the last token. This design allows the model to implicitly learn task formats,

intents, and output patterns without requiring any parameter updates.
Formally, given a task instruction ¢, support examples {(q;,p;)}*_,, and a target query ¢, the input

is formatted as follows:

Examples{ (g, p;)}_, + Instruct: {task_definition} + Query

The resulting embedding, extracted from the [EOS] token, reflects both the semantic content of the
query and its contextual relevance to the task specification.
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Table 1: Comparison of top-ranked models on the MTEB (English v2) benchmark. Scores are aver-
aged across 41 tasks spanning retrieval, reranking, clustering, pair classification, classification, STS,
and summarization. Models are ordered by Borda rank, and the results demonstrate competitive
performance, particularly in retrieval and summarization. The reported scores correspond to the
snapshot of the official leaderboard as of June 2025.

Model Retrieval Reranking Clustering PairClassification  Classification STS  Summarization Mean (Task)
# of tasks 10 2 3 3 3 9 1 41
Seedl.5-Embedding 67.45 50.67 60.83 87.39 89.88 87.23 36.44 74.76
gemini-embedding-001 64.35 48.59 59.39 87.70 90.05 85.29 38.28 73.30
Ling-Embed-Mistral 60.14 49.44 54.07 88.44 83.00 84.69 37.26 69.80
jasper_en_vision_language_v1 56.05 50.00 60.52 88.14 90.27 84.37 37.19 71.41
SFR-Embedding-Mistral 59.33 50.15 54.93 88.59 80.47 84.77 36.32 69.31
NV-Embed-v2 62.84 49.61 47.66 88.69 87.19 83.82 35.21 69.81
text-embedding-005 58.77 48.84 51.91 87.62 86.03 85.18 35.05 69.60
text-embedding-004 59.06 48.48 51.52 87.65 86.03 84.84 36.12 69.53
gte-Qwen2-7B-instruct 58.09 50.47 58.97 85.90 88.52 82.69 35.74 70.72
e5-mistral-7b-instruct 57.62 49.78 51.44 88.42 79.85 84.32 36.57 67.97
Ours 66.18 49.13 59.25 88.67 89.97 86.69 38.93 74.12

4.3 ADAPTIVE MARGIN-BASED MINING STRATEGIES

Inspired by existing methodologies, we improve the robustness of contrastive learning and mitigate
the impact of false negatives by applying adaptive margin-based mining strategies that select the
negative passages of the top K according to the relevance score of the corresponding positive. This
approach dynamically adjusts the threshold for negative selection, ensuring that semantically similar
but nonidentical passages, often mislabeled as negatives, are excluded from training. As a result, it
reduces noise and preserves the semantic contrast signal essential for effective embedding learning.

Adopting the strategy proposed by Moreira et al. (Moreira et al.,|2024)), we take advantage of the
tow-stage IR pipeline as a teacher retrieval model to identify high-quality hard negative passages for
each query. We define the maximum allowable score for negative passages as a fixed proportion of
the corresponding positive score, applying a 95% margin. This is expressed as:

max_negative_score_threshold = positive_score X percentage_of_margin

Negative candidates with scores falling below this threshold are excluded during training. Subse-
quently, a random subset is sampled from the top-K ranked negatives to promote training diversity
and mitigate overfitting to commonly occurring distractors. These strategies are simple yet effective
and can be flexibly combined. They collectively ensure that training focuses on hard negatives that
are informative but not semantically indistinguishable from the positives—thereby enhancing both
retrieval accuracy and training stability.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Backbone Model We use Mistral-7B (Jiang et al., [2023) as our backbone model, initialized with
the official pre-trained weights. This choice is consistent with recent state-of-the-art text embedding
models such as ES-Mistral (Wang et al., 2023) and NV-Embed-v2 (Lee et al.| 2024a).

Fine-tuning Strategy We adopt parameter-efficient fine-tuning using Low-Rank Adaptation
(LoRA) (Hu et al.| 2022), combined with in-batch negative sampling that incorporates multiple
hard negatives for retrieval-oriented tasks. Detailed hyperparameter settings, including LoRA con-
figuration, learning rate schedule, and warm-up strategy, are provided in Appendix B.1.

Evaluation Benchmark We evaluate the model on the MTEB (English v2) benchmark, which
consists of 41 tasks across seven categories, including classification, clustering, retrieval, reranking,
and STS. To enable fair comparison, we follow the official Borda count ranking protocol (Colombo
et al., |2022; |[Enevoldsen et al., [2025).
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5.2 MAIN RESULTS ON MTEB BENCHMARK

Table |1| presents the average performance across seven task categories—classification, cluster-
ing, pair classification, re-ranking, retrieval, semantic textual similarity (STS), and summariza-
tion—comparing our model against state-of-the-art methods reported on the MTEB leaderboard
snapshot as of mid-2025.

While the model marked as Ours in Table E] achieves a mean score of 74.12, which is competitive
with the top-ranked system (74.76), it obtains a higher overall Borda rank. This indicates that the
model delivers more consistent and robust performance across a diverse spectrum of tasks, rather
than being specialized for a narrow set of categories.

Notably, our model achieves top-tier results in categories that demand a deep understanding of
semantic nuances, including Retrieval (66.18; 2nd place), STS (86.69; 2nd place), and Pair Classi-
fication (88.67; 2nd place). Furthermore, it secured the highest score (38.93) among all evaluated
systems in the Summarization task, demonstrating strong capability for contextual understanding.

5.3 ABLATION STUDIES

We conducted ablations to assess the contribution of each component. Soft-label distillation (Ta-
ble [2) provides clear and consistent gains, particularly for Retrieval and STS, validating the effec-
tiveness of continuous supervision.

Other analyses, including the effect of in-context learning (ICL) and the comparison of negative
sampling strategies, showed more nuanced trends: ICL yields marginal or task-specific improve-
ments, while our adaptive margin-based sampling stabilizes training and achieves the best overall
performance. For completeness, we report the full tables and detailed results of these analyses in
Appendix B.4.

5.3.1 ANALYSIS OF SOFT-LABEL DISTILLATION

We investigated the efficacy of our knowledge distillation approach by comparing performance with
and without soft labels in Table [2] In this comparison, the configuration“With soft-labeling” uses
continuous relevance scores distilled from our teacher pipeline, while the “Without soft-labeling”
configuration relies solely on binary hard labels for training.

The results clearly demonstrate the benefits of soft-labeling, with performance improving across
nearly all categories and boosting the overall mean score (+0.63). The most significant gains were
observed in PairClassification (+2.10) and Retrieval (+1.29), with other notable improvements in
tasks such as Summarization and STS. This confirms that the fine-grained, continuous signals from
the teacher model provide richer supervisory information than binary labels, enabling the student
model to learn more nuanced semantic relationships.

Table 2: Impact of soft-label distillation on model performance across MTEB categories. Using
continuous teacher-derived scores (with soft-labeling) improves results compared to only hard labels
(without soft-labeling), particularly for retrieval and STS.

Configuration Retrieval Reranking Clustering PairClassification Classification STS Summarization Mean (Task)
With soft-labeling 66.18 49.13 59.25 88.67 89.97 86.69 38.93 74.12
Without soft-labeling 64.89 48.67 59.43 86.57 89.66 86.23 38.26 73.49

5.4 ANALYSIS OF CURRICULUM LEARNING

We conduct a series of ablation studies to systematically analyze the impact of curriculum learning
(CL) on model performance. Our goal is to understand how the sequence, combination, and blending
of different training tasks contribute to building a robust and general-purpose text embedding model.
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5.4.1 SINGLE-TASK LEARNING RESULTS

We first establish baselines by training on curricula composed of a single task type. This allows us
to isolate the effect of each task on the model’s capabilities. As shown in the table below, single-task
training yields highly specialized models with significant trade-offs.

Table 3: Performance of single-task curriculum. Parentheses indicate the change from the baseline

model.
Strategy  Retrieval Reranking Clustering PairClassification Classification STS  Summarization Mean (Task)

Baseline 57.62 49.78 51.44 88.42 79.85 84.32 36.57 67.97
STS-only 61.34 48.50 59.19 86.06 89.53 86.42 38.05 72.54
RET-only 66.84 49.07 58.85 87.74 89.85 83.57 39.21 73.43

Observation: Single-task training leads to overfitting on narrow task objectives. An STS-only
curriculum improves semantic alignment but significantly degrades retrieval capabilities, while a
retrieval-only curriculum enhances domain discrimination but fails to capture broader semantic nu-
ances.

5.4.2 2-STAGE CURRICULUM RESULTS

Next, we investigate whether a 2-stage curriculum can mitigate the trade-offs observed in single-task
training. We find that combining tasks sequentially yields substantial gains, but the order of tasks is
critical to the outcome.

Table 4: Comparison of 2-stage curriculum ordering. The ST'S — RET sequence provides the
most balanced and significant performance boost.

Strategy Retrieval Reranking Clustering PairClassification Classification STS Summarization Mean (Task)
Stagel: RET — Stage2: STS 63.36 49.24 58.99 86.36 89.56 84.81 39.28 72.73
Stagel: STS — Stage2: RET 64.54 4891 59.09 87.69 89.75 86.61 41.01 73.60

Observation: All 2-stage curricula outperform single-stage counterparts. Crucially, the task se-
quence matters: initiating with STS establishes a strong semantic foundation, which is then effec-
tively specialized by retrieval training in Stage 2. The ST'S — RFET order proves to be the most
robust and synergistic combination.

5.4.3 3-STAGE CURRICULUM RESULTS

We further explore expanding to 3-stage curricula by adding a Clustering (CLU) stage, intended
to enforce domain-level structure. While the results are mixed, they highlight the challenge of
balancing multiple task objectives without catastrophic forgetting.

Table 5: Performance of representative 3-stage curriculum. Task ordering remains the dominant
factor.

Strategy Retrieval Reranking Clustering PairClassification Classification STS  Summarization Mean (Task)
CLU — RET — STS 63.49 48.81 59.70 86.66 89.47 84.53 38.87 72.82
RET — STS — CLU 63.62 48.62 59.15 86.49 89.71 84.47 38.66 72.75
STS — RET — CLU 63.76 48.58 59.57 87.09 89.79 86.24 38.14 73.30

Observation: Adding a third stage for domain regularization does not consistently outperform the
best 2-stage curriculum. The results reinforce that task ordering remains critical, and final-stage
fine-tuning (e.g., with STS) can help recover semantic alignment lost in prior stages.

5.4.4 IMPACT OF TASK DATA RATIOS IN CURRICULUM AND MULTI-TASK LEARNING

Finally, we investigate how the data mixing ratio between Retrieval (RET) and STS tasks influences
performance within both multi-task and curriculum learning frameworks. We experiment with vary-
ing STS:RET ratios to identify the optimal data allocation for each strategy.
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Table 6: Performance comparison of multi-task learning and curriculum learning under varying
STS:RET data ratios. For both strategies, a higher proportion of retrieval data (1:2) yields the best
results.

Strategy Retrieval Reranking Clustering PairClassification Classification STS Summarization Mean (Task)
STS:RET=1:1 65.14 46.11 58.78 84.66 89.70 79.48 33.80 71.57
STS:RET=2:1 64.90 48.74 59.16 86.60 89.80 84.42 36.40 73.03
STS:RET=1:2 65.71 48.90 59.19 87.29 89.77 85.57 37.79 73.57
STS — RET (1:1) 65.53 48.89 59.26 87.68 89.67 85.67 37.63 73.56
STS — RET (2:1) 65.17 49.43 59.06 87.62 89.59 85.52 36.66 73.39
STS — RET (1:2) 65.63 48.50 59.24 87.58 89.76 86.45 40.01 73.81

Observation: Our results indicate that the data mixing ratio is a critical hyperparameter. For both
multi-task and curriculum learning, a ratio of 1:2 (STS:RET) achieves the highest overall perfor-
mance, suggesting that the more complex retrieval task benefits from a larger data allocation. No-
tably, the optimal curriculum setup, STS — RET(1 : 2), still outperforms the best multi-task equiv-
alent, confirming that a sequential learning path combined with an appropriate data ratio is the most
effective strategy.

5.4.5 SYNTHESIS AND KEY INSIGHTS

Our granular analysis across single, multi-stage, and mixed-task settings culminates in a clear and
actionable insight: how the model learns is as critical as what it learns from. While training on
individual tasks yields specialized but brittle models (see Section [5.4.1)), a systematically designed
sequential curriculum is the key to unlocking synergistic gains across a diverse set of capabilities.

The most significant finding of this analysis is the superior performance of the STS — RET two-
stage curriculum. This specific sequence consistently outperforms not only the reverse order but
also more complex 3-stage curricula and simultaneous multi-task training (see Sections
and[5.4.4). We hypothesize that this success stems from an optimal learning progression: the model
first builds a robust foundation of general semantic understanding from the STS task, which is then
refined and specialized for the high-dimensional, discriminative requirements of retrieval.

Ultimately, this study demonstrates a core principle for model training: a structured, sequential
exposure to tasks is more effective than simultaneous, mixed-objective training. The STS — RET
curriculum serves as a powerful and principled blueprint for developing versatile embedding models
that excel across both semantic similarity and retrieval-centric benchmarks.

6 CONCLUSION

In this work, we propose an instruction-based framework for generating high-quality, general-
purpose text embeddings from decoder-only language models. The framework combines in-context
learning, soft labeling via knowledge distillation from a retrieval teacher, and adaptive hard-negative
mining, without requiring either architectural modifications or full fine-tuning.

Empirical evaluation on the MTEB benchmark demonstrates that the proposed approach achieves
competitive performance across a wide range of tasks, attaining a top-tier Borda rank. Our cur-
riculum learning analysis further indicates that a structured training strategy—starting with seman-
tic similarity tasks (e.g., STS) followed by retrieval—consistently outperforms both conventional
multi-task learning and more complex curriculum variants. These results highlight the importance
of task ordering and structure in achieving effective model generalization.

Based on these findings, we identify several directions for future research. The use of a resource-
efficient retrieval pipeline for soft-label distillation played a key role in our model’s scalability.
However, this design also presents a trade-off relative to more computationally expensive supervi-
sion from large language models (LLMs). A systematic comparison of these strategies, including
both performance and resource efficiency, remains an important open question. In addition, hybrid
approaches that integrate the scalability of retrieval-based pipelines with the semantic richness of
LLMs may enable the development of embedding systems that better balance efficiency, expressive-
ness, and generalization across tasks.
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ETHICS STATEMENT

This research does not involve human subjects, personally identifiable information, or sensitive
data. All datasets used in our experiments are publicly available and widely adopted in the research
community. Our work focuses on methodological advancements in text embedding and retrieval.
We acknowledge that, as with other embedding models, potential downstream impacts such as bias
amplification or misuse in sensitive applications may arise. We encourage responsible use of our
models and adherence to the ICLR Code of Ethics.

REPRODUCIBILITY STATEMENT

We have made extensive efforts to ensure the reproducibility of our results. All datasets used in
our experiments are publicly available benchmarks, including retrieval, classification, clustering,
and semantic textual similarity (STS) datasets described in Section 3. Data preprocessing steps and
task-specific instruction templates are also fully described in Section 3 and Appendix B. Hyper-
parameters, training strategies (e.g., curriculum ordering, soft-label distillation, adaptive negative
sampling), and model configurations are documented in Section 5 and Appendix B.

Our embedding model and training code are hosted on Hugging Face. However, in order to com-
ply with the double-blind review policy, we cannot disclose the repository link in this submission.
The public repository link will be included in the camera-ready version upon acceptance. We also
provide random seeds and detailed evaluation processes to facilitate consistent replication. Our ex-
periments were conducted primarily on NVIDIA A100 GPUs with PyTorch 2.1. We believe these
resources will facilitate reproducibility and foster future research.
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APPENDIX A. THE USE OF LARGE LANGUAGE MODELS
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ideation, methodological development, data analysis, or writing of technical content. All scientific
contributions are entirely the responsibility of the authors.
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APPENDIX B. ADDITIONAL EXPERIMENTAL DETAILS

B.1 HYPERPARAMETERS

For parameter-efficient fine-tuning, we employ Low-Rank Adaptation (LoRA) (Hu et al., [2022).
The rank is set to 64 and the scaling factor « to 32. We fine-tune the model for a single epoch using
a learning rate of 1 x 10~* with a linear decay scheduler and a warm-up ratio of 0.1. We apply
gradient clipping with a maximum norm of 1.0 and use a dropout rate of 0.1.

For retrieval-oriented tasks, we use in-batch negative sampling with 7 hard negatives per anchor.
Each positive query—document pair is accompanied by multiple sampled negatives, ensuring robust
contrastive learning.

Table 7: Detailed hyperparameter settings for Stage 1 and Stage 2 training.

Parameter Stage 1 (STS) Stage 2 (Retrieval)
Optimizer AdamW AdamW
Learning rate le-5 le-4
Batch size 256 128
Training epochs 1 2
Warmup ratio 0.1 0.1
Gradient clipping 1.0 1.0
Dropout 0.01 0.01
Learning rate schedule  Linear decay Linear decay
Weight decay 0.01 0.01
Temperature 0.02 0.02

B.2 INSTRUCTION TEMPLATES

Table 8] provides the complete set of task-specific instruction templates used in our training. These
instructions are adapted from prior work (Wang et al., 2023} L1 et al.l |2024) and tailored to align
each dataset with its corresponding task objective. For example, retrieval datasets are formatted with
query—document pairs, while STS datasets include sentence pairs with graded similarity scores.

B.3 DETAILS OF DATA CONVERSION

Some datasets were reformulated to fit our unified training scheme. In particular, natural language
inference (NLI) pairs were converted into STS-style sentence pairs with graded similarity labels,
ensuring compatibility with other semantic supervision tasks. The overall data conversion workflow
is illustrated in Figure [3| which shows how premise-hypothesis pairs are mapped into the STS
format.

As illustrated in Figure 3] we begin with a collection of NLI sentence pairs labeled as “entailment”,
“neutral”, or “contradiction”. Entailment pairs are assigned high similarity scores, contradiction
pairs are treated as negative examples with low similarity, and neutral pairs are discarded. The
resulting sentence pairs are then reformatted to align with the standard STS input format and incor-
porated into the training corpus for contrastive learning. Soft similarity scores are further applied,
as described in Section[d.1]

Additionally, to handle cases where a single query is associated with multiple positive passages,
each query—positive pair is separated into individual training instances. For example, if a query
has two positive passages [“A1”, “A2”], it is transformed into two examples: (query: “A”, positive:
“A1”) and (query: “A”, positive: “A2”). A deduplication step is then applied to remove redundant
pairs, which improves training efficiency by reducing unnecessary data duplication.

B.4 ADDITIONAL ABLATION RESULTS

Effect of In-Context Learning Table [J] reports the detailed comparison of zero-shot, one-shot,
and two-shot settings across MTEB tasks. While Summarization benefits from one-shot prompting,
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Table 8: Instruction templates for the training datasets used in our experiments

Task Name Instructions

ArguAna Given a claim, find documents that refute the claim.

ELI5 Provided a user question, retrieve the highest voted answers on Reddit ELIS
forum.

FEVER Given a claim, retrieve documents that support or refute the claim.

FiQA2018 Given a financial question, retrieve user replies that best answer the question.

HotpotQA Given a multi-hop question, retrieve documents that can help answer the ques-
tion.

MSMARCO Given a web search query, retrieve relevant passages that answer the query.

Natural Question Given a question, retrieve Wikipedia passages that answer the question.

QuoraDupQuestion Given a question, retrieve questions that are semantically equivalent to the
given question.

SQuAD Given a question, retrieve passages that answer the question

STS12, STS22, STSBenchmark Retrieve semantically similar text.

AmazonCounterfactualClassification Classify a given Amazon customer review text as either counterfactual or not-
counterfactual.

AmazonReviewsClassification Classify the given Amazon review into its appropriate rating category.

Banking77Classification Given a online banking query, find the corresponding intents.

EmotionClassification Classify the emotion expressed in the given Twitter message into one of the six
emotions: anger, fear, joy, love, sadness, and surprise.

ImdbClassification Classify the sentiment expressed in the given movie review text from the IMDB
dataset.

MTOPIntentClassification Classify the intent of the given utterance in task-oriented conversation.

ToxicConversationsClassification Classify the given comments as either toxic or not toxic.

TweetSentimentExtractionClassification Classify the sentiment of a given tweet as either positive, negative, or neutral.

ArxivClusteringP2P Identify the main and secondary category of Arxiv papers based on the titles
and abstracts.

ArxivClusteringS2S Identify the main and secondary category of Arxiv papers based on the titles.

BiorxivClusteringP2P Identify the main category of Biorxiv papers based on the titles and abstracts.

BiorxivClusteringS2S Identify the main category of Biorxiv papers based on the titles.

MedrxivClusteringP2P Identify the main category of Medrxiv papers based on the titles and abstracts.

MedrxivClusteringS2S Identify the main category of Medrxiv papers based on the titles.

RedditClustering Identify the topic or theme of Reddit posts based on the titles.

RedditClusteringS2S Identify the topic or theme of Reddit posts based on the titles and posts.

StackexchangeClustering Identify the topic or theme of StackExchange posts based on the titles.

StackexchangeClusteringP2P Identify the topic or theme of StackExchange posts based on the given para-
graphs.

TwentyNewsgroupsClustering Identify the topic or theme of the given news articles.

SciDocsRR Given a title of a scientific paper, retrieve the titles of other relevant papers.

StackOverflowDupQuestions Retrieve duplicate questions from StackOverflow forum.

most categories show marginal differences and even slight degradation at two-shot. These results
indicate that additional in-context examples may introduce stylistic biases without consistent perfor-
mance gains.

Table 9: Performance comparison under zero-shot, one-shot, and two-shot in-context learning set-
tings across seven representative MTEB tasks. The results show minimal variation in most tasks,
with slight degradation in STS and Summarization under two-shot settings.

Setting Retrieval Reranking Clustering PairClassification Classification STS Summarization Mean (Task)

0-shot 66.46 49.18 59.20 87.82 89.61 87.24 37.86 74.14
1-shot 66.83 49.36 59.12 88.16 89.51 85.98 41.26 74.04
2-shot 66.62 49.29 59.46 86.83 89.58 82.92 33.89 73.12

Impact of Negative Sampling Strategies In Table we compare multiple negative sampling
strategies. The adaptive margin-based method (margin = 0.95) consistently outperforms random or
fixed top-k sampling. This confirms that filtering out overly similar negatives provides a cleaner
contrastive signal and stabilizes training.

Our adaptive margin-based strategy (with a margin of 0.95) achieves the best overall performance.
This approach improves upon other methods by dynamically filtering out negatives that are seman-
tically too close to the positive sample, which are often false negatives. By doing so, it provides a
clearer contrastive signal and enhances training stability, leading to a more robust final model.
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Figure 3: Flowchart illustrating the conversion process from Natural Language Inference (NLI) data
to STS-style training examples. Sentence pairs labeled as “entailment” are retained and assigned
high similarity scores, while “contradiction” pairs are converted into negative pairs with low simi-
larity scores. Pairs labeled as “neutral” are discarded due to their ambiguous semantic alignment.
The resulting examples are reformatted to match the STS input format and used as training data for
similarity modeling.

Table 10: Performance comparison of our adaptive margin-based sampling against baseline (in-
batch), random sampling, and hard negative (top-k) strategies.

Strategy Retrieval Reranking Clustering PairClassification Classification STS Summarization Mean (Task)
Baseline (In-batch) 65.63 48.50 59.24 87.58 89.76 86.45 40.01 73.81
Random Sampling 65.05 48.72 58.72 87.78 89.58 86.58 39.32 73.57
Hard Negative (Top-7) 64.99 48.54 58.78 87.71 89.61 86.64 39.61 73.58
Margin-based (margin=0.95) 67.00 49.02 58.78 87.92 89.84 86.67 41.35 74.20

15



	Introduction
	Related Works
	Training Dataset
	Proposed Methods
	Knowledge Distillation via Soft Labeling
	Context-Aware Embedding Generation via Structured Instructions
	Adaptive Margin-Based Mining Strategies

	Experiments
	Experimental Setup
	Main Results on MTEB Benchmark
	Ablation Studies
	Analysis of Soft-Label Distillation

	Analysis of Curriculum Learning
	Single-task Learning Results
	2-Stage Curriculum Results
	3-Stage Curriculum Results
	Impact of Task Data Ratios in Curriculum and Multi-task Learning
	Synthesis and Key Insights


	Conclusion

