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Abstract
In recent years, the use of word embeddings001
has become popular to measure the presence of002
biases in texts. Despite the fact that these mea-003
sures have been proven to be effective in detect-004
ing a wide variety of biases, metrics based on005
word embeddings lack transparency, explain-006
ability and interpretability. In this study, we007
propose a PMI-based metric to quantify biases008
in texts. We prove that this metric can be ap-009
proximated by an odds ratio, which allows es-010
timating the confidence interval and statistical011
significance of textual bias. This PMI-based012
measure can be expressed as a function of con-013
ditional probabilities, providing a simple in-014
terpretation in terms of word co-occurrences.015
Our approach produces a performance com-016
parable to GloVe-based and skip-gram-based017
metrics in experiments of gender-occupation018
and gender-name associations. We discuss the019
advantages and disadvantages of using meth-020
ods based on first-order vs second-order co-021
occurrences, from the point of view of the in-022
terpretability of the metric and the sparseness023
of the data.024

1 Introduction025

Techniques for estimating the semantic closeness026

between words are a core component in a wide va-027

riety of NLP applications. One particularly prolific028

idea behind these methods is that the meaning of029

words is at least partially determined by the context030

in which they appear (Harris, 1954), of which word031

embeddings are their most popular instantiation032

(Mikolov et al., 2013; Pennington et al., 2014).033

The flexibility and scalability of word embed-034

dings have made them ideal in the study of tex-035

tual biases (Bolukbasi et al., 2016; Hamilton et al.,036

2016; Kulkarni et al., 2015; DeFranza et al., 2020;037

Charlesworth et al., 2021). In particular, word038

embedding-based approaches have been used to039

detect and quantify the presence of gender, ethnic,040

racial and other stereotypes in texts (Lenton et al.,041

2009; Caliskan et al., 2017; Garg et al., 2018).042

1.1 Bias quantification in texts 043

Consider two sets of context words A and B, and a 044

set of target words C. Generally speaking, bias mea- 045

sures seek to quantify how much more the words 046

of C are associated with the words of A than with 047

those of B (or vice versa). Consider for instance the 048

case of gender biases in occupations: the fact that 049

certain jobs (C) are more likely to be associated 050

with one particular gender (A) than other(s) (B). 051

Here context words are often taken to be gendered 052

pronouns or nouns, e.g., A = {she, her, woman,..} 053

and B = {he, him, man,...} (Bolukbasi et al., 2016; 054

Garg et al., 2018; Caliskan et al., 2017; Gálvez 055

et al., 2019; Lenton et al., 2009; Lewis and Lupyan, 056

2020). 057

A popular choice for C is to consider one word 058

at a time, i.e. estimating how a specific job (such 059

as nurse, doctor or engineer) is associated with the 060

two previously defined sets. Once these sets have 061

been defined, most metrics can be parametrized 062

as a difference between the similarities between 063

A and C, on the one hand, and B and C, on the 064

other (Lenton et al., 2009; Garg et al., 2018; Lewis 065

and Lupyan, 2020); in most cases subtracting the 066

similarities A vs C and B vs C: 067

Bias = sim(A,C)− sim(B,C), (1) 068

One particularly influential case that belongs to 069

this class of metrics is that of Caliskan et al. (2017), 070

who use 071

Bias =
mean
a∈A

(cos(va, vc))−mean
b∈B

(cos(vb, vc))

std_dev
x∈A∪B

cos(vx, vc)
072

where 073

cos(vx, vy) =
vx.vy
|vx||vy|

, 074

and vi stands for the word embedding of word i. 075

In the present paper we propose a metric to 076

measure biases that follows equation 1 based on 077
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Pointwise Mutual Information (PMI) (Church and078

Hanks, 1990; Jurafsky and Martin, 2009) as our079

measure for similarity between words, so that080

BiasPMI = PMI(wa, wc)−PMI(wb, wc) (2)081

PMI is a non-parametric measure of statistical082

association derived from information theory (Fano,083

1961). Given two words wx and wy, PMI is defined084

as085

PMI(wx, wy) = log

(
p(wx, wy)

p(wx)p(wy)

)
(3)086

p(wx, wy) is the probability of co-occurrence of087

words wx and wy in a given window of k words.088

The PMI (equation 3) compares the probability of089

co-occurrence of the words wx and wy with that of090

the case in which wx and wy are independent. It091

can also be used to calculate associations between092

word lists X and Y :093

PMI(X,Y ) = log

(
p(X,Y )

p(X)p(Y )

)
(4)094

In equation 4, p(X,Y ) is the probability of co-095

occurrence between any word in X with any one096

in Y . Similarly, p(X) and p(Y ) are the probability097

of occurrence of any word in X and any word in098

Y , respectively.099

The usage of PMI in the study of textual biases100

is not new (Gálvez et al., 2019). In this article we101

explain the statistical and interpretability benefits102

associated with PMI-based measures, which have103

been overlooked until now.104

In particular, we make the following contribu-105

tions:106

• In section 2 we show how the bias measure-107

ment using PMI can be approximated by an108

odds ratio. This comes with some statistical109

perks, such as the possibility of performing110

computationally inexpensive null hypothesis111

statistical testing.112

• In section 3 we demonstrate that methods113

based on GloVe, skip-gram with negative sam-114

pling (SGNS) and PMI produce comparable115

results in Caliskan et al. (2017)’s tasks, in116

which real-world gender distributions of occu-117

pations and first names are compared with the118

biases measured in texts.119

• In section 5 we contend that the use of PMI in 120

bias metrics is substantially more transparent 121

and interpretable than the counterparts based 122

on word embedding techniques. 123

2 Approximation of the PMI-based bias 124

metric by log odds ratio 125

The PMI between a list of context words X and a 126

list of target words C can be expressed as the ratio 127

between the probability of words in C co-occurring 128

in the context of words in X , and the probability 129

of words in C appearing in any context: 130

PMI(X,C) = log

(
p(X,C)

p(X)p(C)

)
131

= log

(
p(C|X)

p(C)

)
132

133

Therefore, the PMI-based bias can be rewritten as 134

follows: 135

BiasPMI = PMI(A,C)− PMI(B,C) 136

= log

(
p(C|A)

p(C)

)
− log

(
p(C|B)

p(C)

)
137

= log

(
p(C|A)

p(C|B)

)
138

139

To compute the PMI-based bias, we can estimate 140

probabilities via maximum likelihood: 141

BiasPMI = log

( fA,C

fA,C+fA,nC

fB,C

fB,C+fB,nC

)
(5) 142

C not C total
A fA,C fA,nC fA,C+fA,nC

B fB,C fB,nC fB,C+fB,nC

Table 1: Contingency Table of words co-occurrences

In equation 5, fA,C and fB,C represent the num- 143

ber of times words in C appear in the context of 144

words in A and B, respectively, and fA,nC and 145

fB,nC represent how many times words not in C 146

appear in the context of A and B, respectively. See 147

contingency table in Table 1 for reference. 148

In the case in which the following condition is 149

fulfilled, 150

fB,nC ≫ fB,C , fA,nC ≫ fA,C (6) 151
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equation 5 can be approximated by152

BiasPMI = log

( fA,C

fA,C+fA,nC

fB,C

fB,C+fB,nC

)
153

≈ log

( fA,C

fA,nC

fB,C

fB,nC

)
154

≈ log(OR)155

where OR is the odds ratio associated with Table 1.156

For large sample sizes, the distribution of log(OR)157

converges to normality (Agresti, 2003). Therefore,158

this quantity has a 95% confidence interval given159

by160

CI95%
(
BiasPMI

)
= BiasPMI + /− 1.96SE161

with162

SE =

√
1

fA,C
+

1

fB,C
+

1

fA,nC
+

1

fB,nC
163

≈

√
1

fA,C
+

1

fB,C
164

This last approximation considers condition 6.165

It should be noted that the BiasPMI is not com-166

putable if fA,C = 0 or fB,C = 0. To solve this167

we use a standard smoothing approach of adding a168

small value ϵ to all co-occurrences.169

3 Experimental setup170

To compare the measure of bias based on PMI171

with those based on embeddings, we follow the ap-172

proach of Caliskan et al. (2017). They compare bi-173

ases present in texts with those of two datasets: (1)174

a 2015 U.S. Bureau of Labor Statistics occupation-175

gender dataset, which contains the percentage of176

women in a list of occupations, and (2) a 1990177

U.S. census name-gender dataset, which provides,178

for a list of androgynous names, the percentage of179

people with each name who are women.180

We build a corpus with articles from an En-181

glish Wikipedia dump from August 2014. We pre-182

process the dump by removing non alpha-numeric183

symbols, removing articles with less than 50 tokens184

and sentence splitting. We use a window size of185

10 in all models and we ignore words with less186

than 100 occurrences, resulting in a vocabulary of187

172,748 words.188

Word embeddings with 300 dimensions are189

trained with SGNS and GloVe. For SGNS we190

use the word2vec implementation of the Gensim 191

library (Řehůřek and Sojka, 2010) with default hy- 192

perparameters. GloVe is trained with the original 193

implementation (Pennington et al., 2014) with 100 194

iterations. This version uses by default additive 195

word representations, in which each word embed- 196

ding is the sum of its corresponding context and 197

word vectors. For PMI we set the smoothing pa- 198

rameter ϵ to 0.5. 199

Using PMI, SGNS and GloVe, we replicate the 200

gender bias experiments performed in the Word 201

Embedding Factual Association Tests (WEFATs) 202

in Caliskan et al. (2017). To represent female and 203

male contexts we use the same lists of words as 204

in Caliskan et al. (2017)1. The female proportions 205

for names and occupations in the U.S. were ex- 206

tracted from the datasets provided by Will Lowe’s 207

cbn R library2, which contains tools for replicating 208

Caliskan et al. (2017). 209

For both occupations and names association 210

tests, we assess the correlation between the real- 211

world female proportion and the female bias as 212

measured by PMI, SGNS and GloVe. Female bias 213

refers to the bias metrics where A and B repre- 214

sent the lists of female and male words, respec- 215

tively. Therefore, positive values imply that the 216

target word is more associated with female words 217

than with male ones. 218

We emphasize that the objective of this experi- 219

ment is not to find which method produces a greater 220

correlation between the empirical biases from the 221

U.S. datasets and the textual biases from Wikipedia 222

– the aim is to study whether the three bias metrics 223

produce comparable correlations in these tasks. 224

4 Results 225

Figure 1 and Table 2 show the scatter-plots and 226

Pearson’s r coefficients for each of the six exper- 227

iments (two association tests with three bias mea- 228

sures each). Weighted Pearson’s r coefficients are 229

shown in Table 2 for the PMI-based metric for both 230

association tests. Weighted Pearson’s r takes into 231

account the variance of each bias estimate, thus 232

reducing the influence of relatively noisy estimates 233

on the correlation. This type of adjustment is not 234

feasible with embeddings-based methods, which 235

lack a natural notion of statistical variability. 236

1Male terms:{male, man, boy, brother, he, him, his, son}.
Female terms: {female, woman, girl, sister, she, her, hers,
daughter}

2https://conjugateprior.github.io/cbn/
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Occupation-gender association Name-gender association
Metric SGNS Glove PMI SGNS Glove PMI

Pearson’s r 0.70 0.70 0.69 0.77 0.74 0.78
Weighted Pearson’s r - - 0.79 - - 0.75

Table 2: Pearson’s r coefficients for each experiment shown in Figure 1. Because the PMI-based metric provides a
measure of variance, weighted Pearson’s r coefficients have been calculated to account for the variability of each
data point.

Figure 1: Occupation-gender association experiment (left panels) and names-gender association experiment (right
panel) for female bias measures based on SGNS (top panels), GloVe (middle panels), and PMI (bottom panels). In
dashed lines linear regressions are shown – in the case of PMI-based bias the variability was taken into account as
weights. Error bars in PMI-based measure represent confidence intervals.

In the androgynous names setup, we find simi-237

lar degrees of linear correlation for the three bias238

measurement methods, for both weighted and un-239

weighted correlations. In the occupations experi-240

ment, we find similar values of Pearson’s r for the 241

three methods; and an increase in the correlation is 242

observed when the variability of bias is considered 243

in the estimation. 244
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All in all, the embeddings-based methods and the245

PMI-based method have comparable performances246

in the WEFAT tasks of Caliskan et al. (2017).247

4.1 Significance testing248

A permutations test that shuffles context words is249

a way that has been used in embeddings-based250

bias metrics in order to calculate statistical signif-251

icance (Caliskan et al., 2017; Garg et al., 2018;252

Charlesworth et al., 2021).253

A limitation of this technique is that, for the test254

to have enough power, many words are required255

in the lists. To show this, we perform permuta-256

tion tests in the occupations experiment using the257

SGNS-based method. We shuffle the words from258

lists A and B repeatedly and estimate the proba-259

bility of obtaining an absolute value of bias that260

is equal to or greater than the one obtained in the261

original configuration (North et al., 2002).262

In Figure 2 we compare the p-values of the per-263

mutation test in the SGNS-based metric with the264

p-values of the log odds ratio test of the PMI-based265

metric. A Benjamini-Hochberg correction was ap-266

plied to the p-values obtained by both methods to267

account for multiple comparisons.268

The permutation test indicates that only the two269

words with the highest female SGNS-based bias270

are significantly different from zero at a 0.05 sig-271

nificance level. This supports our hypothesis that272

permutations tests don’t have enough power when-273

ever word lists are small. In contrast, in the case274

of the PMI-based metric, the log odds ratio test in-275

dicates that the majority of points are significantly276

different from zero, with the exception of some277

points with bias values close to zero.278

5 Interpretability279

Model interpretability has become a core topic of280

research in NLP. Loosely speaking, it refers to281

the degree to which a human can understand the282

cause of a decision (Miller, 2019) – which has be-283

come progressively more complex as current mod-284

els steer away from simpler setups.285

Although there are many studies on how the vec-286

tor space of word embeddings is formed (Levy and287

Goldberg, 2014; Levy et al., 2015; Ethayarajh et al.,288

2019), there is no transparent interpretation of bias289

measurements formed by cosine distances between290

word vectors. This can be partially observed in the291

growing literature which tries to construct metrics292

in order to measure word embedding interpretabil-293

Figure 2: Statistical significance of the permutations
test in the SGNS-based metric vs. the SGNS-based bias
value (top panel), and significance of the odds ratio test
vs. the PMI-based bias value.

ity (Şenel et al., 2018; Jang and Myaeng, 2017; 294

Panigrahi et al., 2019). Most of those metrics can 295

be considered post-hoc 3. 296

In contrast, the PMI-based bias measure can be 297

expressed intrinsically in terms of conditional prob- 298

abilities: 299

BiasPMI(C) = log

(
p(C|A)

p(C|B)

)
300

The bias is interpreted as the logarithm of how 301

many more times it is likely to find C in the context 302

of words in A than in the context of words in B. 303

For example, in the Wikipedia corpus the 304

BiasPMI of word nurse is 1.3159, thus, 305

p(nurse|A)

p(nurse|B)
= exp(1.3172) = 3.7330 306

This can be interpreted as stating that it is 273.30% 307

more likely to find the word nurse in the context 308

of words associated with women (A) than in the 309

context of words associated with men (B). 310

3Rudin (2019) makes a case for designing intrinsically
interpretable models instead of post-hoc evaluated models.
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6 Discussion311

As far as we know, our bias metric is the first that312

provides a simple and efficient way of evaluating313

the statistical significance of the obtained biases.314

We highlight the importance of knowing if the315

measured patterns are indeed significant. Imagine316

the case where we want to know if a collection of317

texts has a particular bias. To address this situation,318

it is not only necessary to estimate the magnitude319

of the bias, but also to have a decision rule that lets320

us know up to what degree this value might have321

been due to statistical fluctuation. A statistical test322

associated with the bias measure is essential in this323

use case.324

SGNS and GloVe embeddings can capture word325

associations of second order or higher (Levy et al.,326

2015; Altszyler et al., 2018; Schlechtweg et al.,327

2019). Therefore, when embeddings are used to328

measure word associations, it is not possible to329

know whether the emerging biases are due to os-330

tensive first-order co-occurrences or whether they331

are derived from higher-order co-occurrences. Rek-332

absaz et al. (2021) evidenced the presence of these333

spurious associations when quantifying semantic334

similarity with second-order contributions, and335

Brunet et al. (2019) showed in a sensitivity analysis336

that second-order effects have an important contri-337

bution in the quantification of bias with the WEAT338

metric from Caliskan et al. (2017). Nevertheless,339

bias metrics based on second-order associations340

have the advantage of managing data sparsity. For341

example, they can capture relevant associations in342

synonyms occurrences of target and context words.343

In the case of our first-order metric, this problem344

must be addressed by increasing word lists with345

synonyms and different forms of the words of in-346

terest.347

Rekabsaz et al. (2021) propose a metric based on348

word embeddings that only captures first-order as-349

sociations. Their results show that their metric cor-350

relates with biases in employment more than other351

measures based on second-order co-occurrences.352

This measure uses the product of word and context353

matrices of the SGNS model (usually known as354

W and C), so this measure can be interpreted as355

a shifted-PMI with smoothing. In future work we356

will compare Rekabsaz et al. (2021) metric with357

ours. However, we emphasize that the benefit of358

using the PMI-based metric lies in the interpretabil-359

ity and the estimation of confidence intervals and360

statistical significance.361

7 Conclusions 362

In this article we present a PMI-based metric to 363

capture biases in texts, which has the benefits of 364

(a) providing simple and computationally inexpen- 365

sive statistical significance tests, (b) having a sim- 366

ple interpretation in terms of word co-occurrences, 367

and (c) being explicit and transparent in the as- 368

sociations that it is quantifying, since it captures 369

exclusively first-order co-occurrences. We show 370

our PMI-based bias measurement can be approx- 371

imated by a log odds ratio. This allows for the 372

calculation of confidence intervals and statistical 373

significance for bias, using as the null hypothesis 374

the absence of bias. We demonstrate that our mea- 375

sure can be expressed as the logarithm of the ratio 376

of the probabilities of the target words conditional 377

on the context words. This provides a simple in- 378

terpretation of the metric’s magnitudes in terms of 379

word co-occurrences: how much more likely is it 380

to find target words C in a window around context 381

words A than in a window around context words 382

B? 383

Finally, we prove that the use of our method 384

produces a performance comparable to the one 385

produced by GloVe-based and Skip-gram-based 386

metrics in Caliskan et al. (2017)’s experiments of 387

gender-occupation and gender-name associations. 388

References 389

Alan Agresti. 2003. Categorical data analysis, volume 390
482. John Wiley & Sons. 391

Edgar Altszyler, Mariano Sigman, and Diego Fernán- 392
dez Slezak. 2018. Corpus specificity in LSA and 393
word2vec: The role of out-of-domain documents. In 394
Proceedings of The Third Workshop on Representa- 395
tion Learning for NLP, pages 1–10, Melbourne, Aus- 396
tralia. Association for Computational Linguistics. 397

Tolga Bolukbasi, Kai-Wei Chang, James Y Zou, 398
Venkatesh Saligrama, and Adam T Kalai. 2016. Man 399
is to computer programmer as woman is to home- 400
maker? debiasing word embeddings. In Advances in 401
Neural Information Processing Systems, volume 29. 402
Curran Associates, Inc. 403

Marc-Etienne Brunet, Colleen Alkalay-Houlihan, Ash- 404
ton Anderson, and Richard Zemel. 2019. Under- 405
standing the origins of bias in word embeddings. In 406
Proceedings of the 36th International Conference 407
on Machine Learning, volume 97 of Proceedings of 408
Machine Learning Research, pages 803–811. PMLR. 409

Aylin Caliskan, Joanna J. Bryson, and Arvind 410
Narayanan. 2017. Semantics derived automatically 411

6

https://doi.org/10.18653/v1/W18-3001
https://doi.org/10.18653/v1/W18-3001
https://doi.org/10.18653/v1/W18-3001
https://proceedings.neurips.cc/paper/2016/file/a486cd07e4ac3d270571622f4f316ec5-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/a486cd07e4ac3d270571622f4f316ec5-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/a486cd07e4ac3d270571622f4f316ec5-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/a486cd07e4ac3d270571622f4f316ec5-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/a486cd07e4ac3d270571622f4f316ec5-Paper.pdf
https://proceedings.mlr.press/v97/brunet19a.html
https://proceedings.mlr.press/v97/brunet19a.html
https://proceedings.mlr.press/v97/brunet19a.html
https://doi.org/10.1126/science.aal4230
https://doi.org/10.1126/science.aal4230


from language corpora contain human-like biases.412
Science, 356(6334):183–186.413

Tessa ES Charlesworth, Victor Yang, Thomas C Mann,414
Benedek Kurdi, and Mahzarin R Banaji. 2021. Gen-415
der stereotypes in natural language: Word embed-416
dings show robust consistency across child and adult417
language corpora of more than 65 million words.418
Psychological Science, 32(2):218–240.419

Kenneth Ward Church and Patrick Hanks. 1990. Word420
association norms, mutual information, and lexicog-421
raphy. Computational Linguistics, 16(1):22–29.422

David DeFranza, Himanshu Mishra, and Arul Mishra.423
2020. How language shapes prejudice against424
women: An examination across 45 world lan-425
guages. Journal of Personality and Social Psychol-426
ogy, 119(1):7–22.427

Kawin Ethayarajh, David Duvenaud, and Graeme Hirst.428
2019. Understanding undesirable word embedding429
associations. In Proceedings of the 57th Annual430
Meeting of the Association for Computational Lin-431
guistics, pages 1696–1705, Florence, Italy. Associa-432
tion for Computational Linguistics.433

Robert M Fano. 1961. Transmission of Information: A434
Statistical Theory of Communication. MIT Press.435

Ramiro H. Gálvez, Valeria Tiffenberg, and Edgar Alt-436
szyler. 2019. Half a century of stereotyping associa-437
tions between gender and intellectual ability in films.438
Sex Roles, 81(9):643–654.439

Nikhil Garg, Londa Schiebinger, Dan Jurafsky, and440
James Zou. 2018. Word embeddings quantify 100441
years of gender and ethnic stereotypes. Proceedings442
of the National Academy of Sciences, 115(16):E3635–443
E3644.444

William L. Hamilton, Jure Leskovec, and Dan Jurafsky.445
2016. Diachronic word embeddings reveal statisti-446
cal laws of semantic change. In Proceedings of the447
54th Annual Meeting of the Association for Compu-448
tational Linguistics (Volume 1: Long Papers), pages449
1489–1501, Berlin, Germany. Association for Com-450
putational Linguistics.451

Zellig S. Harris. 1954. Distributional structure. WORD,452
10(2-3):146–162.453

Kyoung-Rok Jang and Sung-Hyon Myaeng. 2017. Elu-454
cidating conceptual properties from word embed-455
dings. In Proceedings of the 1st Workshop on Sense,456
Concept and Entity Representations and their Appli-457
cations, pages 91–95, Online. Association for Com-458
putational Linguistics.459

Daniel Jurafsky and James H. Martin. 2009. Speech and460
Language Processing (2nd Edition). Prentice-Hall,461
Inc., USA.462

Vivek Kulkarni, Rami Al-Rfou, Bryan Perozzi, and463
Steven Skiena. 2015. Statistically significant detec-464
tion of linguistic change. In Proceedings of the 24th465

International Conference on World Wide Web, WWW 466
’15, page 625–635, Republic and Canton of Geneva, 467
CHE. International World Wide Web Conferences 468
Steering Committee. 469

Alison P. Lenton, Constantine Sedikides, and Martin 470
Bruder. 2009. A latent semantic analysis of gender 471
stereotype-consistency and narrowness in american 472
english. Sex Roles, 60(3):269–278. 473

Omer Levy and Yoav Goldberg. 2014. Neural word 474
embedding as implicit matrix factorization. In Ad- 475
vances in Neural Information Processing Systems, 476
volume 27. Curran Associates, Inc. 477

Omer Levy, Yoav Goldberg, and Ido Dagan. 2015. Im- 478
proving distributional similarity with lessons learned 479
from word embeddings. Transactions of the Associa- 480
tion for Computational Linguistics, 3:211–225. 481

Molly Lewis and Gary Lupyan. 2020. Gender stereo- 482
types are reflected in the distributional structure of 25 483
languages. Nature Human Behaviour, 4(10):1021– 484
1028. 485

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor- 486
rado, and Jeff Dean. 2013. Distributed representa- 487
tions of words and phrases and their compositionality. 488
In Advances in Neural Information Processing Sys- 489
tems, volume 26. Curran Associates, Inc. 490

Tim Miller. 2019. Explanation in artificial intelligence: 491
Insights from the social sciences. Artificial Intelli- 492
gence, 267:1–38. 493

B. V. North, D. Curtis, and P. C. Sham. 2002. A note 494
on the calculation of empirical p values from monte 495
carlo procedures. The American Journal of Human 496
Genetics, 71(2):439–441. 497

Abhishek Panigrahi, Harsha Vardhan Simhadri, and Chi- 498
ranjib Bhattacharyya. 2019. Word2sense: sparse in- 499
terpretable word embeddings. In Proceedings of the 500
57th Annual Meeting of the Association for Compu- 501
tational Linguistics, pages 5692–5705, Online. Asso- 502
ciation for Computational Linguistics. 503

Jeffrey Pennington, Richard Socher, and Christopher D. 504
Manning. 2014. Glove: Global vectors for word 505
representation. In Empirical Methods in Natural 506
Language Processing (EMNLP), pages 1532–1543. 507
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