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Abstract
Large Language Models (LLMs) are increasingly
used for synthetic tabular data generation through
in-context learning (ICL), offering a practical so-
lution for data augmentation in data scarce sce-
narios. While prior work has shown the poten-
tial of LLMs to improve downstream task per-
formance through augmenting underrepresented
groups, these benefits often assume access to a
subset of unbiased in-context examples, represen-
tative of the real dataset. In real-world settings,
however, data is frequently noisy and demograph-
ically skewed. In this paper, we systematically
study how statistical biases within in-context ex-
amples propagate to the distribution of synthetic
tabular data, showing that even mild in-context
biases lead to global statistical distortions. We
further introduce an adversarial scenario where a
malicious contributor can inject bias into the syn-
thetic dataset via a subset of in-context examples,
ultimately compromising the fairness of down-
stream classifiers for a targeted and protected sub-
group. Our findings demonstrate a new vulnera-
bility associated with LLM-based data generation
pipelines that rely on in-context prompts within
sensitive domains.

1. Introduction
Large Language Models (LLMs) have demonstrated remark-
able generalization capabilities through in-context learning
(ICL), performing new tasks simply by conditioning on a
number of prompt examples. These strong capabilities are
often assumed to stem from a large number of model param-
eters and the pretraining on large amounts of data (Moreno-
Muñoz et al., 2023). In practical domains such as healthcare
or finance, however, data collection remains costly and chal-
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lenging due to privacy concerns and the reliance on manual
labeling. As a result, data augmentation has become a crit-
ical strategy for building high-quality datasets that drive
more accurate ML models (Borisov et al., 2022). In such
settings, LLMs are increasingly used for data generation,
leveraging their strong prior knowledge to produce realistic
and statistically coherent samples without requiring model
fine-tuning.

Recent studies have shown that LLM-generated synthetic
tabular data can improve downstream model performance,
offering a practical alternative to traditional augmentation
methods (Kim et al., 2024; Seedat et al., 2023). These meth-
ods typically rely on few-shot prompting, where a small
number of in-context examples added to the prompt guide
the generation. When combined with the prior knowledge
of pretrained LLMs, this technique has been shown to effec-
tively augment underrepresented groups, leading to state-of-
the-art performance on downstream tasks. Notably, a larger
number of in-context examples further improves the quality
of the synthesized data (Seedat et al., 2023). However, this
paradigm implicitly assumes that the prompt examples are
unbiased, and independently drawn from the real training
data distribution, which is a strong assumption that often
fails in real-world settings.

In practice, available examples are often noisy and skewed.
Consider a community hospital attempting to expand its
training dataset using an LLM, with available records being
demographically imbalanced, over-representing a particular
racial or gender group. The statistical imbalances in the
prompt can inadvertently bias the synthetic data towards
the same underrepresented distribution without unduly in-
fluencing quality, potentially amplifying disparities in the
downstream task. Moreover, in collaborative workflows,
multiple agents may contribute ICL examples to a shared
LLM service, each introducing subtle or even adversarial
biases. Despite the growing use of LLMs for tabular data
generation, how such in-context prompt skew affects the re-
sulting synthetic distribution remains unexplored, as well as
whether these biases persist in downstream models trained
on the generated data.

Contributions. In this paper, we study how in-context ex-
amples influence the statistical properties of LLM-generated
tabular data. Our contributions are:
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• We empirically demonstrate that statistical biases
present in ICL examples systematically propagate to
the distribution of LLM-generated tabular data.

• We introduce a novel perspective on prompt injection,
an adversarial setting where a malicious agent injects a
small number of biased in-context examples into a col-
laborative data generation pipeline. We show that this
targeted manipulation alters the synthetic distribution
and induces fairness violations in downstream models.

2. Related Work
Tabular data generation with LLMs. Pretrained lan-
guage models have recently been used to synthesize tabular
data, leveraging their broad priors to augment datasets in
domains with limited or sensitive data. While fine-tuning
based approaches such as GReaT (Borisov et al., 2022) have
proven effective for structured data generation, prompting-
based methods offer a resource efficient alternative and have
shown promise in augmenting underrepresented groups. For
example, Seedat et al. (2023) use ICL for tabular data aug-
mentation, followed by manual curation to refine the syn-
thetic dataset. Kim et al. (2024) introduce a prompting
method that relies solely on in-context examples and cate-
gorical mappings to generate realistic tabular data. LLMs
have also been deployed in real-world healthcare scenarios
(Tornqvist et al., 2024), successfully addressing data scarcity
in sensitive domains. However, these methods often assume
that in-context examples are independent and identically
distributed (iid) from the training dataset, which is a strong
assumption that rarely holds in practice. In many cases, the
available data is skewed or demographically imbalanced.
How such biases propagate through LLM generation re-
mains poorly understood.

Fairness in language models. LLMs are known to inherit
and amplify biases from their training data and prompts.
Prior work has identified various in-context vulnerabili-
ties, including recency, majority-label, and token frequency
biases. Wei et al. (2023) show that larger models tend
to override semantic priors when exposed to biased in-
context examples, whereas smaller models are more ro-
bust. To counteract such effects, Ma et al. (2023) introduce
fairness-guided prompt search, and Zhou et al. (2024) lo-
cate biased attention heads and feed-forward layers, miti-
gating biases through targeted parameter modification. In
structured-data settings, Liu et al. (2023) flip in-prompt la-
bels to address offset demographic bias, and Cherepanova
et al. (2024) combine curated exemplars with masking to
improve group fairness in tabular classification. While re-
cent work addresses LLM fairness in tabular classification
tasks, our work shifts the focus to data generation, studying
how prompt-level bias propagates into the synthetic data
distribution.

3. Experimental Set-up
Models. We evaluate 4 open-source LLMs with sizes
ranging from 8 billion to 70 billion parameters. Specifi-
cally, we consider Granite-8b, Mixtral-8b, Mixtral-22b, and
Llama-3-3-70b to generate synthetic tabular data. Each
LLM is served using vLLM on an internal cluster of A100
GPUs. We generate 1000 rows for each experimental setting
via multiple independent API calls, where each call yields
only two synthetic samples to preserve statistical robust-
ness across the generation. We select a number of models
from different families and sizes to better assess in-context
bias propagation, although they are not equally performant
at generating tabular data due to different pretraining and
alignment with human feedback.

Prompts. We adopt the prompt structure from CLLM (Liu
et al., 2023), which decomposes the prompt into role, task,
and in-context examples components. However, we modify
this structure to explicitly instruct the model to generate one
synthetic example per subgroup of the biased attribute. This
ensures a balanced frequency count across subgroups of the
synthetic dataset. We provide the prompts in Appendix C.

Datasets. We use the ADULT (Asuncion & Newman,
2007) and COMPAS (Angwin et al., 2016) datasets, widely
used in fairness research, to study in-context bias propaga-
tion. COMPAS contains recidivism risk assessments, while
ADULT includes census income data.

Evaluation Metrics. We evaluate the quality of the syn-
thetic datasets by training a downstream Random Forest
classifier and reporting both accuracy and F1 score on the
target prediction task. To assess fidelity, we compute the To-
tal Variation Complement (TVC) and the Jensen–Shannon
Divergence, applied to categorical and numerical variables,
respectively, to quantify distributional similarity between
the real and synthetic datasets. Fairness is assessed using
the Statistical Parity Difference (SPD) and the Disparate
Impact (DI) metrics. We detail fairness and fidelity metrics
in Appendix B.

4. Bias Propagation in LLM-generated Data
4.1. In-context Bias Propagation

We formalize how statistical biases in in-context prompts
propagate to the synthetic tabular data generated by lan-
guage models. Let M be a pretrained language model that
generates synthetic structured data via in-context learning
(ICL). A prompt of k demonstrations is defined as

P = {x1, . . . , xk}, xi = (ai, fi, ti) ∼ DP , (1)

where ai ∈ A is a protected attribute, fi ∈ F non-sensitive
attributes, and ti ∈ T the target attribute subject to bias.
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Conditioning M on P induces a generated synthetic data
distribution DG = GM(P), such that each generated sample
x = (a, f, t) ∼ DG. Our goal is to quantify how biases,
from subtle imbalances to deliberate attacks, in the prompt
distribution DP propagate through M to DG.

We focus on the case where the prompt P is skewed with
respect to a subgroup a∗ ∈ A and value c ∈ T . We define
the bias parameter π as

π = PP (t = c|a = a∗). (2)

which quantifies the conditional probability of label c given
a subgroup a∗ in the prompt distribution DP . By varying
π, we analyze how different levels of prompt bias influence
the synthetic data distribution DG.

4.2. Experimental Design

We consider two symmetric experimental configurations
in which in-context examples are synthetically generated
within the Adult dataset context. Within each configuration
we vary the proportion π ∈ [0, 1] of African-American (AA)
instances in the prompt while keeping the gender fixed. The
remaining features are randomly sampled within realistic
value ranges. This set-up allows us to isolate the effect
of racial bias and examine whether it it propagates across
gender subgroups. Specifically, we consider the setting
where A = {Male,Female} is the protected attribute (gen-
der), T = {African-American,Non-African-American} is
the target attribute (race), and a∗ ∈ A denotes the gender
subgroup present in the prompt. While race is treated as
the protected attribute in all threat-model experiments in
Section 5, here we focus on gender to demonstrate how bias
propagates across different demographic groups.

4.3. Experimental Results

We analyze how biases embedded in in-context examples
influence the LLM-generated distribution of synthetic tabu-
lar data. Figure 1 presents results using Granite-8b across
different levels of racial imbalance. As the probability that
in-context samples are African-American increases, the gen-
erated data exhibits a corresponding shift in the racial sub-
group representation. Interestingly, although the synthetic
dataset is forced to be demographically balanced across gen-
ders (e.g., we generate one male and one female example per
iteration), we observe that in-context biases from one gender
group are reflected in the other. This behavior suggests that
smaller LLMs capture and propagate in-context univariate
statistical patterns, generalizing these correlations across
subgroups. Moreover, we observe that generated male ex-
amples are less resilient than female examples to in-context
bias, showing a disparity on which gender can be more eas-
ily biased, which in turn suggests SDG is also vulnerable to
robustness biases (Nanda et al., 2021).
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Figure 1. In-context bias propagates to synthetic samples.
(Granite-8B) Increasing the bias parameter π, which controls the
proportion of African-American (AA) individuals in the in-context
prompt, leads to a corresponding increase in the proportion of AA
individuals in the generated samples.

Overall, we observe a general sensitivity of LLMs to the
statistical properties of their in-context examples. In the
remainder of this section, we systematically characterize
this propagation effect across different dimensions: prompt
composition, number of in-context examples, and model
scale. Together, our findings reveal that even mild biases in
the prompt distribution can systematically shape the statisti-
cal parity and subgroup label rates of synthetic data, posing
serious risks for fairness and security in collaborative gener-
ation scenarios.

Number of in-context examples. Figure 2 shows the
effect of varying the number of in-context examples on
bias propagation for Granite-8B and the ADULT dataset.
When using a small context size k = 10, the conditional
probability PG(t = AA|a = Female) in the generated
data remains largely stable across π, showing minimal sen-
sitivity to increasing bias in the provided examples. In
contrast, with a larger context size (k = 80), this proba-
bility increases nearly proportionally with the probability
PP (t = AA|a = Female) in the in-context examples, and
propagates symmetrically across gender subgroups. While
prior work highlighted the benefits of increasing the con-
text size for improving data quality (Seedat et al., 2023),
our findings reveal how using a larger number of biased in-
context examples can significantly amplify the propagation
of in-context statistical disparities to the generated outputs.

Model-specific behavior. Figure 3 compares bias prop-
agation across model families. All models exhibit some
degree of prompt-induced bias, although they vary in how
they internalize and reproduce feature correlations present
in the prompt. For instance, Granite-8b shows strong cross-
subgroup bias propagation, with racial bias female examples
influencing male examples, while bias propagation in Llama-
3-3-70b primarily influences the gender subgroup explicitly
present in the prompt. Also, we notice an increase in the
racial bias gap between the two gender subgroups between
Mixtral-8x7b and Mixtral-8x22b, which suggests that larger
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Figure 2. Larger context size amplifies bias propagation. (ICL Female, Granite-8b) Conditional probability of generating African-
American (AA) examples for each gender subgroup across π and increasing context sizes. For a larger context size, the model more
strongly internalizes in-context racial imbalances and propagates them to the generated data.
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Figure 3. Model-dependent sensitivity to prompt-induced bias. (ICL Female, 80 ICL samples) Conditional probability of generating
African-American (AA) examples for each gender subgroup across π for Granite-8B, Mixtral 8x7b, Mixtral-22B, and LLaMA-3-70B.
While all models are vulnerable to prompt-induced bias, they vary in their degree of bias propagation and cross-gender generalization.

models within the same family are able to capture complex
correlations within in-context examples. We leave a deeper
study of this phenomenon as future work.

5. Adversarial In-Context Bias Injection
In the previous section, we treat prompt skew as an un-
intended consequence of in-context learning for synthetic
tabular data generation. Here, we adopt a security perspec-
tive and ask the following question:

Can a malicious user craft a small number of
in-context demonstrations that deliberately ma-
nipulate the statistical properties of the synthetic
data for a targeted subgroup?

5.1. Threat Model

We consider a collaborative data generation pipeline where
multiple users or agents individually contribute few-shot in-
context examples to a shared LLM service. These individual
contributions are combined into a single prompt, which is
then used to generate synthetic data. An adversary controls
a fraction π of the k demonstrations in the final prompt,
but has no access to the model parameters or the in-context
examples provided by honest users. However, we assume
that the attacker knows the downstream task and the names
of the most influential attributes in the downstream model.
The adversary’s objective is to influence the label rate for a

protected group in the downstream model (e.g., the propor-
tion of high-income labels assigned to Black individuals)
while maintaining high overall utility to avoid detection.

Feature-Aligned Examples. We consider an adversary
that creates feature-aligned examples by embedding corre-
lations between the protected group and features predictive
of the downstream task. Instead of only manipulating labels,
which proves ineffective in scenarios where the protected
attribute is ignored by the downstream model, the adversary
creates a protected-group profile statistically indicative of
the target label, and biases generation toward producing
protected-group examples with patterns likely to be learned
by the downstream model.

5.2. Experimental Design

For each value of π we generate 1000 synthetic examples
with Granite-8B, Mixtral-22B, and Llama-70B. Specifically,
we consider k = 80 in-context examples from which we ran-
domly bias πk examples, with the rest of the demonstrations
corresponding to real examples i.i.d from the real dataset.
This set-up simulates a realistic collaborative scenario in
which multiple parties contribute in-context examples, while
an attacker injects πk malicious demonstrations.

In the ADULT dataset, we define high-income indicators as
a proxy for the positive label (i.e., income ≥ 50K). Specif-
ically, we consider samples with a college education, non-
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Figure 4. Adversarial bias in synthetic data. (Adult, 80 ICL samples) Positive label probability of the synthetic data for each racial sub-
group, across different values of π. As π increases, the targeted group’s positive-label probability also increases, while the complementary
group’s probability remains constant except for larger values of π.
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Figure 5. Adversarial bias in downstream predictions. (Adult, 80 ICL samples) Positive label probability of the downstream model for
each racial subgroup across different values of π. The targeted racial group increasingly receives more positive predictions compared to
the complementary group, reflecting the propagation of bias to the downstream model.

zero capital gain, and at least 45 hours of work per week as
indicative of high income. The attacker constructs biased
prompt examples by enforcing these conditions, setting the
race attribute to Black, and assigning the target label to 1.
The goal is to manipulate the data generation process so
that the synthetic distribution over-represents Black individ-
uals with high income without inadvertently decreasing the
quality of the generated synthetic data.

In the COMPAS dataset, the target feature for prediction is
recidivism i.e., a binary variable indicating if a convicted
criminal will re-offend. The influential indicators for re-
cidivism are defined as: individuals who are young; have a
large number of prior offenses; and face a felony charge. In
this scenario, the attacker constructs examples with African-
American race that satisfy these conditions and assigns a
target label of 1, indicating recidivism.

5.3. Experimental Results

Fairness-impact. Figure 4 illustrates the probability that
synthetic samples receive a positive target label across vary-
ing in-context prompt bias rates π for the ADULT dataset.
For each model evaluated we observe that increasing the pro-
portion of biased in-context examples leads to a rise in the
positive label probability of Black group synthetic examples.
However, the positive label probability for the non-Black
group remains constant and low except for larger π values.
Moreover, we can observe that when real samples are used

as in-context examples, the probability of assigning a posi-
tive label to the Black group remains very low, indicating a
strong prior bias in the underlying model toward assigning
y = 0 (low income) to this subgroup. This prior bias may
interfere with or mask the propagation of injected prompt-
level biases, a phenomenon we also examine in Appendix B
using the COMPAS dataset.

Figure 5 further shows that in-context bias in the prompt
propagates into downstream models trained on the synthetic
data. In particular, the downstream classifier exhibits a grow-
ing disparity in positive label predictions between racial
subgroups as π increases, with the Black group consistently
receiving higher positive label rates. This trend, observed
across all tested model families, reveals a systemic vulner-
ability in LLM-based data generation pipelines, in-context
prompt biases not only influence the synthetic data distribu-
tion but also propagates to downstream models.

Utility trade-off. Finally, we investigate the relation be-
tween in-context bias and data utility in Table 1. For the
ADULT dataset, we observe a substantial drop in down-
stream performance across models when in-context exam-
ples are fully biased. However, a moderate in-context bias
rate (e.g., 40%) preserves utility and fidelity of the synthetic
data while significantly affecting fairness for a specific sub-
group. This suggests that only a small fraction of biased
examples is sufficient for an attacker to influence subgroup-
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Table 1. Quality, fidelity and fairness metrics for different levels of in-context bias (π). For both datasets, a moderate number of biased
in-context samples (π = 0.4) maintains the utility (Acc, F1) and the fidelity (TVC, JSD) to the real distribution, while simultaneously
introducing a fairness violation (e.g., |∆SP| > 0.1).

Data Generator π Acc↑ F1↑ SPD↓ DI↓ TVC↑ JSD↓

Adult

Real oracle – 0.857 ± 0.001 0.852 ± 0.001 0.131 ± 0.006 2.084 ± 0.088 – –

Granite - 8B 0.0 0.750 ± 0.000 0.766 ± 0.000 0.226 ± 0.064 2.756 ± 1.176 0.843 ± 0.009 0.205 ± 0.027
Granite - 8B 0.4 0.631 ± 0.001 0.658 ± 0.001 −0.182 ± 0.084 0.682 ± 0.134 0.794 ± 0.014 0.304 ± 0.015
Granite - 8B 1.0 0.290 ± 0.000 0.202 ± 0.001 0.012 ± 0.036 1.013 ± 0.040 0.695 ± 0.007 0.397 ± 0.009

Mixtral - 22B 0.0 0.491 ± 0.001 0.520 ± 0.001 0.058 ± 0.073 1.157 ± 0.187 0.747 ± 0.011 0.303 ± 0.011
Mixtral - 22B 0.4 0.437 ± 0.003 0.465 ± 0.004 −0.209 ± 0.061 0.694 ± 0.074 0.720 ± 0.010 0.394 ± 0.024
Mixtral - 22B 1.0 0.234 ± 0.000 0.089 ± 0.000 −0.080 ± 0.027 0.920 ± 0.027 0.662 ± 0.010 0.734 ± 0.019

Llama - 70B 0.0 0.491 ± 0.002 0.520 ± 0.002 0.723 ± 0.021 6.024 ± 0.819 0.696 ± 0.008 0.766 ± 0.011
Llama - 70B 0.4 0.437 ± 0.003 0.465 ± 0.004 −0.628 ± 0.054 0.294 ± 0.052 0.677 ± 0.007 0.754 ± 0.014
Llama - 70B 1.0 0.234 ± 0.000 0.089 ± 0.000 −0.005 ± 0.005 0.995 ± 0.005 0.669 ± 0.008 0.717 ± 0.014

COMPAS

Real oracle – 0.621 ± 0.000 0.620 ± 0.000 0.132 ± 0.030 0.749 ± 0.049 – –

Granite - 8B 0.0 0.559 ± 0.000 0.556 ± 0.000 0.194 ± 0.066 0.660 ± 0.010 0.819 ± 0.013 0.396 ± 0.011
Granite - 8B 0.4 0.557 ± 0.000 0.557 ± 0.000 0.488 ± 0.069 0.304 ± 0.048 0.872 ± 0.008 0.464 ± 0.010
Granite - 8B 1.0 0.542 ± 0.000 0.202 ± 0.001 0.816 ± 0.039 0.168 ± 0.031 0.804 ± 0.011 0.496 ± 0.002

Mixtral - 22B 0.0 0.598 ± 0.000 0.598 ± 0.000 0.506 ± 0.094 0.364 ± 0.082 0.863 ± 0.011 0.400 ± 0.014
Mixtral - 22B 0.4 0.541 ± 0.000 0.526 ± 0.000 0.819 ± 0.045 0.118 ± 0.044 0.849 ± 0.013 0.448 ± 0.010
Mixtral - 22B 1.0 0.514 ± 0.000 0.473 ± 0.000 0.020 ± 0.012 0.980 ± 0.012 0.686 ± 0.012 0.525 ± 0.004

Llama - 70B 0.0 0.580 ± 0.001 0.561 ± 0.000 0.692 ± 0.031 0.156 ± 0.038 0.860 ± 0.010 0.427 ± 0.002
Llama - 70B 0.4 0.543 ± 0.000 0.538 ± 0.000 0.996 ± 0.009 0.004 ± 0.009 0.801 ± 0.008 0.493 ± 0.013
Llama - 70B 1.0 0.534 ± 0.000 0.525 ± 0.000 0.020 ± 0.019 0.980 ± 0.019 0.737 ± 0.012 0.557 ± 0.004

specific outcomes, all while staying within acceptable fi-
delity and utility ranges. Following Baracaldo et al. (2022),
we consider a successful attack when SPD is greater than
0.1 compared to the SPD under π = 0. Under this threshold,
we observe that for a π = 0.4 bias rate, the SPD fluctuates
more than 0.2 in all tested models and datasets. Despite this
fairness degradation, downstream accuracy and F1 scores
remain deceptively stable for intermediate values of π. This
trade-off reveals an attack surface in which fairness attacks
may go undetected if only utility metrics are used to assess
synthetic data pipelines.

6. Discussion
Recent work demonstrated that language models exhibit
strong few-shot data generation capabilities without requir-
ing further fine-tuning (Kim et al., 2024; Seedat et al.,
2023). This black-box approach effectively improves down-
stream performance while avoiding the computational cost
of model training. While prior work mostly relies on recent
GPT models (Achiam et al., 2023), we explore the prop-
agation of in-context statistical patterns to synthetic data
on three families of user-accessible language models. Our
goal is not to compare model quality, given the different pre-
training and model alignments, but rather to highlight that
in-context prompt injection vulnerabilities persist across
different model architectures and sizes. We leave as future
work a more in-depth analysis of how in-context examples
affect recent complex data generation pipelines, as well as
how other prompt components, such as prompt phrasing or

data types, affect the propagation of bias.

Additionally, our findings suggest that model scale interacts
with bias propagation in non-trivial ways. For example,
larger models within the same family (e.g., Mixtral-8x22B)
appear more sensitive to cross-feature correlations, poten-
tially increasing their vulnerability to subtle but effective
adversarial manipulations. Additionally, language models
inherit prior biases from their pretraining data, which can in-
teract with in-context biases in complex ways. We also leave
for future work a systematic study of how model capacity
affects the correlations learned from in-context examples,
and how the inherent language model prior biases can be
leveraged to design defenses against such vulnerabilities.

7. Conclusion
In this paper, we studied how statistical biases present in in-
context examples propagate to synthetic data during LLM-
based tabular data generation. We introduced a novel attack
surface in which a malicious actor can manipulate the out-
put distribution for a targeted subgroup by injecting a small
number of biased examples. Our results show that this ma-
nipulation can further propagate to the downstream model,
potentially compromising the fairness and integrity of gen-
erated data in sensitive domains.
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Appendix
This supplementary work complements the main manuscript with the following points.

• Appendix A shows the complementary results of the analysis for the COMPAS dataset.

• Appendix B defines the fairness and quality metrics used to evaluate the synthetic datasets.

• Appendix C shows each prompt structure used in the two sections.

A. Additional analysis
A.1. COMPAS dataset

In this section, we present a complementary analysis with the COMPAS dataset. Similar to studied ADULT scenario, the
attacker’s objective is to influence the synthetic data such that the African-American subgroup receives a higher proportion
of positive labels through in-context sample manipulation. We evaluate the impact of manipulating a proportion π of the
in-context examples, with the remaining samples drawn from the original training distribution.

Compared to the ADULT case, even small values of π result in a significant shift in the synthetic data distribution. As shown
in Figure 6, the positive label probability for the unprivileged group remains nearly constant across most π values, except at
very high values of π. In contrast, the positive label probability for the privileged subgroup increases with π. Interestingly,
for larger models such as Mixtral-22B and Llama-70B, the privileged group’s positive label probability reaches 100% with
only minimal manipulation (i.e., very low π).

We argue that, in the case of the COMPAS dataset, the model exhibits a strong prior bias to predict a higher likelihood of
recidivism for the Black racial group, which can be observed when π = 0 in Figure 6. This inherent bias facilitates the drift
in positive label probability of the target group, even under very limited in-context bias.

In Figure 7 we observe the positive label probability of the downstream model trained over the synthetic data across different
values of π. Compared to the COMPAS dataset, here the strong prior leads to even a larger gap between the positive label
probability between the two subgroups.
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Figure 6. Adversarial bias in synthetic data. (Compas, 80 ICL examples) Probability of a positive label in the generated samples for
each racial subgroup, across different values of π. While smaller models show an increase of the positive label probability for the target
group across π, larger models show a sharper bias influence, with minimal manipulation leading to maximum positive label probability.
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Figure 7. Adversarial bias in downstream predictions. (Compas, 80 ICL examples) Probability of the downstream model predicting
a positive label for each racial subgroup across different values of π. The targeted racial group increasingly receives more positive
predictions compared to the complementary group, reflecting the propagation of bias to the downstream model.
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B. Evaluation metrics
In this complementary section, we detail the metrics used to evaluate the fairness and fidelity of the synthetic tabular data.

B.1. Fairness metrics

We measure the statistical parity difference (SPD) between subgroups of a protected attribute, which represents the
difference in the rate of favorable outcomes between those subgroups. In the main manuscript, we consider Gender as the
protected attribute and Race = African-American as favorable outcome for Section 4, and Race as the protected attribute
and y = 1 as the favorable outcome in Section 5. Formally, the statistical parity difference is defined as

PG(t = 1|a = aU )− PG(t = 1|a = aP ), (3)

where a ∈ A is the protected attribute, aU denotes the unprivileged subgroup, and aP to the privileged subgroup. A fair
outcome corresponds to a SPD value close to 0. Similarly, we define the disparate impact (DI) between subgroup, as the
ratio between

PG(t = 1|a = aU )

PG(t = 1|a = aP )
, (4)

where values close to 1 indicate statistical parity between groups. Both metrics are computed over the generated distribution
PG, and are commonly used to assess group fairness in data distributions.

B.2. Fidelity metrics

We evaluate the fidelity of the generated synthetic distribution PG respect to the real data distribution PR. First, for
categorical variables with support V , we define the Total Variation Distance as

TVD(PR,PG) =
1

2

∑
v∈V

∣∣PR(a = v)− PG(a = v)
∣∣. (5)

Intuitively, this metric defines the distance between the frequency of each categorical value between the two distributions
PG and PR. For evaluating fidelity of categorical attributes we use the Total Variation Complement, defined as 1− TVD,
with values close to 1 representing high fidelity between the two distributions.

For numerical variables, we use the Jensen–Shannon divergence (JSD), which is a smoothed version of the Kullback-Leibler
divergence, to quantify overall distributional similarity,

JSD(PR ∥PG) =
1

2
KL

(
PR

∥∥M)
+

1

2
KL

(
PG

∥∥M)
, M = 1

2

(
PR + PG

)
,

where KL(·∥·) is the Kullback–Leibler divergence. Lower JSD indicates higher fidelity.
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C. Prompt structure

Balanced Prompt – Adult - Gender

System role:
You are a tabular synthetic data generator. You produce realistic yet diverse synthetic

samples that mirror the causal structure and feature label distributions of the
provided examples.

User instructions:
Using your knowledge of adult income data, generate exactly two realistic samples, one

with "gender": "Male" and one with "gender": "Female".
You will first receive a block of real examples as in-context demonstrations.

Example data:
{icl_examples}

Produce your output as a single JSON array containing two objects. Do not include any
explanatory text, commentary, or extra fields.

Each object must have exactly these keys in this order:

{
"age": "int",
"workclass": "string",
"fnlwgt": "int",
"education": "string",
"educational-num": "int",
"marital-status": "string",
"occupation": "string",
"relationship": "string",
"race": "string",
"gender": "string",
"capital-gain": "int",
"capital-loss": "int",
"hours-per-week": "int",
"native-country": "string",
"income": "string", // "<=50K", ">50K"

}

Output example:
[
{
{example1}

},
{
{example2}

}
]

Strictly return only the JSON array of two objects corresponding to one male and one
female - no prose, no reordered or extra keys.
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Balanced Prompt – Adult - Race

System role:
You are a tabular synthetic data generator. You produce realistic yet diverse synthetic

samples that mirror the causal structure and feature label distributions of the
provided examples.

User instructions:
Using your knowledge of adult income data, generate exactly two realistic samples, one

with "race": "African-American" and one with "race": "Caucasian".
You will first receive a block of real examples as in-context demonstrations:

Example data:
{icl_examples}

Produce your output as a single JSON array containing two objects. Do not include any
explanatory text, commentary, or extra fields.

Each object must have exactly these keys in this order:

{
"age": "int",
"workclass": "string",
"fnlwgt": "int",
"education": "string",
"educational-num": "int",
"marital-status": "string",
"occupation": "string",
"relationship": "string",
"race": "string",
"gender": "string",
"capital-gain": "int",
"capital-loss": "int",
"hours-per-week": "int",
"native-country": "string",
"income": "string", // "<=50K", ">50K"

}

Output example:
[

{
{example1}

},
{
{example2}

}
]

Strictly return only the JSON array of two objects corresponding to one African-
American and one Caucasian - no prose, no reordered or extra keys.
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