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Abstract
Natural data often has class imbalance. This can
make it difficult for machine learning models to
learn to classify minority classes accurately. In-
dustrial machine-learning applications often have
objectives beyond just accuracy. For example,
models may be required to meet certain fairness
criteria, such as not being biased against the
classes with fewer samples. These objectives are
often non-decomposable in nature. SelMix is a
fine-tuning technique that can be used to improve
the performance of machine learning models on
imbalanced data. The core idea of our framework
is to determine a sampling distribution to perform
a mixup of features between samples from par-
ticular classes such that it optimizes the given
objective. We evaluate our technique against the
existing empirical methods on standard bench-
mark datasets for imbalanced classification.

1. Introduction
The rise of deep networks has shown great promise by
reaching near-perfect performance, particularly on tasks
like visual recognition (He et al., 2022; Kolesnikov et al.,
2020). It has led to their widespread deployment for prac-
tical applications, some of which also have critical con-
sequences (Castelvecchi, 2020). Due to this, developed
models must perform robustly across the entire distribution
rather than only the majority part. These failure cases are
often overlooked when we consider only accuracy as our
primary metric for quantifying the model’s performance.
Therefore, more practical metrics like Recall H-Mean (Sun
et al., 2006), Worst-Case (Min) Recall (Narasimhan &
Menon, 2021; Mohri et al., 2019), etc., should be used for
evaluation. Optimizing these metrics directly for deep net-
works is challenging as they cannot be expressed as a simple
average of metrics calculated for each sample (Narasimhan

*Equal contribution 1Fujitsu Research of India Private Limited,
Bengaluru, India 2Vision and AI Lab, Indian Institute of Science,
Bengaluru, India 3Fujitsu Limited, Kanagawa, Japan. Correspon-
dence to: Shrinivas <shrinivas.ramasubramanian@fujitsu.com>.

Published at the Differentiable Almost Everything Workshop of the
40 th International Conference on Machine Learning, Honolulu,
Hawaii, USA. July 2023. Copyright 2023 by the author(s).

& Menon, 2021). Optimising such metrics is termed as
Non-Decomposable Metrics (NDM) optimization.

In prior works, there exist techniques to optimize such
NDM, but their scope has mainly been restricted to lin-
ear models (Narasimhan et al., 2014; 2015a). Narasimhan
& Menon (2021) in their recent work developed consis-
tent logit-adjusted loss functions for optimizing NDM for
deep neural networks. After this work in supervised setup,
CSST (Rangwani et al., 2022) extends it to practical semi-
supervised learning (SSL) setup, where both unlabeled and
labeled data are present. Optimizing NDM presents a chal-
lenge when learning from long-tailed datasets.

In this paper, we develop a technique that utilizes the ex-
isting pre-trained classifier for representations and fine-
tunes it for the desired NDM. The core contribution of our
work is to develop a selective mixup sampling distribution
for selecting which classes to mix up so that it optimizes the
given non-decomposable objective (Figure 1). This distri-
bution of mixup is updated periodically based on feedback
from a validation set, such that it steers the model in the de-
sired direction for optimizing the non-decomposable objec-
tive. SelMix improves the decision boundaries between par-
ticular classes to optimize the non-decomposable objective,
unlike Mixup technique (Zhang et al., 2018) that applies it
uniformly across all class samples. SelMix framework can
also optimize neural networks for non-linear objectives,
addressing a shortcoming of existing works (Rangwani et al.,
2022; Narasimhan & Menon, 2021).

To evaluate the performance of SelMix, we perform ex-
periments to optimize six different NDM by fine-tuning
a pre-trained classifier using MiSLAS(Zhong et al., 2021)
stage-1. These objectives span linear and non-linear func-
tions of the confusion matrix. We also consider constrained
optimization objectives. A list of objectives considered is
available in Appendix J.3

2. Problem Setup
In our framework, we have a K-class classification prob-
lem where the data (x) comes from an instance space X
with labels in Y := [K]. The classifier h is a mapping
where h : X → Y . The classifier is composed of a fea-
ture extractor g : X → Rd which is followed by a lin-
ear softmax classification layer f : Rd → ∆K−1, where

1



SelMix: Selective Mixup Fine Tuning for Optimizing Non-Decomposable Metrics

∆K−1 ⊂ RK is the K − 1 dimensional probability simplex.
For a data sampleX , the label prediction from classifier h is:
h(x) = argmaxj∈[K] f(g(x))j . For learning the classifier
hwe assume access to samples from data distribution D. We
denote the prior over labels as πi , which is πi = P(y = i).
The confusion matrix for a classifier h is given as:

Cij [h] = E(x,y)∼D[1(y = i, h(x) = j)]. (1)

The confusion matrix C ∈ ∆K×K−1 and is used for char-
acterizing the performance of a classifier. We now define
ψ where ψ : ∆K×K−1 −→ R to be the non-decomposable
objective we want to optimize (or maximize). The ψ(C[h])
can be used for expressing a lot of practical objectives
used in prior works (Cotter et al., 2019; Narasimhan
et al., 2022). We elucidate some of them below, which
we use in our current work. The detailed list of defi-
nitions of the variables used can be refered from Table.
A.1. The worst-case recall is better suited than accuracy to
evaluate classifiers on long-tailed datasets (Narasimhan &
Menon, 2021) and defined as the minimum of recalls across
classes ψMR(C[h]) = min1≤i≤K reci[h], where reci[h] =
Cii[h]/

∑
j∈[K] Cij [h]. Similarly, the G-mean ψGM of re-

calls and H-mean ψHM of recalls are defined as the ge-
ometric and the harmonic mean of recalls across classes,
respectively. Fairness is another area where such complex
metrics are particularly useful. Following (Cotter et al.,
2019; Goh et al., 2016), we consider the maximization of
the mean recall 1

K

∑K
i=1 reci[h] subject to covi[h] ≥ α/K

with a constant α > 0. Here, covi[h] is the predictive cov-
erage, i.e., covi[h] =

∑
j∈[K] Cij [h]. By using Lagrange

multiplier λ, the coverage constrained objective can be re-
duced to the max-min problem maxhminλ ψ

AM
cons(ψ) (See

Table D.1 and (Narasimhan & Menon, 2021)).

3. Selective Mixup for Optimizing NDM
In this work, we aim to optimize the NDM using
the mixup (Zhang et al., 2018) framework. Manifold
Mixup (Verma et al., 2019) extends this idea to have mix-
ups in feature space, which we use in our work. However,
in mixup, the samples for mixing up are chosen randomly.
This may be useful in general but can be sub-optimal when
we aim to optimize for specific NDM (Table O.1). Hence,
in this work, we focus on selective mixups and use them
for optimizing the non-decomposable objective. The loss
for mixup (LMU(g(x), y, g(x

′); f)) between samples (x, y)
and (x′, y′) having features g(x) and g(x′) is given as:

LMU = LCE(f(βg(x) + (1− β)g(x′)), y).

Here LCE is the cross entropy loss, h is f ◦ g and β ∼
Unif(βmin, 1), βmin ∈ [0, 1) . The above design choices
follow the ideas of mixup for semi-supervised learning as
used in Fan et al. (2022). We define (i, j) mixups to be the
mixup of samples (x, y) ∼ Di and (x′, y′) ∼ Dj , where

Figure 1. We demonstrate the effect of the variants of Mixup on
feature representations of samples (a). With standard Mixup, the
feature representation gets equal contribution in all directions of
other classes (b). For SelMix (c), Mixups for specific classes are
selected such that they optimize the desired metric.
Di is defined as the set of samples with class label i i.e.,
{(x, y) : y = i}. Although our main focus is supervised
learning, in the semi-supervised setting, we consider an
unlabeled sample x′ with a pseudo label y′ and replace Dj

by the set of samples D̃j with pseudo label j. Even in the
semi-supervised setting, the set Di remains to be the set of
samples (x, y) with true label i. In our method, we assume
access to a held-out validation dataset Dval. For analyzing
the effect of (i, j) mixups on the model, we use the loss
incurred by mixing the centroids of class samples given as
zk = Ex∼Dval

k
[g(x)] for each class k. This loss which is

representative of the expected loss due to (i, j) mixup is:

L̄i,jMU = LMU(zi, i, zj ; f) ∀i, j ∈ [K]× [K]. (2)

In our work, we mainly focus on analysis of linear classifier
f having weight ν as we primarily train that for optimizing
the NDM. We use the gradient of the above representative
loss to characterize the change in linear classifier weights
(∆W ) due to (i, j) mixup, given as νij = −η∇L̄ijMU-CE.
These νi,j directions characterize the average weight change
due to (i, j) mixup.

Our framework is based on the idea of optimizing the lin-
ear approximation of non-decomposable objective ψ(C)
in terms of directional derivative, in the directions of
change in weights (νij) due to (i, j) mixups. This differs
from earlier Cost Sensitive Learning (CSL) frameworks
for non-decomposable objective optimization (Narasimhan
& Menon, 2021; Cotter et al., 2019; Narasimhan et al.,
2015b;a), as they consider linear approximation w.r.t. the
entries of confusion matrix. Hence, our work gives a new
orthogonal direction to the problem of non-decomposable
objective optimization. We define gain G matrix as the
expected rate of increase in metric ψ(C) upon performing
(i, j) mixup and performing a step of stochastic gradient
descent. It is given as the directional derivative of ψ(C)
w.r.t the parameters along the direction of update of weights
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for a given L̄ijMU:

Gij = ∇νijψ(C) where νij = −η∇L̄ijMU. (3)

We now define a distribution PMix(i, j) over the labels i’s
and pseudo-labels j’s of the samples that shall be mixed
up. As we aim to maximize the average gain E(i,j) [Gij ],
one greedy strategy could be to only mixup (i, j) pairs
corresponding to maxi,j Gij . However that strategy doesn’t
work as we do nmixups and in that the linear approximation
becomes invalid (Refer Table O.2 for evidence). Hence, we
select the PMix to be the scaled softmax of the gain matrix as
our strategy, with s > 0 given as (PSelMix): PSelMix(i, j) =
softmax(sGij). We provide theoretical results regarding
the optimality of the proposed PSelMix in Sec. F.

We now move to the second crucial practical component
required for the algorithm: the tractable gain estimation
(Gij) for each (i, j) mixup. However, while trying to op-
timize the non-decomposable objective, it’s required that
the confusion matrix C[h] should satisfy the following con-
straints:

∑
j Ci,j = πi,

∑
i,j Ci,j = 1 with 0 ≤ Ci,j ≤ 1.

For implicitly enforcing these constraints we make use of
the re-parameterization (Achiam et al., 2017) trick to define
the row of confusion matrix (Ci) in terms of the row of
unconstrained matrix C̃ ∈ RK×K . We define Ci := [πi ·
softmax(C̃i)]. The gain can be analagously defined (Eq. 3)
in terms of C̃: Gij = ∇νijψ(C̃) where νij = −η∇L̄ijMU.

We want to convey that despite the re-parameterization we
do not require the actual computation of C̃. As all the terms
of ∂ψ(C̃)

∂C̃lk
which we require, can be computed analytically in

terms ofC, which makes this operation inexpensive (see Sec.
B). Further, this also allows us to have a tractable formula
for gain circumeventing the non-differentiability introduced
by constraints of confusion matrix C. (see Sec. H) We now
provide an approximation for gain through the following.
Here for conciseness, we provide an informal statement of
the approximation formula. We refer to Theorem G.1 for a
more mathematically precise statement.
Theorem 3.1. The Gain for the i, j mixup (Gij) can be

approximated as Gij ≈
∑
k,l

∂ψ(C̃)

∂C̃kl

(
(νij)

⊤
l · zk

)
. where

zk = Ex∼Dval
k
[g(x)] is the mean of the feature of the sam-

ples from validation set belonging to class k.

The above formula is an approximation based on the cor-
relation of change in logits for the classifier f with weight
W , with the change in the unconstrained version of the
confusion matrix. Changes in the confusion matrix entries
are necessary to be correlated with changes in logit vectors.
This approximation formula holds under natural conditions
(Theorem G.1). Moreover, this approximation works well
in practice, as demonstrated empirically in Sec. 4.

We now provide an algorithm for training h through SelMix
(We refer to Alg. 1 for psuedo code). The high-level idea is

to perform training cycles, in each of which you estimate the
gain matrix G through a validation set and use it for training
the neural network for a few Stochastic Gradient Descent
(SGD) steps. As our expressions of gain are based on linear
classifier, we only train linear classifier fully and fine-tune
the backbone slightly for better empirical results (Sec. 4).
For expressing the algorithm formally, we introduce the
time-dependent notations for gain (G(t)

ij ), the classifier h(t),

the SelMix distribution P(t)
SelMix, weight-direction change

ν
(t)
ij . At each iteration t = 1, . . . , T , we compute the SelMix

distribution P(t)
SelMix = softmax(sG(t)) using Thm.3.1. We

randomly sample class labels Y1 and Y2 by Y1, Y2 ∼ P(t)
SelMix,

and sample (X1, Y1) and (X2, Y2) uniformly random from
DY1

and DY2
respectively. Then, we update the clas-

sifier h(t) by using the CE and the mixup sample, i.e.,
h(t+1) := SGD-Update(h(t),∇LMU(g(X1), Y1, g(X2))).
In each iteration t, we repeat this SGD update n times.

4. Experimental Analysis
4.1. Experimental Setup
We follow the convention for long-tailed classification
where the classes are indexed 1...K with the number of
samples per class decreasing as the class index increases.
The data distribution is exponentially decreasing in nature.
The number of samples in class i are denoted as Ni. The
severity of imbalance is quantified by ρ = N1/NK .
We show the efficacy of SelMix for optimizing a wide vari-
ety of NDM for CIFAR 10,100 LT (ρ = 100) and Imagnenet-
1k LT datasets . Our classifier h is composed of a feature
extractor g : X → Rd followed by a linear softmax classifi-
cation layer f : Rd → ∆K−1, as mentioned in Sec. 2. As
our initial classifier we use ResNet (He et al., 2016) pre-
trained using the first stage of MiSLAS (Zhong et al., 2021).
We perform fine-tuning of the model through SelMix (Alg.
1) that generates a distinct sampling function to perform
mixup that specifically optimised the desired objective. The
appendix mentions additional details and hyper-parameters
values in Table J.1.
Evaluation Setup. We compare the methods on two broad
sets of metric objectives: a) Unconstrained objectives
which includes G-mean, H-mean, Mean (Arithmetic Mean),
and worst-case (Min.) Recall b) Constrained objectives
include maximizing the recalls under coverage constraints.
The constraint for all classes is that coverage should be
greater than 0.95

K . As followed in the literature (Narasimhan
& Menon, 2021) for CIFAR-100 LT, Imagenet-100 LT, and
Imagenet-1k LT due to very few samples in the tail classes,
instead of Min Recall/Coverage, we optimize the Min Head-
Tail Recall/Min Head-Tail coverage, respectively. The tail
corresponds to the least frequent 10% of the classes, and the
head corresponds to the rest. For a more detailed overview
of the metric objectives and their definition (Table J.3).
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Table 1. Comparison of metric values with various Long-Tailed methods on CIFAR-10/100 LT under ρ = 100 setup. The best results are
indicated in bold. We consistently observe a boost in the performance compared to the initial pre-trained model of MiSLAS (stage 1)

Mean Rec. Min Rec. GM HM Mean Rec. / Min Cov. Mean Rec. Min H-T Rec. HM GM Mean Rec. / Min HT Cov.

ERM

C
IF

A
R

-1
0

70.1 40.2 66.9 63.7 70.1/0.041

C
IF

A
R

-1
00

41.7 10.5 31.2 19.0 41.7/0.0029
LDAM w/ DRW 76.3 60.9 75.4 74.5 76.3/0.066 42.6 10.2 33.2 19.3 42.6/0.0047
CSL 79.7 71.1 79.5 79.2 79.7/0.091 41.9 36.2 26.4 12.2 41.9/0.0990
MiSLAS (stage 1) 74.9 45.2 72.7 70.3 74.9/0.046 40.2 1.1 0.0 0.0 40.2/0.0020

w/ (stage 2) 81.9 72.5 81.6 81.3 81.9/0.077 47.0 15.2 39.9 30.9 47.0/0.0055
w/ SelMix 83.3 79.2 82.8 82.6 83.2/0.095 48.3 41.3 42.3 38.2 47.8/0.0095

4.2. Comparison
CIFAR datasets: Here, we consider the CIFAR-10 and
CIFAR-100 LT (ρ = 100) datasets. We observe a signif-
icant improvement in the corresponding metric for which
the model was fine-tuned when using the proposed SelMix
method in all cases, compared to the FixMatch (LA) pre-
trained model. For the Min. Recall metric, we observe an
approximately 75% improvement for CIFAR-10 LT and a
corresponding 48% improvement in Min. HT Recall for
CIFAR-100 LT over the baseline method. SelMix also out-
performs the 2nd stage of MiSLAS across all metrics, includ-
ing mean recall (∼ accuracy). We find that, for optimizing
a given metric, PSelMix initially mixes up samples from tail
classes with head classes while using the tail class sample’s
label to increase performance on them. Then, it gradually
transitions towards uniform mixups later ( Appendix L).
Consider the optimization of metrics with coverage con-
straints (i.e., covi[h] ≥ 0.95

K ). We optimize the model’s
mean recall with coverage constraint, as CSL(Narasimhan
& Menon, 2021) supports it. However, as SelMix is generic,
it also supports optimizing non-linear metrics like H-mean
with coverage, which we show in the Appendix K. Table 1
shows that most heuristic SotA methods lead to sub-optimal
min. coverage values, and only CSL and SelMix approx-
imately satisfy the coverage constraints. SelMix achieves
better mean recall than CSL, providing a better tradeoff in
terms of performance and satisfiability of constraints.
Table 2. Comparison of SelMix’s performance on Imagnet-1k LT.
We show the scalability of SelMix to large scale datasets with very
minimal cost of fine-tuning the pre-trained model

Method Mean Min Mean Rec.
Recall Recall / Min HT Cov.

CSL 48.5 40.2 38.5/0.00099
MiSLAS (stage 1) 45.5 4.1 45.5/0.00004
w/ (stage 2) 52.2 29.7 52.2/0.00062
w/ SelMix 52.8 45.1 52.5/0.00099

Imagenet1k LT We show that our method SelMix, scales
well to large-scale datasets as well. Here we do not consider
the Harmonic mean of recall and Geometric mean of recall
since due to the scarcity of samples for the tail classes (5
samples per class), their recall values are very small push-
ing the overall values too low (≈ 0) making them not very
informative about the overall performance of the classifier.
Here again, we observe that SelMix significantly improves
over the baseline and also comfortably satisfies the cover-

age constraints without suffering on the mean recall. This
is unlike Stage-2 MiSLAS trained model which does not
satisfy the coverage constraint.

4.3. Extension to Semi-Supervised Learning
We show results for the case of a semi-supervised setup
where the samples are taken from the labeled and unlabeled
datasets based on their labels and pseudo-labels, respec-
tively. We compare against existing SoTA methods in im-
balanced semi-supervised learning such as DASO (Oh et al.,
2022), CoSSL (Fan et al., 2022), and ABC (Lee et al., 2021).
We show that and our method not only achieves superior
performance for the desired metric but also achieves supe-
rior accuracy (∼ Mean Rec.) under a diverse set of data
distributions, even under cases where the labeled and unla-
beled data distribution are mismatched. For the metric of
Min Recall, a 5% improvement is observed for CIFAR-10,
and a corresponding 9.8% improvement in Min HT Recall
for CIFAR-100 over existing SoTA methods (Table O.5).
The STL-10 dataset comes with an additional 100k samples,
with unknown label distribution. This setting emulates the
practical scenario where a lot of data is being collected
but labels are absent due to high annotation costs. Due to
no distributional assumption, SelMix outperforms SoTA
methods for the min-recall metric by 12.7% (Table O.3).
We use a WideResNet 28-2 pre-trained using FixMatch
(Sohn et al., 2020) where the supervised loss is replaced by
the logit adjusted loss for superior consistency regularization
despite the label distribution mismatch between labeled and
unlabeled data. Training details are available in Table J.2.

5. Conclusion and Discussion
We study the optimization of complex practical metrics like
the G-mean and H-mean of Recalls, along with objectives
with fairness constraints in the case of neural networks. We
find that most existing techniques achieve sub-optimal per-
formance in terms of these practical metrics, notably on
worst-case recall. These metrics and constraints are NDM,
for which we propose a Selective Mixup (SelMix) based
fine-tuning algorithm for optimizing them. The algorithm
selects samples from particular classes to mixup to improve
a linear approximation of the non-decomposable objective.
Our method SelMix is able to improve on the majority of
objectives in comparison to the baselines, bridging the gap
between theory and practice. We expect SelMix fine-tuning
technique to be used for improving existing models by im-
proving on worst-case and fairness metrics inexpensively.
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Lattimore, T. and Szepesvári, C. Bandit algorithms. Cam-
bridge University Press, 2020.

Lee, H., Shin, S., and Kim, H. Abc: Auxiliary balanced
classifier for class-imbalanced semi-supervised learning.
Advances in Neural Information Processing Systems, 34:
7082–7094, 2021.

Menon, A. K., Jayasumana, S., Rawat, A. S., Jain, H., Veit,
A., and Kumar, S. Long-tail learning via logit adjustment.
In International Conference on Learning Representations,
2020.

Mohri, M., Sivek, G., and Suresh, A. T. Agnostic feder-
ated learning. In International Conference on Machine
Learning, pp. 4615–4625. PMLR, 2019.

Narasimhan, H. and Menon, A. K. Training over-
parameterized models with non-decomposable objectives.
Advances in Neural Information Processing Systems, 34,
2021.

Narasimhan, H., Vaish, R., and Agarwal, S. On the statistical
consistency of plug-in classifiers for non-decomposable
performance measures. Advances in neural information
processing systems, 27, 2014.

Narasimhan, H., Kar, P., and Jain, P. Optimizing non-
decomposable performance measures: A tale of two
classes. In International Conference on Machine Learn-
ing, pp. 199–208. PMLR, 2015a.

Narasimhan, H., Ramaswamy, H., Saha, A., and Agarwal,
S. Consistent multiclass algorithms for complex perfor-
mance measures. In International Conference on Ma-
chine Learning, pp. 2398–2407. PMLR, 2015b.

Narasimhan, H., Ramaswamy, H. G., Tavker, S. K., Khu-
rana, D., Netrapalli, P., and Agarwal, S. Consistent mul-
ticlass algorithms for complex metrics and constraints.
arXiv preprint arXiv:2210.09695, 2022.

Oh, Y., Kim, D.-J., and Kweon, I. S. Daso: Distribution-
aware semantics-oriented pseudo-label for imbalanced
semi-supervised learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 9786–9796, 2022.

5



SelMix: Selective Mixup Fine Tuning for Optimizing Non-Decomposable Metrics

Rangwani, H., Ramasubramanian, S., Takemori, S., Takashi,
K., Umeda, Y., and Radhakrishnan, V. B. Cost-sensitive
self-training for optimizing non-decomposable metrics.
In Oh, A. H., Agarwal, A., Belgrave, D., and Cho, K.
(eds.), Advances in Neural Information Processing Sys-
tems, 2022.

Sohn, K., Berthelot, D., Carlini, N., Zhang, Z., Zhang, H.,
Raffel, C. A., Cubuk, E. D., Kurakin, A., and Li, C.-L.
Fixmatch: Simplifying semi-supervised learning with
consistency and confidence. Advances in Neural Infor-
mation Processing Systems, 33:596–608, 2020.

Sun, Y., Kamel, M. S., and Wang, Y. Boosting for learning
multiple classes with imbalanced class distribution. In
Sixth international conference on data mining (ICDM’06),
pp. 592–602. IEEE, 2006.

Verma, V., Lamb, A., Beckham, C., Najafi, A., Mitliagkas,
I., Lopez-Paz, D., and Bengio, Y. Manifold mixup: Better
representations by interpolating hidden states. In Interna-
tional Conference on Machine Learning, pp. 6438–6447.
PMLR, 2019.

Wang, S. and Yao, X. Multiclass imbalance problems: Anal-
ysis and potential solutions. IEEE Transactions on Sys-
tems, Man, and Cybernetics, Part B (Cybernetics), 42(4):
1119–1130, 2012.

Wei, C., Sohn, K., Mellina, C., Yuille, A., and Yang, F.
Crest: A class-rebalancing self-training framework for
imbalanced semi-supervised learning. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pp. 10857–10866, 2021.

Yun, S., Han, D., Oh, S. J., Chun, S., Choe, J., and Yoo,
Y. Cutmix: Regularization strategy to train strong clas-
sifiers with localizable features. In Proceedings of the
IEEE/CVF international conference on computer vision,
pp. 6023–6032, 2019.

Zagoruyko, S. and Komodakis, N. Wide residual networks.
CoRR, abs/1605.07146, 2016.

Zhang, H., Cisse, M., Dauphin, Y. N., and Lopez-Paz, D.
mixup: Beyond empirical risk minimization. In Interna-
tional Conference on Learning Representations, 2018.

Zhong, Z., Cui, J., Liu, S., and Jia, J. Improving calibra-
tion for long-tailed recognition. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp.
16489–16498, 2021.

6



SelMix: Selective Mixup Fine Tuning for Optimizing Non-Decomposable Metrics

Appendix

A. Notation

Table A.1. Table of Notations used in Paper

K Number of classes
Y := [K] Label space

x Instance
y Label
X Instance space

h : X → Y a classifier
C[h] Confusion matrix for the classifier h

∆n−1 ⊂ Rn the n− 1-dimensional probability simplex
ψ : ∆K2−1(⊂ RK×K) → R a function defined on the set of confusion matrices (ψ(C[h]) is the metric

of h)
πi prior for class i ∈ [K]

g : X → Rd a feature extractor
f : Rd → ∆K−1 the final classifier such that h = argmaxi fi ◦ g
W ∈ RK×d the weight of the final layer

zk the centroid of class samples given as Ex∼Dval
k

[g(x)]

LMU(xi, yi, xj ;h) the loss for mixup between labeled sample (xi, yi) and unlabeld sample
xj

Li,jMU the expected loss due to (i, j) mixup
Gij gain upon performing (i, j) mixup
ν̃ij the change in linear classifier weights ν due to (i, j) mixup

∇Aψ (where A ∈ RK×d) the directional derivative defined as
∑
k,lAkl

∂ψ
∂Wkl

s the inverse temperature parameter for the softmax
C̃ Unconstrained extension for confusion matrix C
Di Subset of data with label i
D̃i Subset of data with pseudo-label i
P a distribution on [K]× [K]

P = (Pt)Tt=1 a policy (a sequence of distributions Pt)
G(P) the expected average gain of P
Nk the number of samples in the k-th labeled class
Mk the number of samples in the k-th unlabeled class
ρl the class imbalanced factor of the labeled dataset (max1≤i,j≤K Ni/Nj)
ρu the class imbalanced factor of the unlabeled dataset
H The set of first 90% classes that contains the majority of samples
T The set of last 10% classes that contains the minority of samples

∥A∥F the Frobenius norm of a matrix

B. Non-differentiability and the Unconstrained Confusion Matrix
In Eq. (3), we define the gain Gij by a directional derivative of ψ(C) with respect to weight W . However, strictly
speaking, since the definition of the confusion matrix C involves the indicator function, ψ(C) is not a differentiable
function of W . Moreover, even if gradients are defined, they vanish because of the definition of the indicator function.
In the assumption of Theorem G.1 (a formal version of Theorem 3.1), we assume C̃ is a smooth function of W and it
implies C is a differentiable function of W . This assumption can be satisfied if we replace the indicator function by
surrogate functions of the indicator functions in the definition of the confusion matrix C. More precisely, we replace the
definition of Cij [h] = πiEx∼Pi [1(h(x) = j)] by πiEx∼Pi [sj(f(x))]. Here h(x) = argmaxk fk(x) as before, Pi is the
class conditional distribution P (x|y = i) and sj is a surrogate function of p 7→ 1(argmaxi pi = j) satisfying 0 ≤ sj(p) ≤ 1

7
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for any 1 ≤ j ≤ K, p ∈ ∆K−1 and
∑K
j=1 sj(p) = 1 for any p ∈ ∆K−1. To computeGij , one can directly use the definition

of Eq. (3) with the smoothed confusion matrix using surrogate functions of the indicator function. However, an optimal
choice of the surrogate function is unknown. Therefore, in this paper, we introduce an unconstrained confusion matrix C̃
and the approximation formula Theorem 3.1 (Theorem G.1). An advantage of introducing C̃ and the approximation formula
is that the RHS of the approximation formula

∑
k,l

∂ψ(C̃)

∂C̃kl

(
(νij)

⊤
l · zk

)
does not depend on the choice of the surrogate

function if we use formulas provided in Sec. H with the original (non-differentiable) definition of C. 1. Since the optimal
choice of the surrogate function is unknown, this gives a reliable approximation.

C. Computational Complexity
We discuss the computational complexity of SelMix and that of an existing method (Rangwani et al., 2022) for NDM
optimization in terms of the class number K. We note that to the best of our knowledge, CSST (Rangwani et al., 2022) is
the only existing method for NDM optimization in the SSL setting.

Proposition C.1. The following statements hold:

1. In each iteration t in Algorithm 1, computational complexity for P(t)
SelMix is given as O(K3).

2. In each iteration of CSST (Rangwani et al., 2022), it needs procedure that takes O(K3) time.

Here, the Big-O notation hides sizes of parameters of the network other than K (i.e., the number of rows of W ) and the size
of the validation dataset.

Proof. 1. Computational complexity for the confusion matrix is given as O(K3) since there are K2 entries and for each
entry, evaluating h(t)(x) takes O(K) time for each validation data x. For each 1 ≤ k ≤ K, computational complexity
for zk is O(K). We compute {softmax(zk)}1≤k≤K , which takes O(K2) time. The (m, l)-th entry of the matrix νij is
given as −ηζm(δil − softmaxi(ζ)), where 1 ≤ m ≤ d, 1 ≤ l ≤ K, and ζ = βzi + (1 − β)zj ∈ Rd. Therefore, once
we compute {softmax(zk)}1≤k≤K , computational complexity for {νij}1≤i,j≤K is O(K3). For each 1 ≤ l ≤ K, we put

vl =
∑K
k=1

∂ψ(C(t))

∂C̃kl
zk. Then computational complexity for {vl}1≤l≤K is O(K2). Since G(t)

ij =
∑K
l=1(ν

(t)
ij )⊤l · vl is a

sum of K dot products of d-dimensional vectors, once we compute {vl}l, computational complexity for {G(t)
ij }1≤i,j≤K is

O(K3). Thus, computational complexity for P(t)
SelMix is given as O(K3).

2. In each iteration t, CSST needs computation of a confusion matrix at validation dataset. Since there are K2 entries and
for each entry, h(t)(x) takes O(K) time for each validation data x, computational complexity for the confusion matrix is
given as O(K3). Thus, we have our assertion.

D. Non-Decomposable Metrics
In this section, we provide more detailed introduction to NDM. Real-world datasets are long-tailed and imbalanced. In
such cases, the mean recall can be deceptive as the model might be very good for majority classes while performing below
par for minority classes. In such cases, the metrics of H-mean (the harmonic mean of recalls across classes) (Kennedy
et al., 2010), G-mean (the geometric mean of recalls across classes) (Wang & Yao, 2012; Lee et al., 2021) and Mini-
mum (worst-case) recall (the minimum of recalls across classes) (Narasimhan & Menon, 2021) across classes is better
suited for holistic evaluation. These metrics show a significant deviation from mean performance in case of performance
disparity between the majority and minority classes. The G-mean of recall can be defined in terms of the confusion

matrix (C[h]) as ψGM(C[h]) =
(∏

i∈[K]
Cii[h]∑

j∈[K] Cij [h]

) 1
K

. For the minimum recall (ψMR) we use the continuous relax-
ation as used by (Narasimhan & Menon, 2021), by writing the objective as min-max optimization over λ ∈ ∆K−1:
maxh ψ

MR(C[h]) = maxhminλ∈∆K−1

∑
i∈[K] λi

Cii[h]∑
j∈[K] Cij [h]

. Fairness is another area where such complex metrics are
particularly useful. For example, prior works (Cotter et al., 2019; Goh et al., 2016) consider optimizing the mean recall
while constraining the predictive coverage (covi[C[h]] =

∑
j Cji) that is the proportion of class i predictions on test data

given as maxh
1
K

∑K
i=1 reci[h] s.t. covi[h] ≥ α

K ∀i ∈ [K]. Optimization of above-constrained objectives is possible by

1Constants such as c, c′ in Theorem G.1 do depend on the surrogate function
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Table D.1. Metrics defined using the entries of confusion matrix C.

Metric Definition
Mean Recall (ψAM) 1

K

∑
i∈[K]

Cii[h]∑
j∈[K] Cij [h]

Min. Recall (ψMR) minλ∈∆K−1

∑
i∈[K] λi

Cii[h]∑
j∈[K] Cij [h]

G-mean (ψGM)
(∏

i∈[K]
Cii[h]∑

j∈[K] Cij [h]

) 1
K

H-mean (ψHM) K
(∑

i∈[K]

∑
j∈[K] Cij [h]

Cii[h]

)−1

Mean Recall s.t. per class coverage ≥ τ (ψAM
cons.) minλ∈RK

+

∑
i∈[K]

Cii[h]∑
j∈[K] Cij [h]

+
∑
j∈[K] λj

(∑
i∈[K] Cij [h]−

α
K

)

using the Lagrange Multipliers (λ ∈ RK≥0) as done in Sec. 2 of Narasimhan & Menon (2021). By expressing this above
expression in terms of C[h] and through linear approximation, the constrained objective ψcons.(C[h]) can be considered as:
maxh ψ

AM
cons.(C[h]) = maxhminλ∈RK

≥0

1
K

∑
i∈[K] Cii[h]/

∑
j∈[K] Cij [h] +

∑
j∈[K] λj

(∑
i∈[K] Cij [h]−

α
K

)
.

The λ for calculating value of ψcons.(C[h]) and ψMR(C[h]), is periodically updated using exponentiated or projected
gradient descent as done in (Narasimhan & Menon, 2021). We summarize ψ(C[h]) for all NDM we consider in this paper
in Table D.1. We will consider maximization of all such objectives expressed through ψ(C[h]). In comparison to existing
frameworks (Narasimhan & Menon, 2021; Rangwani et al., 2022) in addition to linear metrics, we can also optimize for
non-linear metrics like (G-mean and H-mean) for neural networks. , such as optimizing minimum Recall (Narasimhan &
Menon, 2021; Cotter et al., 2019), H-mean of Recall and even the lagrangian relaxations of constrained objectives like mean
recall under coverage constraints. We follow the convention that increasing ψ leads to the desired performance. Givena K
class classification problem, our objective is to optimize a NDM ψ(C), where ψ : ∆K×K−1 −→ R, which is a function of
the entries of the confusion matrix C[h], for a classifier h ∈ H. Here H is the set of all possible classifiers. Some of the
NDM we wish to optimise for have been tabulated below. Many of these metrics encourage the classifier to produce more
equitable results on long-tailed data. We assume a feature extractor g : χ→ Rd which is followed by a linear layer classifier
f parameterised by weights W ∈ Rd×K which is followed by a softmax layer.

E. Algorithm
In this section, we provide more detailed description of our algorithm in Algorithm 1.

Algorithm 1 Training through SelMix

Input: Data (D,Dval), iterations T , classifier h(0), metric function ψ
for t = 1 to T do
h(t) = h(t−1), C(t) = E(x,y)∼Dval [C[h(t)]]

ν
(t)
ij = −η∇L̄ijMU-CE ∀ i, j (3)

G
(t)
ij =

∑
k,l

∂ψ(C(t))

∂C̃kl
(ν

(t)
ij )⊤l · zk ∀ i, j

P(t)
SelMix = softmax(G(t))

for n SGD steps do
Y1, Y2 ∼ P(t)

SelMix
X1 ∼ U(DY1) , X2 ∼ U(DY2) // sample batches of data

h(t) := SGD-Update(h(t),∇LMU-CE(X1, Y1, X2))
end for

end for
Output: h(T )
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F. Theoretical Analysis
In this section motivated by Algorithm 1, we consider the following online learning problem and prove validity of our
method. For each time step t = 1, . . . , T , an agent selects pairs (i(t), j(t)) ∈ [K]× [K], where random variables (i(t), j(t))
follows a distribution Pt on [K]× [K]. We call a sequence of distributions (Pt)Tt=1 a policy. For (i, j) ∈ [K]× [K] and
1 ≤ t ≤ T , we assume that a random variable G(t)

ij is defined. We regard G(t)
ij as the gain in the metric when performing

(i, j)-mixup at iteration t in Algorithm 1. We assume that G(t)
ij is a random variable due to randomness of the validation

dataset, X1, X2, and the policy. Furthermore, we assume that when selecting (i(t), j(t)), the agent observes random variables

G
(t)
ij for (i, j) ∈ [K]× [K] but cannot observe the true gain defined by E

[
G

(t)
ij

]
. The average gain G

(T )
(P) of a policy

P = (Pt)Tt=1 is defined as G
(T )

(P) = 1
T

∑T
t=1 E

[
G

(t)
ij

]
, where (i(t), j(t)) follows the distribution Pt and the expectation

is taken with respect to the randomness of the policy, validation dataset, X1, X2. This problem setting is similar to that
of Hedge (Freund & Schapire, 1997) and EXP3 (Auer et al., 2002). However, in the problem setting of Hedge, the agent
observes gains (or losses) after performing an action but in our problem setting, the agent have random estimations of the
gains before performing an action. We note that even in this setting, methods such as argmax with respect to G(t)

ij may not

perform well due to randomness of G(t)
ij and errors in the approximation.

We call a policy P = (Pt)Tt=1 non-adaptive (or stationary) if Pt is the same for all t = 1, . . . , T , i.e, if there exists a
distribution P0 on [K] × [K] such that Pt = P0 for all t = 1, . . . , T . A typical example of non-adaptive policies is the
uniform mixup, i.e., Pt is the uniform distribution on [K]× [K]. Another typical example is Pt = δ(i(0),j(0)) for a fixed
(i(0), j(0)) ∈ [K]× [K] (i.e., the agent performs the fixed (i(0), j(0)))-mixup in each iteration). Similarly to Hedge (Freund
& Schapire, 1997) and EXP3 (Auer et al., 2002), we consider softmax policy with respect to the cumulative sum of gains.

Similary to Hedge (Freund & Schapire, 1997), the following theorem states that the SelMix policy is better than any
non-adaptive policy in terms of the average expected gain if T is sufficiently large:

Theorem F.1. We define PSelMix = (PtSelMix)
T
t=1 by PtSelMix = softmax((s

∑t−1
τ=1G

(τ)
ij )1≤i,j≤K), where s > 0 is the inverse

temperature parameter. We assume that G(t)
ij is normalized so that G(t)

ij ∈ [0, 1]. Then, with an appropriate choice of the
inverse temperature parameter s, for any non-adaptive policy P0 = (P0)Tt=1, we have (Proof in Appendix G.2)

G
(T )

(PSelMix) +
2
√
logK√
T

≥ G
(T )

(P0).

Next, we consider a variant of the policy and introduce analysis of it.

Theorem F.2. We define P(t)
SelMix = softmax((s

∑t
τ=1G

(τ)
ij )ij) and define a policy PSelMix = (P(t)

SelMix)t. Then for any
s > 0 and for any non-adaptive policy P(0) = (P(0))Tt=1, we have

G
(T )

(PSelMix) +
2 logK

sT
≥ G

(T )
(P(0)).

G. Proofs for Mathematical Results in Paper
G.1. A Formal Statement of Theorem 3.1 and its Proof

We provide a more formal statement of Theorem 3.1 (Theorem G.1) and provide its proof.
Theorem G.1. For a matrix A ∈ Rn×m, we denote by ∥A∥F the Frobenius norm of A. We fix the iteration of the gradient
descent and assume that the weight W takes the value W (0) and C̃ takes the value C̃(0).

We assume that the following inequality holds for all k ∈ [K] and l ∈ [K] uniformly W ∈ N0, where N0 is an open
neighbourhood of W (0):

|E
[
softmaxl(W⊤g(xk))

]
− softmaxl(C̃k)| ≤ ε.

We also assume that on N0, C̃ can be regarded as a smooth function of W and the Frobenius norm of the Hessian is bounded
on N0. Furthermore, we assume that the following small variance assumption with ε̃ > 0 for all k:

K∑
m=1

V
[
(W⊤g(xk))m

]
≤ ε̃.
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Then if ∥∆W∥F is sufficiently small, there exist a positive constant c > 0 depending only on K with c = O(poly(K)) and
a positive constant c′ > 0 such that the following inequality holds:∣∣∣∣∣Gij −

K∑
k=1

∂ψ

∂C̃k
(∆W )⊤zk

∣∣∣∣∣ ≤ c

∥∥∥∥ ∂ψ∂C
∥∥∥∥
F

(ε+ ε̃) + c′(∥∆W∥2F + ∥∆C̃∥2F).

Here ∆W = ν̃tij and C̃k is a column vector such that the k-th row of C̃ is given as C̃k, and we consider Jacobi matrices at
C̃ = C̃(0) and the corresponding value of C.

Proof. In this proof, to simplify notation, we denote softmax(z) by σ(z) for z ∈ RK . In this proof, we fix the iteration of
the gradient descent and assume that the weight W takes the value W (0) and C̃ takes the value C̃(0). We assume in an
open neighborhood of W (0), we have a smooth correspondence W 7→ C̃ and that if the value of W changes from W0 to
W0 +∆W , then C̃ changes from C̃0 to C̃0 +∆C̃. To prove the theorem, we introduce the following three lemmas. We
note that by the assumption of the theorem and Lemma G.3, the assumption (6) of Lemma G.4 can be satisfied with

ε1 = c′′(ε+ ε̃),

where c′′ > 0 is a constant depending only on K with c′′ = O(poly(K)). Then by Lemma G.4, there exist constants
c1 = c1(K) and c2 = c2(K) depending on only K with c1, c2 = O(poly(K)) such that the following inequality holds for
all k: ∥∥∥∥∥ ∂C∂C̃k

∣∣∣∣
C̃k=C̃

(0)
k

(
∆C̃k − (∆W )⊤zk

)∥∥∥∥∥
F

≤ c1ε1 + c2(∥∆C̃k∥2F + ∥(∆W )⊤zk∥2F). (4)

Then, we have the following:∣∣∣∣∣ ∂ψ∂C̃∆C̃ −
K∑
k=1

∂ψ

∂C̃k
(∆W )⊤zk

∣∣∣∣∣ =
∣∣∣∣∣ ∂ψ∂C ∂C

∂C̃
∆C̃ −

K∑
k=1

∂ψ

∂C

∂C

∂C̃k
(∆W )⊤zk

∣∣∣∣∣
=

∣∣∣∣∣ ∂ψ∂C
K∑
k=1

∂C

∂C̃k
∆C̃k −

K∑
k=1

∂ψ

∂C

∂C

∂C̃k
(∆W )⊤zk

∣∣∣∣∣
≤
∥∥∥∥ ∂ψ∂C

∥∥∥∥
F

∥∥∥∥∥
K∑
k=1

∂C

∂C̃k

(
∆C̃k − (∆W )⊤zk

)∥∥∥∥∥
F

Here, by fixing an order on [K]× [K], we regard ∂ψ

∂C̃
, ∂C
∂C̃

and ∆C̃ as a K2-dimensional row vector, a K2 ×K2-matrix,

and a K2-dimensional column vector, respectively. Moreover, we consider Jacobi matrices at C̃ = C̃(0). Then, the assertion
of the theorem from this inequality, (4), Lemma G.2.

Lemma G.2. Under assumptions and notations in the proof of Theorem G.1, there exists a constant c > 0 such that∣∣∣∣Gij − ∂ψ

∂C̃

∣∣∣∣
C̃=C̃(0)

∆C̃

∣∣∣∣ ≤ c∥∆W∥2F.

Proof. By the assumption of the mapping W 7→ C̃ and the Taylor’s theorem, there exists c1 > 0 such that∥∥∥∥∥∆C̃ −

(
∂C̃

∂W

)∣∣∣∣∣
W=W0

∆W

∥∥∥∥∥
F

≤ c1∥∆W∥2F. (5)

By definition of Gij , we have the following:∣∣∣∣Gij − ∂ψ

∂C̃

∣∣∣∣
C̃=C̃(0)

∆C̃

∣∣∣∣ = ∣∣∣∣ ∂ψ∂W ∆W − ∂ψ

∂C̃
∆C̃

∣∣∣∣
=

∣∣∣∣∣ ∂ψ∂C̃ ∂C̃

∂W
∆W − ∂ψ

∂C̃
∆C̃

∣∣∣∣∣
≤ c1

∥∥∥∥ ∂ψ
∂C̃

∥∥∥∥
F

∥∆W∥2F .
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Here we consider Jacobi matrices at W =W0 and corresponding values. The last inequality follows from the fact that the
matrix norm ∥ · ∥F is sub-multiplicative and Eq. (5).

Lemma G.3. Under assumptions and notations in the proof of Theorem G.1, there exist a positive constant c = c(K)
depending only on K with c = O(poly(K)) such that:

|E
[
σl(W

⊤g(xk))
]
− σl(W

⊤zk)| ≤ c

K∑
m=1

V
[
(W⊤g(xk))m

]
,

for any 1 ≤ k, l ≤ K.

Proof. This can be proved by applying the Taylor’s theorem to σl. We fix k, l and apply the Taylor’s theorem to the function
ξ 7→ σl(ξ) at ξ =W⊤zk =W⊤E [g(xk)]. Then there exists ξ0 ∈ RK such that

σl(ξ) = σl(W
⊤zk) +

∂σl
∂ξ

∣∣∣∣
ξ=W⊤zk

(ξ −W⊤zk) +
1

2
(ξ −W⊤zk)

⊤Hk(ξ −W⊤zk),

where Hk = ∂2σl

∂ξ2

∣∣∣
ξ=ξ0

. By noting that ∂σl

∂ξm
= δlmσl(ξ) − σl(ξ)σm(ξ) (here δlm is the Kronecker’s delta), it is easy to

see that there exists a constant c′l depending only on l and K such that ∥H∥F < c′l and c′l = O(poly(K)). By letting
ξ =W⊤g(xk) in the above equation and taking the expectation of the both sides, we obtain the assertion of the lemma with
c = 1

2 maxl≤[K] c
′
l.

Lemma G.4. Under assumptions and notations in the proof of Theorem G.1, we assume there exists ε1 > 0 such that the
following inequality holds for all k and l for any W in an open neighborhood of W (0) and corresponding C̃:∣∣∣σl(W⊤zk)− σl(C̃k)

∣∣∣ ≤ ε1. (6)

Furthermore, we assume that ∥(∆W )⊤zk∥F is sufficiently small for all k. Then there exist constants c1 = c1(K) and
c2 = c2(K) depending on only K with c1, c2 = O(poly(K)) such that∥∥∥∥∥ ∂C∂C̃k

∣∣∣∣
C̃k=C̃

(0)
k

(
∆C̃k − (∆W )⊤zk

)∥∥∥∥∥
F

≤ c1ε1 + c2(∥∆C̃k∥2F + ∥(∆W )⊤zk∥2F).

Here, C̃k (resp. ∆C̃k) is a column vector such that the k-th row vector of C̃ (resp. ∆C̃) is given as C̃k (resp. ∆C̃k).
Moreover, when defining Jacobi matrices, we regard C as a K2-vector and consider a K2 ×K Jacobi matrix ∂C

∂C̃k

∣∣∣
C̃k=C̃

(0)
k

at C̃k = C̃
(0)
k .

Proof. Since (6) holds all W in an open neighborhood of W (0) and corresponding C̃, we apply the Taylor’s theorem to the
function ξ 7→ σl(ξ) at ξ = (W (0))⊤zk and ξ = C̃

(0)
k . Then by (6) and the same argument in the proof of Lemma G.3, we

have ∣∣∣∣∣ ∂σl∂ξ

∣∣∣∣
ξ=µk

∆µk −
∂σl
∂ξ

∣∣∣∣
ξ=C̃

(0)
k

∆C̃k

∣∣∣∣∣ ≤ ε1 + c′2(∥∆µk∥2F + ∥∆C̃k∥2F),

where µk = (W (0))⊤zk, ∆µk = (∆W )⊤zk. Noting that (∂σl

∂ξ )m is given as δmlσl(ξ) − σm(ξ)σl(ξ), (6) and the
assumption that ∥µk∥F is sufficiently small, we see that there exists a constant c′1, c

′
2 > 0 depending only on K with

c′1, c
′
2 = O(poly(K)) such that the following inequality holds:∣∣∣∣∣ ∂σl∂ξ

∣∣∣∣
ξ=C̃

(0)
k

(
∆µk −∆C̃k

)∣∣∣∣∣ ≤ c′1ε1 + c′2(∥∆µk∥2F + ∥∆C̃k∥2F). (7)

Next, we consider entries of the K2-vector ∂C

∂C̃k

∣∣∣
C̃k=C̃

(0)
k

(∆C̃k −∆µk). Here as previously mentioned by fixing an order

on [K] × [K], we regard ∂C

∂C̃k
as a K2 × K-matrix. For (k, l) ∈ [K] × [K], by the definition of the mapping C̃ 7→ C,

12
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(k, l)-th entry of ∂C

∂C̃k

∣∣∣
C̃k=C̃

(0)
k

(∆C̃k − ∆µk) is given as πk ∂σl

∂ξ

∣∣∣
ξ=C̃

(0)
k

(∆C̃k − ∆µk). By (7), we see that there exist

constants c′′1 , c
′′
2 depending only on K and c′′1 , c

′′
2 = O(poly(K)) such that∥∥∥∥∥ ∂C∂C̃k

∣∣∣∣
C̃k=C̃

(0)
k

(
∆C̃k − (∆W )⊤zk

)∥∥∥∥∥
F

≤ c′′1ε1 + c′′2(∥∆C̃k∥2F + ∥(∆W )⊤zk∥2F).

Since constants c′′1 , c
′′
2 may depend on (k, l) by taking c1 = max(k,l) c

′′
1 and c2 = max(i,l) c

′′
2 , we have the assertion of the

lemma.

G.2. Proof of Theorem F.1

First we introduce the following lemma, which is (essentially) due to (Freund & Schapire, 1997). Although, one can prove
the following result by a standard argument, since our problem setting is different, we provide a proof for the sake of
completeness.

Lemma G.5 (c.f. (Freund & Schapire, 1997)). We assume that G(t)
i,j ∈ [0, 1] for all t and 1 ≤ i, j ≤ K. For (i, j) ∈

[K] × [K], we define Si,j =
∑T
t=1 E

[
G

(t)
i,j

]
. For a policy P = (Pt)Tt=1, we define SP :=

∑T
t=1 E

[
G

(t)
it,jt

]
. Then, we

have the following inequality:

−2 logK + s max
(i,j)∈[K]×[K]

Si,j ≤ (exp(s)− 1)SPSelMix
.

Proof. This lemma can be proved by a standard argument, but for the sake of completeness, we provide a proof. We put
A = [K]× [K], at = (i(t), j(t)) and in the proof we simply denote PSelMix by P . For a ∈ A and 1 ≤ t ≤ T +1, we define
wa,t as follows. We define wa,1 = 1/K2 for all a ∈ A and wa,t+1 = wa,t exp(sG

(t)
a ). We also define Wt =

∑
a∈A wa,t.

Then, the distribution Pt is given as the probability (wa,t/Wt)a∈A by definition. Noting that exp(sx) ≤ 1+ (exp(s)− 1)x
for x ∈ [0, 1], we have the following inequality:

Wt+1 =
∑
a∈A

wa,t+1 =
∑
a∈A

wa,t exp(sG
(t)
a )

≤
∑
a∈A

wa,t(1 + exp(s− 1)G(t)
a ).

Thus, we have

Wt+1 ≤
∑
a∈A

wa,t(1 + exp(s− 1)G(t)
a )

=Wt

(
1 + (exp(s)− 1)EPt

[
G(t)
at

])
,

where EPt
[·] denotes the expectation with respect to at. By repeatedly apply the inequality above, we obtain:

WT+1 ≤
T∏
t=1

(
1 + (exp(s)− 1)EPt

[
G(t)
at

])
.

Let a ∈ A be any pair. By this inequality and WT+1 ≥ wa,T+1 = 1
K2 exp(s

∑T
t=1G

(t)
a ), we have the following:

1

K2
exp(s

T∑
t=1

G(t)
a ) ≤

T∏
t=1

(
1 + (exp(s)− 1)EPt

[
G(t)
at

])
.

By taking log of both sides and log(1 + x) ≤ x, we have

−2 logK + s

T∑
t=1

G(t)
a ≤

T∑
t=1

log
(
1 + (exp(s)− 1)EPt

[
G(t)
at

])
≤ (exp(s)− 1)

T∑
t=1

EPt

[
G(t)
at

]
.

13
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By taking the expectation with respect to the randomness of G(t)
i,j , we obtain the following:

−2 logK + sSa ≤ (exp(s)− 1)SP .

Since a ∈ [K]× [K] is arbitrary, we have the assertion of the lemma.

We can prove Theorem F.1 by Lemma G.5 as follows:

Proof of Theorem F.1. Let (i∗, j∗) be the best fixed Mixup pair hindsight, i.e., (i∗, j∗) = argmax(i,j)∈[K]×[K] Si,j . Since
any non-adaptive (or stationary) policy is no better than δ(i∗,j∗), to prove the theorem, it is enough to prove the following:

Si∗,j∗ ≤ SP + 2
√
T logK. (8)

Here in this proof, we simply denote PSelMix by P . To prove (8), we define the pseudo regret RT by RT = Si∗,j∗ − SP .
Then by Lemma G.5, we have

RT ≤ (exp(s)− 1− s)Si∗,j∗ + 2 logK

exp(s)− 1
.

We put s = log(1 + α) with α > 0. Then we have

RT ≤ (α− log(1 + α))Si∗,j∗ + 2 logK

α
.

We note that the following inequality holds for α > 0:

α− log(1 + α)

α
≤ 1

2
α

Then it follows that:
RT ≤ 1

2
αSi∗,j∗ +

2 logK

α
≤ 1

2
αT +

2 logK

α
.

Here the second inequality follows from Si∗,j∗ ≤ T . We take α = 2
√

logK
T . Then we have RT ≤ 2

√
T logK. Thus, we

have the assertion of the theorem.

G.3. Proof of Theorem F.2

Proof. This can be proved by standard argument of the proof of the mirror descent method (see e.g. (Lattimore & Szepesvári,
2020), chapter 28).

Denote by ∆ ⊂ RK×K the probability simplex of dimensionK2−1. Let (i0, j0) ∈ K×K be the best fixed mixup hindsight.
Since any non-adaptive policy is no better than the best fixed mixup in terms of G, we may assume that P(0) = (π0)t,
where π0 is the one-hot vector in ∆ defined as (π0)ij = 1 if (i, j) = (i0, j0) and 0 otherwise for 1 ≤ i, j ≤ K. Let F be the
negative entropy function, i.e., F (p) =

∑K
i,j=1 pij log pij . For p ∈ ∆ and G ∈ RK×K , we define ⟨p,G⟩ =

∑K
i,j=1 pijGij .

Then, it is easy to see that p(t) = P(t)
SelMix defined above is given as the solution of the following:

p(t) = argminp∈∆ −s⟨p,G(t)⟩+D(p, p(t−1)). (9)

Here D denotes the KL-divergence and we define p(0) = (1/K2)1≤i,j≤K = argminp∈∆ F (p). Since the optimization
problem (9) is a convex optimization problem, by the first order optimality condition, we have

⟨π0 − p(t), G(t)⟩ ≤ 1

s

{
D(π0, p

(t−1))−D(π0, p
(t))−D(p(t), p(t−1))

}
.

By summing the both sides and taking expectation, we have

TG
(T )

(P(0))− TG
(T )

(PSelMix) ≤
1

s

{
D(π0, p

(0))−D(π0, p
(T ))−

T∑
t=1

D(p(t), p(t−1))

}

≤ 1

s
D(π0, p

(0)).

14
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Here the second inequality follows from the non-negativity of the KL-divergence. Since p(0) = argminp F (p), by the
first-order optimality condition, we have D(π0, p

(0)) ≤ F (π0)− F (p(0)). Noting that F (π0) ≤ 0, we have the following

TG
(T )

(P(0))− TG
(T )

(PSelMix) ≤
−F (p(0))

s
=

logK2

s
.

This completes the proof.

H. Unconstrained Derivatives of metric
For any general metric ψ(C[h]) the derivative w.r.t the uncostrained confusion matrix C̃[h] is expressible purely in terms of
the entries of the confusion matrix. The derivative using chain rule is expressed as follows,

∂ψ(C[h])

∂C̃ij [h]
=
∑
k,l

∂ψ(C[h])

∂Ckl[h]
· ∂Ckl[h]
∂C̃ij [h]

(10)

We observe that in Eq. 10 the partial derivative ∂ψ(C[h])
∂Ckl[h]

is purely a function of entries of C[h] since ψ(C[h]) itself is a
function of entries ofC[h]. The second term is the partial derivative of our confusion matrix w.r.t the unconstrained confusion
matrix. Since C and C̃ are related by the following relation Cij [h] = softmax(C̃i[h])j . By virtue of the aforementioned
map ∂Ckl[h]

∂C̃ij [h]
also happens to be expressible in terms of C[h]:

∂Ckl[h]

∂C̃ij [h]
=


0, k ̸= i

−Cil[h]·Cij [h]

πval
i

, i = k, l ̸= j

Cij [h]−
C2

ij [h]

(πval
i )2

, i = k, l = j

(11)

Let us consider the metric mean recall ψAM(C[h]) = 1
K

∑
i

Cii[h]∑
j Cij [h]

. The derivative of ψAM(C[h]) w.r.t the unconstrained

confusion matrix C̃ can be expressed in terms of the entries of the confusion matrix. This is a useful property of this partial
derivative since we need not infer the inverse map from C → C̃ inorder to evaluate the partial derivative in terms of C̃. It
can be expressed follows:

∂ψAM(C[h])

∂C̃ij [h]
=

−Cij [h]·Cii[h]

K(πval
i )2

, m ̸= n

Cii[h]

K·πval
i

− C2
ii[h]

K·(πval
i )2

, m = n
(12)

Hence we can conclude that for a metric defined as a function of the entries of the confusion matrix, the derivative w.r.t the
unconstrained confusion matrix (C̃) is easily expressible using the entries of the confusion matrix (C).

I. Updating the Lagrange multipliers
I.1. Min. Recall and Min of Head and Tail Recall

Consider the objective ψMR(C[h]) =
∑

minλ∈∆K−1

∑
i∈[K] λiReci[h] =

∑
minλ∈∆K−1

∑
i∈[K] λi

Cii[h]∑
j∈[K] Cij [h]

, as in

Table D.1. the lagrange multipliers are sampled from a K − 1 dimensional simplex and λi = 1 if recall of ith class is the
lowest and the remaining lagrange multiplers are zero. Hence, a good approximation of the lagrange multipliers at a given
time step t can be expressed as:

λti =
e−ωReci[h]∑

j∈[K] e
−ωRecj [h]

(13)

This has some nice properties such as the Lagrange multipliers being a soft and momentum free approximation of their hard
counter part. For sufficiently high ω this approximates the objective to the min recall.
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I.2. Mean recall under Coverage constraints

For the objectiveψAM
cons.(C[h]) = minλ∈RK

+

∑
i∈[K] Reci[h]+

∑
j∈[K] λj

(
Covj [h]− α

K

)
= minλ∈RK

+

∑
i∈[K]

Cii[h]∑
j∈[K] Cij [h]

+∑
j∈[K] λj

(∑
i∈[K] Cij [h]−

α
K

)
. For practical purposes, we look at a related constrained optimization problem,

ψAM
cons.(C[h]) = min

λ∈RK
+

1

λmax + 1

∑
i∈[K]

Reci[h] +
∑
j∈[K]

λj

(
Covj [h]−

α

K

)
Such that if

(
Covi[h]− α

K

)
< 0, then λi increases, and vice-versa for the converse case. Also, if ∃i s.t.

(
Covi[h]− α

K

)
< 0,

then this implies that 1
λmax+1 → 0+ and λmax

λmax+1
→ 1−, which forces h to satisfy the constraint

(
Covi[h]− α

K

)
> 0. Based

on this, a momentum free formulation for updating the lagrangian multipliers is as follows:

λi = max
(
0,Λmax

(
1− e

Covi[h]− α
K

τ

))

Here, λmax is the maximum value that the Lagrange multiplier can take. A large value of λmax forces the model to focus
more on the coverage constraints that to be biased towards mean recall optimization. τ is a hyperparameter that is usually
kept small, say 0.01 or so, which acts as sort of a tolerance factor to keep the constraint violation in check.

J. Experimental details
J.1. Hyperparameter Table

The detailed values of all hyperparameters specific to each dataset has been mentioned in Table J.1 and Table J.2.

Table J.1. Table depicting Hyperparameters across our experiments for the supervised classification task.

Parameter
CIFAR-10
(ρ = 100)

CIFAR-100
(ρ = 100) Imagenet-1k LT

Gain scaling (s) 10.0 10.0 10.0
ωMin. Rec 50 25 100
λmax 100 100 100
τ 0.01 0.01 0.001
α 0.95 0.95 0.95

Batch Size 128 128 256
Learning Rate(f ) 3e-3 3e-3 0.1
Learning Rate(g) 3e-4 3e-4 0.01

Optimizer SGD SGD SGD
Scheduler Cosine Cosine Cosine

Total SGD Steps 2k 2k 2.5k
Resolution 32 X 32 32 X 32 224 X 224

Arch. ResNet-32 ResNet-32 ResNet-50

J.2. Computational Requirements

The experiments were done on Nvidia A5000 GPU(24 GB). While the fine-tuning was done on a single A5000, the
pre-training was done using Pytorch data parallel on 4XA5000. The pre-training was done until no significant change in
metrics was observed and the fine-tuning was done for 10k steps of SGD with a validation step every 50 steps. A major
advantage of SelMix over CSST is that the process of training a model optimized for a specific objective requires end to end
training which is computationally expensive(∼10 hrs on CIFAR datasets). Our finetuning method takes a fraction (∼1hr) of
what it requires in computing time compared to CSST.
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Table J.2. Table of Hyperparameters for Semi-Supervised datasets.

Parameter
CIFAR-10

(All distributions)
CIFAR-100

(ρl = 10, ρu = 10) STL-10 Imagenet-100(ρl = ρu = 10)

Gain scaling (s) 10.0 10.0 2.0 10.0
ωMin. Rec 40 20 20 20
λmax 100 100 100 100
τ 0.01 0.01 0.01 0.01
α 0.95 0.95 0.95 0.95

Batch Size 64 64 64 64
Learning Rate(f ) 3e-4 3e-4 3e-4 0.1
Learning Rate(g) 3e-5 3e-5 3e-5 0.01

Optimizer SGD SGD SGD SGD
Scheduler Cosine Cosine Cosine Cosine

Total SGD Steps 10k 10k 10k 10k
Resolution 32 X 32 32 X 32 32 X 32 224 X 224

Arch. WRN-28-2 WRN-28-2 WRN-28-2 WRN-28-2

(a) Initial Stage (t = 0 SGD steps) (b) Intermediate Stage (t = 5k SGD
steps)

(c) Final Stage (t = 10k SGD steps)

Figure L.1. Evolution of gain matrix for mean recall optimized run for CIFAR-10 LT (ρl = ρu)

K. Optimization of H-mean with Coverage Constraints for Semi-Supervised Learning
We consider the objective of optimizing H-mean subject to the constraint that all classes must have a coverage ≥ α

K . For
CIFAR-10, when the unlabeled data distribution matches the labeled data distribution, uniform or inverted, SelMix is able to
satisfy the coverage constraints. A similar observation could be made for CIFAR-100, where the constraint is to have the
minimum head and tail class coverage above 0.95

K . For STL-10, SelMix fails to satisfy the constraint because the validation
dataset is minimal (500 samples compared to 5000 in CIFAR). We want to convey here that as CSST is only able to optimize
for linear metrics like min. recall its performance is inferior on complex objectives like optimizing H-mean with constraints.
This shows the superiority of the proposed SelMix framework.
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Table J.3. The Expression of Non-Decomposable Objectives we consider in our paper.

Metric Definition

Mean Recall (ψAM ) 1
K

∑
i∈[K]

Cii[h]∑
j∈[K] Cij [h]

G-mean (ψGM )
(∏

i∈[K]
Cii[h]∑

j∈[K] Cij [h]

) 1
k

H-mean (ψHM ) K
(∑

i∈[K]

∑
j∈[K] Cij [h]

Cii[h]

)−1

Min. Recall (ψMR) minλ∈∆K−1

∑
i∈[K] λi

Cii[h]∑
j∈[K] Cij [h]

Min of Head and Tail class recall (ψMR
HT )

min(λH,λT )∈∆1

λH
|H|
∑
i∈H

Cii[h]∑
j∈[K] Cij [h]

+λT
|T |
∑
i∈T

Cii[h]∑
j∈[K] Cij [h]

Mean Recall s.t. per class coverage ≥ α
K (ψAMcons.) minλ∈RK

+

1
K

∑
i∈[K]

Cii[h]∑
j∈[K] Cij [h]

+
∑
j∈[K] λj

(∑
i∈[K] Cij [h]−

α
K

)

Mean Recall s.t. minimum of head min(λH,λT )∈R2
≥0

1
K

∑
i∈[K]

Cii[h]∑
j∈[K] Cij [h]

+ λH

(∑
i∈[K],j∈H

Cij [h]
|H| − 0.95

K

)
and tail class coverage ≥ α

K (ψAMcons.(HT)) +λT

(∑
i∈[K],j∈T

Cij [h]
|T | − 0.95

K

)
H-mean s.t. per class coverage ≥ α

K (ψHMcons. ) minλ∈RK
+
K
(∑

i∈[K]

∑
j∈[K] Cij [h]

Cii[h]

)−1

+
∑
j∈[K] λj

(∑
i∈[K] Cij [h]−

α
K

)

H-mean s.t. minimum of head min(λH,λT )∈R2
≥0
K
(∑

i∈[K]

∑
j∈[K] Cij [h]

Cii[h]

)−1

+ λH

(∑
i∈[K],j∈H

Cij [h]
|H| − 0.95

K

)
and tail class coverage ≥ α

K (ψHMcons.(HT)) +λT

(∑
i∈[K],j∈T

Cij [h]
|T | − 0.95

K

)

Table K.1. Comparison of methods for optimization of H-mean with coverage constraints.
CIFAR-10 CIFAR-10 CIFAR-10 CIFAR-100 STL-10

ρl = 100, ρu = 1
100 ρl = ρu = 100 ρl = 100, ρu = 1 ρl = ρu = 10 ρl = 10, ρu = NA

N1 = 1500,M1 = 30 N1 = 1500,M1 = 3000 N1 = 1500,M1 = 3000 N1 = 150,M1 = 300 N1 = 450,
∑
iMi = 100k

HM Min Cov. HM Min Cov. HM Min Cov. HM Min H-T Cov. HM Min Cov.

DARP 78.1±0.9 0.065±3e-3 81.9±0.5 0.070±3e-3 83.5±0.8 0.067±3e-3 48.7±1.3 0.0040±2e-3 74.0±0.5 0.058±2e-3

CReST 65.8±1.5 0.040±5e-3 81.0±0.7 0.073±5e-3 84.6±0.2 0.075±7e-4 48.3±0.2 0.0083±2e-4 67.1±1.1 0.066±2e-3

DASO 78.1±0.1 0.072±3e-3 83.5±0.3 0.083±1e-3 88.4±0.5 0.089±1e-3 49.1±0.7 0.0063±3e-4 76.6±1.1 0.083±3e-3

ABC 79.6±0.3 0.073±5e-3 84.6±0.5 0.086±3e-3 88.2±0.7 0.086±1e-3 50.1±1.2 0.0089±2e-4 74.7±1.5 0.079±7e-3

CSST 76.5±4.9 0.081±6e-3 76.9±0.2 0.093±3e-4 86.7±0.7 0.092±1e-3 47.7±0.8 0.0098±2e-4 78.3±2.6 0.081±6e-3

FixMatch (LA) 78.3±0.8 0.064±1e-3 76.7±0.1 0.056±3e-3 89.3±0.2 0.086±1e-3 45.5±2.1 0.0053±1e-4 74.6±1.7 0.066±5e-3

w/SelMix (Ours) 81.0±0.8 0.095±1e-3 85.1±0.1 0.095±1e-3 91.3±0.7 0.096±1e-3 53.8±0.5 0.0098±1e-4 79.1±1.2 0.088±1e-3
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L. Evolution of Gain Matrix with Training

(a) Initial Stage (t = 0 SGD steps) (b) Intermediate Stage (t = 3k SGD
steps)

(c) Final Stage (t = 10k SGD steps)

Figure L.2. Evolution of gain matrix for min. recall optimized run for CIFAR-10 LT (ρu = ρl).

From the above collection of gain matrices, which are taken from different time steps of the training phase, we observe that
the range (|max(G(t))− min(G(t))|) of the gain matrix decreases with increase in SGD steps t, and settles on a negligible
value by the time training is finished. This could be attributed to the fact that as the training progresses, the marginal
improvement of the gain matrix decreases.

Another phenomenon we observe is that initially, during training, only a few mixups (particularly tail class ones) have a
disproportionate amount of gain associated with them. A downstream consequence of this is that the sampling function
PSelMix prefers only a few (i, j) mixups. Whereas, as the training continues, it becomes more exploratory rather than greedily
exploiting the mixups that give the maximum gain at a particular timestep.

M. Detailed Analysis of SelMix Models
In this section, we analyze all these specific models on all other sets of metrics. We tabulate our results in Table M.1. It can
be observed that when the model is trained for the particular metric for the diagonal entries, it performs the best on it. Also,
we generally find that all models trained through SelMix reasonably perform on other metrics. This demonstrates that the
models produced are balanced and fair in general. As a rule of thumb, we would like the users to utilize models trained for
constrained objectives as they perform better than others cumulatively.

Table M.1. Values of all metric values for individually optimized runs for CIFAR-10 LT Semi-Supervised (ρl = ρu)

Optimized On
Observed Metric

Mean Rec. Min. Rec. HM GM Mean Rec./Min Cov. HM/Min Cov.

Mean Rec. 85.4 77.6 85.0 85.1 85.4/0.089 85.0/0.089
Min. Rec. 84.2 79.1 84.1 84.2 84.2/0.091 84.1/0.091

HM 85.3 77.7 85.1 85.2 85.3/0.091 85.1/0.091
GM 85.3 77.5 85.1 85.3 85.3/0.091 85.1/0.091

Mean Rec./Min. Cov. 85.7 75.9 84.7 84.8 85.7/0.095 84.7/0.095
HM/Min Cov. 85.1 76.2 84.8 84.9 85.1/0.095 84.8/0.095

N. Comparison between FixMatch and FixMatch (LA)
We find that using logit-adjusted loss helps in training feature extractors, which perform much superior in comparison to
the vanilla FixMatch Algorithm (Table N.1). However, our method SelMix is able to improve both the FixMatch and the
FixMatch (LA) variant. We advise users to use the FixMatch (LA) algorithm for better results.
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Table N.1. Comparison of the FixMatch and FixMatch (LA) methods with SelMix.

Method Mean Min Min Mean
Recall Coverage Recall Recall

FixMatch 76.8 0.037 36.7 76.8
w/ SelMix 84.7 0.094 78.8 82.7
FixMatch (LA) 82.6 0.065 63.6 82.6
w/ SelMix 85.4 0.095 79.1 84.1

O. Variants of Mixup
As SelMix is a distribution on which class samples i, j to be mixed up, it can be easily be combined with different variants
of mixup (Yun et al., 2019; Kim et al., 2020b). To demonstrate this, we replace the feature mixup that we perform in
SelMix, with CutMix and PuzzleMix. Table O.1 contains results for various combinations for optimizing the Mean Recall
and Min Recall across cases. We observe that SelMix can optimize the desired metric, even with CutMix and PuzzleMix.
However, the feature mixup we performed originally in SelMix works best in comparison to other variants. This establishes
the complementarity of SelMix with the different variants of Mixup like CutMix, PuzzleMix, etc., which re-design the
procedure of mixing up images.

Table O.1. Comparison of SelMix when applied to various Mixup variants.

Method Mean Min
Recall Recall

FixMatch 79.7±0.6 55.9±1.9

w/ SelMix (CutMix) 84.8±0.2 75.3±0.1

w/ SelMix (PuzzleMix) 85.1±0.3 75.2±0.1

w/ SelMix (Features-Ours) 85.4±0.1 79.1±0.1

O.1. Extention to Semi-Supervised Learning

We show the efficacy of SelMix for optimizing a wide variety of Non-Decomposable metrics across different distributions
for the labeled and unlabeled data. This includes cases where the underlying label distribution for labeled and unlabeled data
are matched, mismatched, and even unknown for the latter. Following a similar convention to long-tail (LT) classification
problems, we index the classes from 1...K where the distribution of labeled samples follows an exponentially decaying
function. Ni and Mi denotes the number of samples in the ith class of the labeled and unlabeled set respectively. The
underlying label distribution of these samples is characterized by their imbalance factor ρ. Corresponding to this imbalance
factor, the label distribution is defined using a factor γ as follows:

Ni = N1 · γi−1
l ,Mi =M1 · γi−1

u where γ = ρ−
1

K−1

Since the labeled and unlabeled data need not have the same distribution in our experiments, their corresponding imbalance
factors shall be denoted by ρl and ρu, respectively. For CIFAR-10, we set N1 = 1500 with an imbalance factor ρl =
N1

NK
= 100. We consider three settings for the unlabeled data where the nature of the underlying label distribution is either

matched (M1 = 3000, ρu = 100), uniform (M1 = 3000, ρu = 1) or inverted (M1 = 30, ρu = 1
100 ). For STL-10 we use

N1 = 450 with an imbalance ρl = 10. The underlying labels of STL-10 for the unlabeled set (100k images) is not known
ρu = NA,Mi = NA.

Table O.2. Results for sampling policies for PMix (CIFAR-10 LT, semi-supervised) ρ = 100.

Method Mean Min Min Mean
Recall Coverage Recall Recall

Uniform Policy 83.3 0.072 70.5 83.3
Greedy Policy 83.6 0.093 78.2 81.8
SelMix Policy 84.9 0.094 79.1 84.1

20



SelMix: Selective Mixup Fine Tuning for Optimizing Non-Decomposable Metrics

Table O.3. Comparison on metric objectives for CIFAR-10 LT under ρl ̸= ρu assumption. Our experiments involve ρu = 100, ρl = 1
(uniform) and ρu = 100, ρl =

1
100

(inverted). SelMix achieves significant gains over other SSL-LT methods across all the metrics.
CIFAR-10 (ρl = 100, ρu = 1

100 , N1 = 1500,M1 = 30) CIFAR-10 (ρl = 100, ρu = 1, N1 = 1500,M1 = 3000)

Mean Rec. Min Rec. HM GM Mean Rec./Min Cov. Mean Rec. Min Rec. HM GM Mean Rec./Min Cov.

DARP 79.7±0.8 60.7±2.4 78.1±0.9 78.9±0.9 79.7±0.8/0.065±2e-3 84.8±0.7 66.9±3.1 83.5±0.8 85.2±0.7 84.8±0.7/0.067±3e-3

CReST 71.3±0.9 40.3±3 65.8±1.5 68.6±1.2 71.3±0.9/0.040±5e-3 85.7±0.3 68.7±1.7 84.6±0.14 85.1±0.1 85.7±0.3/0.075±7e-4

CReST+ 72.8±0.8 45.2±2.5 68.4±1.3 70.6±1.1 72.8±0.8/0.047±3e-3 86.4±0.2 71.7±1.9 85.6±0.2 86.1±0.1 86.4±0.2/0.078±1e-3

DASO 79.2±0.2 64.5±1.8 78.1±0.1 78.6±0.8 79.2±0.2/0.072±3e-3 88.6±0.4 78.2±1.6 88.4±0.5 88.5±0.4 88.6±0.4/0.089±1e-3

ABC 80.8±0.4 65.1±0.8 79.6±0.3 80.7±0.6 80.8±0.4/0.073±5e-3 88.6±0.4 74.8±2.9 88.2±0.7 88.6±0.3 88.6±0.4/0.086±4e-3

CSST 77.5±1.5 72.1±0.2 76.5±4.9 76.8±5.2 77.5±1.5/0.091±3e-3 87.6±0.7 78.1±0.3 86.1±0.7 87.1±0.2 88.7±0.1/0.093±5e-4

FixMatch (LA) 79.4±0.7 61.1±1.2 78.3±0.8 78.7±1.1 79.4±0.7/0.064±1e-3 89.8±0.3 75.9±1.6 89.3±0.2 89.6±0.1 89.8±0.3/0.086±1e-3

w/SelMix (Ours) 81.3±0.5 74.3±1.2 81.0±0.8 81.1±0.5 81.7±0.8/0.091±3e-3 91.4±1.2 84.7±0.7 91.1±1.1 91.3±1.2 91.4±1.2/0.096±9e-4

Table O.4. Comparison across methods when label distribution ρu is unknown. We use the STL-10 dataset for comparison.
STL-10 (ρl = 10, ρu = NA, N1 = 450,

∑
iMi = 100k)

Mean Rec. Min Rec. HM GM Mean Rec./Min Cov.

DARP 76.5±0.3 54.7±1.9 74.0±0.5 75.3±0.4 76.5±0.3/0.058±2e-3

CReST 70.1±0.3 48.2±2.2 67.1±1.1 67.8±1.1 70.1±0.3/0.066±2e-3

DASO 78.1±0.5 55.8±3.7 76.6±1.1 77.2±0.2 78.1±0.5/0.083±3e-3

ABC 77.5±0.4 55.4±6.7 74.7±1.5 76.3±0.9 77.5±0.4/0.079±7e-3

CSST 79.2±1.5 50.8±2.9 78.3±2.6 78.9±2.1 79.2±1.5/0.081±6e-3

FixMatch(LA) 77.9±1.1 52.2±4.1 74.6±1.7 76.1±1.4 77.9±1.1/0.066±5e-3

w/SelMix (Ours) 80.9±0.5 68.5±1.8 79.1±1.2 80.1±0.4 80.9±0.5/0.088±1e-3

Training Details. Our classifier h is composed of a feature extractor g : X → Rd followed by a linear softmax classification
layer f : Rd → ∆K−1, as mentioned in Sec. 2. As our classifier, we use the Wide ResNet-28-2 (Zagoruyko & Komodakis,
2016) pretrained using FixMatch (Sohn et al., 2020) with the cross-entropy loss replaced by the logit adjusted (LA) cross-
entropy loss (Menon et al., 2020). This replacement helps generate pseudo-labels debiased from the long-tail imbalance of
the training set (Appendix N). This results in better consistency regularization, hence a better feature extractor g, especially
in cases where there is a mismatch of label distribution of labeled and unlabeled data. We perform fine-tuning of the model
through SelMix (Alg. 1) using cosine learning rate and SGD optimizer, we freeze the batchnorm layers and fine-tune the
feature extractor with low learning rate. This is done to ensure that the mean feature statistics zk don’t change much during
the process, as per our theoretical results. The appendix mentions additional details and hyperparameter values in Table J.1.

Evaluation Setup. For evaluation, we compare the results of our work to the state-of-the-art empirical baselines of CReST,
CreST+ (Wei et al., 2021), DASO (Oh et al., 2022), DARP (Kim et al., 2020a) and ABC (Lee et al., 2021) in semi-supervised
long-tailed learning. We consider the public codebase of DASO (Oh et al., 2022) for all these baselines and report the results
corresponding to the SotA base pre-training method of FixMatch + LA. We also compare with CSST (Rangwani et al., 2022),
which is a theoretically principled method by obtaining the implementation from authors. We compare the methods on two
broad sets of metric objectives: a) Unconstrained objectives which includes G-mean, H-mean, Mean (Arithmetic Mean),
and worst-case (Min.) Recall b) Constrained objectives include maximizing the recalls under coverage constraints. The
constraint for all classes is that coverage should be greater than 0.95

K . As followed in the literature (Narasimhan & Menon,
2021) for CIFAR-100 due to its small size, instead of Min Recall/Coverage, we optimize the Min Head-Tail Recall/Min
Head-Tail coverage, respectively. The tail corresponds to the least frequent ten classes, and the head corresponds to the other
90 classes. For a more detailed overview of the metric objectives and their definition, refer to Table J.3. We report mean and
std. deviation of results across 3 seeds.

O.2. Results on Matched Label Distributions

In this section, we report results for the typical case of ρl = ρu, i.e., matched unlabeled and labeled distributions of class
labels. We report the metrics for Mean, G-mean, H-mean, and worst-case (Min) recall for all baselines in Table O.5. For
reporting results for CSST and SelMix, we report the results after training them for the specified metric. We observe
significant improvement in the corresponding metric when FixMatch (LA) model is fine-tuned with the proposed SelMix
method in all cases. For the metric of Min Recall, a 5% improvement is observed for CIFAR-10, and a corresponding 9.8
% improvement in Min HT Recall for CIFAR-100 over SotA methods which aim for optimizing accuracy. We also find

21



SelMix: Selective Mixup Fine Tuning for Optimizing Non-Decomposable Metrics

a significant improvement over SotA in the H-mean of Recall for CIFAR-100, showing the reduction in the performance
disparity of the model between the head and tail classes. Further, even for the standard metric of mean recall (∼ accuracy),
SelMix achieves improved performance compared to baselines. We find that for optimizing the PSelMix, initially mixes up
samples from tail classes to increase performance on them and then gradually moves towards uniform mixups in the later
part (Appendix L).

We now move towards focusing on the optimization of metrics while satisfying the coverage constraints (i.e., covi[h] ≥ 0.95
K ).

We first focus on optimizing the model’s mean recall with coverage constraint, as CSST supports it. However, as SelMix
is generic, it also supports optimizing metrics like H-mean with coverage, which we show in the Appendix K. In Table
O.5, we find that most heuristic SotA methods lead to sub-optimal min. coverage values, and only CSST and SelMix
approximately satisfy the coverage constraints (underlined). Further, SelMix produces better mean recall performance
than CSST, providing a better tradeoff in terms of performance and satisfiability of constraints. The models obtained after
improving on such constrained objectives often perform well across all metrics and lead to more balanced and fair models .
We find that this observation holds true even in the detailed analysis of SelMix models across metrics presented in Appendix
M.

Optimising constrained NDO: In our setup, metrics such as Minimum Recall and fairness metrics such as Mean Recall s.t.
per-class coverage ≥ 0.95

K and H-mean s.t. per-class coverage ≥ 0.95
K observe the most significant gains in performance, for

CIFAR-10 SelMix and CSST are the only methods that satisfy the coverage constraint while optimising mean recall and
H-mean. This is due to the inherent design of these methods capable of optimising such constrained Non-Decomposable
objectives and SelMix improves over CSST w.r.t the underlying objective with a significant margin. This is true for
CIFAR-100 too where we optimise for Mean Recall and H-mean subject to the constraint of the minimum of head class and
tail class coverages being ≥ 0.95

K . Here too, other methods which are often designed w.r.t overall accuracy fail to satisy
the coverage constraints and SelMix that not only satisfies them but also has either competitive or superior Mean Recall
and H-mean. SelMix shows the biggest performance gain in optimising for Min. Recall for CIFAR-10 and Min. of Head
class and Tail class recall for CIFAR-100. This is because when a certain class suffers in recall, the sampling function Pt
dynamically adjusts to oversample from those classes from the labeled set, which in-turn increses its recall.

Table O.5. We compare the results for CIFAR-10 and CIFAR-100 when the labeled and unlabeled data distribution matches, this is the
classical imbalanced semi-supervised learning case. CIFAR-10 is kept at an imbalance ratio ρ = 100 while CIFAR-100 is kept at ρ = 10

CIFAR-10 (ρl = ρu = 100, N1 = 1500,M1 = 3000) CIFAR-100 (ρl = ρu = 10, N1 = 150,M1 = 300)

Mean Rec. Min Rec. HM GM HM/Min Cov. Mean Rec./Min Cov. Mean Rec. Min H-T Rec. HM GM HM/Min H-T Cov. Mean Rec./Min H-T Cov.

Fixmatch + LA 82.6±1.1 63.6±6.3 81.1±1.5 81.8±1.3 82.6±1.1/0.065±8e-3 82.6±1.1/0.065±8e-3 58.8±0.1 36.2±1.1 45.0±0.5 53.2±0.1 45.0±0.5/0.0055±2e-4 58.8±0.1/0.0055±2e-4

w/ DARP 83.3±0.4 66.4±3.1 81.9±0.5 82.6±0.4 83.3±0.4/0.070±3e-3 83.3±0.4/0.070±3e-3 60.1±0.2 39.6±1.1 48.7±1.3 55.4±0.5 48.7±1.3/0.0040±2e-3 60.1±0.2/0.0040±2e-3

w/ CReST 82.1±0.6 68.2±3.2 81.0±0.7 81.6±0.7 82.1±0.6/0.073±5e-3 82.1±0.6/0.073±5e-3 58.2±0.2 40.7±0.7 48.3±0.2 54.1±0.1 48.3±0.2/0.0083±2e-4 58.2±0.2/0.0083±2e-4

w/CReST+ 83.1±0.3 71.3±1.5 82.2±0.2 82.6±0.3 83.1±0.3/0.076±2e-3 83.1±0.3/0.076±2e-3 57.8±0.8 42.1±0.7 48.2±0.6 53.8±0.9 48.2±0.6/0.0088±1e-4 57.8±0.8/0.0088±1e-4

w/DASO 84.1±0.3 72.6±2.1 83.5±0.3 83.8±0.3 84.1±0.3/0.083±1e-3 84.1±0.3/0.083±1e-3 60.6±0.2 40.9±0.4 49.1±0.7 55.9±0.1 49.1±0.7/0.0063±3e-4 60.6±0.2/0.0063±3e-4

w/ABC 85.1±0.5 74.1±0.6 84.6±0.5 84.9±0.6 85.1±0.5/0.086±3e-3 85.1±0.5/0.086±3e-3 59.7±0.2 46.4±0.6 50.1±1.2 55.6±0.4 50.1±1.2/0.0089±1e-3 59.7±0.2/0.0089±1e-3

FixMatch + w/CSST 81.1±0.2 71.7±0.2 76.9±0.2 77.7±0.7 81.1±0.2/0.090±2e-4 81.1±0.2/0.090±2e-4 57.2±0.2 48.4±0.3 47.7±0.8 53.5±0.4 47.7±0.8/0.0096±4e-3 57.2±0.2/0.0096±4e-3

w/SelMix (Ours) 85.4±0.1 79.1±0.1 85.1±0.1 85.3±0.1 84.9±0.2/0.094±3e-4 85.7±0.2/0.095±1e-3 59.8±0.2 57.8±0.5 53.8±0.5 56.7±0.4 53.8±0.5/0.0098±5e-5 59.6±0.2 / 0.0097±1e-4
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