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Abstract

Foundation models are trained on vast amounts of data at scale using self-supervised
learning, enabling adaptation to a wide range of downstream tasks. At test time,
these models exhibit zero-shot capabilities through which they can classify previ-
ously unseen (user-specified) categories. In this paper, we address the problem of
quantifying uncertainty in these zero-shot predictions. We propose a heuristic ap-
proach for uncertainty estimation in zero-shot settings using conformal prediction
with web data. Given a set of classes at test time, we conduct zero-shot classification
with CLIP-style models using a prompt template, e.g., “an image of a <category>”,
and use the same template as a search query to source calibration data from the open
web. Given a web-based calibration set, we apply conformal prediction with a novel
conformity score that accounts for potential errors in retrieved web data. We evalu-
ate the utility of our proposed method in Biomedical foundation models; our pre-
liminary results show that web-based conformal prediction sets achieve the target
coverage with satisfactory efficiency on a variety of biomedical datasets.

Code: https://github.com/AlaaLab/WebCP, * Equal Contribution.
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Figure 1: Illustration of our web-based conformal prediction procedure: Given a test image and user-specified
categories, we apply conformal prediction using “on-the-fly” calibration sets obtained from the open web.

R0-FoMo: Workshop on Robustness of Few-shot and Zero-shot Learning in Foundation Models at NeurIPS 2023.

https://github.com/AlaaLab/WebCP


1 Introduction

Foundation models can be repurposed to tackle domain-specific use cases through zero-shot learning
(ZSL) guided by task descriptions. In the ZSL paradigm, a pretrained foundation model is used to clas-
sify data according to previously unseen (user-specified) categories without the need for additional
labeled examples for these categories. A common approach to ZSL is contrastive pretraining, whereby
encoders are trained to embed images and language into a shared, low-dimensional latent space repre-
senting the semantic correspondence between visual and text data (Rethmeier & Augenstein (2023)).
Models pretrained using this approach, such as CLIP, achieved remarkable performance in a broad
range of computer vision benchmarks under zero-shot settings (Radford et al. (2021); Cherti et al.
(2022); Zhang et al. (2023b)). The goal of this paper is to develop methods for estimating uncertainty
in zero-shot predictions based on pretrained foundation models. In line with the zero-shot nature of
these models, we seek versatile uncertainty estimation methods that can handle arbitrary user-specified
categories and do not require access to labeled data specific to the task at hand.

Our proposed method for uncertainty estimation in foundation models is based on conformal pre-
diction (Vovk et al., 2005; Angelopoulos & Bates, 2022)—a rigorous framework for predictive
inference that can operate on top of any black-box model while providing distribution-free guaran-
tees on the coverage of its resulting prediction sets. The standard split conformal prediction (CP)
procedure assumes access to a “calibration set” comprising labeled examples from the downstream
task of interest. CP constructs prediction sets by evaluating the model errors on the held-out cal-
ibration set, and adjusting the set size so that it contains the true class in 1 − α of the calibration
examples. If the calibration and testing data are drawn from the same distribution, CP is guaranteed
to achieve a coverage probability of 1− α in new test samples (Vovk et al. (2005)). However, in ZSL
settings we do not have access to a predetermined set of categories, labeled calibration examples
for these categories, or a known test distribution. Thus, to utilize CP for estimating uncertainty in
foundation models within the ZSL setup, we need to develop new variants of the CP procedure that
operate in a zero-shot fashion.

Contributions. In this paper, we develop a novel heuristic for zero-shot CP that operates by calibrating
CLIP-based foundation models using data from the open web. The intuition behind our approach is
that, in absence of predetermined classification categories and labeled calibration data, the internet can
serve as a queryable source of universal calibration data that encompasses all possible user-specified
categories and provides a reasonable approximation for downstream data distributions. Our web-
based CP procedure operates at test time through the following steps: given a set of user-specified
classes, we conduct zero-shot classification with CLIP-style models using a prompt template, e.g.,

“an image of a <category>”, and use that prompt as a search query to source class-specific calibration
data from the internet (Fig. 1). Given the retrieved web-based calibration images and their associated
contexts (i.e., HTML meta-data), we develop a procedure for generating “plausibility scores” that
account for possible content or context errors in web search. These plausibility scores generated for
each image and its associated context are heuristics for the probabilities of whether each particular
user-given class is the ground-truth label for the image and its corresponding context. We then
use these plausibility scores to conduct the Monte Carlo-based CP procedure proposed in (Stutz
et al. (2023)), through which we obtain prediction sets that capture the most likely classes for each
test image. We evaluate the accuracy of our proposed method in multiple domain-specific image
classification tasks, focusing on Biomedical datasets. We show that web-based CP empirically
achieves target coverage while retaining efficiency comparable to that of an “oracle” CP procedure
that uses data from target datasets for calibration.

2 Related Work
Given its model- and distribution-free properties, CP has been successfully applied to a wide range of
applications, including calibration of Large Language Models (LLMs) ((Kumar et al., 2023)) and tra-
ditional computer vision tasks (Andéol et al., 2023). The closest work to ours is (Kumar et al. (2022)),
which also developed a zero-shot CP-based approach by framing the classification task as an outlier de-
tection problem. This work proposes a different approach to zero-shot calibration—it assumes access
to a held-out calibration set of image-caption pairs (drawn from the target distribution), and proposes
novel definitions of conformity scores based on the cosine similarity distance between images and
captions. (Fisch et al. (2021)) proposes a few-shot CP approach that assumes availability of labeled
calibration data for multiple related tasks, and exploits task similarity to derive prediction sets for
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new tasks for which limited data is available. Our CP procedure is based on the work in (Stutz et al.
(2023)), which proposes a calibration procedure for settings where the ground-truth is ambiguous.
This procedure is where the concept of “plausibility scores” that reflect the level of ambiguity in
labels originate from—our work proposes an incarnation of these scores for web-based calibration
samples instead of based on MLE of expert opinion.

3 Problem Formulation

Setup and objectives. We consider a classification problem where a context X ∈ X is assigned an as-
sociated label Y ∈ Y . Here, we define the label space Y as a user-specified, finite set of possible cate-
gories relevant to an application of interest. Similarly, X represents the set of all possible contexts that
could be attributed to some label in Y . In vision-language foundation models, the context space X
could encompass all possible images that are compatible with some text label, or caption, within
a specified set Y . Suppose we have access to a zero-shot multi-probability classifier τ : X 7→ ∆Y ,
i.e., a foundation model, where ∆Y ⊂ R#|Y| represents the probability simplex over Y . In other
words, for a given context x ∈ X , the classifier output τ(x) is a vector of probabilities, with each
entry corresponding to the likelihood of each label y ∈ Y being the “true” label for x. An inherent
challenge in ZSL is that it often requires probability predictions for out-of-distribution contexts
and labels in X × Y , which correspond to novel applications that did not appear in the training
data of the foundation model τ . Consequently, given a context x ∈ X , the interpretation and us-
age of the multi-probability prediction τ(x) := {τ(y | x) : y ∈ Y} ∈ ∆Y is unclear, as the reference
distribution P derived from the training data may not accurately or meaningfully reflect the novel
prediction task of interest. To address this challenge, it is of interest to quantify uncertainty in
zero-shot predictions through an application-specific prediction set x 7→ Ĉ(x) ⊂ Y that contains the
true label with high probability. Specifically, for an application-specific “ground-truth” probability
distribution π over X × Y , the prediction set Ĉ should satisfy the marginal coverage probability of
Pπ(Y ∈ Ĉ(X)) = 1− α for α ∈ (0, 1), where Pπ is the distribution of a test point (X,Y ) ∼ Pπ.

Conformal prediction. When access to labeled data from the test distribution Pπ is available, CP can
be used to derive prediction sets Ĉ for which the coverage condition Pπ(Y ∈ Ĉ(X)) = 1− α is guar-
anteed to hold (Vovk et al., 2005). The standard (split) CP procedure operates through the following
steps. Given a labeled calibration set {(Xi, Yi)}i, we compute a conformity score Vi(τ(Xi), Yi) that
measures the deviation of the prediction of the foundation model from the true label. A prediction
set is then constructed by computing an empirical quantile of the conformity scores obtained from
the labeled calibration set {Vi}i. The definition of the conformity score depends on the application
of interest. In the ZSL setup, we do not have access to the test distribution Pπ through a labeled
calibration set {(Xi, Yi)}i, hence we cannot apply off-the-shelf CP. In the next section, we propose a
zero-shot variant of CP in which the calibration set {(Xi, Yi)}i is sourced from the internet.

4 Web-based Conformal Prediction with Foundation Models

We propose an “on-the-fly” approach to CP in ZSL using data from the open web. As the open web
contains images and contextual information from diverse open sources (e.g., social media, photo gal-
leries, scientific reporting), it serves as a rich and easily-accessible universal calibration dataset that is
applicable to most domains. Our CP procedure, dubbed WebCP, involves the steps below.

Step 1: Calibration data mining. Given a user-specified set of categories Y , the first step in WebCP is
to acquire a set of image and web meta-data corresponding to these categories, i.e.,

Cweb = {(X̃yi

i ,Myi

i ) : i ∈ [1, . . . ,
∑#(Y)

k=1 nyk
]}. (1)

Here, for each sample i in Cweb, X̃yi
i is an image corresponding to the class yi downloaded from a

web source (e.g., Google search) and Myi
i is its accompanied web meta-data (e.g., textual content

of the web page source HTML). We obtain the images {X̃yi
i }i by querying a web source for each

class yk ∈ Y with a template query that depends on the particular class yk, collecting the first nyk

image search results for each yk ∈ Y , and aggregating them together to construct the calibration set in
(Equation 1). Note our use of potentially different template prompts; we use a template prompt (e.g.,

“An image of yk”) to evaluate the predictions of a CLIP-based foundation model, and a template search
query (which could be the same as the template prompt) to source calibration data from the internet.
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For instance, if yk is a skin condition such as Acne Vulgaris in a dermatology application, then the
prompt and search query can be “An image of Acne Vulgaris” (Fig. 1). The meta-data Myi

i associated
with image X̃yi

i comprises textual context associated with the web page from which the image is
obtained. In our setup, we extract textual meta-data retrieving the content of the <alt> tag and the
text around the <img> header within the HTML source code of the web page hosting the image X̃yi

i .
Full details of our web scarping procedure are provided in the Supplementary Appendix (A.2).

Step 2: Plausibility Generation. For each mined image in (1), we estimate a collection of “plausi-
bility” scores defined as λi = {λy

i : y ∈ Y}. Each plausibility score λy
i in the vector λi is estimated

based on the meta-data Myi
i and the contents of the image X̃yi

i , and reflects the likelihood that the
retrieved image X̃yi

i belongs to the each of the particular user-specified classes y ∈ Y . Our definition
of plausibility scores captures two forms of alignment between the search query and retrieved results:
context alignment and content alignment. The context alignment between a sampled image X̃yi

i
and any class y ∈ Y reflects the relevance of the source web page and its meta-data for that image
Myi

i to the search query for y (“An image of y”). We quantify context alignment through a heuristic
that assesses the relevance of the textual content of the source web page to the provided search query.
On the other hand, content alignment reflects the relevance of the image embedded in the web page
to the query corresponding to the class y. Content misalignment occurs when the image doesn’t
generically fit the search query, or if the image is topically accurate but is displayed in an undesired
form (e.g., a cartoon illustration or a diagram of the queried class y). We quantify content alignment
via Content-Based Image Retrieval (CBIR) methods (Müller et al. (2001)).

Each of the plausibility scores contained in the vector λi = {λy
i : y ∈ Y} generated for each image X̃yi

i

are computed by combining two components: context alignment scores and content alignment scores.
The context alignment score measures context alignment through an algorithm context(Myi

i , y); this
algorithm evaluates the relevance of the web page meta-data Myi

i to a given class y by feeding it into a
text encoder (Sentence-BERT, Reimers & Gurevych (2019a)) to obtain sentence-level embeddings of
Myi

i which are then compared to the search query embedding (label name) of y via cosine similarity.
For each image X̃yi

i , the resulting scores for the image across all classes y ∈ Y are normalized using
a temperature-tuned softmax to obtain context alignment scores {cyi : y ∈ Y} for that image X̃yi

i .

To evaluate content alignment scores, we run each image through an algorithm content(Xyi
i , y) to

evaluate the probability that the retrieved image is not depicting the queried category. This algorithm
includes two stages: (i) a filtering stage for detecting when an image is topically relevant but not of
the correct form such as images of diagrams or charts, and (ii) a scoring stage to check if the image
contains a general visual representation of a class y ∈ Y.

For the filtering stage, we utilized CLIP to generate similarity scores between the image and a series
of invalid form prompts (e.g. "an image with a lot of text", "an image of a graph") alongside a
"negative" label ("an image") used to filter out "invalid" images. The idea is that if the image is
similar to one of the invalid form prompts (which were formulated through experimentation) then
it is of an invalid form. As such, we take the softmax of the resulting scores and use the negative
label score snegi as the probability that the image is of a valid form. Note that snegi is generated for
each image without considering the classes in Y; this is because the negative label score reflects the
likelihood of an image being of an "invalid" form which does not depend on any of the classes y ∈ Y .

For the scoring stage, we wish to analyze image-based content alignment and detect content mis-
alignment errors for the image across each class y ∈ Y; we do this by applying CLIP to a relaxed
version of the original classification task (i.e. determining if X̃yi

i conforms to a class y ∈ Y) to detect
if the image doesn’t fit the high-level visual archetype of the label given for y. To do this we first
have to generate a set of simplified variants of the class labels {y : y ∈ Y} that act as generic visual
representations of a target label. Ideally these generalized variants are a) high-level enough to ensure
that the zero-shot classifier can distinguish them with a high probability and b) representative of
the obvious visual features in the image. To obtain this simplified variant ypseudo for a corresponding
y ∈ Y , we use a named entity recognition model to identify all entities in a tag, reference these entities
to an ontology (e.g. Dbpedia, Auer et al. (2007); MeSH, Rogers (1963); etc.), and then substitute
the entity with a term from higher in the hierarchy. For instance, if y =“colorectal adenocarcinoma
epithelium” then a simplified label could be “microscope image”. Once the generalized labels are
derived, we generate softmax scores for each simplified label in comparison to the negative label "an
image", generating a set of content alignment scores {hy

i : y ∈ Y} for each image X̃yi

i ∈ C̃web.
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To integrate context/content alignments in generating plausibility scores λi = {λy
i : y ∈ Y}

corresponding to a sample (X̃yi

i ,Myi

i ) that represents the likelihood of that sample belonging to
classes y ∈ Y , we take a pairwise product of the context alignment scores {cyi : y ∈ Y} and the
content alignment scores {hy

i : y ∈ Y}, and scale each of the computed products by snegi; thus, we
have λy

i = cyi h
y
i snegi for each y ∈ Y . Then, to reflect the possibility of a sampled image being

irrelevant to any of the classes y ∈ Y , we subtract the summation of the generated class probabilities
λy
i across all y ∈ Y from 1.0 to derive a so-called "junk probability". To summarize, we have:

λy
i = hy

i c
y
i sneg, λjunki= 1−

n∑
i=1

λy
i . (2)

The resulting classifier scores are then used as estimates of content plausibility. We utilize the
plausibility scores to construct the final calibration set as follows:

C̃web = {(X̃yi

i ,λi, λjunki) : i ∈ [1, . . . , ny]}. (3)

An overview of this discussion and the context and content algorithms we choose to use are provided
in relevant figures in the Appendix (A.1).

Algorithm 1 Web-based Conformal Prediction (WebCP)
Input: User-specified classes Y; coverage 1− α; Monte Carlo samples M ; foundation model τ ; test image X

1. Calibration data mining: Download images and meta-data pairs {(X̃yi
i ,Myi

i )}i from an online
source using a search query template filled with the categories in Y .

2. Plausibility generation: Estimate context and content alignment of the scraped images {X̃yi
i }i us-

ing the context(Myi
i , y) and content(X̃yi

i , y) algorithms to estimate the plausibility scores
{(λi, λjunki)}i.

3. Monte Carlo CP: Perform sampling M times, where on each iteration m ∈ [1, . . . ,M ]:

• Iterate through each calibration example (X̃yi
i ,λi, λjunki). Choose to reject the example with

probability λjunki, or keep it with probability 1− λjunki. If kept, randomly sample a label ỹi in
Y from the distribution ỹi ∼ Categorical(λy

i : y ∈ Y), and add the example (X̃yi
i , ỹm

i ) to the
random calibration set for the current iteration. Our final random calibration set for this iteration
will be C̃m = {(X̃yi

i , ỹm
i )}i.

• Using the aggregate calibration dataset C̃ = {C̃1, . . . , C̃M} find the minimum threshold γ s.t.

1

M

M∑
m=1

∑|C̃m′ |
m′=1 1{V (τ(X̃y

m′), ỹ
m
m′) ≤ γ}+ 1

|C̃m|+ 1

 > 1− α

.

4. Prediction set construction: For a new test image X , P(X) = {y ∈ Y : V (τ(X), y) ≤ γ}.
Output: A prediction set P(X) ⊆ Y .

Step 3: Conformal Prediction with Ambiguous Ground-truths. The calibration set in (3) com-
prises a set of images for each class along with probabilistic (ambiguous) labels for memberships to
each class in Y . To construct CP-based prediction sets for new test images, we apply the Monte Carlo
CP procedure proposed in (Stutz et al. (2023)), which accounts for ambiguity in ground-truth labels,
to the calibration set C̃web. For our conformity score, we use the softmax transformed cosine similarity
score between the CLIP image embedding and the CLIP label/caption embedding. A pseudo-code
for the overall WebCP procedure is provided in Algorithm 1.

The internet as a universal CP calibration set. One of the key advantages of CP is that it provides
provable guarantees on the coverage of the prediction sets P in test data. However, WebCP is a heuris-
tic that sources on-the-fly calibration data from a large knowledge base (i.e., the internet) in order to
calibrate zero-shot predictions, without access to the test distribution of the downstream task. This
means that the exchangeability assumption, a necessary condition for the CP coverage guarantees
(Vovk et al. (2005)), no longer holds. Consequently, the central question of interest is whether WebCP
can attain the desired target coverage levels—a question that now hinges on empirical validation. In
other words, we would like to test if web-scraped calibration data C̃web ∼ Pweb is a good approximation
of oracle calibration sets drawn from the test distribution C̃∗ ∼ Pπ across many domain-specific
datasets. In the next Section, we test this hypothesis within the context of biomedical applications.
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Table 1: ∆cov = Difference between Target (1-α) and Achieved Coverage

MedMNIST Microscopy Subset FitzPatrick-17k

Calibration Test Calibration Test
α Coverage Efficiency Coverage Efficiency ∆cov Coverage Efficiency Coverage Efficiency ∆cov

WebCP

0.10 0.9643 13.41 0.9823 18.28 8.23% 0.9253 75.51 0.9023 78.67 +0.20%
0.20 0.8791 10.18 0.8473 14.38 4.73% 0.8381 51.40 0.8007 54.96 +0.04%
0.30 0.7800 7.944 0.7236 11.26 2.37% 0.7497 37.15 0.7064 40.33 +0.64%
0.40 0.6939 6.53 0.6423 9.29 4.23% 0.6510 25.33 0.6028 27.90 +0.28%
0.50 0.5819 4.94 0.5163 6.81 1.63% 0.5445 16.46 0.4920 18.29 -0.79%

Standard CP with web-based calibration data

0.10 0.9009 10.71 0.8713 15.05 -2.87% 0.9002 67.23 0.8738 70.64 -2.61%
0.20 0.8003 8.39 0.7503 11.90 -4.97% 0.8001 44.59 0.7585 48.05 -4.14%
0.30 0.7004 6.62 0.6470 9.43 -5.29% 0.7001 30.82 0.6565 33.72 -4.35%
0.40 0.6006 5.15 0.5316 7.10 -6.84% 0.6000 20.73 0.5492 22.97 -5.08%
0.50 0.5000 3.85 0.4317 5.20 -6.83% 0.5000 13.44 0.4433 14.90 -5.66%

Oracle CP with calibration on target data

0.10 0.9180 11.28 0.9072 15.94 0.72% 0.9199 73.49 0.8933 76.62 -0.66%
0.20 0.8498 9.36 0.8031 13.28 0.32% 0.8380 51.53 0.8024 55.01 0.24%
0.30 0.7613 7.67 0.7053 10.93 0.53% 0.7530 37.59 0.7143 40.72 1.43%
0.40 0.6582 5.98 0.6001 8.52 0.11% 0.6520 25.43 0.6057 27.99 0.57%
0.50 0.5698 4.74 0.5045 6.60 0.45% 0.5557 17.24 0.5055 19.13 0.55%

5 Experiments

Experimental setup. We evaluate the WebCP procedure biomedical datasets with variants of CLIP
as the underlying multimodal foundation model. Specifically, we evaluate the effectiveness
of WebCP at generating efficient and prediction sets for the black-box BioMedCLIP model
microsoft/BiomedCLIP-PubMedBERT_256-vit_base_patch16_224 (Zhang et al. (2023a)),
which is a foundation model that uses PubMedBERT as the text encoder and is finetuned on biomedi-
cal tasks by pre-training on PMC-15M (Zhang et al. (2023b)). To estimate context alignment, we use
the Sentence-BERT model sentence-transformers/msmarco-bert-base-dot-v5 which was
finetuned on MS-MARCO (Reimers & Gurevych (2019b); Bajaj et al. (2018))). For content alignment
estimation, we use a variant of CLIP finetuned on the LAION dataset (Schuhmann et al. (2022)). The
reason why we use different variants of CLIP for content alignment and classification is two-fold.
Firstly, the simplified labels should be very generic (i.e. "dog", "island", etc.) and as such a base CLIP
model, which has been shown to perform reasonably well in general image classification benchmarks
such as ImageNet, should provide satisfactory estimates for this task (Radford et al. (2021)). Secondly,
using different variants of CLIP helps to decorrelate errors between the classification and plausibility
tasks, thereby decreasing the probability of overconfidence due to matched errors in the two tasks.

To acquire the calibration data, we use a Selenium-based web crawling agent and Google Custom
Image Search Engine to query the dataset-specific image classes, and cache the images and corre-
sponding captions from the top 50 search results (after filtering out those missing textual contexts).
We compare our proposed WebCP method with two baseline procedures. The first is a Standard CP
procedure applied to the mined calibration data, without accounting for ambiguity in image classes
through the generated plausibility scores. The second is an Oracle CP procedure, which applies the
standard CP calibration step to an equal number of samples drawn from the target dataset on which
coverage is evaluated. We evaluate all baselines in terms of their achieved coverage on an unseen test
set as well as their efficiency, i.e., the average size of the prediction set |P(X)|.

Datasets. We consider two biomedical datasets: (1) Fitzpatrick17k, a dataset containing anno-
tated medical images of 114 classes of skin conditions Groh et al. (2021), and (2) the PathMNIST,
BloodMNIST, and TissueMNIST subsets from the MedMNIST dataset (Yang et al. (2023)), which con-
tains an aggregation of low-resolution images under 25 classes of image types derived from studies
in colon pathology, blood cell microscope, and kidney cortex microscope imaging.

Results. In almost all experiments, our WebCP procedure results in prediction sets that consistently
achieves the targeted 1− α coverage on the test datasets, and displays satisfactory calibration perfor-
mance across varying levels of α. On the contrary, the Standard CP procedure applies to the scraped
calibration data significantly under-covers in the test dataset across all values of α. This shows the
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utility of our generated plausibility scores, which accounts for potential content and context errors in
the retrieved web data. It also shows that, for the datasets under consideration, web-scraped data can
provide useful calibration sets that can help calibrate the zero-shot predictions of foundation models.
Compared to the Oracle CP, WebCP incurs a slight loss of efficiency, which is expected due to the
conservative nature of calibration under ambiguous ground truth. However, the efficiency of WebCP
remains comparable to the oracle efficiency for all values of α across the two datasets.

6 Conclusion

In this paper, we developed a method for estimating uncertainty in the zero-shot predictions of pre-
trained foundation models. Our proposed heuristic estimates uncertainty in image classification using
conformal prediction applied to web-scraped data in a zero-shot fashion. Our procedure, dubbed We-
bCP, comprises three steps: (1) mining calibration data based on user-specified classification cate-
gories, (2) estimating plausibility scores to quantify the alignment of the mined data with the user
queries, and (3) applying a Monte Carlo-based approach to conformal prediction using the estimated
plausibility scores in order to calibrate the predictions of foundation models. Our preliminary results
show that WebCP could be a promising approach to zero-shot calibration—in biomedical datasets, it
achieves the user-specified target coverage while retaining competitive efficiency on test data.
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A Appendix

A.1 Overview

Figure 2: Figure portraying the total pipeline of data mining, plausibility generation, and conformal prediction

Figure 3: Figure portraying the hybrid context and content alignment based plausibility generation pipeline.
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A.2 Data Mining

Algorithm 2 Web Scraping Procedure for Acquiring Internet Meta-Data (Cweb)
Given: A set of categories Y , an image search engine E providing entries consisting of images, a
corresponding URL to the image, and a corresponding URL to the image’s web page source HTML;
a target number of results per class, K.

1. For each category y ∈ Y:
(a) Perform a query on E for y to obtain a list of entries Ly with length >> K.
(b) Until the target number of examples K is achieved, consider each entry in L con-

sisting of an image (image), its URL (image_url) and a URL to its web page
source (context_url). We find the location of the image in the web page linked
to context_url by identifying the presence of the string image_url in that web page,
and obtain the contextual meta-data immediately surrounding that location. Particu-
larly:
i. If context_url is unaccessible (e.g. timeout, blocked, or lazy loading) or there

is no close match for the image_url in the src or url-src tag of any <img> div
in the webpage, skip and continue. We define a close match for an image_url to
be a src or url-src whose file-name (i.e. without file paths or arguments passed
in with the URL) roughly matches the file-name in url-src (> .85 similarity,
according to a metric on their similarity utilizing the difflib.SequenceMatcher
library in Python ( Van Rossum & Drake Jr (1995)).

ii. Otherwise, we retrieve the alt tag for the matching <img> divider in the context
HTML page, and obtain its plaintext (if it is in HTML format). We also retrieve the
minimum of 256 plaintext tokens or 10 sentences (ending each divider as a separate
sentence) from the text immediately before the pertinent <img> tag, and from the
text immediately after the tag, performing sentencing using the natural language
tooklit in Python (Bird et al. (2009)). We concatenate these surrounding plaintext
results together.

iii. We take image and all its concatenated surrounding plaintext sentences, and add
these to Cweb as an entry.

Output: a set of K ·#(Y) results for each of the #(Y) categories, with each result containing the
image and its surrounding captions/images.
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A.3 Experiments

Figure 4: ∆coverage and Efficiency for normal, oracle, and ambiguous CP across varying α values

Figure 5: Conformity score distribution for FitzPatrick-17k and MedMNIST
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