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ABSTRACT

Personalized large language models (LLMs) rely on memory retrieval to incorpo-
rate user-specific histories, preferences, and contexts. Existing approaches either
overload the LLM by feeding all the user’s past memory into the prompt, which
is costly and unscalable, or simplify retrieval into a one-shot similarity search,
which captures only surface matches. Cognitive science, however, shows that
human memory operates through a dual process: Familiarity, offering fast but
coarse recognition, and Recollection, enabling deliberate, chain-like reconstruc-
tion for deeply recovering episodic content. Current systems lack both the ability
to perform recollection retrieval and mechanisms to adaptively switch between
the dual retrieval paths, leading to either insufficient recall or the inclusion of
noise. To address this, we propose RF-Mem (Recollection—Familiarity Memory
Retrieval), a familiarity uncertainty-guided dual-path memory retriever. RF-Mem
measures the familiarity signal through the mean score and entropy. High famil-
iarity leads to the direct top-K Familiarity retrieval path, while low familiarity
activates the Recollection path. In the Recollection path, the system clusters can-
didate memories and applies c-mix with the query to iteratively expand evidence
in embedding space, simulating deliberate contextual reconstruction. This de-
sign embeds human-like dual-process recognition into the retriever, avoiding full-
context overhead and enabling scalable, adaptive personalization. Experiments
across three benchmarks and corpus scales demonstrate that RF-Mem consistently
outperforms both one-shot retrieval and full-context reasoning under fixed budget
and latency constraints. Our code can be found in the Supplementary Materials.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable performance when augmented with
retrieval mechanisms. Traditional retrieval-augmented generation (RAG) primarily targets open-
domain corpora, seeking to retrieve and integrate objective facts (Lewis et al., 2020; Li et al., 2025b;
Chen et al., 2024; Han et al., 2024). In contrast, memory retrieval focuses on user-specific histories,
preferences, and contextualized interactions, aiming to surface evidence tailored to a particular user
at a specific moment (Zhong et al., 2024; Jiang et al., 2025; Tan et al., 2025a; Wu et al., 2025a; Xu
et al., 2025a), as illustrated in the top of Figure 1. The design of memory fundamentally shapes the
boundary of personalized LLMs (Zhang et al., 2025): it can remain a static external index passively
queried, or evolve into a dynamic process of recollection, thereby endowing the system with a more
human-like flow of memory (Wu et al., 2025b; Hatalis et al., 2023). Just as humans sometimes rec-
ognize a familiar face instantly (i.e., an intuitive “feeling of knowing” without deliberate reasoning)
and at other times reconstruct past experiences through slow chains of recollection, so too should
memory retrieval move beyond static lookup. A personalized LLLM needs to be flexible and alternate
between fast recognition and gradual reconstruction, adapting to the demands of the interaction.

Insights from cognitive science highlight the Recollection-Familiarity Dual-Process Theory, as
shown in Figure 1 left, which posits that human recognition and memory are driven by two com-
plementary mechanisms (Henson et al., 1999; Yonelinas et al., 2002; Merkow et al., 2015; Bastin
etal., 2019; Yonelinas, 2024). Familiarity provides a rapid but coarse sense of “knowing”, enabling
efficient yet shallow judgments. Recollection, in contrast, is triggered when familiarity proves insuf-
ficient, initiating a slower contextual reconstruction process that retrieves time, place, and source-
specific details. Importantly, humans regulate these two processes via the familiarity signal: high
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Figure 1: Comparison between standard familiarity-based retrieval and recollection-based retrieval
in user health narratives. And the brain figure motivated by (Rugg & Curran, 2007; Yonelinas, 2024).

confidence sustains reliance on familiarity, whereas decreasing familiarity and rising uncertainty
prompt the shift to recollection (Rugg & Curran, 2007; Yonelinas, 2024). Applied to user mem-
ory retrieval in personalized LLMs, this theory suggests that retrieval should not be conceived as a
one-shot operation. Instead, it should function as a dual-process controller that adaptively alternates
between fast recognition and slow recollection, guided by the system’s sense of familiarity.

Current retrieval systems often reduce memory to a static set of vectors, relying on direct similar-
ity search without mechanisms to evoke richer user recollections. Retrieval in memory-augmented
LLMs can be understood along three dimensions: query reformulation (Li et al., 2025a; Zhao et al.,
2025; Chen et al., 2025; Shen et al., 2024; Salama et al., 2025), index construction (Zhong et al.,
2024; Pan et al., 2025; Xu et al., 2025a; Tan et al., 2025b; Xu et al., 2025b; Ong et al., 2024; Chhikara
et al., 2025), and retrieval strategy (Xu et al., 2021). While existing work has advanced the first two,
retrieval strategies remain dominated by embedding-based one-shot top-K search (Karpukhin et al.,
2020; Lei et al., 2023; Wang et al., 2020; Song et al., 2020; Luo et al., 2024), corresponding to
the Familiarity channel: fast yet shallow recall. Two key limitations remain in current memory
retrieval systems: 1) they overlook the Recollection path, failing to retrieve evidence chains for
ambiguous queries, long-tail knowledge, or personalized reasoning; 2) they lack mechanisms for
path switching between familiarity and recollection, leading to either under-retrieval that misses
deeper contextual cues or over-retrieval that introduces more retrieval latency. As shown in Figure 1,
the Familiarity path may retrieve only partial fragments (e.g., “I support are genuinely effective and
safe”), missing broader context and even introducing irrelevant noise (e.g., “new healthy recipe”).
By contrast, the Recollection path expands iteratively and can introduce more comprehensive ev-
idence (e.g., “focus on conventional medicine; and evidence-based practices resonate”). This gap
underscores the need for a recollection retrieval path and adaptive switch mechanism to balance
efficiency with reliable coverage.

To address these limitations, we propose RF-Mem (Recollection—Familiarity Memory Retrieval),
an uncertainty-guided dual-path retrieval framework. RF-Mem begins with a probe retrieval that
produces an initial retrieval list and estimates its familiarity by computing the mean score and en-
tropy in the list. When familiar, the system stays on the Familiarity path, returning the top- K candi-
dates in a one-shot manner with minimal overhead. Otherwise, RF-Mem activates the Recollection
path: the probe results are clustered by KMeans, each cluster centroid is combined with the original
query through an a-mixing strategy, and the resulting recollect-queries are expanded iteratively. At
each round, new candidates are retrieved, clustered, and mixed to form updated queries, allowing the
system to stepwise reconstruct evidence chains. The process is explicitly bounded by beam width,
fanout, and maximum rounds, ensuring controllable computation. In this way, RF-Mem preserves
the efficiency of single-pass retrieval when familiarity is high, while adaptively engaging structured
recollection under unfamiliar conditions, embedding chain-like reasoning directly into the retriever.
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Our contributions are fourfold: (1) We ground the design of personalized memory retrieval in the
Recollection—Familiarity dual-process theory, formulating retrieval as a coordination of Familiar-
ity and Recollection paths. (2) We introduce familiarity uncertainty-driven selection for adaptive
switching between Familiarity and Recollection. (3) We develop a recollection retrieval based on
clustering and query—centroid mixing, achieving chain-like evidence reconstruction only in embed-
ding space. (4) RF-Mem is lightweight, relying solely on vector search and small-scale clustering,
achieving high accuracy and recall at near one-shot retrieval latency. Extensive experiments on
three personalized memory datasets show that RF-Mem consistently surpasses both one-shot top-
K retrieval and the full-context method with low latency. An adaptive study shows that RF-Mem
complements and generalizes to index-building methods like MemoryBank (Zhong et al., 2024).

2 METHOD: RECOLLECTION-FAMILIARITY MEMORY RETRIEVAL

We propose RF-Mem, a dual-process memory retrieval framework that adapts the retrieval strategy
according to uncertainty. As illustrated in Figure 2, RF-Mem consists of five stages: @ user query
input, @ user memory retrieval, i.e. the RF-Mem module, is a familiarity uncertainty-guided selec-
tion introduced in Section 2.1 that adaptively switches between one-shot Familiarity introduced in
Section 2.2 and stepwise Recollection retrieval introduced in Section 2.2, ® extracting the memory
text, and @ answer generation by LLM using the memory text.
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Figure 2: The overall architecture of RF-Mem. A dual-process memory retrieval system dynamically
switches between the Familiarity and the Recollection paths.

2.1 FAMILIARITY UNCERTAINTY-DRIVEN RETRIEVAL SELECTION

Guided by dual-process theory, we argue that memory retrieval should not be reduced to a single
static top-K similarity search. Instead, retrieval should dynamically select between a fast Familiarity
path and a deeper Recollection path depending on the familiarity signal.

We first perform a probe retrieval for calculating the familiarity signal between this question and the
user’s memory. Let M = {my,...,my} denote the set of user memory fragments, where m; is
encoded as an embedding vector z; = ¢(m;). Given a query g, its embedding x; = ¢(q) is used
to compute cosine similarity with each fragment m; as s; = (x¢, z;), and the retriever returns the
candidate set C = Top-K ({(m;, s;)}L,).

The familiarity signal is governed jointly by similarity and uncertainty, thus integrating efficiency
with robustness. Formally, given probe scores {s; }¥_,, we normalize them as follows:
D = kexp(/\(si — max; ;)) ’ i=1.. K 0
Zj:l exp(A(s; — max; s;))
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where A controls sharpness. The uncertainty is then measured by the entropy:
K
H(p) = - pilogp. 2)
i=1

The final selection combines the familiarity of the similarity of the mean score and the uncertainty of
the entropy. If the mean similarity score 5 = % Zfil s; exceeds the upper threshold 6y, the mem-
ory is highly relevant and retrieval proceeds along the Familiarity path. Conversely, when 5 falls
below the lower threshold 6oy, the memory is considered weakly relevant and the system switches
to the Recollection path. For intermediate cases where 5 lies between 6,y and Opigp, entropy H (p)
serves as the disambiguator: low entropy, indicating concentrated evidence, selects Familiarity,
whereas high entropy, reflecting uncertainty, triggers Recollection. Formally, the policy is defined
as:
Familiarity, 5 2> bhigh,

Recollecti 5 < Olow,
Strategy(q) = ecotiection, 5= 3
{Familiarity7 H(p) <,

- Orow < 5 < bhign-
Recollection, H(p) >7, high

This gating mechanism follows our cognitive motivation: when the familiarity signal is strong, the
system relies on the fast Familiarity path for confident recognition; when the signal is weak, it
engages the Recollection path to deliberately reconstruct evidence; and in the intermediate regime,
the entropy serves as an additional cue to regulate switching. In this way, RF-Mem mirrors the
dual-process nature of human memory, dynamically balancing efficiency with retrieval depth.

2.2  FAMILIARITY RETRIEVAL

When the probe retrieval yields a familiarity signal, that is, a sufficiently high average similarity
score or low uncertainty H (p) < 7, or the system interprets the evidence as confident. In this case,
it adopts the Familiarity path. Consistent with dual-process theory, this path corresponds to rapid,
low-effort recognition, i.e., the retriever directly selects the top-K memory evidence based on raw
similarity, ensuring efficiency without invoking further reasoning or expansion.

Scoring and Retrieval. Given a query ¢;, we encode it as x; = ¢(q;) and each memory entry
m; as z; = ¢(m;), where all embeddings are unit-normalized. The similarity score is computed
as s(x¢,2;) = (x¢,2;). We then obtain top-K candidate memory fragments according to their
similarity scores:

C: = Top-K({(mi, s(xt,zi))}f—\il) 4

This retrieval mode reflects the Familiarity process in dual-process theory: when the question is
familiar, it signals that sufficient evidence has been retrieved, so recognition can be completed in a
single step with minimal latency.

2.3 RECOLLECTION RETRIEVAL

When the probe yields an unfamiliar signal, indicated by insufficient mean scores or a high entropy
H(p) > T, the system interprets the evidence as uncertain. It then transitions into the Recollection
path, corresponding to the deliberate and effortful retrieval mode in dual-process theory. Instead
of stopping at surface matches, this path initiates multi-round evidence expansion, progressively
reconstructing context and recovering more diagnostic evidence. A case can be found at D.7.

Candidate Memory Retrieval. Let x() = x, = ¢(q;) denote the query embedding. At each
round 7, we obtain the candidate memory set as C(") = Top-N ({(m,-, (x("), z;))} M ), where

N = (B+7r) x F < K is determined by beam width B, fanout size F, and round number
r € {0,..., R}. We enlarge N with r to prevent the query in round r, which is formulated from
previous rounds, from repeatedly retrieving the same memories. Duplicated memories in C(") are
excluded if they appeared in earlier rounds.



Under review as a conference paper at ICLR 2026

Relevant Memory Clustering. Given the top-N memory C("), we group the candidate memory
embeddings {z; : m; € C(T)} into B clusters using KMeans. Each cluster G,(f) corresponds to a

branch in the retrieval tree, and its centroid vector gl()r) serves as the base for further expansion:

1

T

g£> _ 0 Z zi, b=1,...,B. (5)
b m; € Gl(:)

These centroids serve as branching points from which new retrieval paths unfold, simulating a tree-

like process of recollection. By clustering memories into semantically coherent sets, they reduce

redundancy while highlighting anchors that capture essential cues. In line with dual-process theory,

these anchors initiate progressive recollection, supporting chain-like reconstruction of evidence that

expands outward yet remains grounded in the user’s memory context.

Recollect Queries Generation via a-mix. Each centroid gl(f) is blended with the current query to

form a recollect query, with weights matching the annotations « (current query) and 1 —« (centroid),

and uses residual to maintain original query information:

x,()TH) = norm(w x4 (1-a) gl(f) + %), a € 0,1]. (6)
Retrieve-Cluster-Mix Loop. The recollect query xl()rﬂ) will be used to perform the next round of
retrieval to obtain the candidate set:

e = Top-N ({(m, (<", 2)) 1L, ). (7

Afterwards, the memory cluster and recollect query mix are conducted. This retrieve-cluster-mix
routine is repeated across rounds, progressively expanding evidence chains. To keep the search
tractable, we maintain at most B active branches per round and caps the recursion depth at R.

Stop and Generation. The process stops when a round limit R is reached or a target number of
items is gathered. The recollection evidence is a truncated union:

R
C, = Top-K (U cm) ) (8)

r=0

In analogy to human memory, this recollection triggers deliberate, cue-driven reconstruction, where
related fragments are progressively retrieved, clustered, and mixed to surface latent context. Through
structured retrieve-cluster-mix iterations under beam and depth budgets, which trade additional la-
tency for more diagnostic evidence, enabling the evocation of question-specific memories. The
pseudocode is provided in Appendix E. And theoretical analysis can be found at Appendix F.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Datasets We use PersonaMem (Jiang et al., 2025), which includes multiple simulated user-LLM
interaction histories over 7 real-world tasks, with memory lengths of 32K, 128K, and 1M tokens.
Each history comprises up to 60 multi-turn sessions with evolving user personas and preferences.
We also evaluate on PersonaBench (Tan et al., 2025a), a synthetic benchmark composed of private
user documents and queries probing personal information (e.g., preferences, background), designed
to assess the relevant personal memory retrieval ability before generation. And we include Long-
MemEval (Wu et al., 2025a), a benchmark targeting long-term personalized retrieval, where factual
questions require retrieving task-relevant information under both small and medium context settings.
More details can be found at Appendix A. And implementation details can be found in Appendix B

Metrics On PersonaMem, performance is measured by Accuracy of generated responses, i.e., the
proportion of responses that correctly align with the user’s current persona and conversation context.
On PersonaBench and LongMemEval, since the focus is on the retrieval of personal memory pieces,
we use Recall @K to assess how well relevant personal memories are retrieved.
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Baselines Unlike prior baselines that often rely on LLM-generated queries or external indexing
strategies, our comparisons are restricted to retrieval-only methods to ensure fairness: all systems
operate on the same memory vectors. Since our focus is on the retrieval component itself, we com-
pare RF-Mem against four direct baselines: (1) Zero Memory: Following (Pan et al., 2025; Jiang
et al., 2025), the model answers without using user memory. (2) Full Context: Following (Pan
et al., 2025; Jiang et al., 2025), the entire user history memory is input to the model without re-
trieval. (3) Dense Retrieval: Following (Wu et al., 2025a; Pan et al., 2025; Zhong et al., 2024), a
standard retriever that returns the top- /K memories based on similarity scores. This corresponds to
the Familiarity retrieval in dual-process theory. (4) Recollection (ours): The recollection mode we
proposed in this paper. This represents the system that only enters the Recollection path.

3.2 OVERALL PERFORMANCE IN PERSONALIZED GENERATION

Table 1: Performance comparison over the PersonaMem across different memory corpus sizes.
Columns are grouped by question type, rows by retrieval strategy. “NA” indicates the method does
not need retrieval. “O0OC” means out-of-context of the LLM input window. The best results are in
bold, and the second-best results are underlined. “*” indicates the statistically significant improve-
ments (i.e., two-sided t-test with p < 0.05) over the best baseline.

Retri | Avg. | Revisit Track Latest Aligned New Sce- Shared New
Time | Tokens | Reasons Evolution Prefs Recs narios Facts Ideas

Method Overall

32K memory corpus data
Zero Memory NA 464.6 | 0.7273  0.6259 0.1765 0.2182 0.2105 0.2326 0.1183]0.3854
Full Context NA |24657.8| 0.9394 0.7194 0.7647 0.7455 0.5614 0.5039 0.1828|0.6129
Dense Retrieval|3.14ms| 3515.9 | 0.9091 0.6475 0.6471 0.6364 0.5614 0.5426 0.2151|0.5908
Recol. (ours) |7.09ms| 3711.1 | 0.9495  0.6547 0.7059 0.7818 0.5965 0.5194 0.2688 | 0.6214
RF-Mem (ours)|5.09ms | 3566.6 | 0.9495  0.6619 0.7059 0.7818 0.6140 0.5659 0.2688 |0.6350"

128K memory corpus data
Zero Memory NA | 4163 | 0.6766  0.6422 0.2136 0.2751 0.1925 0.2281 0.1737|0.3124
Full Context NA |[115601.4] 0.5613  0.3930 0.2783 0.3868 0.2770 0.3977 0.1795|0.3231
Dense Retrieval|3.24ms | 3540.1 | 0.7881  0.6804 0.5346 0.5330 0.3662 0.6082 0.3069 | 0.5259
Recol. (ours) |7.86ms| 3680.3 | 0.8141 0.6716 0.5254 0.5301 0.3765 0.6140 0.3263| 0.5288
RF-Mem (ours)|4.27ms| 3565.5 | 0.8030  0.6862 0.5427 0.5358 0.4131 0.6257 0.3263/0.5394"

1M memory corpus data
Zero Memory NA | 415.1 | 0.6000 0.6178 0.1797 0.3179 0.1831 0.2569 0.1816|0.2730
Full Context NA |912148.5) OOC O0C 00C 00C O0C 00C 00C | 00C
Dense Retrieval|4.42ms | 3816.1 | 0.7702  0.6933 0.4544 0.4464 0.3085 0.5903 0.3040 | 0.4518
Recol. (ours) |8.12ms| 3847.4 | 0.7532  0.6800 0.4440 0.4500 0.3593 0.5833 0.3136|0.4544
RF-Mem (ours)|6.28ms | 3827.8 | 0.7787  0.6889 0.4492 0.4536 0.3390 0.6111 0.3150|0.4589"

To verify the effectiveness of RF-Mem, we evaluate it on PersonaMem across memory corpora of
32K, 128K, and 1M tokens per query. This setup stresses retrieval under different memory scales
and question types, allowing us to examine how retrieval methods adapt as corpora grow larger
and tasks become more complex. Table 1 compares zero-memory baselines, full-context input, and
three retrieval strategies (Dense, Recollection, RF-Mem). We also report per-category accuracy
under three corpus sizes in Appendix D.1 and different K settings in Appendix D.5.

First, RF-Mem delivers the best overall accuracy at every corpus scale while keeping inputs
compact. In Table 1, RF-Mem attains the top overall score at 32K (0.6350), 128K (0.5394), and IM
(0.4589). At 32K it surpasses Full Context by +0.0221 with only 3.6k average tokens versus 24.7k
for Full Context, and with a modest 5.09ms retrieval time. As the memory grows, Full Context
deteriorates sharply, reaching 0.3231 at 128K and becoming out of context at 1M, whereas RF-Mem
remains stable and leads Dense Retrieval (Familarity) by +0.0135 at 128K and +0.0071 at 1M. These
trends validate that when a question is familiar, RF-Mem saves budget; when unfamiliar, it upgrades
to structured recollection without committing to the cost of running it unconditionally.

Second, RF-Mem leads on hybrid and transfer-style tasks with lower overhead. At 32K it
achieves top scores on Aligned Recommendations (0.7818), New Scenarios (0.6140), and Shared
Facts (0.5659) , while remaining close on Track Evolution. At 128K it remains ahead on Track
Evolution, Latest Prefs, Aligned Recs, New Scenarios, and Shared Facts, tying on New Ideas. At
1M, where Full Context is infeasible, RF-Mem is strongest on Revisit Reasons, Aligned Recs, Shared
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Facts, and New Ideas, with only small gaps on Track Evolution and Latest Prefs, indicating that
adaptive depth better balances precise anchoring and selective expansion than single-mode retrieval.

Third, RF-Mem achieves a favorable accuracy-efficiency trade-off by regulating retrieval
depth via entropy. Compared to always-on recollection, RF-Mem improves overall accuracy while
reducing latency: 5.09ms vs 7.09ms at 32K, 4.27ms vs 7.86ms at 128K, and 6.28ms vs 7.12ms at
1M, with similar token budgets to Dense Retrieval. This efficiency arises from treating familiarity
as the default and route to the recollection path only when the question is unfamiliar. The result is
a scalable retrieval controller that avoids the out-of-context cliff of Full Context, outperforms dense
retrieval baselines as memory scales, and preserves recollection’s advantages precisely.

3.3 OVERALL PERFORMANCE IN PERSONALIZED RETRIEVAL

Table 2: Performance comparison over the PersonaBench dataset across multiple question types.
The best results are in bold, and the second-best results are underlined.

Metrics | Recall@5 | Recall@10
. Basic Social Pref Pref . Basic Social Pref Pref
Method | Time Info Info Easy Hard el Time Info Info Easy Hard Dozl

multi-qa-MiniLM-L6-cos-v1

Famili. 8.40ms 0.4515 0.4852 0.4904 0.3659 0.4484 [13.68ms 0.5879 0.6220 0.6442 0.5561 0.5964
Recol. 9.65ms 0.4379 0.4903 0.5128 0.3854 0.4491 |17.29ms 0.5924 0.6859 0.5659 0.6267 0.6062
RF-Mem | 9.16ms 0.4788 0.5091 0.4872 0.3854 0.4701 [15.22ms 0.5924 0.6799 0.5707 0.6267 0.6071

all-mpnet-base-v2

Famili. 7.64ms 0.4242 0.2730 0.4487 0.4049 0.3887 |10.55ms 0.5409 0.4434 0.6795 0.5366 0.5333
Recol. 10.94ms 0.4333 0.2918 0.4583 0.4000 0.3976 |13.23ms 0.6000 0.4365 0.6378 0.5220 0.5527
RF-Mem | 8.33ms 0.4515 0.2730 0.44870.4000 0.4009 [10.55ms 0.5955 0.4384 0.6378 0.5463 0.5553

BAAI/bge-base-en-vi.5

Famili. 8.92ms 0.3970 0.3204 0.4583 0.3268 0.3738 |10.19ms 0.5121 0.4748 0.5673 0.4585 0.5002
Recol. 12.14ms 0.3833 0.3619 0.4327 0.3171 0.3722 |20.71ms 0.5212 0.4748 0.5673 0.4585 0.5046
RF-Mem [10.14ms 0.4015 0.3619 0.4487 0.3220 0.3836 |18.13ms 0.5303 0.4748 0.5673 0.4585 0.5089

Table 3: Performance comparison over the LongMemEval under small (S) and medium (M) memory
versions. The best results are in bold, and the second-best results are underlined.

Method \ LongMemEval-S | LongMemEval-M
| Recall@5 Recall@10 Recall@50 Time |Recall@5 Recall@10 Recall@50 Time

multi-qa-MiniLM-L6-cos-v1
Fami. 0.7136 0.8282 09761 2491ms| 0.4177 0.5465 0.7518  27.72ms
Recol. 0.7351 0.8425 1.0000 50.62ms| 0.4368 0.5585 0.7590  57.93ms
RF-Mem| 0.7375 0.8473 1.0000 39.58ms| 0.4391 0.5609 0.7613  41.22ms

all-mpnet-base-v2

Fami. 0.7303 0.8353 0.9832 27.25ms| 0.4176 0.5489 0.7637  33.18ms
Recol. 0.7398 0.8305 0.9952 51.79ms| 0.4386 0.5871 0.7422  62.11ms
RF-Mem| 0.7398 0.8377 0.9952  42.39ms| 0.4391 0.5894 0.7684  50.80ms

BAAI/bge-base-en-v1.5

Fami. 0.7924 0.8926 1.0000 29.65ms| 0.4964 0.6611 0.8305  30.77ms
Recol. 0.8162 0.9165 1.0000 43.65ms| 0.5131 0.6635 0.8234  58.05ms
RF-Mem| 0.8186 0.9189 1.0000 37.34ms| 0.5155 0.6635 0.8329 44.74ms

To verify the retrieval performance of RF-Mem, we evaluate it against one-shot Familiarity and
stepwise Recollection across both PersonaBench and LongMemEval. PersonaBench covers multi-
domain user interactions, while LongMemEval stresses retrieval over extended memory corpora
under small (S) and medium (M) settings. We report Recall@5, Recall@10, and Recall@50, to-
gether with average retrieval latency, under three retriever backbones (MiniLM, MPNet, BGE). This
setup allows us to examine how retrieval strategies behave across tasks with varying difficulty and
under different embedding models. We also conduct parameter sensitivity studies at D.2 to D.4.

First, RF-Mem achieves the most balanced and robust performance across retrievers. As
shown in Table 2, RF-Mem either matches or surpasses the best baseline in overall Recall@5 and
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Recall@10, while avoiding the pitfalls of single-mode strategies. For example, under MiniLM it
achieves an overall Recall@ 10 of 0.6071, slightly higher than Familiarity (0.5964) and Recollection
(0.6062). On LongMemEval, in Table 3, RF-Mem further demonstrates stability. Its familiarity
uncertainty-driven selection allows the retriever to exploit confident familiarity matches when pos-
sible, and to activate deeper recollection only when necessary, yielding consistently strong results.

Second, the comparison between Familiarity and Recollection reveals complementary
strengths. Familiarity excels on fact-centric queries such as Basic Information and Preference
Easy, where direct surface similarity suffices. Recollection, however, proves highly effective on
context-heavy tasks such as Preference Hard and Social queries. On PersonaBench, in Table 2,
Recollection reaches a Recall@ 10 of 0.6267 on Preference Hard under MiniLM, outperforming Fa-
miliarity at 0.5561. Similarly, on LongMemEval, it consistently lifts Recall@5 by more than 0.02
across multiple retrievers (e.g., 0.7351 vs. 0.7136 under MiniLM) in Table 3. Its iterative expan-
sion uncovers deeper, temporally dispersed cues, making it a powerful strategy despite higher cost.
These results highlight that Recollection is not merely slower, but offers indispensable diagnostic
evidence, and that neither mode alone can achieve robustness across all task types.

Third, RF-Mem delivers superior efficiency—effectiveness trade-offs. On PersonaBench (Ta-
ble 2), Familiarity is fastest (§—10ms) but shallow, while Recollection is stronger but nearly twice as
slow (15-20ms). RF-Mem closes this gap, sustaining latency near Familiarity (9—15ms) with higher
accuracy (e.g., Recall@10 of 0.6071 vs. 0.5964/0.6062). On LongMemEval (Table 3), Familiarity
is low-latency (25-31ms) but loses coverage, while Recollection reaches perfect Recall@50 at much
higher cost (40-62ms). RF-Mem balances both, keeping latency lower (37-50ms) while matching
or exceeding accuracy.

3.4 ADAPTIVE EXPERIMENT

3.4.1 ADAPTIVE TO INDEX BUILDING METHOD
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Figure 3: Illustration of adaptive study setup. Offline indexes (e.g., MemoryBank summaries or

origin turn-level memory) provide different user memory storage, while RF-Mem serves as an online
retrieval layer that adaptively regulates to these indexes.

Table 4: Results by using MemoryBank summary index on PersonaMem (32K corpus).

Method ‘ Avg. Revisit Track Latest Aligned New Sce- Shared New Overall
Tokens | Reasons Evolution Prefs Recs narios Facts Ideas
MemoryBank summary index
Familiarity 1267.6 | 0.7475 0.6187 0.5882 0.5818 0.3333  0.4341 0.1505] 0.4941
Recollection 1441.8 | 0.8182 0.6259 0.5294 0.6909 0.4737 0.4031 0.1398 | 0.5212
RF-Mem 1421.8 | 0.8384 0.6259 0.5294 0.6545 0.4211 0.4419 0.1828 | 0.5314

To further examine the modularity of RF-Mem, we integrate it with external indexing schemes
beyond raw turn-level memory. As shown in Figure 3, offline methods such as MemoryBank (Zhong
et al., 2024) first summarize user dialog into indexes (e.g., turn-level summaries), while RF-Mem
operates as an online module during retrieval. This separation of offline indexing and online retrieval
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highlights that RF-Mem does not compete with summarization- or graph-based memory banks, but
instead complements them by enabling human-like remembering. Table 4 highlights that RF-Mem
demonstrates robustness across both settings: it achieves the highest overall accuracy under the turn-
level index, and crucially, it narrows the performance drop under the summary index compared to
single-path baselines. This adaptivity confirms that RF-Mem is modular and can be layered on top
of heterogeneous memory indices, providing an uncertainty-aware dual-process retrieval mechanism
that complements, rather than replaces, external indexing methods.

3.4.2 ADAPTIVE TO QUERY EXPANSION METHOD
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Figure 4: Tllustration of the adaptive study setup. Nearline query expansion (e.g., HyDE producing
pseudo-relevance feedback) enriches the query representation, and RF-Mem operates as the online
retrieval layer.

Table 5: Results by using HyDE query expansion method on PersonaBench.
Metrics | Recall@5 \ Recall@10
Basic  Social Pref Pref Basic  Social Pref Pref

HyDE ‘ Info Info Easy Hard ol ‘ Info Info Easy Hard ol
multi-qa-MiniLM-L6-cos-v1

Famili. 0.3106 0.3909 0.4615 0.3122 0.3464 | 0.5000 0.4991 0.5737 0.5220 0.5120

Recol. 03015 0.4135 0.4615 03171 0.3482 | 0.4909 0.5028 0.5929 0.4878 0.5046

RF-Mem | 0.3061 0.4135 0.4615 0.3171 0.3504 | 0.5091 0.5028 0.5929 0.5220 0.5194

To further assess the adaptability of RF-Mem, we combine nearline query expansion with online
retrieval and examine their interaction on PersonaBench. As illustrated in Figure 4, the nearline
expansion methods we adopt, HyDE (Gao et al., 2023), generate pseudo-relevance feedback that
enriches the original query. RF-Mem then operates as an online retrieval layer. Table 5 reports the
results when applying HyDE-based expansion. Across all categories, RF-Mem consistently matches
or surpasses Familiarity baselines, demonstrating that its dual-process mechanism remains effective
even when the upstream query representation shifts. These findings confirm that RF-Mem is modular
and can be seamlessly integrated into nearline expansion pipelines.

3.4.3 ADAPTIVE TO ITERATIVE RAG METHOD

.{ Query Developing Retrieval \:
| 1
1
1

. =/Develop New New N, L7l \Retrieved message |! 2 =) Generate
Q Question = . —> . . q=h
o Question Question 1 : _— of index 1 Answer
. : ¥ :
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Figure 5: Illustration of adaptive study setup. Iterative RAG (e.g., Search-ol) provides a multi-turn
retrieval for answer generation, while RF-Mem serves as the retrieval layer that adapts to it.

To further evaluate the adaptability of RF-Mem under iterative retrieval settings, we pair it with
a multi-turn reasoning pipeline based on Search-ol (Li et al., 2025b). As illustrated in Figure 5,
Search-o1 develops refined follow-up queries through iterative question generation, while RF-Mem
functions as the retrieval layer that reacts to these evolving queries in real time. Table 6 summarizes
results using the Search-ol interactive retrieval on the PersonaMem. RF-Mem still achieves the
highest overall score. These findings demonstrate that RF-Mem retains its effectiveness in iterative
RAG settings.
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Table 6: Results by using Search-o1 iterative retrieval on PersonaMem (32K corpus).
Revisit Track Latest Aligned New Sce- Shared New

Avg.

Search-ol ‘ Tokens | Reasons Evolution Prefs Recs narios Facts Ideas Ll
Search-ol

Familiarity 4948.7 0.8687 0.6259 0.5882 0.6545 0.5614 0.5271 0.2581 | 0.5823

Recollection | 5103.9 0.8990 0.6619 0.6471 0.7091 0.5789 0.4961 0.2796 | 0.6010

RF-MEM 5158.2 | 0.9293 0.6978 0.6471 0.7455 0.5789 0.5349 0.2043 | 0.6146

4 RELATED WORKS

Personalized memory retrieval for LLMs has emerged to complement the fixed context window and
enable user-specific, context-aware responses. Unlike standard knowledge-based RAG that targets
factual data, personal memory retrieval draws on a user’s own history and preferences (Pan et al.,
2025; Wu et al., 2025a; Xu et al., 2025a) (e.g., retrieving long-term user-Al dialogue context (Jiang
etal., 2025; Maharana et al., 2024; Wu et al., 20252a) and user-user dialogue (Tan et al., 20252)) to fill
in missing details and tailor responses. Memory-augmented personalized LLM systems combine an
LLM with a non-parametric memory to provide relevant background information. We review related
works in three areas: (1) query reformulation, (2) index construction, and (3) retrieval frameworks.

Query reformulation. These methods expand or refine queries to improve memory retrieval. LD-
Agent extracts keyphrases for retrieval (Li et al., 2025a), MemoCue proposes memory-inspired
cue query (Zhao et al., 2025), and LQ-TOD generates task-oriented queries (Chen et al., 2025).
Other approaches leverage LLM-based query expansion, such as LameR (Shen et al., 2024) and
Memlnsight (Salama et al., 2025), to enrich the query with contextual attributes.

Index construction. Prior work has also emphasized structuring user memory into searchable in-
dices. Text-based methods summarize or cluster memories into compact representations, as in Mem-
oryBank (Zhong et al., 2024), SeCom (Pan et al., 2025), and MemGas (Xu et al., 2025a), while
others rely on reflective or hierarchical summaries (Tan et al., 2025b). Graph-based approaches
instead capture relational structures, exemplified by A-Mem (Xu et al., 2025b), THEANINE (Ong
et al., 2024), MemO (Chhikara et al., 2025), and Zep (Rasmussen et al., 2025). Although differing
in representation, these methods share a common assumption: retrieval remains static. Most ulti-
mately depend on standard dense retrievers to encode queries and memory keys, applying a uniform
retrieval process regardless of uncertainty or task complexity.

Retrieval frameworks. From early keyword-based search (Robertson et al., 2009) to dense retriev-
ers like DPR (Karpukhin et al., 2020) and Contriever (Lei et al., 2023), retrieval methods aim to
rank memory items by semantic similarity. More advanced encoders such as MiniLM (Wang et al.,
2020), MPNet (Song et al., 2020), and BGE (Luo et al., 2024) improve efficiency and accuracy, and
are widely adopted in multi-session dialog retrieval (Xu et al., 2021). However, these frameworks
largely adopt a single-process retrieval paradigm, treating all queries as homogeneous regardless of
confidence or task complexity.

However, existing methods overlook the dual-process nature of human memory retrieval. Most
prior works focus on query reformulation, index optimization, or stronger retrievers, yet they im-
plicitly reduce retrieval to a one-shot recognition process (Familiarity). This not only neglects the
crucial role of deliberate (Recollection), but also ignores the need for adaptive switching between
the two paths. Our proposed RF-Mem addresses this gap by introducing a recollection retrieval path
and a familiarity uncertainty-driven selection that adaptively alternates between fast Familiarity and
deeper Recollection retrieval, thereby enabling more personalized memory retrieval.

5 CONCLUSION

In this work, we revisited personalized memory retrieval through the lens of dual-process theory.
Existing methods are limited to one-shot retrieval based on similarity Familiarity, whereas we in-
troduce Recollection as a deliberate stepwise retrieval mechanism. Building on this, we proposed
RF-Mem, a familiarity uncertainty-driven framework that adaptively switches between them. Ex-
periments show that RF-Mem achieves robust gains across both generation and retrieval tasks, and
scales reliably to million-entry corpora, demonstrating the importance of integrating deliberate rec-
ollection into memory retrieval for personalizing LLM.

10
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ETHICS STATEMENT

This work focuses on improving personalized memory retrieval for large language models. Our
study relies solely on simulated and publicly available benchmark datasets (PersonaMem, Person-
aBench, LongMemEval), which do not contain personally identifiable information or sensitive data.
We do not collect or release any private user data. While the proposed framework is designed to en-
hance efficiency and robustness in memory retrieval, potential misuse could arise if deployed with-
out safeguards in sensitive applications such as healthcare or personal decision-making. We there-
fore emphasize that future deployment should follow strict data governance, privacy preservation,
and fairness guidelines, and we encourage the research community to consider ethical implications
when extending this work to real-world user data. We acknowledge that real-world deployments
of preference-based systems may inadvertently over-amplify user traits or reinforce behavioral bi-
ases. Additionally, improper handling of user histories could expose sensitive information or lead to
unintended profiling effects, underscoring the need for careful governance.

REPRODUCIBILITY STATEMENT

We make every effort to ensure reproducibility. All datasets used in this study are publicly available,
and we provide detailed references to their sources in the main text. Model architectures, hyperpa-
rameter choices (5, F, a, 7, and thresholds Ohgn, O1ow) are explicitly documented in Appendix B.
We also describe hyperparameter sensitivity analyses in Appendix D to illustrate robustness under
different configurations. To further facilitate replication, we release code and scripts for reproducing
all reported results in the supplementary materials.
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A  DATASET DETAILS

PersonaMem. We use PersonaMem' (Jiang et al., 2025), a large-scale personalized memory
benchmark introduced at COLM 2025, as the core dataset for evaluating personalized retrieval and
generation. PersonaMem is designed to evaluate memory-augmented LLMs by requiring them to re-
trieve user-specific histories and preferences from long-term dialogue traces. To stress-test retrieval
under different scales, we follow the original paper and construct three memory corpora of increas-
ing size: 32K, 128K, and 1M entries. Table 7 reports dataset statistics, showing that query length
remains relatively stable across scales while memory size grows by orders of magnitude, creating a
challenging retrieval environment. Table 8 further summarizes the task distribution, covering diverse
domains such as family relations, study consultation, legal and medical consults, and recommenda-
tion tasks (movies, food, books, etc.). These heterogeneous task types capture both fact-oriented and
reasoning-intensive scenarios, making PersonaMem a suitable benchmark for evaluating the balance
between Familiarity-based fast recall and Recollection-driven contextual reconstruction.

Table 7: Dataset Statistics across Different Memory Corpora.

Dataset name 32k memory corpus 128k memory corpus 1M memory corpus
# of samples 589 2727 2674
Avg tokens of question 464.6 416.3 4151
Avg tokens of memory 24193.2 15185.1 9117334
# of Revisit Reasons 99 269 235

# of Track Evolution 139 341 225

# of Latest Prefs 17 866 768

# of Aligned Recs 55 349 280

# of New Scenarios 57 213 295

# of Shared Facts 129 171 144

# of New Ideas 93 518 727

Table 8: Task Distribution across Different Memory Corpora

Dataset name 32k memory corpus 128k memory corpus 1M memory corpus
# of Home Decoration 3 153 164
# of Family Relations 32 144 193
# of Therapy 2 249 161
# of Travel Plan 71 155 192
# of Medical Consult 19 195 163
# of Legal Consult 32 283 197
# of Study Consult 35 157 191
# of Dating Consult 94 197 208
# of Financial Consult 72 198 181
# of Food Rec 2 229 191
# of Movie Rec 104 158 212
# of Music Rec 56 44 128
# of Book Rec 67 172 139
# of Sports Rec - 197 148
# of Online Shopping - 196 206

PersonaBench. We further evaluate on the PersonaBench? dataset, which benchmarks personal-
ized retrieval in multi-source user environments introduced in ACL 2025 (Tan et al., 2025a). As
shown in Table 9, PersonaBench aggregates heterogeneous user histories across six users, including
conversations with friends, user-Al interactions, and e-commerce purchase records. Each user con-
tributes on average 44 queries grounded in a corpus of about 88 items, yielding rich signals of both

'https://github.com/bowen-upenn/PersonaMem
2https ://github.com/SalesforceAIResearch/personabench
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social and transactional behavior. The resulting setting allows us to test retrieval robustness across
diverse memory types, from casual dialogue to structured purchase history. This design contrasts
with PersonaMem, which primarily focuses on long user-Al dialogues, and complements our study
by introducing multi-modal user traces that better capture the breadth of personalization scenarios.

Table 9: Statistics of the PersonaBench dataset across users.

User # of # of # of Conversations # of User-AI  # of User e-comerce
Id Queries Corpus with friends Conversation  purchase histories
1 48 110 84 23 3
2 43 90 78 8 4
3 42 64 51 12 1
4 46 85 71 14 0
5 44 84 59 21 4
6 40 94 79 14 1
Sum 263 527 422 92 13
Avg 43.83 87.83 70.33 15.33 2.17

LongMemEval. We further evaluate on the LongMemEval3 dataset, which benchmarks the
ability to retrieve task-relevant information from extended user-specific corpora. introduced in
ICLR 2025 (Wu et al., 2025a). Each instance in the dataset consists of a factual question paired
with a synthetic memory corpus simulating historical user data. The dataset includes two set-
tings: LongMemEval-s, where each question is associated with approximately 50 memories, and
LongMemEval-m, where each corpus contains over 500 memories. In total, both settings consist
of 500 questions, allowing evaluation of memory retrieval precision under varying context lengths.
This benchmark enables controlled analysis of personalized retrieval performance under realistic
long-context scenarios.

Table 10: Statistics of the LongMemEval dataset, with different sizes of associated memory corpora.

Statistic LongMemEval-s LongMemEval-m
Total Questions 500 500

Total Session-level Memory 25,112 250,948

Min Session-level Memory per Question 39 501

Max Session-level Memory per Question 66 506

Avg Session-level Memory per Question 50.22 501.90

B IMPLEMENTATION DETAILS

All experiments are conducted on a single NVIDIA A100 GPU with Ubuntu OS, where the GPU is
exclusively allocated to the process when measuring runtime.

For PersonaMem, we follow the original setup and build the memory corpus at the dialogue-
turn level, where each chunk corresponds to a user query and a single LLM response. We use
GPT-4.1-mini as the generator and multi-ga-MiniIM-L6-cos~-v1 as the retriever. The
hyperparameters are set as A = 20, B = 3, F' = 2, with thresholds 6, = 0.6 and 6., = 0.3,
ensuring stable regulation across turn-level retrieval. And prompt for generation can be found at
Appendix C. And we illustrate the mean score 5 and entropy H (p) of the PersonaMem dataset in
Figure 6. The cumulative distributions reveal a consistent pattern across corpus sizes: as the scale
increases from 32K to 1M, the mean score distribution shifts slightly toward lower values, reflecting
weaker overall familiarity in larger search spaces, whereas entropy remains concentrated within a
narrow band (0.1-0.2), indicating stable uncertainty resolution. The annotated quartiles further con-
firm that the median values of both 5 (0.50-0.55) and H (p) (x0.17-0.18) remain largely invariant,
which demonstrates that the familiarity signal preserves a stable operating range across different
scales. Such stability provides empirical support for RF-Mem’s threshold design, ensuring that

Shttps://github.com/xiaowu0162/LongMemEval
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the switching mechanism can generalize without costly re-tuning and maintaining robustness under
varying corpus sizes. For support our theorical assumption in Appendix F.3, we show the empirical
distribution of mean score 5 in the Figure 7. All three datasets exhibit light-tailed, bounded distri-
butions without heavy-tail behavior, and the tail shape remains stable as the corpus size grows. This

empirically confirms that the similarity landscape does not display the heavy-tailed structure.
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Figure 7: Empirical distributions of mean score 5 of the PersonaMem dataset.

For PersonaBench, we adopt the session-level memory construction as in the benchmark paper,
which enables fair evaluation of retrieval quality using Recall. We evaluate our method under
multiple retrievers, including multi-gqa-MiniIM-L6-cos-v1% all-MiniLM-L6-v2°, and
bge-base—en-vl.5°toensure generality. For Recall@5, we use B = 3, F' = 1; for Recall@10,
weuse B = 3, F = 2, and A = 30 for both. The thresholds are set to fpign = 0.6 and 0w = 0.0,
reflecting the lower similarity scores in session-level indices. And we illustrate the mean score 5 and
entropy H (p) of the PersonaMem dataset in Figure 8. Also, for support our theorical assumption in
Appendix F.3, we show the empirical distribution of mean score 5 in the Figure 9.

For LongMemEval, we also adopt the session-level memory construction as in the paper,
with recall as a metric. We also evaluate RF-Mem under multi-ga-MinilM-L6-cos-v1l,
all-MiniILM-L6-v2, and bge-base-en-v1.5 to ensure generality. For LongMemEval-S
and LongMemEval-M, we use B = 4, F' = 1, and A = 20. The thresholds are set to fyzn = 0.6 and
Oiow = 0.0. And we illustrate the mean score 5 and entropy H (p) of the two datasets in Figure 10
and Figure 12. The empirical distribution of mean score 5 shown in Figure 11 and Figure 13 also
support our theorical assumption in Appendix F.3.

4https://huqqingface.co/sentence—transformers/multi—qa—MiniLM—L6—cos—vl
Shttps://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
*https://huggingface.co/BAAI/bge-base-en-v1.5
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Figure 9: Empirical distributions of mean score 5 of the Personabench dataset.

C PROMPT FOR PERSONAMEM

For the multiple-choice evaluation of PerosnaMem dataset, we adopted a strict prompt template
to ensure consistency and avoid ambiguous model outputs. The instruction explicitly restricts the
model to return exactly one option among (a), (b), (c), or (d), without any reasoning or ad-
ditional text. This design prevents uncontrolled generation and makes results directly comparable
across models.

Prompt Instruction

You are a multiple-choice answer generator. You MUST respond with exactly one option in the form
of (a), (b), (c), or (d). Do not include any explanation, reasoning, or extra text. Do not output anything
else besides the chosen option. If the correct answer is unknown, make the best guess and still only
respond in that format. If your output does not exactly match one of (a), (b), (c), or (d), your answer
will be considered incorrect.

During evaluation, the prompt is constructed by concatenating the question, the fixed instruc-
tion above, and all candidate options. Retrieved memory context (from RF-Mem or baselines) is
prepended as dialogue history to provide user-specific background. This structure guarantees deter-
ministic outputs while isolating the effect of retrieval on answer quality.
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Figure 10: Mean score § and entropy H (p) in the LongMemEval-S dataset.
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Figure 11: Empirical distributions of mean score s of the LongMemEval-S dataset.

Example Prompt

Question: Can you suggest some new evidence-based practices to explore for healthcare
decision-making?

Instruction: You are a multiple-choice answer generator. You MUST respond with exactly
one option in the form of (a), (b), (c), or (d). Do not include any explanation, reasoning, or
extra text. Do not output anything else besides the chosen option. If the correct answer is
unknown, make the best guess and still only respond in that format. If your output does not
exactly match one of (a), (b), (c), or (d), your answer will be considered incorrect.
Options:

(a) Exploring patient-centered communication strategies might be a great new
evidence-based practice to consider...

(b) One practice that could be impactful is the integration of artificial intelligence in
predictive analytics for healthcare decision-making...

(c) You might consider exploring systematic reviews and meta-analyses of clinical tri-
als, as these often provide robust evidence for healthcare practices...

(d) Implementing shared decision-making models in clinical practice is a promising
evidence-based strategy to explore...

Correct Answer: (c) # This is the correct answer and not in the prompt.
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Figure 13: Empirical distributions of mean score s of the LongMemEval-M dataset.
D ADDITIONAL EXPERIMENT

D.1 RESULT ACROSS CATEGORY IN PERSONAMEM

To further examine retrieval behaviors across different task types, we conduct a category-level anal-
ysis on PersonaMem (Table 11). This evaluation spans factual queries (e.g., food recommendation,
medical consult), reasoning-intensive domains (e.g., family relations, therapy), and hybrid scenarios
(e.g., aligned recommendations, new scenarios), allowing us to disentangle how each retrieval strat-
egy responds to varying demands of factual precision, contextual reasoning, and personalization.

First, Familiarity excels in direct recall but struggles as complexity grows. As shown in Ta-
ble 11, dense retrieval achieves peak scores on fact-centric categories where surface similarity is
sufficient. For instance, it reaches perfect accuracy on food recommendation (1.0000 at 32k corpus)
and strong results in movie recommendation (0.5759 at 128k). These cases confirm its cognitive
role as a fast, coarse recognition process. However, as tasks demand contextual integration—such
as track evolution or aligned recommendations—Familiarity shows clear degradation, particularly
when scaling to 1M memories.

Second, Recollection proves valuable for reasoning-intensive tasks. In categories like family
relations, therapy, and dating consultation, Recollection consistently surpasses Familiarity by re-
constructing dispersed cues across sessions (e.g., 0.5938 vs. 0.5625 in family relations at 32k, and
0.5280 vs. 0.4534 in therapy at 1M). Yet, on factual categories such as food recommendation or
study consultation, where surface matches are already diagnostic, its advantage diminishes or even
reverses. This confirms its role as a slower but more diagnostic mode.
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Third, RF-Mem achieves robust gains through adaptive switching. As shown in Table 11, RF-
Mem consistently outperforms single-mode baselines by combining the efficiency of Familiarity
with the diagnostic depth of Recollection. For instance, it improves legal consultation at 32k (0.94
vs. 0.78/0.88) and sustains advantages in family relations at 1M (0.60 vs. 0.57/0.58). These examples
illustrate its ability to maintain high accuracy across both factual and reasoning categories. Impor-
tantly, RF-Mem also delivers the best overall results at all corpus scales, confirming that uncertainty-
aware routing enables robust retrieval without committing to a single mode.

Table 11: Performance comparison on different memory corpus sizes.

Question Category 32k memory corpus 128k memory corpus 1M memory corpus
Famili. Recol. RF—Mem\ Famili. Recol. RF—Mem\ Famili. Recol. RF-Mem
Overall 0.5908 0.6214 0.6350 \ 0.5259 0.5288 0.5394 \ 0.4518 0.4544 0.4589

Home Decoration  0.6667 0.6667 0.6667 | 0.6275 0.6275 0.6471 | 0.4207 0.4451 0.4207
Family Relations ~ 0.5625 0.5938 0.5938 | 0.5486 0.5625 0.5764 | 0.5734 0.5803 0.6010

Therapy 0.5000 0.5000 0.5000 | 0.5060 0.5301 0.5341 | 0.4534 0.5280 0.4845
Travel Plan 0.4789 0.5775 0.5634 | 0.5806 0.6194 0.6452 | 0.4948 0.4792 0.4896
Medical Consult ~ 0.8421 0.7895 0.8421 | 0.4718 0.5128 0.5026 | 0.4294 0.4110 0.4356
Legal Consult 0.7812 0.8750 0.9375 | 0.5124 0.4735 0.4841 | 0.4061 0.3909 0.3909
Study Consult 0.6000 0.6000 0.6000 | 0.5096 0.4904 0.4773 | 0.4503 0.4293 0.4817

Dating Consult 0.5851 0.5851 0.6277 | 0.4772 0.5025 0.4975 | 0.5192 0.5000 0.5096
Financial Consult  0.5556 0.5972 0.6389 | 0.4899 0.4697 0.4899 | 0.4365 0.4309 0.4199

Food Rec 1.0000 1.0000 1.0000 | 0.5240 0.5721 0.5633 | 0.3717 0.4241 0.3874
Movie Rec 0.6154 0.6154 0.5865 | 0.5759 0.5696 0.5633 | 0.4434 0.4481 0.4575
Music Rec 0.6071 0.6250 0.6250 | 0.4091 0.4773 0.5096 | 0.4609 0.4688 0.5000
Book Rec 0.5373 0.5970 0.6418 | 0.5640 0.5407 0.5814 | 0.4964 0.4532 0.5036
Sports Rec - - - 0.5228 0.4670 0.4975 | 0.4189 0.4392 0.4392
Online Shopping - - - 0.5408 0.5459 0.5561 | 0.3738 0.3932 0.3786

D.2 SENSITIVITY ANALYSIS OF o AND T
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Figure 14: Hyperparameter sensitivity study on PersonaBench. Heatmaps report Recall@5 and
Recall @10 across different retrievers, varying o (query—centroid mixing) and 7 (entropy threshold).

To examine the robustness of RF-Mem, we conduct a systematic study varying two key hyper-
parameters, « and 7, across different retrievers (MiniLM, MPNet, BGE) and evaluation metrics
(Recall@5/10). Figure 14 visualizes the results as heatmaps, where warmer colors indicate higher
retrieval performance. This setup allows us to directly assess how query mixing («) and entropy
thresholding (7) interact to balance efficiency and coverage.

First, the query—centroid mixing coefficient o controls how strongly recollection expands be-
yond the original probe. In Recall@5, moderate o (around 0.3-0.6) yields the best results, such
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as MiniLM improving overall recall to ~0.47, while extreme values (o« = 0.0 or & = 1.0) reduce
stability. For Recall@ 10, performance is less sensitive, but mid-range « still avoids degradation
observed at the boundaries. This indicates that balanced mixing is crucial: too little restricts recol-
lection, too much overwhelms with noisy expansions.

Second, the entropy threshold 7 regulates the switch between Familiarity and Recollection.
Low 7 values push the system toward frequent recollection, leading to higher gains in complex
categories but also exposing variance. For instance, MiniLM Recall@ 10 achieves its highest values
(~0.60) when 7 is set around 0.2-0.25, while overly high thresholds (7 > 0.35) reduce adaptivity,
as retrieval defaults prematurely to Familiarity. The results highlight that moderate entropy gating
achieves the best trade-off between efficiency and contextual depth.

D.3 SENSITIVITY ANALYSIS OF B AND F'

Figure 15 reports the effect of beam width B and fanout F' on retrieval performance in
LongMemEval-S and LongMemEval-M, under the retrievaler multi-ga-MiniIM-Lé6-cos-v1l
of recollection retrieval. We observe three consistent patterns.

First, increasing F' generally reduces recall@5. As shown in the top-left and bottom-left plots,
recall@5 steadily drops when F' grows, since higher fanout expands the search too widely, diluting
precision in top-ranked results. For example, in LongMemEval-S, recall@5 decreases from 0.72
(F' =1) to below 0.60 when F' = 4.

Second, recall@10 is more stable under moderate F', but declines when B or F' are too large.
The middle plots show that recall@10 peaks around F' = 1 or F' = 2 (e.g., 0.83 in LongMemEval-
S, 0.56 in LongMemEval-M), but drops once F' = 3 or F' = 4, reflecting over-expansion and
redundancy. This suggests that moderate fanout provides useful diversification, while excessive
expansion introduces noise.

Third, recall@50 is robust and even improves with higher F. As shown in the rightmost plots,
recall@50 remains very high in LongMemEval-S (above 0.98 across all settings), and increases
slightly in LongMemEval-M (up to 0.76 when B = 3, F' = 2). This indicates that large fanout
helps cover more relevant memories at longer retrieval depths, consistent with recollection’s role of
broad exploration.

Overall, these results demonstrate that small beam width and low fanout (B = 2 or 3, ' = 1 or
2) offer the best balance between early precision and broad coverage, aligning with the intuition of
controlled, stepwise recollection.
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. . .

0.70 2 0.82 0.99
3
0.80
) 4 ) @ 0.99
300 5 S0 ° 3 8
> > 2 > 0.99 2
0.76 3 3
0.60 4 0.99 4
0.74 5 5
0.98
LongMemEval-M - recall@5 LongMemEval-M - recall@10 LongMemEval-M - recall@50
0.55 0.76 B
0.40 2
o o 0-50 N 0.76 3
4
Tju 0.35 8 Tju oas B Tju 0.75 5
2 . 2
> 0.30 3 > 3 > 0.74
4 0.40 4
0.25 5 5 0.74
1 2 3 4 1 2 3 4 1 2 3 4
F F F

Figure 15: Hyperparameter B and F' sensitivity of Recollection retrieval on LongMemEval-S and
LongMemEval-M.
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D.4 IMPACT OF o« UNDER VARYING RETRIEVAL SIZE K

Effect of o on Retrieval. To investigate the role of the mixing weight «, we conduct a sensitivity
study on the LongMemEval-M dataset under the Recollection retrieval, measuring Recall@5, Re-
call@10, and Recall@50. As shown in Figure 16, the impact of « exhibits a clear dependence on re-
trieval depth. For Recall@5, which emphasizes short-hop retrieval precision, performance decreases
steadily as o grows, suggesting that placing excessive weight on the original query suppresses ex-
ploratory expansion and thereby reduces the system’s ability to capture nearby but diverse evidence.
In contrast, Recall@50 improves markedly with larger «, indicating that stronger query—centroid
mixing facilitates broader exploration and enables the retriever to recover more distant but rele-
vant memories over long retrieval chains. Recall@ 10 demonstrates an intermediate pattern, peaking
around o = 0.3-0.5 before declining, which reflects the delicate balance between preserving the
specificity of the original query and promoting contextual expansion through recollection.

These results highlight a fundamental trade-off: smaller values of a favor precision in short-path re-
trieval, while larger values enhance coverage in long-path retrieval. The presence of an intermediate
optimum for Recall@ 10 further confirms that no single setting universally dominates across depths,
underscoring the need to calibrate o according to application demands. More broadly, this sensitiv-
ity analysis validates the design choice in RF-Mem to treat « as a tunable parameter, enabling the
framework to flexibly adjust the balance between efficiency and breadth when navigating different
levels of the memory space.

a Sensitivity of Recollection Retrieval in LongMemEval-M
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Figure 16: Effect of o on short- vs. long-path retrieval performance (Recall@ K).
D.5 SENSITIVITY ANALYSIS OF RETRIEVAL SIZE K

To further examine the sensitivity of RF-Mem to the probe retrieval parameter K, we vary K from
5 to 50 and report the resulting accuracy under different corpus sizes (32K, 128K, and 1M) in
PersonaMem. As shown in Figure 17, the overall performance of RF-Mem remains consistently
stable across a wide range of K, demonstrating the robustness of our familiarity-based regulation.
In contrast, the baselines exhibit stronger fluctuations: for Familiarity, accuracy quickly rises with K
but plateaus once K > 10, while Recollection benefits from larger K due to finer entropy resolution,
yet its gains taper off and even slightly degrade after K = 20.

RF-Mem combines the advantages of both pathways, achieving higher accuracy than either baseline
across all corpus scales, and crucially avoids the over-expansion problem of Recollection by adap-
tively invoking recollection only when necessary. Notably, the performance curves at 128K and 1M
confirm that the improvement saturates beyond moderate probe sizes, suggesting that small values
of K (e.g., 10-20) are already sufficient for effective familiarity estimation and adaptive switching.
These results highlight that RF-Mem does not depend on finely tuned probe parameters, making it
both robust and practical for deployment in large-scale personalized memory retrieval scenarios.
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Figure 17: Effect of probe size K on retrieval performance across different corpus scales.

D.6 LEARNING THE STRATEGY SELECTION MECHANISM

Although the gating thresholds in RF-Mem are manually specified, it is important to assess whether
the routing policy can also be learned from data. To this end, we construct a binary classification
task in which each memory instance is represented by the two gating signals, namely the mean
similarity 5 of the probe retrieval and the entropy H (p) over the top-K similarity distribution. The
classifier predicts whether the familiarity path or the recollection path yields higher retrieval quality.
This setting allows us to examine (i) how much supervision is needed to approximate the decision
boundary and (ii) whether the two handcrafted signals contain sufficient information for reliable
automatic routing.

Training data. We utilize two subsets of PersonaMem: the 32k corpus (589 samples) and the
128k corpus (2727 samples). For 32k, the first 400 samples are used for training and the remaining
189 for evaluation; for 128Kk, the first 2000 samples are allocated for training and the remaining 727
for evaluation. Only cases in which one path clearly outperforms the other are retained, forming a
clean binary-labeled dataset. Table 12 summarizes the distribution of positive and negative labels.

Training Details. A three-layer MLP is trained as a binary classifier, with hidden dimensions of
32 and 16, and a final sigmoid output unit. ReLU activations are used in the hidden layers. Training
follows an 80/20 train—validation split.

Table 12: Training data statistics for the learned gating classifier.

Dataset Fami. win Recol. win  Tie \ Training Samples
PersonaMem-32k 34 41 325 75 (34+41)
PersonaMem-128k 178 185 1637 363 (178+185)

Experimental findings. Tables 13 and 14 report detailed performance across evaluation cate-
gories. We can find while the hand-tuned thresholds remain slightly superior, the learned gate
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shows clear improvements when trained on more data, demonstrating its potential applicabil-
ity in real-world scenarios where larger-scale logs are accessible. On the smaller 32k set, the
learned gate shows high variance across runs and does not consistently outperform simple heuris-
tics, indicating that limited data makes the decision boundary difficult to estimate reliably. When
moving to the larger 128k set, the learned gate becomes considerably more stable and approaches
the performance of the manually tuned mechanism. These results suggest that the two handcrafted
signals already capture a meaningful structural separation between the two retrieval modes, and that
automatic tuning becomes increasingly effective as more user data is available.

Table 13: Results of the learned strategy selector on PersonaMem-32k (189 test samples).

.. Track . New Num. Num.
Method | Overall Revisit Shared Evolu- Aligned Latest Scenar- New of of
Reasons Facts . Recs  Prefs . Ideas e
tion ios Famili.Recol.

Dense 0.6296 | 0.9688 0.7297 0.6327 0.8125 0.2857 0.5385 | 0.2286 189 0
Recol. 0.6667 | 0.9688 0.7297 0.7551 0.8750 0.1429 0.7297 | 0.2286 O 189
RF-Mem | 0.6720 | 1.0000 0.7838 0.6939 0.8750 0.1429 0.6154 | 0.2571 83 106
RF-Mem| 0.6482 | 0.9688 0.7514 0.6878 0.8750 0.1429 0.5385 | 0.2286 97.5 O91.5
(Learned)|4-0.0067|4+0.0000 £0.0114 £0.0255 40.0000 £0.0000 £0.0000|£0.0000 £6.70 £6.70

Table 14: Results of the learned strategy selector on PersonaMem-128k (727 test samples).

. . Track . New Num. Num.
Method | Overall Revisit Shared Evolu- Aligned Latest Scenar- New of of
Reasons Facts . Recs  Prefs . Ideas o1
tion ios Famili.Recol.

Dense 0.5131 | 0.7742 0.6410 0.6162 0.5176 0.5122 0.3529 | 0.3043 727 0
Recol. 0.5158 | 0.7634 0.5897 0.6162 0.5647 0.5366 0.3824 | 0.2609 O 727
RF-Mem | 0.5199 | 0.7527 0.6410 0.6162 0.5059 0.5463 0.3824 | 0.2971 402 325
RF-Mem| 0.5175 | 0.7591 0.6180 0.6091 0.5553 0.5400 0.3794 | 0.2718 334.4 392.6
(Learned)|0.0039|40.0055 £0.0255 £0.0048 +0.0182 +0.0108 £0.0152|+0.0070 £28.331+-28.33

D.7 CASE STUDY.

D.7.1 RECOLLECTION-PATH WINNING CASE

To illustrate the difference between one-shot familiarity retrieval and recollection retrieval, we con-
duct a case study on the PersonaMem dataset. For clarity, we set B = 2 and F' = 2 in the
recollection process. Figure 18 presents the outputs under different retrieval modes for the query
“Can you suggest some new evidence-based practices to explore for healthcare decision-making?”.
The Familiarity retriever directly returns the top-10 highest-scoring entries, capturing salient but
fragmented memories such as mentions of “conventional medicine” or “therapeutic modalities.”
While efficient, this strategy surfaces isolated fragments—sometimes with noisy mentions like “try-
ing a new healthy recipe”—and fails to integrate them into a coherent chain. As a result, crucial
contextual cues that span across sessions remain overlooked, highlighting the inherent limitation of
one-shot retrieval.

By contrast, the Recollection process unfolds in multiple rounds. At each step, retrieved items
are clustered into semantically coherent groups, and their centroids are blended with the query to
form new probes. As shown in Figure 18, this branching expansion progressively uncovers comple-
mentary evidence: for instance, r=1 surfaces “modern science blending with age-old methods,” r=2
brings in references to “gathering patient history” and “reviewing health records,” and r=3 integrates
higher-level anchors like “structured methodology and evidence-based practices.” This stepwise en-
richment not only reduces redundancy by grouping similar items but also reconstructs temporally
dispersed details into a coherent memory trace. Compared with the static list from Familiarity re-
trieval, RF-Mem’s recollection branch demonstrates a chain-like reconstruction process, aligning
with the dual-process theory by simulating deliberate, effortful recall. Ultimately, this yields more
diagnostic and contextually grounded evidence for answering the user’s query.
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Familiarity Retrieval

D
47 ... the methods I support are genuinely effective and safe for individuals seeking help...
. . 7 It just doesn’t align with my approach and focus on conventional medicine...
Direct retrieval K=10 70 ....think about how these modalities could complement conventional treatments .
36 I have delved deep into different therapeutic modalities, assessing their efficacy...
Q Can you suggest some new evidence- 69 ...how modern science is beginning to blend with these age-old methods, creating a more
based practices to explore for healthcare —_— comprehensive approach to health care.
decision-making? 9 ...need to explore different methods for tracking my health journey...
6 ...how a supportive environment can lead to more effective treatments...
3 effective dialogue is fundamental not only in consultations but throughout the continuum of
care.
2 I tried a new healthy recipe specifically to prepare meals for better nutrition before my
appointments.
80 ... the various interdisciplinary approaches being utilized to enhance patient well-being. ..

Recollection Retrieval

with these age-old methods, creating a more
comprehensive approach to health care...

methods for tracking my
health journey...

Each Round r Retrieval :N= (B+r)*F, B=2, F=2 Can you suggest some new evidence-based practices
B=2 indicate each round pick top 2 branches & tocxplore for healtheare decision-making?
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Figure 18: Case study from PersonaMem: comparison between Familiarity and Recollection re-
trieval where Recollection wins. Familiarity surfaces salient but fragmented evidence, while Recol-
lection progressively reconstructs temporally distributed details via clustering and query refinement.

D.7.2 FAMILIARITY-PATH WINNING CASE

To analysis the failure case, we again compare one-shot Familiarity retrieval with the multi-round
Recollection process on the PersonaMem dataset. As shown in Figure 19, we show the retrieval
result of dual paths for the query “I'm considering developing a tool to manage finances while
traveling. How could I ensure it helps me prioritize experiences like local cuisine or guided tours?”.
Familiarity retrieval outperforms Recollection in serving the user’s intent. The one-shot Familiarity
retriever returns a broad and query-aligned set of memories, many of which explicitly mention ‘local
experiences’, ‘finance management apps’, or ‘last trip’. These results directly address the user’s need
to “prioritize experiences while traveling,” illustrating that high-scoring surface cues can sometimes
be sufficient for intent coverage.

In contrast, the multi-round Recollection process drifts along a different semantic trajectory. Al-
though its iterative clustering-and-refinement mechanism successfully produces deeper and more
structured traces, the retrieved branches gradually converge toward ‘long-term financial habits’ and
‘personal finance management’. This indicates that the recollection trajectory can overfit to domi-
nant semantic clusters in the memory corpus, especially when several high-density branches are the-
matically coherent but misaligned with the user’s immediate intent. As a result, the recollection path
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becomes increasingly anchored in financial-management narratives, overlooking the travel-related
aspects of the query.

Despite being a bad case for retrieval accuracy, this example is instructive. It exposes a core trade-off
of deliberative recollection: the mechanism excels at reconstructing temporally dispersed, concep-
tually rich memory chains, yet it may over-emphasize internal coherence at the cost of task-oriented
alignment. This case highlights the importance of balancing depth with intent fidelity, and under-
scores the need for more precise familiarity-uncertainty—guided strategy selection in future work.

Familiarity Retrieval

Direct retrieval K=10 ...It's fascinating to see the growing trend of personal finance management through apps, as
they can help many travelers...
68 ..I've itted to a personal finance course focused on travel budgeting strategies. ..
10 ...Budgeting is crucial to avoid any financial surprises while traveling, and I commend you for
taking this proactive approach...
47 ...I realized I might need a more structured approach to tracking my finances...
I'm considering developing a tool to manage 19 ...The more interactions you have, the more you cultivate a supportive network that can provide
finances while traveling. How could I ensure encouragement and additional tips, making your planning even more fruitful...
it helps me prioritize experiences like local 5 ...Embracing both the physicality of printed guides and the flexibility of digital tools can
cuisine or guided tours? provide a well-rounded approach to your travel pl ..
55 ...innovative learning methods, such as joining online forums, participating in interactive
budgeting tools, or using apps designed for personal finance...
0 ...Our previous travel experiences, whether they were positive or negative, have likely
influenced how we approach planning for future adventures....
56 ...as you explore local experiences, it can be enlightening to think about how they enrich your
perspective on culture and community...
27 ...On my last trip, I felt constrained and missed out on spontaneous experiences, such as
bling upon a local festival or trying a hidden gem of a restaurant. ..

Recollection Retrieval

Each Round r Retrieval :N= (B+r)*F, B=2, F=2 I'm considering developing a tool to manage finances while traveling. How could
I ensure it helps me prioritize experiences like local cuisine or guided tours?

B=2 indicate each round pick top 2 branches
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Figure 19: Case study from PersonaMem: comparison between Familiarity and Recollection re-
trieval where Familiarity wins. Familiarity produces broader and more relevant evidence aligned
with prioritizing travel experiences, while Recollection progressively drills into long-term financial
management and drifts away from the user’s actual intent.

D.8 ALTERNATIVE STUDY

In this section, we evaluate several alternative recollection mechanisms to test the robustness of
RF-Mem beyond the proposed KMeans-based and a-mix design. We replace the centroid module
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with DBSCAN and Spectral Clustering, replace the a-mix with gated mixing, and replace the entire
module with graph-based expansion, while keeping all other components fixed. The comparison
results in Table 15 highlight the generality of RF-Mem across diverse structural assumptions.

Table 15: Retrieval performance comparison under different recollection strategies.
Metrics | Recall@5s | Recall@10
Basic  Social Pref Pref Basic  Social Pref Pref

Methods Info Info Easy Hard el Info Info Easy Hard et
Basic KMeans

Famili. 0.4515 0.4852 0.4904 0.3659 0.4484 | 0.5879 0.6220 0.6442 0.5561 0.5964

Recol. 0.4379 0.4903 0.5128 0.3854 0.4491 | 0.5924 0.6859 0.5659 0.6267 0.6062

RF-Mem | 0.4788 0.5091 0.4872 0.3854 0.4701 | 0.5924 0.6799 0.5707 0.6267 0.6071

DBSCAN cluster (KMeans alternative)
Recol. 0.4424 0.4940 0.4872 0.3512 0.4431 | 0.6045 0.6079 0.6891 0.5366 0.6028
RF-Mem | 0.4879 0.5129 0.4744 0.3463 0.4669 | 0.5659 0.6079 0.6667 0.6015 0.6040

Spectral cluster (KMeans alternative)
Recol. 0.4591 04739 0.5000 0.3756 0.4522 | 0.6045 0.5978 0.6474 0.5366 0.5957
RF-Mem | 0.4818 0.4928 0.4872 0.3707 0.4651 | 0.6015 0.6041 0.6474 0.5610 0.6001

Gate (a-mix alternative)
Recol. 0.4439 04739 0.5128 0.3902 0.4491 | 0.5924 0.6016 0.6795 0.5317 0.5936
RF-Mem | 0.4667 0.4928 0.5000 0.3756 0.4602 | 0.5924 0.6079 0.6667 0.5610 0.5988

Graph + Breadth-First Search (whole alternative)
Recol. 04167 04739 04872 0.3805 04314 | 0.5591 0.5887 0.5887 0.5366 0.5722
RF-Mem | 0.4258 04739 04872 0.3756 0.4349 | 0.5742 0.6220 0.6442 0.5561 0.5899

D.8.1 DBSCAN RECOLLECTION (KMEANS ALTERNATIVE)

Experiment setup. To examine whether the assumptions of KMeans (balanced and approximately
spherical clusters) influence recollection, we evaluate DBSCAN (Ester et al., 1996) as a density-
based alternative. DBSCAN identifies arbitrarily shaped clusters and automatically detects noise
points, providing a contrasting clustering geometry. The retrieval backbone, mixing rule, and eval-
uation setup remain unchanged to ensure a clean comparison between recollection mechanisms.

Findings. Results in Table 15 show that DBSCAN-based recollection performs competitively, and
RF-Mem (DBSCAN) consistently improves over its recollection baseline. This demonstrates that
the effectiveness of a-mixing is not tied to KMeans-specific assumptions and remains stable under
density-driven neighborhood structures.

D.8.2 SPECTRAL CLUSTERING RECOLLECTION (KMEANS ALTERNATIVE)

Experiment setup. We further evaluate Spectral (Ng et al., 2001) Clustering, which identifies clus-
ters via graph Laplacian eigenvectors and effectively models manifold-shaped structures. This setup
tests whether recollection remains stable when memory clusters deviate from centroid-based geom-
etry. All configurations follow the evaluation results summarized in Table 15.

Findings. As reported in Table 15, RF-Mem (Spectral) achieves consistent gains over the Spectral
baseline, improving R@5 Overall from 0.4522 to 0.4651. These results indicate that a-mixing
generalizes well across diverse cluster geometries and maintains its geometry-respecting update
behavior even under manifold-structured partitions.

D.8.3 NONLINEAR GATED MIXING (-MIX ALTERNATIVE)

Experiment setup. Motivated by nonlinear interpolation strategies, we implement a gated mixing
variant in which the update coefficient is determined by a sigmoid gate applied to the similarity
between the current query representation and the cluster centroid. Specifically, given the query

vector x(") at iteration r and the corresponding centroid gl(f), the gated interpolation is defined as:

gx".g)) =0 (x(mgér)) , ©)
and the updated query is computed via:
x((j'ﬂ) = norm(g x4+ (1—-yg) g;()v') + xt) , (10)
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where o(-) denotes the sigmoid function and x; is the original query. This formulation introduces
a nonlinear, content-adaptive interpolation mechanism that contrasts with the proposed linear a-
mixing. All experiments follow the unified evaluation protocol in Table 15 to ensure comparability.

Findings. As shown in Table 15, gated mixing improves over Familiarity retrieval but does not
surpass the effectiveness of the proposed a-mixing rule. RF-Mem (Gate) obtains 0.4602 R@5
Overall, compared with 0.4701 for our KMeans-based implementation. The performance gap is
particularly noticeable in Social Info and Pref-Hard subsets, where recollection plays a critical role.
These results indicate that although nonlinear interpolation is a reasonable alternative, a-mixing
provides a stable and geometry-aligned update, consistent with its interpretation as a manifold-aware
update rule on the unit hypersphere.

D.8.4 GRAPH-BASED RECOLLECTION (WHOLE ALTERNATIVE)

Experiment setup. Finally, we examine a structure-free alternative by constructing a KNN
graph (Zhang et al., 2025) over a user memory corpus and performing Breadth-First Search (BFS)
expansion. This mechanism collects local neighborhoods via graph traversal rather than via cluster-
ing. The full evaluation follows the protocol summarized in Table 15.

Findings. Table 15 shows that graph-based recollection performs weaker than clustering-based rec-
ollection. Nevertheless, RF-Mem consistently improves over its graph baseline, demonstrating the
robustness of our enhancement. The comparison suggests that clustering more effectively aggre-
gates semantically coherent neighborhoods, whereas BFS may over-expand into dense yet irrelevant
regions.

D.9 FULL-EXPLORATION STUDY

To further examine whether the effectiveness of RF-Mem depends on the early-stop rule used in
the recollection path, we conduct an additional analysis where the expansion process is allowed to
continue until all reachable candidates (within a predefined maximum depth) have been explored.

Table 16: Retrieval performance under full exploration.
Metrics | Recall@5 \ Recall@10

Basic  Social Pref Pref Basic  Social Pref Pref
Methods ‘ Info Info Easy Hard el Info Info Easy Hard el
Basic KMeans (Early-Stop)
Famili. 04515 0.4852 0.4904 0.3659 0.4484 | 0.5879 0.6220 0.6442 0.5561 0.5964
Recol. 04379 0.4903 0.5128 0.3854 0.4491 | 0.5924 0.6859 0.5659 0.6267 0.6062
RF-Mem | 0.4788 0.5091 0.4872 0.3854 0.4701 | 0.5924 0.6799 0.5707 0.6267 0.6071

Basic KMeans (Fully Exploration)
Recol. 0.4530 0.4827 0.5128 0.3805 0.4537 | 0.6015 0.6204 0.6763 0.5415 0.6036
RF-Mem | 0.4848 0.5016 0.5000 0.3756 0.4709 | 0.6015 0.6267 0.6667 0.5659 0.6083

Graph + Breadth-First Search (Early-Stop)
Recol. 04167 04739 0.4872 03805 0.4314 | 0.5591 0.5887 0.5887 0.5366 0.5722
RF-Mem | 0.4258 0.4739 0.4872 0.3756 0.4349 | 0.5742 0.6220 0.6442 0.5561 0.5899

Graph + Breadth-First Search (Fully Exploration)
Recol. 0.4530 0.4701 0.4776 0.3902 0.4486 | 0.5818 0.5642 0.6635 0.5659 0.5841
RF-Mem | 04758 0.4890 0.4776 0.3854 0.4629 | 0.5924 0.6220 0.6442 0.5561 0.5986

Experiment setup. Unlike the default setting, in which the recollection process terminates once the
top-K quota is satisfied, this full-exploration variant aggregates the complete expanded set and per-
forms a final dense re-ranking step over all collected items. This design enables us to test whether
the proposed recollection mechanism remains robust when given a substantially larger search bud-
get. Table 16 summarizes the results for both the KMeans-based and Graph-based recollection
mechanisms under the early-stop and full-exploration settings. Across all categories, full explo-
ration increases the coverage of semantically relevant nodes, providing a stricter evaluation of the
recollection path.

Findings. First, we observe that allowing full exploration followed by a global re-ranking step con-
sistently improves RF-Mem compared to the early-stopped variant. For instance, RF-Mem (Full)
achieves an Overall Recall@5 of 0.4709 under KMeans, surpassing the early-stop score of 0.4701.
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This demonstrates that RF-Mem continues to benefit from deeper recollection when additional evi-
dence is made available, reinforcing the stability and scalability of the proposed a-mixing updates.
Second, under the full-exploration setting, the graph-based variant shows clear improvements over
both its early-stopped counterpart and the Familiarity (dense) baseline. RF-Mem (Graph+bfs, Full)
obtains an Overall Recall@10 of 0.5986, outperforming the early-stop result of 0.5899. This in-
dicates that graph-guided recollection, despite being weaker than KMeans in the default setting,
becomes more competitive when provided with additional traversal depth. These findings support
our broader claim that deliberate, structure-aware exploration of the memory space offers a valuable
and robust alternative formulation for retrieval.

D.10 ROUTING ROBUSTNESS ACROSS EMBEDDING MODELS

To assess the sensitivity of RF-Mem to the underlying embedding model, we investigate how em-
bedding quality and calibration influence routing decisions. Because both the similarity-based un-
certainty measure and the recollection path depend on the geometry of the embedding space, under-
standing the extent to which different retrievers alter routing behavior or introduce failure risks is
crucial for evaluating the robustness of the framework.

Experiment Setup To answer the question of whether routing accuracy varies across differ-
ent retrievers, we measure routing statistics for three embedding models on PersonaBench:
multi-ga-MinilM-L6-cos-vl, all-mpnet-base-v2, and bge-base-en-v1.5. For
each model, we record (i) routing frequencies into the familiarity and recollection branches, and
(ii) retrieval accuracy. All other components of RF-Mem remain fixed to isolate the effect of the
embedding backbone.

Findings. Table 17 summarizes the result. We can find: First, Stronger retrievers route more queries
into the recollection path, while weaker retrievers rely more heavily on fast familiarity. MiniLM and
MPNet trigger substantially more recollection transitions, indicating that their embedding spaces
provide more reliable cluster structures for iterative refinement. In contrast, BGE, which exhibits
less stable similarity distributions, routes a significantly larger number of queries to familiarity. Sec-
ond, the routing behavior demonstrates that the mechanism adapts to the embedding geometry in
a principled way. Stronger retrievers provide clearer cluster boundaries, which encourages recol-
lection, whereas noisier or weakly calibrated embeddings shift routing toward familiarity as a more
reliable fallback.

Table 17: Routing statistics and retrieval performance across different embedding models.

Retriever | Time Route—Famili. Route—Recol. R@5 Overall
multi-qa-MiniLM-L6-cos-vl | 9.16ms 60 203 0.4701
all-mpnet-base-v2 8.33ms 15 248 0.4009
bge-base-en-v1.5 10.14ms 140 123 0.3836

E PSEUDOCODE OF RF-MEM

RF-Mem algorithm. Algorithm 1 begins with a short probe to estimate retrieval certainty and
then switches between a fast Familiarity path and a deliberate Recollection path. Given the query
embedding x;, the retriever returns the top-k, probe candidates and produces a temperature—scaled
score distribution p; we compute the list entropy H (p) and the mean score §, then apply thresholds
(Ohigh, Bhow) together with an entropy gate 7 as specified in Eqs. (1)—(2). If the familiarity signal is
strong, that is § > Oygn or H(p) < 7, RF-Mem executes a one—shot Familiarity retrieval that returns
the top-K items by similarity. If the signal is weak, that is 5 < 6,y or H(p) > 7, or if the probe
yields no hits, RF-Mem invokes Algorithm 3 to perform stepwise Recollection. In each round r of
recollection, we retrieve top-N candidates with N = (B + r)F, cluster them by KMeans into at
most B groups, form a centroid for each group, and update the query by a-mixing the current query
with the centroid while retaining a residual from the original query, then continue with the resulting
queries as a beam of size B. Unique hits are accumulated across rounds, scores are aggregated per
item, and the process stops early when at least X unique items have been collected or when the
round limit R is reached. The probe therefore preserves one—shot efficiency when certainty is high,
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while the recollection loop builds chain-like evidence under uncertainty, where B and F' regulate
breadth and « controls the balance between exploration and query stability. And theoretical analysis
can be found at Appendix F.

Algorithm 1 RF-Mem: Entropy-guided Switching Between Familiarity and Recollection (with in-
lined entropy)

Require: Retriever R with indexed memories {m;}}, and embeddings z; = ¢(m;); query ¢
with embedding x: = ¢(q); probe size k,; temperature \; entropy threshold 7; mean-score
thresholds (Hhigh, Oow); final budget K. Recollection params: beam B, fanout F', max rounds
R, mix rate «, per-round candidate size N.

Ensure: Ranked memory set S with |S| < K.

1: (s,id) < R.PROBE(x, K) > Top-K probe scores

2: § + mean(s)
3: (Calculate entropy) Let k < |s| and for i = 1..k set
k

4 z; < A(s; —max;s;); pi < exp(zq;)/Z:j:1 exp(z;)
k

5: H« —> .  pilogp;

6: if 5 > Oign or H < 7 then

7: return FAMILIARITYTOPK (z;, K, R)

8: elseif 5 < 0,y or H > 7 then

9: return RECOLLECTION(zy, K, B, F, R, o, N, R)

10: end if

Algorithm 2 Familiarity Retrieval
Require: Query x;, budget K, retriever R

1: For each memory m;, compute s; < {x¢, 2;) > cosine or inner product after normalization
2: S « top-K items by s; (optionally filter by a floor)
3: return S
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Algorithm 3 Recollection Retrieval: retrieve — cluster — a-mix — iterate
Require: z;, K, B, F, R, a, N, retriever R
Ensure: Ranked set S with |S| < K

1: (9 « norm(x;); Beam « {z(®}; Seen « (); Bag < 0

2: forr=0to R —1do

3: Next +— 0); N+ (B+7r)x F >N < K
4: for all (") € Beam do

5: C(") < R.TopPN(z("), N) > C) = Top-N{(mg, ("), z;))}
6: Cluster {z; : m; € C™} into k = min(B, |C(")|) groups by KMeans

7: forb(;)l to k do ") )

8: G’ < index set of cluster b; g, 1101"1n(|CT,)| ZieG,(f) zl)

9: a:l()rﬂ) — norm(a () + (1-a) g,ET) + xt)

10: Append (xl(fﬂ), Gl(f)) to Next

11: end for

12: end for

13: if Next = ) then break

14: end if

15: Score each ((L-l()r+1)7 Gz(;r)) by > :ieG("'> <CU£T+1), +1): keep top-B as new Beam
b
16:  for all kept (;cl(f“)’ Ggr)) do

17: foralli € G do

18: if i ¢ Seen then insert (i, (z{" "), z;)) into Bag; add i to Seen
19: end if

20: end for

21: end for

22: if |Bag| > K then break

23: end if

24: end for

25: For each id in Bag take top-K as S

26: return S

F THEORETICAL ANALYSIS

Preliminaries. Let the user memory be M = {m;}}, with embeddings z; = #(m;) and a query
g encoded as x; = ¢(q), with unit normalization. Define similarity scores s; = (x,2;) and the
probe list C = Top—-K ({(m“ sz)}f‘il) Following the paper, define a tempered softmax over probe

SCores

i — exp(A(s; — max; s;)) i=1.. K (11)

Zjil exp()\(sj — maxy Sg)) ’

with entropy H (p) = — Zfil p; log p; and mean similarity 5 = % Zfil s;. The RF-Mem selection
is

Familiarity, 5 > bhigh,

Recollection, 5 < Oow,

Strategy(q) = (12)

Familiarity H(p) <t )
’ " Blow < 5 < Ouign
{Recollection7 H(p) >, low < 8 < Uhigh

In the Familiarity path, the retriever returns Top—K by s;. In the Recollection path, the system

iterates retrieve—cluster—mix: at round r it retrieves Top—N,. with N, = (B + r)F < K, clusters

), and forms recollect queries

into B groups with centroids gf()r

xl(fH) = norm (ax(r) +(1- a)gl()r) + xt), b=1,...,B, (13)
forr = 0,..., R — 1, then returns Top-K from the union Uf:o C("). This matches the method
description and notation in the main content.
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F.1 RISK-MINIMIZING SELECTION

We formalize the selection in equation 12 as minimizing a retrieval risk that trades correctness and
cost. Let £(mode | ¢) denote the probability of returning an insufficient set for ¢ under a mode
mode € {Familiarity, Recollection}, and let C'(mode) denote the expected computation cost. For a
penalty 5 > 0 define

L(mode | ¢) = E(mode | ¢) + 5 C(mode). (14)

Lemma 1 (Monotonicity of proxy signals) Assume the similarity distribution admits a monotone
likelihood ratio in s; between relevant and nonrelevant items, and that the probe softmax temper-
ature \ is fixed. Then E(Familiarity | q) is nonincreasing in § and nondecreasing in H (p), while
C(Familiarity) < C(Recollection).

Proof. LetY; € {0, 1} for the relevance label of item ¢ (I means relevant).Assume a monotone
likelihood ratio for scores so the posterior relevance n(s) = Pr(Y = 1 | s) is nondecreasing in
s. For Familiarity, the miss probability given scores is [],. K(l — w(si)). Any coordinatewise
increase of (s;);cx decreases each factor, hence decreases the product, so £(Familiarity | ¢) is
nonincreasing in 3. For entropy, softmax p is Schur—concave: smaller H (p) implies larger pyax
and larger top margins s(1) — s(;), which increase 7(s(1)) and » ;. 7(s;), thus the product and
its expectation are nonincreasing; therefore £(Familiarity | ¢) is nondecreasing in H (p). For costs,
C'(Familiarity) = O (K cgim ), while Recollection performs at least one extra retrieve—cluster—-mix
round, so C'(Recollection) > C(Familiarity) + R cclust (B) > C(Familiarity) for R > 1. O

Theorem 1 (Threshold optimality within monotone policies) Consider the class 11 of policies
that are monotone in (3, H) in the sense of Lemma 1. Within 11, a two-threshold policy of the
form equation 12 minimizes the pointwise risk equation 14.

Proof. By Lemma 1, £(Familarity | ¢) is nonincreasing in § and nondecreasing in H. Define

t := L(Recollection | g), f(5, H) := L(Familiarity | q) = £ (Familiarity | ¢)+/3 C(Familiarity).
15)
Then the Familiarity-region is the sublevel set

Di={(5H): f(5. H) <1}, (16)

which is a down-set in (5 1, H |) (“south—east orthant”). Hence the risk-minimizing monotone
policy is 1p. Introduce axis-aligned thresholds

Onigh := Inf{5: sup f(5, H) < t}, Orow = sup{s : i%ff(E, H) > t}, )
H

and, on 5 € (Biow, Onigh )

H,(35) :=inf{H: f(3 H) <t} T = sup  H,(3). (18)
§6(010w79high)

Therefore
Familiarity <= (§ > thgh) or (010w <s< 9high & H < ’7'), (19)

and Recollection otherwise, which is exactly the two-threshold gate. |
F.2 AN ENTROPY CERTIFICATE FOR CORRECTNESS

Let pax = max; p;. For fixed pyax, the maximal entropy occurs when the residual mass is uniform,
that is

H(p) < ha(Pmax) + (1 = Pmax) log(K — 1), (20)
where ho(x) = —xlogz — (1 — z)log(1 — x) is the binary entropy. Define the inverse certificate
o (1) =max{x € [1/K,1] : hao(z) + (1 — x)log(K — 1) < 7}. (@2))

Lemma 2 (Entropy certificate) If H(p) < 7, then pmax > O (7).

Proof. Rearrange equation 20 and apply the definition of ¢k (7). (]
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Proposition 1 (Bound on familiarity error under low entropy) Suppose that returning the
Top-K set suffices whenever the true relevant item has p; > p for some p € (0,1). Under
H(p) < 7 with ¢ (7) > p, the familiarity mode achieves negligible miss probability with respect
to this sufficient condition.

Proposition 1 provides a certificate: a small entropy ensures a large pp,ax, Which guarantees that the
best evidence is included by Top—K under a mild sufficiency condition, hence Familiarity is safe
in the certified region.

F.3 SUB-GAUSSIAN MEAN SIMILARITY AND GATING RELIABILITY

Assume probe scores {s; } £, are independent sub-Gaussian with proxy mean p and variance proxy
02, Let i = § and fix thresholds Oiow < Ohigh-

Proposition 2 (Gating error bound via concentration) For any § > 0,

K(SQ)’ 22)

2
L Ké )

Pr(ﬁ—M§—5)§€XP(— 992

Pr (fi— > 9) Sexp(—
If the true regime satisfies @ > Opig, + 0 (familiar) or p < 8y, — 6 (unfamiliar), the probability of
mis-selection due to mean estimation is bounded by exp(—K % /(202)).

Proposition 2 shows that increasing K tightens the reliability of the mean-based selection of the
familiarity and the recollection paths.

F.4 COMPLEXITY—COVERAGE TRADE-OFF

Let the cost of a similarity evaluation be cg, and of a B-way k-means update be cys(B) on a batch
of size N,..

Proposition 3 (Complexity bounds) Familiarity has time Try, = O(K cgm). Recollection with
parameters (B, F, R) has time

R

TRec - O( Z (NT Csim + Cclust(B))) = O(R (BF) Csim + R Cclust(B))a (23)
r=0

since N, < (B+71)F < O(BF+ RF). Therefore Tge. = O((BF+RF) c‘gim—chch,s,(B)), which
is polynomial in (B, F, R) and strictly lower than full-context processing O(M ) when BF + RF <
M.

This formalizes the method’s bounded overhead relative to full-context, consistent with empirical
latency advantages reported in the paper.

Discussion. Lemmas | and 2 justify using (3, H) as reliable control signals. Theorems 1 show that
the selection is optimal within a broad monotone class. Propositions 2 and 3 bound mis-selection
and computation. Together these results explain the empirical accuracy—latency improvements of
RF-Mem across corpora and tasks.

G LLM USAGE DISCLOSURE

In accordance with ICLR 2026 policy, we disclose our use of large language models (LLMs) in
preparing this manuscript. We employed GPT-5 (OpenAl) solely to aid in polishing the writing,
specifically for improving clarity, grammar, and sentence structure across sections. All technical
content, algorithmic contributions, experimental results, and scientific conclusions remain entirely
the authors’ own work, without any LLM involvement.
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H LIMITATION AND FUTURE WORK

Limitations. While RF-Mem demonstrates consistent advantages across corpora and tasks, several
aspects remain simplified. First, our current evaluation is confined to dialogue-style personalized
memory and does not yet explore other modalities (e.g., cross-modal histories). Second, we adopt
list entropy as a lightweight uncertainty proxy; although effective, it may not fully capture finer-
grained task difficulty or user intent. Third, our uncertainty signal is based on similarity scores
and entropy, which may not fully capture semantic ambiguity. Finally, our retrieval operates over a
static embedding index, without modeling temporal updates of memory or potential conflicts across
long-term sessions. Moreover, because RF-Mem improves the surfacing of long-term user history,
downstream deployments should include safeguards to prevent unintended resurfacing of sensitive
information, a direction we identify as important future work for quantifying and mitigating such
risks.

Future Work. Several directions arise naturally from the above limitations. First, extending RF-
Mem to multi-modal or cross-domain settings (e.g., multimodal dialogue) would allow testing its
generality beyond personalized text-based memory. Second, uncertainty estimation could be en-
hanced by integrating richer signals—such as calibration measures or user feedback—to comple-
ment list entropy and better capture task difficulty. In addition, incorporating semantic or contextual
uncertainty cues beyond similarity distributions may further improve the reliability of the strategy
selection mechanism. Third, incorporating temporal dynamics into the memory index (e.g., recency
weighting, conflict resolution, or session-aware updates) may further improve long-term personal-
ization. Finally, exploring tighter integration between retrieval and generation—for example, jointly
optimizing the entropy threshold with the LLM’s decoding behavior—could yield a more unified
and adaptive personalized reasoning framework.

35



	Introduction
	Method: Recollection–Familiarity Memory Retrieval
	Familiarity Uncertainty-Driven Retrieval Selection
	Familiarity Retrieval
	Recollection Retrieval

	Experiments
	Experimental Setup
	Overall performance in Personalized Generation
	Overall performance in Personalized Retrieval
	Adaptive Experiment
	blue Adaptive to Index Building Method
	blue Adaptive to Query Expansion Method
	blue Adaptive to Iterative RAG Method


	Related Works
	Conclusion
	Appendix
	Dataset Details
	Implementation details
	Prompt For PersonaMem
	Additional Experiment
	Result Across Category in PersonaMem
	Sensitivity Analysis of  and 
	Sensitivity Analysis of B and F
	Impact of  Under Varying Retrieval Size K
	Sensitivity Analysis of Retrieval Size K
	blue Learning the Strategy Selection Mechanism
	Case Study.
	blue Recollection-Path Winning Case
	blue Familiarity-Path Winning Case

	blue Alternative Study
	blue DBSCAN Recollection (KMeans alternative)
	blue Spectral Clustering Recollection (KMeans alternative)
	blue Nonlinear Gated Mixing (-mix alternative)
	blue Graph-Based Recollection (whole alternative)

	blue Full-exploration Study
	blue Routing Robustness Across Embedding Models

	Pseudocode of RF-Mem
	Theoretical Analysis
	Risk-Minimizing Selection
	An Entropy Certificate for Correctness
	Sub-Gaussian Mean Similarity and Gating Reliability
	Complexity–Coverage Trade-off

	LLM Usage Disclosure
	Limitation and future work


