

EVOKING USER MEMORY: PERSONALIZING LLM VIA RECOLLECTION-FAMILIARITY ADAPTIVE RETRIEVAL

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010

ABSTRACT

011 Personalized large language models (LLMs) rely on memory retrieval to incorpo-
012 rate user-specific histories, preferences, and contexts. Existing approaches either
013 overload the LLM by feeding all the user’s past memory into the prompt, which
014 is costly and unscalable, or simplify retrieval into a one-shot similarity search,
015 which captures only surface matches. Cognitive science, however, shows that
016 human memory operates through a dual process: *Familiarity*, offering fast but
017 coarse recognition, and *Recollection*, enabling deliberate, chain-like reconstruc-
018 tion for deeply recovering episodic content. Current systems lack both the ability
019 to perform recollection retrieval and mechanisms to adaptively switch between
020 the dual retrieval paths, leading to either insufficient recall or the inclusion of
021 noise. To address this, we propose **RF-Mem** (**R**ecollection-**F**amiliarity **M**emory
022 **R**etrieval), a familiarity uncertainty-guided dual-path memory retriever. RF-Mem
023 measures the familiarity signal through the mean score and entropy. High familiari-
024 ty leads to the direct top- K *Familiarity* retrieval path, while low familiarity
025 activates the *Recollection* path. In the *Recollection* path, the system clusters can-
026 didate memories and applies α -mix with the query to iteratively expand evidence
027 in embedding space, simulating deliberate contextual reconstruction. This de-
028 sign embeds human-like dual-process recognition into the retriever, avoiding full-
029 context overhead and enabling scalable, adaptive personalization. Experiments
030 across three benchmarks and corpus scales demonstrate that RF-Mem consistently
031 outperforms both one-shot retrieval and full-context reasoning under fixed budget
032 and latency constraints. Our code can be found in the Supplementary Materials.
033

1 INTRODUCTION

034 Large Language Models (LLMs) have demonstrated remarkable performance when augmented with
035 retrieval mechanisms. Traditional retrieval-augmented generation (RAG) primarily targets open-
036 domain corpora, seeking to retrieve and integrate *objective facts* (Lewis et al., 2020; Li et al., 2025b;
037 Chen et al., 2024; Han et al., 2024). In contrast, *memory retrieval* focuses on user-specific histories,
038 preferences, and contextualized interactions, aiming to surface evidence tailored to *a particular user*
039 *at a specific moment* (Zhong et al., 2024; Jiang et al., 2025; Tan et al., 2025a; Wu et al., 2025a; Xu
040 et al., 2025a), as illustrated in the top of Figure 1. The design of memory fundamentally shapes the
041 boundary of personalized LLMs (Zhang et al., 2025): it can remain a static external index passively
042 queried, or evolve into a dynamic process of recollection, thereby endowing the system with a more
043 human-like flow of memory (Wu et al., 2025b; Hatalis et al., 2023). Just as humans sometimes rec-
044 ognize a familiar face instantly (i.e., an intuitive “feeling of knowing” without deliberate reasoning)
045 and at other times reconstruct past experiences through slow chains of recollection, so too should
046 memory retrieval move beyond static lookup. A personalized LLM needs to be flexible and alternate
047 between fast recognition and gradual reconstruction, adapting to the demands of the interaction.

048 Insights from cognitive science highlight the *Recollection-Familiarity Dual-Process Theory*, as
049 shown in Figure 1 left, which posits that human recognition and memory are driven by two com-
050plementary mechanisms (Henson et al., 1999; Yonelinas et al., 2002; Merkow et al., 2015; Bastin
051 et al., 2019; Yonelinas, 2024). *Familiarity* provides a rapid but coarse sense of “knowing”, enabling
052 efficient yet shallow judgments. *Recollection*, in contrast, is triggered when familiarity proves insuf-
053 ficient, initiating a slower contextual reconstruction process that retrieves time, place, and source-
054 specific details. Importantly, humans regulate these two processes via the familiarity signal: high

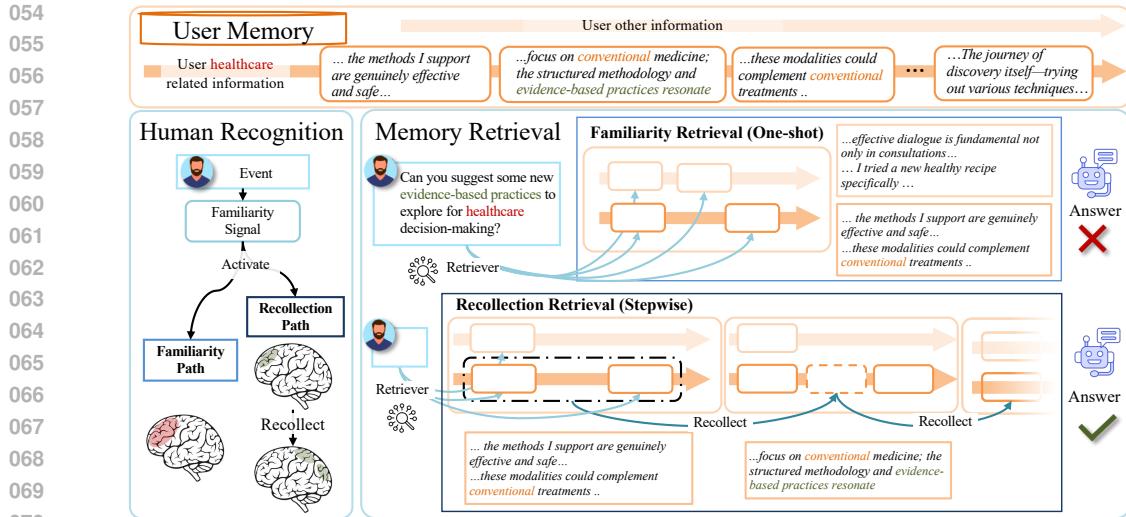


Figure 1: Comparison between standard familiarity-based retrieval and recollection-based retrieval in user health narratives. And the brain figure motivated by (Rugg & Curran, 2007; Yonelinas, 2024).

confidence sustains reliance on familiarity, whereas decreasing familiarity and rising uncertainty prompt the shift to recollection (Rugg & Curran, 2007; Yonelinas, 2024). Applied to user memory retrieval in personalized LLMs, this theory suggests that retrieval should not be conceived as a one-shot operation. Instead, it should function as a dual-process controller that adaptively alternates between fast recognition and slow recollection, guided by the system’s sense of familiarity.

Current retrieval systems often reduce memory to a static set of vectors, relying on direct similarity search without mechanisms to evoke richer user recollections. Retrieval in memory-augmented LLMs can be understood along three dimensions: query reformulation (Li et al., 2025a; Zhao et al., 2025; Chen et al., 2025; Shen et al., 2024; Salama et al., 2025), index construction (Zhong et al., 2024; Pan et al., 2025; Xu et al., 2025a; Tan et al., 2025b; Xu et al., 2025b; Ong et al., 2024; Chhikara et al., 2025), and retrieval strategy (Xu et al., 2021). While existing work has advanced the first two, retrieval strategies remain dominated by embedding-based one-shot top- K search (Karpukhin et al., 2020; Lei et al., 2023; Wang et al., 2020; Song et al., 2020; Luo et al., 2024), corresponding to the *Familiarity* channel: fast yet shallow recall. Two key limitations remain in current memory retrieval systems: **1) they overlook the *Recollection* path**, failing to retrieve evidence chains for ambiguous queries, long-tail knowledge, or personalized reasoning; **2) they lack mechanisms for path switching between familiarity and recollection**, leading to either under-retrieval that misses deeper contextual cues or over-retrieval that introduces more retrieval latency. As shown in Figure 1, the *Familiarity* path may retrieve only partial fragments (e.g., “I support are genuinely effective and safe”), missing broader context and even introducing irrelevant noise (e.g., “new healthy recipe”). By contrast, the *Recollection* path expands iteratively and can introduce more comprehensive evidence (e.g., “focus on conventional medicine; and evidence-based practices resonate”). This gap underscores the need for a recollection retrieval path and adaptive switch mechanism to balance efficiency with reliable coverage.

To address these limitations, we propose **RF-Mem** (Recollection–Familiarity Memory Retrieval), an uncertainty-guided dual-path retrieval framework. RF-Mem begins with a probe retrieval that produces an initial retrieval list and estimates its familiarity by computing the mean score and entropy in the list. When familiar, the system stays on the *Familiarity* path, returning the top- K candidates in a *one-shot* manner with minimal overhead. Otherwise, RF-Mem activates the *Recollection* path: the probe results are clustered by KMeans, each cluster centroid is combined with the original query through an α -mixing strategy, and the resulting recollect-queries are expanded iteratively. At each round, new candidates are retrieved, clustered, and mixed to form updated queries, allowing the system to *stepwise* reconstruct evidence chains. The process is explicitly bounded by beam width, fanout, and maximum rounds, ensuring controllable computation. In this way, RF-Mem preserves the efficiency of single-pass retrieval when familiarity is high, while adaptively engaging structured recollection under unfamiliar conditions, embedding chain-like reasoning directly into the retriever.

Our contributions are fourfold: (1) We ground the design of personalized memory retrieval in the Recollection–Familiarity dual-process theory, formulating retrieval as a coordination of Familiarity and Recollection paths. (2) We introduce familiarity uncertainty-driven selection for adaptive switching between Familiarity and Recollection. (3) We develop a recollection retrieval based on clustering and query–centroid mixing, achieving chain-like evidence reconstruction only in embedding space. (4) RF-Mem is lightweight, relying solely on vector search and small-scale clustering, achieving high accuracy and recall at near one-shot retrieval latency. Extensive experiments on three personalized memory datasets show that RF-Mem consistently surpasses both one-shot top- K retrieval and the full-context method with low latency. An adaptive study shows that RF-Mem complements and generalizes to index-building methods like MemoryBank (Zhong et al., 2024).

2 METHOD: RECOLLECTION–FAMILIARITY MEMORY RETRIEVAL

We propose **RF-Mem**, a dual-process memory retrieval framework that adapts the retrieval strategy according to uncertainty. As illustrated in Figure 2, RF-Mem consists of five stages: ① user query input, ② user memory retrieval, *i.e.* the RF-Mem module, is a familiarity uncertainty-guided selection introduced in Section 2.1 that adaptively switches between one-shot *Familiarity* introduced in Section 2.2 and stepwise *Recollection* retrieval introduced in Section 2.2, ③ extracting the memory text, and ④ answer generation by LLM using the memory text.

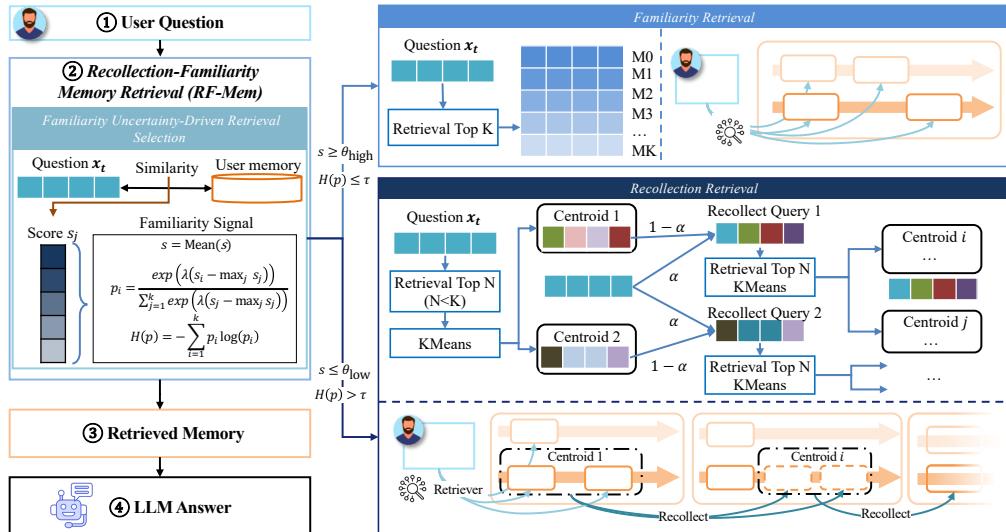


Figure 2: The overall architecture of RF-Mem. A dual-process memory retrieval system dynamically switches between the Familiarity and the Recollection paths.

2.1 FAMILIARITY UNCERTAINTY-DRIVEN RETRIEVAL SELECTION

Guided by dual-process theory, we argue that memory retrieval should not be reduced to a single static top- K similarity search. Instead, retrieval should dynamically select between a fast Familiarity path and a deeper Recollection path depending on the familiarity signal.

We first perform a probe retrieval for calculating the familiarity signal between this question and the user’s memory. Let $\mathcal{M} = \{m_1, \dots, m_M\}$ denote the set of user memory fragments, where m_i is encoded as an embedding vector $\mathbf{z}_i = \phi(m_i)$. Given a query q , its embedding $\mathbf{x}_t = \phi(q)$ is used to compute cosine similarity with each fragment m_i as $s_i = \langle \mathbf{x}_t, \mathbf{z}_i \rangle$, and the retriever returns the candidate set $\mathcal{C} = \text{Top-}K(\{(m_i, s_i)\}_{i=1}^M)$.

The familiarity signal is governed jointly by similarity and uncertainty, thus integrating efficiency with robustness. Formally, given probe scores $\{s_i\}_{i=1}^k$, we normalize them as follows:

$$p_i = \frac{\exp(\lambda(s_i - \max_j s_j))}{\sum_{j=1}^k \exp(\lambda(s_j - \max_j s_j))}, \quad i = 1, \dots, K, \quad (1)$$

162 where λ controls sharpness. The uncertainty is then measured by the entropy:
 163

$$164 \quad 165 \quad 166 \quad H(p) = - \sum_{i=1}^K p_i \log p_i. \quad (2)$$

167 The final selection combines the familiarity of the similarity of the mean score and the uncertainty of
 168 the entropy. If the mean similarity score $\bar{s} = \frac{1}{K} \sum_{i=1}^K s_i$ exceeds the upper threshold θ_{high} , the memory
 169 is highly relevant and retrieval proceeds along the **Familiarity** path. Conversely, when \bar{s} falls
 170 below the lower threshold θ_{low} , the memory is considered weakly relevant and the system switches
 171 to the **Recollection** path. For intermediate cases where \bar{s} lies between θ_{low} and θ_{high} , entropy $H(p)$
 172 serves as the disambiguator: low entropy, indicating concentrated evidence, selects **Familiarity**,
 173 whereas high entropy, reflecting uncertainty, triggers **Recollection**. Formally, the policy is defined
 174 as:
 175

$$176 \quad 177 \quad 178 \quad 179 \quad 180 \quad \text{Strategy}(q) = \begin{cases} \text{Familiarity,} & \bar{s} \geq \theta_{\text{high}}, \\ \text{Recollection,} & \bar{s} \leq \theta_{\text{low}}, \\ \begin{cases} \text{Familiarity,} & H(p) \leq \tau, \\ \text{Recollection,} & H(p) > \tau, \end{cases} & \theta_{\text{low}} < \bar{s} < \theta_{\text{high}}. \end{cases} \quad (3)$$

181 This gating mechanism follows our cognitive motivation: when the familiarity signal is strong, the
 182 system relies on the fast Familiarity path for confident recognition; when the signal is weak, it
 183 engages the Recollection path to deliberately reconstruct evidence; and in the intermediate regime,
 184 the entropy serves as an additional cue to regulate switching. In this way, RF-Mem mirrors the
 185 dual-process nature of human memory, dynamically balancing efficiency with retrieval depth.

186 2.2 FAMILIARITY RETRIEVAL

188 When the probe retrieval yields a familiarity signal, that is, a sufficiently high average similarity
 189 score or low uncertainty $H(p) \leq \tau$, or the system interprets the evidence as confident. In this case,
 190 it adopts the **Familiarity** path. Consistent with dual-process theory, this path corresponds to rapid,
 191 low-effort recognition, i.e., the retriever directly selects the top- K memory evidence based on raw
 192 similarity, ensuring efficiency without invoking further reasoning or expansion.

193 **Scoring and Retrieval.** Given a query q_t , we encode it as $\mathbf{x}_t = \phi(q_t)$ and each memory entry
 194 m_i as $\mathbf{z}_i = \phi(m_i)$, where all embeddings are unit-normalized. The similarity score is computed
 195 as $s(\mathbf{x}_t, \mathbf{z}_i) = \langle \mathbf{x}_t, \mathbf{z}_i \rangle$. We then obtain top- K candidate memory fragments according to their
 196 similarity scores:
 197

$$198 \quad \mathcal{C}_t = \text{Top-}K \left(\{ (m_i, s(\mathbf{x}_t, \mathbf{z}_i)) \}_{i=1}^M \right). \quad (4)$$

199 This retrieval mode reflects the *Familiarity* process in dual-process theory: when the question is
 200 familiar, it signals that sufficient evidence has been retrieved, so recognition can be completed in a
 201 single step with minimal latency.
 202

203 2.3 RECOLLECTION RETRIEVAL

205 When the probe yields an unfamiliar signal, indicated by insufficient mean scores or a high entropy
 206 $H(p) > \tau$, the system interprets the evidence as uncertain. It then transitions into the **Recollection**
 207 path, corresponding to the deliberate and effortful retrieval mode in dual-process theory. Instead
 208 of stopping at surface matches, this path initiates multi-round evidence expansion, progressively
 209 reconstructing context and recovering more diagnostic evidence. A case can be found at D.7.

210 **Candidate Memory Retrieval.** Let $\mathbf{x}^{(0)} = \mathbf{x}_t = \phi(q_t)$ denote the query embedding. At each
 211 round r , we obtain the candidate memory set as $\mathcal{C}^{(r)} = \text{Top-}N \left(\{ (m_i, \langle \mathbf{x}^{(r)}, \mathbf{z}_i \rangle) \}_{i=1}^M \right)$, where
 212 $N = (B + r) \times F < K$ is determined by beam width B , fanout size F , and round number
 213 $r \in \{0, \dots, R\}$. We enlarge N with r to prevent the query in round r , which is formulated from
 214 previous rounds, from repeatedly retrieving the same memories. Duplicated memories in $\mathcal{C}^{(r)}$ are
 215 excluded if they appeared in earlier rounds.

216 **Relevant Memory Clustering.** Given the top- N memory $\mathcal{C}^{(r)}$, we group the candidate memory
 217 embeddings $\{\mathbf{z}_i : m_i \in \mathcal{C}^{(r)}\}$ into B clusters using KMeans. Each cluster $G_b^{(r)}$ corresponds to a
 218 branch in the retrieval tree, and its **centroid** vector $\mathbf{g}_b^{(r)}$ serves as the base for further expansion:
 219

$$220 \quad \mathbf{g}_b^{(r)} = \frac{1}{|G_b^{(r)}|} \sum_{m_i \in G_b^{(r)}} \mathbf{z}_i, \quad b = 1, \dots, B. \quad (5)$$

$$221$$

$$222$$

223 These centroids serve as branching points from which new retrieval paths unfold, simulating a tree-
 224 like process of recollection. By clustering memories into semantically coherent sets, they reduce
 225 redundancy while highlighting anchors that capture essential cues. In line with dual-process theory,
 226 these anchors initiate progressive recollection, supporting chain-like reconstruction of evidence that
 227 expands outward yet remains grounded in the user’s memory context.

228 **Recollect Queries Generation via α -mix.** Each centroid $\mathbf{g}_b^{(r)}$ is blended with the current query to
 229 form a *recollect query*, with weights matching the annotations α (current query) and $1 - \alpha$ (centroid),
 230 and uses residual to maintain original query information:
 231

$$232 \quad \mathbf{x}_b^{(r+1)} = \text{norm}(\alpha \mathbf{x}^{(r)} + (1 - \alpha) \mathbf{g}_b^{(r)} + \mathbf{x}_t), \quad \alpha \in [0, 1]. \quad (6)$$

$$233$$

234 **Retrieve-Cluster-Mix Loop.** The recollect query $\mathbf{x}_b^{(r+1)}$ will be used to perform the next round of
 235 retrieval to obtain the candidate set:
 236

$$237 \quad \mathcal{C}^{(r+1)} = \text{Top-}N\left(\{(m_j, \langle \mathbf{x}_b^{(r+1)}, \mathbf{z}_j \rangle)\}_{j=1}^M\right). \quad (7)$$

$$238$$

239 Afterwards, the memory cluster and recollect query mix are conducted. This *retrieve-cluster-mix*
 240 routine is repeated across rounds, progressively expanding evidence chains. To keep the search
 241 tractable, we maintain at most B active branches per round and caps the recursion depth at R .

242 **Stop and Generation.** The process stops when a round limit R is reached or a target number of
 243 items is gathered. The recollection evidence is a truncated union:

$$244 \quad \mathcal{C}_t = \text{Top-}K\left(\bigcup_{r=0}^R \mathcal{C}^{(r)}\right). \quad (8)$$

$$245$$

$$246$$

$$247$$

248 In analogy to human memory, this recollection triggers deliberate, cue-driven reconstruction, where
 249 related fragments are progressively retrieved, clustered, and mixed to surface latent context. Through
 250 structured retrieve-cluster-mix iterations under beam and depth budgets, which trade additional la-
 251 tency for more diagnostic evidence, enabling the evocation of question-specific memories. The
 252 pseudocode is provided in Appendix E. And theoretical analysis can be found at Appendix F.

253 3 EXPERIMENTS

254 3.1 EXPERIMENTAL SETUP

255 **Datasets** We use **PersonaMem** (Jiang et al., 2025), which includes multiple simulated user-LLM
 256 interaction histories over 7 real-world tasks, with memory lengths of 32K, 128K, and 1M tokens.
 257 Each history comprises up to 60 multi-turn sessions with evolving user personas and preferences.
 258 We also evaluate on **PersonaBench** (Tan et al., 2025a), a synthetic benchmark composed of private
 259 user documents and queries probing personal information (e.g., preferences, background), designed
 260 to assess the relevant personal memory retrieval ability before generation. And we include **Long-
 261 MemEval** (Wu et al., 2025a), a benchmark targeting long-term personalized retrieval, where factual
 262 questions require retrieving task-relevant information under both small and medium context settings.
 263 More details can be found at Appendix A. And **implementation details** can be found in Appendix B

264 **Metrics** On PersonaMem, performance is measured by *Accuracy* of generated responses, i.e., the
 265 proportion of responses that correctly align with the user’s current persona and conversation context.
 266 On PersonaBench and LongMemEval, since the focus is on the retrieval of personal memory pieces,
 267 we use *Recall@K* to assess how well relevant personal memories are retrieved.

270 **Baselines** Unlike prior baselines that often rely on LLM-generated queries or external indexing
 271 strategies, our comparisons are restricted to retrieval-only methods to ensure fairness: all systems
 272 operate on the same memory vectors. Since our focus is on the retrieval component itself, we com-
 273 pare RF-Mem against four direct baselines: **(1) Zero Memory**: Following (Pan et al., 2025; Jiang
 274 et al., 2025), the model answers without using user memory. **(2) Full Context**: Following (Pan
 275 et al., 2025; Jiang et al., 2025), the entire user history memory is input to the model without re-
 276 trieval. **(3) Dense Retrieval**: Following (Wu et al., 2025a; Pan et al., 2025; Zhong et al., 2024), a
 277 standard retriever that returns the top- K memories based on similarity scores. This corresponds to
 278 the *Familiarity* retrieval in dual-process theory. **(4) Recollection** (ours): The recollection mode we
 279 proposed in this paper. This represents the system that only enters the *Recollection* path.

280 281 3.2 OVERALL PERFORMANCE IN PERSONALIZED GENERATION

282 283 Table 1: Performance comparison over the PersonaMem across different memory corpus sizes.
 284 Columns are grouped by question type, rows by retrieval strategy. “NA” indicates the method does
 285 not need retrieval. “OOC” means out-of-context of the LLM input window. The best results are in
 286 **bold**, and the second-best results are underlined. “*” indicates the statistically significant improve-
 287 ments (i.e., two-sided t-test with $p < 0.05$) over the best baseline.

288 Method	Retri 289 Time	Avg. Tokens	Revisit 290 Reasons	Track 291 Evolution	Latest 292 Prefs	Aligned 293 Recs	New Sce- 294 narios	Shared 295 Facts	New 296 Ideas	Overall
32K memory corpus data										
Zero Memory	NA	464.6	0.7273	0.6259	0.1765	0.2182	0.2105	0.2326	0.1183	0.3854
Full Context	NA	24657.8	<u>0.9394</u>	0.7194	0.7647	0.7455	0.5614	0.5039	0.1828	0.6129
Dense Retrieval	3.14ms	3515.9	<u>0.9091</u>	0.6475	0.6471	0.6364	0.5614	<u>0.5426</u>	0.2151	0.5908
Recol. (ours)	7.09ms	3711.1	0.9495	0.6547	0.7059	0.7818	<u>0.5965</u>	0.5194	0.2688	0.6214
RF-Mem (ours)	5.09ms	3566.6	0.9495	<u>0.6619</u>	<u>0.7059</u>	0.7818	0.6140	0.5659	0.2688	0.6350 *
128K memory corpus data										
Zero Memory	NA	416.3	0.6766	0.6422	0.2136	0.2751	0.1925	0.2281	0.1737	0.3124
Full Context	NA	115601.4	0.5613	0.3930	0.2783	0.3868	0.2770	0.3977	0.1795	0.3231
Dense Retrieval	3.24ms	3540.1	0.7881	0.6804	<u>0.5346</u>	<u>0.5330</u>	0.3662	0.6082	0.3069	0.5259
Recol. (ours)	7.86ms	3680.3	0.8141	0.6716	0.5254	0.5301	<u>0.3765</u>	<u>0.6140</u>	0.3263	0.5288
RF-Mem (ours)	4.27ms	3565.5	<u>0.8030</u>	0.6862	0.5427	0.5358	0.4131	0.6257	0.3263	0.5394 *
1M memory corpus data										
Zero Memory	NA	415.1	0.6000	0.6178	0.1797	0.3179	0.1831	0.2569	0.1816	0.2730
Full Context	NA	912148.5	OOC	OOC	OOC	OOC	OOC	OOC	OOC	OOC
Dense Retrieval	4.42ms	3816.1	<u>0.7702</u>	0.6933	0.4544	0.4464	0.3085	0.5903	0.3040	0.4518
Recol. (ours)	8.12ms	3847.4	<u>0.7532</u>	0.6800	0.4440	0.4500	0.3593	<u>0.5833</u>	0.3136	0.4544
RF-Mem (ours)	6.28ms	3827.8	0.7787	<u>0.6889</u>	<u>0.4492</u>	0.4536	0.3390	0.6111	0.3150	0.4589 *

300 To verify the effectiveness of RF-Mem, we evaluate it on **PersonaMem** across memory corpora of
 301 32K, 128K, and 1M tokens per query. This setup stresses retrieval under different memory scales
 302 and question types, allowing us to examine how retrieval methods adapt as corpora grow larger
 303 and tasks become more complex. Table 1 compares zero-memory baselines, full-context input, and
 304 three retrieval strategies (Dense, Recollection, RF-Mem). We also report per-category accuracy
 305 under three corpus sizes in Appendix D.1 and different K settings in Appendix D.5.

306 **First, RF-Mem delivers the best overall accuracy at every corpus scale while keeping inputs**

307 **compact.**

308 In Table 1, RF-Mem attains the top overall score at 32K (0.6350), 128K (0.5394), and 1M
 309 (0.4589). At 32K it surpasses Full Context by +0.0221 with only 3.6k average tokens versus 24.7k
 310 for Full Context, and with a modest 5.09ms retrieval time. As the memory grows, Full Context
 311 deteriorates sharply, reaching 0.3231 at 128K and becoming out of context at 1M, whereas RF-Mem
 312 remains stable and leads Dense Retrieval (Familiarity) by +0.0135 at 128K and +0.0071 at 1M. These
 313 trends validate that when a question is familiar, RF-Mem saves budget; when unfamiliar, it upgrades
 314 to structured recollection without committing to the cost of running it unconditionally.

315 **Second, RF-Mem leads on hybrid and transfer-style tasks with lower overhead.** At 32K it
 316 achieves top scores on *Aligned Recommendations* (0.7818), *New Scenarios* (0.6140), and *Shared*
 317 *Facts* (0.5659), while remaining close on *Track Evolution*. At 128K it remains ahead on *Track*
 318 *Evolution*, *Latest Prefs*, *Aligned Recs*, *New Scenarios*, and *Shared Facts*, tying on *New Ideas*. At
 319 1M, where Full Context is infeasible, RF-Mem is strongest on *Revisit Reasons*, *Aligned Recs*, *Shared*

324 *Facts*, and *New Ideas*, with only small gaps on *Track Evolution* and *Latest Prefs*, indicating that
 325 adaptive depth better balances precise anchoring and selective expansion than single-mode retrieval.
 326

327 **Third, RF-Mem achieves a favorable accuracy–efficiency trade-off by regulating retrieval**
 328 **depth via entropy.** Compared to always-on recollection, RF-Mem improves overall accuracy while
 329 reducing latency: 5.09ms vs 7.09ms at 32K, 4.27ms vs 7.86ms at 128K, and 6.28ms vs 7.12ms at
 330 1M, with similar token budgets to Dense Retrieval. This efficiency arises from treating familiarity
 331 as the default and route to the recollection path only when the question is unfamiliar. The result is
 332 a scalable retrieval controller that avoids the out-of-context cliff of Full Context, outperforms dense
 333 retrieval baselines as memory scales, and preserves recollection’s advantages precisely.
 334

334 3.3 OVERALL PERFORMANCE IN PERSONALIZED RETRIEVAL

336 Table 2: Performance comparison over the PersonaBench dataset across multiple question types.
 337 The best results are in **bold**, and the second-best results are underlined.

Metrics	Recall@5						Recall@10					
	Method	Time	Basic Info	Social Info	Pref Easy	Pref Hard	Overall	Time	Basic Info	Social Info	Pref Easy	Pref Hard
<i>multi-qa-MiniLM-L6-cos-v1</i>												
Famili.	8.40ms	<u>0.4515</u>	0.4852	0.4904	<u>0.3659</u>	0.4484	13.68ms	<u>0.5879</u>	0.6220	0.6442	<u>0.5561</u>	0.5964
Recol.	9.65ms	0.4379	<u>0.4903</u>	0.5128	0.3854	<u>0.4491</u>	17.29ms	0.5924	0.6859	0.5659	0.6267	<u>0.6062</u>
RF-Mem	9.16ms	0.4788	0.5091	0.4872	0.3854	0.4701	15.22ms	0.5924	0.6799	<u>0.5707</u>	0.6267	0.6071
<i>all-mpnet-base-v2</i>												
Famili.	7.64ms	0.4242	0.2730	0.4487	0.4049	0.3887	10.55ms	0.5409	0.4434	0.6795	0.5366	0.5333
Recol.	10.94ms	<u>0.4333</u>	0.2918	0.4583	0.4000	0.3976	13.23ms	0.6000	0.4365	0.6378	0.5220	<u>0.5527</u>
RF-Mem	8.33ms	0.4515	0.2730	0.4487	0.4000	0.4009	10.55ms	0.5955	0.4384	0.6378	0.5463	0.5553
<i>BAAI/bge-base-en-v1.5</i>												
Famili.	8.92ms	<u>0.3970</u>	0.3204	0.4583	0.3268	0.3738	10.19ms	0.5121	0.4748	0.5673	0.4585	0.5002
Recol.	12.14ms	0.3833	0.3619	0.4327	0.3171	0.3722	20.71ms	<u>0.5212</u>	0.4748	0.5673	0.4585	0.5046
RF-Mem	10.14ms	0.4015	0.3619	0.4487	0.3220	0.3836	18.13ms	0.5303	0.4748	0.5673	0.4585	0.5089

354 Table 3: Performance comparison over the LongMemEval under small (S) and medium (M) memory
 355 versions. The best results are in **bold**, and the second-best results are underlined.

Method	LongMemEval-S				LongMemEval-M			
	Recall@5	Recall@10	Recall@50	Time	Recall@5	Recall@10	Recall@50	Time
<i>multi-qa-MiniLM-L6-cos-v1</i>								
Famili.	0.7136	0.8282	0.9761	24.91ms	0.4177	0.5465	0.7518	27.72ms
Recol.	<u>0.7351</u>	<u>0.8425</u>	1.0000	50.62ms	<u>0.4368</u>	<u>0.5585</u>	<u>0.7590</u>	57.93ms
RF-Mem	0.7375	0.8473	1.0000	39.58ms	0.4391	0.5609	0.7613	41.22ms
<i>all-mpnet-base-v2</i>								
Famili.	<u>0.7303</u>	<u>0.8353</u>	0.9832	27.25ms	0.4176	0.5489	<u>0.7637</u>	33.18ms
Recol.	0.7398	0.8305	0.9952	51.79ms	0.4386	<u>0.5871</u>	0.7422	62.11ms
RF-Mem	0.7398	0.8377	0.9952	42.39ms	0.4391	0.5894	0.7684	50.80ms
<i>BAAI/bge-base-en-v1.5</i>								
Famili.	0.7924	0.8926	1.0000	29.65ms	0.4964	0.6611	0.8305	30.77ms
Recol.	<u>0.8162</u>	<u>0.9165</u>	1.0000	43.65ms	<u>0.5131</u>	0.6635	0.8234	58.05ms
RF-Mem	0.8186	0.9189	1.0000	37.34ms	0.5155	0.6635	0.8329	44.74ms

370 To verify the retrieval performance of RF-Mem, we evaluate it against one-shot *Familiarity* and
 371 stepwise *Recollection* across both **PersonaBench** and **LongMemEval**. PersonaBench covers multi-
 372 domain user interactions, while LongMemEval stresses retrieval over extended memory corpora
 373 under small (S) and medium (M) settings. We report Recall@5, Recall@10, and Recall@50, to-
 374 gether with average retrieval latency, under three retriever backbones (MiniLM, MPNet, BGE). This
 375 setup allows us to examine how retrieval strategies behave across tasks with varying difficulty and
 376 under different embedding models. We also conduct parameter sensitivity studies at D.2 to D.4.
 377

First, **RF-Mem achieves the most balanced and robust performance across retrievers.** As
 shown in Table 2, RF-Mem either matches or surpasses the best baseline in overall Recall@5 and

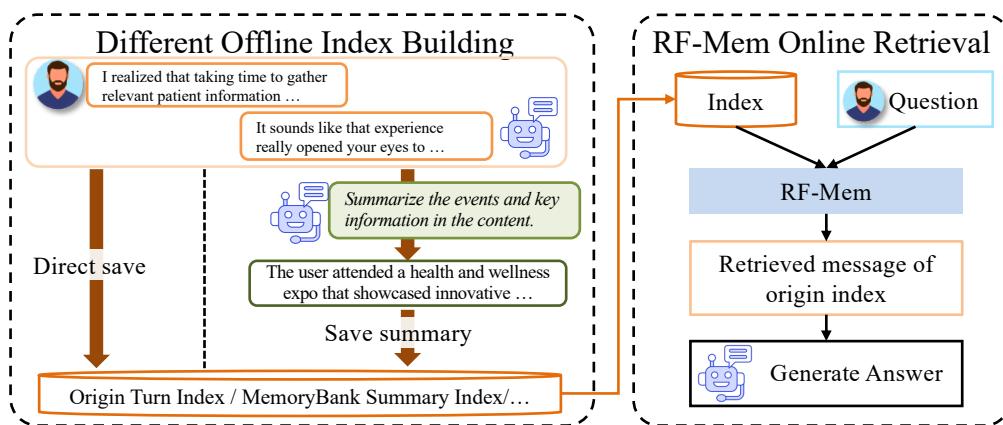
378 Recall@10, while avoiding the pitfalls of single-mode strategies. For example, under MiniLM it
 379 achieves an overall Recall@10 of 0.6071, slightly higher than Familiarity (0.5964) and Recollection
 380 (0.6062). On LongMemEval, in Table 3, RF-Mem further demonstrates stability. Its familiarity
 381 uncertainty-driven selection allows the retriever to exploit confident familiarity matches when pos-
 382 sible, and to activate deeper recollection only when necessary, yielding consistently strong results.

383 **Second, the comparison between Familiarity and Recollection reveals complementary**
 384 **strengths.** Familiarity excels on fact-centric queries such as Basic Information and Preference
 385 Easy, where direct surface similarity suffices. *Recollection*, however, proves highly effective on
 386 context-heavy tasks such as Preference Hard and Social queries. On **PersonaBench**, in Table 2,
 387 Recollection reaches a Recall@10 of 0.6267 on Preference Hard under MiniLM, outperforming Fa-
 388 miliarity at 0.5561. Similarly, on **LongMemEval**, it consistently lifts Recall@5 by more than 0.02
 389 across multiple retrievers (e.g., 0.7351 vs. 0.7136 under MiniLM) in Table 3. Its iterative ex-
 390 pansion uncovers deeper, temporally dispersed cues, making it a powerful strategy despite higher cost.
 391 These results highlight that Recollection is not merely slower, but offers indispensable diagnostic
 392 evidence, and that neither mode alone can achieve robustness across all task types.

393 **Third, RF-Mem delivers superior efficiency–effectiveness trade-offs.** On **PersonaBench** (Ta-
 394 ble 2), Familiarity is fastest (8–10ms) but shallow, while Recollection is stronger but nearly twice as
 395 slow (15–20ms). RF-Mem closes this gap, sustaining latency near Familiarity (9–15ms) with higher
 396 accuracy (e.g., Recall@10 of 0.6071 vs. 0.5964/0.6062). On **LongMemEval** (Table 3), Familiarity
 397 is low-latency (25–31ms) but loses coverage, while Recollection reaches perfect Recall@50 at much
 398 higher cost (40–62ms). RF-Mem balances both, keeping latency lower (37–50ms) while matching
 399 or exceeding accuracy.

400 3.4 ADAPTIVE EXPERIMENT

402 3.4.1 ADAPTIVE TO INDEX BUILDING METHOD



418 Figure 3: Illustration of adaptive study setup. Offline indexes (e.g., MemoryBank summaries or
 419 origin turn-level memory) provide different user memory storage, while RF-Mem serves as an online
 420 retrieval layer that adaptively regulates to these indexes.

422 Table 4: Results by using MemoryBank summary index on PersonaMem (32K corpus).

424 Method	Avg. 425 Tokens	Revisit 426 Reasons	Track 427 Evolution	Latest 428 Prefs	Aligned 429 Recs	New Sce- 430 narios	Shared 431 Facts	New 432 Ideas	Overall
MemoryBank summary index									
Familiarity	1267.6	0.7475	0.6187	0.5882	0.5818	0.3333	0.4341	0.1505	0.4941
Recollection	1441.8	0.8182	0.6259	0.5294	0.6909	0.4737	0.4031	0.1398	0.5212
RF-Mem	1421.8	0.8384	0.6259	0.5294	0.6545	0.4211	0.4419	0.1828	0.5314

429 To further examine the modularity of RF-Mem, we integrate it with external indexing schemes
 430 beyond raw turn-level memory. As shown in Figure 3, offline methods such as *MemoryBank* (Zhong
 431 et al., 2024) first summarize user dialog into indexes (e.g., turn-level summaries), while RF-Mem
 operates as an online module during retrieval. This separation of offline indexing and online retrieval

highlights that RF-Mem does not compete with summarization- or graph-based memory banks, but instead complements them by enabling human-like remembering. Table 4 highlights that RF-Mem demonstrates robustness across both settings: it achieves the highest overall accuracy under the turn-level index, and crucially, it narrows the performance drop under the summary index compared to single-path baselines. This adaptivity confirms that RF-Mem is modular and can be layered on top of heterogeneous memory indices, providing an uncertainty-aware dual-process retrieval mechanism that complements, rather than replaces, external indexing methods.

3.4.2 ADAPTIVE TO QUERY EXPANSION METHOD

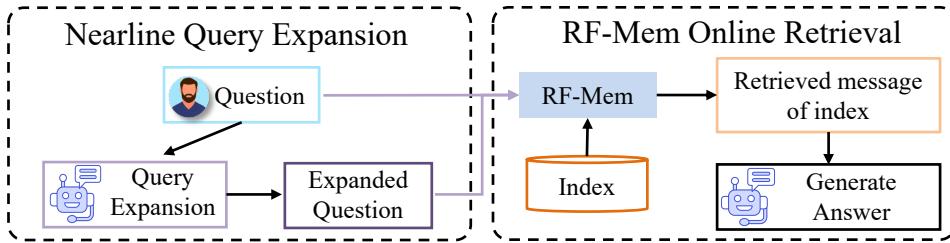


Figure 4: Illustration of the adaptive study setup. Nearline query expansion (e.g., HyDE producing pseudo-relevance feedback) enriches the query representation, and RF-Mem operates as the online retrieval layer.

Table 5: Results by using HyDE query expansion method on PersonaBench.

Metrics	Recall@5					Recall@10				
	Basic Info	Social Info	Pref Easy	Pref Hard	Overall	Basic Info	Social Info	Pref Easy	Pref Hard	Overall
<i>multi-qa-MiniLM-L6-cos-v1</i>										
Famili.	0.3106	0.3909	0.4615	0.3122	0.3464	0.5000	0.4991	0.5737	0.5220	0.5120
Recol.	0.3015	0.4135	0.4615	0.3171	0.3482	0.4909	0.5028	0.5929	0.4878	0.5046
RF-Mem	0.3061	0.4135	0.4615	0.3171	0.3504	0.5091	0.5028	0.5929	0.5220	0.5194

To further assess the adaptability of RF-Mem, we combine nearline query expansion with online retrieval and examine their interaction on PersonaBench. As illustrated in Figure 4, the nearline expansion methods we adopt, HyDE (Gao et al., 2023), generate pseudo-relevance feedback that enriches the original query. RF-Mem then operates as an online retrieval layer. Table 5 reports the results when applying HyDE-based expansion. Across all categories, RF-Mem consistently matches or surpasses Familiarity baselines, demonstrating that its dual-process mechanism remains effective even when the upstream query representation shifts. These findings confirm that RF-Mem is modular and can be seamlessly integrated into nearline expansion pipelines.

3.4.3 ADAPTIVE TO ITERATIVE RAG METHOD

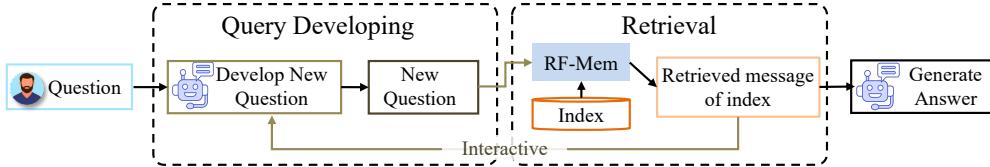


Figure 5: Illustration of adaptive study setup. Iterative RAG (e.g., Search-o1) provides a multi-turn retrieval for answer generation, while RF-Mem serves as the retrieval layer that adapts to it.

To further evaluate the adaptability of RF-Mem under iterative retrieval settings, we pair it with a multi-turn reasoning pipeline based on Search-o1 (Li et al., 2025b). As illustrated in Figure 5, Search-o1 develops refined follow-up queries through iterative question generation, while RF-Mem functions as the retrieval layer that reacts to these evolving queries in real time. Table 6 summarizes results using the Search-o1 interactive retrieval on the PersonaMem. RF-Mem still achieves the highest overall score. These findings demonstrate that RF-Mem retains its effectiveness in iterative RAG settings.

486

487

Table 6: Results by using Search-o1 iterative retrieval on PersonaMem (32K corpus).

488

489

Search-o1	Avg. Tokens	Revisit Reasons	Track Evolution	Latest Prefs	Aligned Recs	New Scenarios	Shared Facts	New Ideas	Overall
Search-o1									
Familiarity	4948.7	0.8687	0.6259	0.5882	0.6545	0.5614	0.5271	0.2581	0.5823
Recollection	5103.9	0.8990	0.6619	0.6471	0.7091	0.5789	0.4961	0.2796	0.6010
RF-MEM	5158.2	0.9293	0.6978	0.6471	0.7455	0.5789	0.5349	0.2043	0.6146

493

4 RELATED WORKS

494

495 Personalized memory retrieval for LLMs has emerged to complement the fixed context window and
 496 enable user-specific, context-aware responses. Unlike standard knowledge-based RAG that targets
 497 factual data, personal memory retrieval draws on a user’s own history and preferences (Pan et al.,
 498 2025; Wu et al., 2025a; Xu et al., 2025a) (e.g., retrieving long-term user-AI dialogue context (Jiang
 499 et al., 2025; Maharana et al., 2024; Wu et al., 2025a) and user-user dialogue (Tan et al., 2025a)) to fill
 500 in missing details and tailor responses. Memory-augmented personalized LLM systems combine an
 501 LLM with a non-parametric memory to provide relevant background information. We review related
 502 works in three areas: (1) query reformulation, (2) index construction, and (3) retrieval frameworks.

503

504 **Query reformulation.** These methods expand or refine queries to improve memory retrieval. LD-
 505 Agent extracts keyphrases for retrieval (Li et al., 2025a), MemoCue proposes memory-inspired
 506 cue query (Zhao et al., 2025), and LQ-TOD generates task-oriented queries (Chen et al., 2025).
 507 Other approaches leverage LLM-based query expansion, such as LameR (Shen et al., 2024) and
 508 MemInsight (Salama et al., 2025), to enrich the query with contextual attributes.

509

510 **Index construction.** Prior work has also emphasized structuring user memory into searchable in-
 511 dices. Text-based methods summarize or cluster memories into compact representations, as in Mem-
 512 oryBank (Zhong et al., 2024), SeCom (Pan et al., 2025), and MemGas (Xu et al., 2025a), while
 513 others rely on reflective or hierarchical summaries (Tan et al., 2025b). Graph-based approaches
 514 instead capture relational structures, exemplified by A-Mem (Xu et al., 2025b), THEANINE (Ong
 515 et al., 2024), Mem0 (Chhikara et al., 2025), and Zep (Rasmussen et al., 2025). Although differing
 516 in representation, these methods share a common assumption: retrieval remains static. Most ult-
 517 imately depend on standard dense retrievers to encode queries and memory keys, applying a uniform
 518 retrieval process regardless of uncertainty or task complexity.

519

520 **Retrieval frameworks.** From early keyword-based search (Robertson et al., 2009) to dense retriev-
 521 ers like DPR (Karpukhin et al., 2020) and Contriever (Lei et al., 2023), retrieval methods aim to
 522 rank memory items by semantic similarity. More advanced encoders such as MiniLM (Wang et al.,
 523 2020), MPNet (Song et al., 2020), and BGE (Luo et al., 2024) improve efficiency and accuracy, and
 524 are widely adopted in multi-session dialog retrieval (Xu et al., 2021). However, these frameworks
 525 largely adopt a single-process retrieval paradigm, treating all queries as homogeneous regardless of
 526 confidence or task complexity.

527

528 **However, existing methods overlook the dual-process nature of human memory retrieval.** Most
 529 prior works focus on query reformulation, index optimization, or stronger retrievers, yet they im-
 530 plicitly reduce retrieval to a one-shot recognition process (*Familiarity*). This not only neglects the
 531 crucial role of deliberate (*Recollection*), but also ignores the need for adaptive switching between
 532 the two paths. Our proposed RF-Mem addresses this gap by introducing a recollection retrieval path
 533 and a familiarity uncertainty-driven selection that adaptively alternates between fast Familiarity and
 534 deeper Recollection retrieval, thereby enabling more personalized memory retrieval.

535

5 CONCLUSION

536

537 In this work, we revisited personalized memory retrieval through the lens of dual-process theory.
 538 Existing methods are limited to one-shot retrieval based on similarity *Familiarity*, whereas we in-
 539 troduce *Recollection* as a deliberate stepwise retrieval mechanism. Building on this, we proposed
RF-Mem, a familiarity uncertainty-driven framework that adaptively switches between them. Ex-
 540 periments show that RF-Mem achieves robust gains across both generation and retrieval tasks, and
 541 scales reliably to million-entry corpora, demonstrating the importance of integrating deliberate rec-
 542 collection into memory retrieval for personalizing LLM.

540
541 ETHICS STATEMENT

542 This work focuses on improving personalized memory retrieval for large language models. Our
 543 study relies solely on simulated and publicly available benchmark datasets (PersonaMem, Person-
 544 aBench, LongMemEval), which do not contain personally identifiable information or sensitive data.
 545 We do not collect or release any private user data. While the proposed framework is designed to en-
 546 hance efficiency and robustness in memory retrieval, potential misuse could arise if deployed with-
 547 out safeguards in sensitive applications such as healthcare or personal decision-making. We there-
 548 fore emphasize that future deployment should follow strict data governance, privacy preservation,
 549 and fairness guidelines, and we encourage the research community to consider ethical implications
 550 when extending this work to real-world user data. **We acknowledge that real-world deployments**
 551 **of preference-based systems may inadvertently over-amplify user traits or reinforce behavioral bi-**
 552 **ases. Additionally, improper handling of user histories could expose sensitive information or lead to**
 553 **unintended profiling effects, underscoring the need for careful governance.**

554
555 REPRODUCIBILITY STATEMENT

556 We make every effort to ensure reproducibility. All datasets used in this study are publicly available,
 557 and we provide detailed references to their sources in the main text. Model architectures, hyperpa-
 558 rameter choices (B , F , α , τ , and thresholds θ_{high} , θ_{low}) are explicitly documented in Appendix B.
 559 We also describe hyperparameter sensitivity analyses in Appendix D to illustrate robustness under
 560 different configurations. To further facilitate replication, we release code and scripts for reproducing
 561 all reported results in the supplementary materials.

562
563 REFERENCES

564 Christine Bastin, Gabriel Besson, Jessica Simon, Emma Delhaye, Marie Geurten, Sylvie Willems,
 565 and Eric Salmon. An integrative memory model of recollection and familiarity to understand
 566 memory deficits. *Behavioral and Brain Sciences*, 42:e281, 2019.

567 Jiale Chen, Xuelian Dong, Wenxiu Xie, Ru Peng, Kun Zeng, and Tianyong Hao. Llm-enhanced
 568 query generation and retrieval preservation for task-oriented dialogue. In *Findings of the Associa-
 569 tion for Computational Linguistics: ACL 2025*, pp. 14307–14321, 2025.

570 Jiawei Chen, Hongyu Lin, Xianpei Han, and Le Sun. Benchmarking large language models in
 571 retrieval-augmented generation. In *Proceedings of the AAAI Conference on Artificial Intelligence*,
 572 volume 38, pp. 17754–17762, 2024.

573 Prateek Chhikara, Dev Khant, Saket Aryan, Taranjeet Singh, and Deshraj Yadav. Mem0: Building
 574 production-ready ai agents with scalable long-term memory. *arXiv preprint arXiv:2504.19413*,
 575 2025.

576 Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. A density-based algorithm for
 577 discovering clusters in large spatial databases with noise. In *kdd*, volume 96, pp. 226–231, 1996.

578 Luyu Gao, Xueguang Ma, Jimmy Lin, and Jamie Callan. Precise zero-shot dense retrieval without
 579 relevance labels. In *Proceedings of the 61st Annual Meeting of the Association for Computational
 580 Linguistics (Volume 1: Long Papers)*, pp. 1762–1777, 2023.

581 Haoyu Han, Yu Wang, Harry Shomer, Kai Guo, Jiayuan Ding, Yongjia Lei, Mahantesh Halap-
 582 panavar, Ryan A Rossi, Subhabrata Mukherjee, Xianfeng Tang, et al. Retrieval-augmented gen-
 583 eration with graphs (graphrag). *arXiv preprint arXiv:2501.00309*, 2024.

584 Kostas Hatalis, Despina Christou, Joshua Myers, Steven Jones, Keith Lambert, Adam Amos-Binks,
 585 Zohreh Dannenhauer, and Dustin Dannenhauer. Memory matters: The need to improve long-term
 586 memory in llm-agents. In *Proceedings of the AAAI Symposium Series*, volume 2, pp. 277–280,
 587 2023.

588 Richard NA Henson, MD Rugg, Timothy Shallice, O Josephs, and Raymond J Dolan. Recollection
 589 and familiarity in recognition memory: an event-related functional magnetic resonance imaging
 590 study. *Journal of neuroscience*, 19(10):3962–3972, 1999.

594 Bowen Jiang, Zhuoqun Hao, Young Min Cho, Bryan Li, Yuan Yuan, Sihao Chen, Lyle Ungar,
 595 Camillo Jose Taylor, and Dan Roth. Know me, respond to me: Benchmarking LLMs for dynamic
 596 user profiling and personalized responses at scale. In *Second Conference on Language Modeling*,
 597 2025. URL <https://openreview.net/forum?id=6ox8XZGOqP>.

598 Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick SH Lewis, Ledell Wu, Sergey Edunov, Danqi
 599 Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. In *EMNLP*
 600 (1), pp. 6769–6781, 2020.

601 Yibin Lei, Liang Ding, Yu Cao, Changtong Zan, Andrew Yates, and Dacheng Tao. Unsupervised
 602 dense retrieval with relevance-aware contrastive pre-training. *arXiv preprint arXiv:2306.03166*,
 603 2023.

604 Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
 605 Heinrich Kütller, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented gener-
 606 ation for knowledge-intensive nlp tasks. *Advances in neural information processing systems*, 33:
 607 9459–9474, 2020.

608 Hao Li, Chenghao Yang, An Zhang, Yang Deng, Xiang Wang, and Tat-Seng Chua. Hello again!
 609 ILM-powered personalized agent for long-term dialogue. In *Proceedings of the 2025 Conference*
 610 *of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human*
 611 *Language Technologies (Volume 1: Long Papers)*, pp. 5259–5276, 2025a.

612 Xiaoxi Li, Guanting Dong, Jiajie Jin, Yuyao Zhang, Yujia Zhou, Yutao Zhu, Peitian Zhang, and
 613 Zhicheng Dou. Search-o1: Agentic search-enhanced large reasoning models. *arXiv preprint*
 614 *arXiv:2501.05366*, 2025b.

615 Kun Luo, Zheng Liu, Shitao Xiao, and Kang Liu. Bge landmark embedding: A chunking-free
 616 embedding method for retrieval augmented long-context large language models. *arXiv preprint*
 617 *arXiv:2402.11573*, 2024.

618 Adyasha Maharana, Dong-Ho Lee, Sergey Tulyakov, Mohit Bansal, Francesco Barbieri, and
 619 Yuwei Fang. Evaluating very long-term conversational memory of ILM agents. *arXiv preprint*
 620 *arXiv:2402.17753*, 2024.

621 Maxwell B Merkow, John F Burke, and Michael J Kahana. The human hippocampus contributes
 622 to both the recollection and familiarity components of recognition memory. *Proceedings of the*
 623 *National Academy of Sciences*, 112(46):14378–14383, 2015.

624 Andrew Ng, Michael Jordan, and Yair Weiss. On spectral clustering: Analysis and an algorithm.
 625 *Advances in neural information processing systems*, 14, 2001.

626 Kai Tzu-iunn Ong, Namyoung Kim, Minju Gwak, Hyungjoo Chae, Taeyoon Kwon, Yohan Jo,
 627 Seung-won Hwang, Dongha Lee, and Jinyoung Yeo. Towards lifelong dialogue agents via
 628 timeline-based memory management. *arXiv preprint arXiv:2406.10996*, 2024.

629 Zhuoshi Pan, Qianhui Wu, Huiqiang Jiang, Xufang Luo, Hao Cheng, Dongsheng Li, Yuqing Yang,
 630 Chin-Yew Lin, H Vicky Zhao, Lili Qiu, et al. Secom: On memory construction and retrieval
 631 for personalized conversational agents. In *The Thirteenth International Conference on Learning*
 632 *Representations*, 2025.

633 Preston Rasmussen, Pavlo Paliychuk, Travis Beauvais, Jack Ryan, and Daniel Chalef. Zep: a tem-
 634 poral knowledge graph architecture for agent memory. *arXiv preprint arXiv:2501.13956*, 2025.

635 Stephen Robertson, Hugo Zaragoza, et al. The probabilistic relevance framework: Bm25 and be-
 636 yond. *Foundations and Trends® in Information Retrieval*, 3(4):333–389, 2009.

637 Michael D Rugg and Tim Curran. Event-related potentials and recognition memory. *Trends in*
 638 *cognitive sciences*, 11(6):251–257, 2007.

639 Rana Salama, Jason Cai, Michelle Yuan, Anna Currey, Monica Sunkara, Yi Zhang, and Yassine
 640 Benajiba. Memindsight: Autonomous memory augmentation for ILM agents. *arXiv preprint*
 641 *arXiv:2503.21760*, 2025.

648 Tao Shen, Guodong Long, Xiubo Geng, Chongyang Tao, Yibin Lei, Tianyi Zhou, Michael Blu-
 649 menstein, and Dixin Jiang. Retrieval-augmented retrieval: Large language models are strong
 650 zero-shot retriever. In *Findings of the Association for Computational Linguistics ACL 2024*, pp.
 651 15933–15946, 2024.

652 Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu. Mpnet: Masked and permuted pre-
 653 training for language understanding. *Advances in neural information processing systems*, 33:
 654 16857–16867, 2020.

655 Juntao Tan, Liangwei Yang, Zuxin Liu, Zhiwei Liu, Rithesh R N, Tulika Manoj Awalaonkar,
 656 Jianguo Zhang, Weiran Yao, Ming Zhu, Shirley Kokane, Silvio Savarese, Huan Wang, Caim-
 657 ing Xiong, and Shelby Heinecke. PersonaBench: Evaluating AI models on understand-
 658 ing personal information through accessing (synthetic) private user data. pp. 878–893, July
 659 2025a. doi: 10.18653/v1/2025.findings-acl.49. URL <https://aclanthology.org/2025.findings-acl.49/>.

660 Zhen Tan, Jun Yan, I Hsu, Rujun Han, Zifeng Wang, Long T Le, Yiwen Song, Yanfei Chen, Hamid
 661 Palangi, George Lee, et al. In prospect and retrospect: Reflective memory management for long-
 662 term personalized dialogue agents. *arXiv preprint arXiv:2503.08026*, 2025b.

663 Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan Yang, and Ming Zhou. Minilm: Deep self-
 664 attention distillation for task-agnostic compression of pre-trained transformers. *Advances in neu-
 665 ral information processing systems*, 33:5776–5788, 2020.

666 Di Wu, Hongwei Wang, Wenhao Yu, Yuwei Zhang, Kai-Wei Chang, and Dong Yu. Longmemeval:
 667 Benchmarking chat assistants on long-term interactive memory. In *The Thirteenth Interna-
 668 tional Conference on Learning Representations*, 2025a. URL <https://openreview.net/forum?id=pZiyCaVuti>.

669 Yaxiong Wu, Sheng Liang, Chen Zhang, Yichao Wang, Yongyue Zhang, Huifeng Guo, Ruiming
 670 Tang, and Yong Liu. From human memory to ai memory: A survey on memory mechanisms in
 671 the era of llms. *arXiv preprint arXiv:2504.15965*, 2025b.

672 Derong Xu, Yi Wen, Pengyue Jia, Yingyi Zhang, Yichao Wang, Huifeng Guo, Ruiming Tang, Xi-
 673 angyu Zhao, Enhong Chen, Tong Xu, et al. Towards multi-granularity memory association and
 674 selection for long-term conversational agents. *arXiv preprint arXiv:2505.19549*, 2025a.

675 Jing Xu, Arthur Szlam, and Jason Weston. Beyond goldfish memory: Long-term open-domain
 676 conversation. *arXiv preprint arXiv:2107.07567*, 2021.

677 Wujiang Xu, Kai Mei, Hang Gao, Juntao Tan, Zujie Liang, and Yongfeng Zhang. A-mem: Agentic
 678 memory for llm agents. *arXiv preprint arXiv:2502.12110*, 2025b.

679 Andrew P Yonelinas. The role of recollection and familiarity in visual working memory: A mixture
 680 of threshold and signal detection processes. *Psychological review*, 131(2):321, 2024.

681 Andrew P Yonelinas, Neal EA Kroll, Joel R Quamme, Michele M Lazzara, Mary-Jane Sauvé,
 682 Keith F Widaman, and Robert T Knight. Effects of extensive temporal lobe damage or mild
 683 hypoxia on recollection and familiarity. *Nature neuroscience*, 5(11):1236–1241, 2002.

684 Zeyu Zhang, Quanyu Dai, Xiaohe Bo, Chen Ma, Rui Li, Xu Chen, Jieming Zhu, Zhenhua Dong,
 685 and Ji-Rong Wen. A survey on the memory mechanism of large language model-based agents.
 686 *ACM Transactions on Information Systems*, 43(6):1–47, 2025.

687 Qian Zhao, Zhuo Sun, Bin Guo, and Zhiwen Yu. Memocue: Empowering llm-based agents for
 688 human memory recall via strategy-guided querying. *arXiv preprint arXiv:2507.23633*, 2025.

689 Wanjun Zhong, Lianghong Guo, Qiqi Gao, He Ye, and Yanlin Wang. Memorybank: Enhancing large
 690 language models with long-term memory. In *Proceedings of the AAAI Conference on Artificial
 691 Intelligence*, volume 38, pp. 19724–19731, 2024.

692

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

Technical Appendix

TABLE OF CONTENTS

A	Dataset Details	15
B	Implementation details	16
C	Prompt For PersonaMem	18
D	Additional Experiment	20
D.1	Result Across Category in PersonaMem	20
D.2	Sensitivity Analysis of α and τ	21
D.3	Sensitivity Analysis of B and F	22
D.4	Impact of α Under Varying Retrieval Size K	23
D.5	Sensitivity Analysis of Retrieval Size K	23
D.6	Learning the Strategy Selection Mechanism	24
D.7	Case Study.	25
D.8	Alternative Study	27
D.9	Full-exploration Study	29
D.10	Routing Robustness Across Embedding Models	30
E	Pseudocode of RF-Mem	30
F	Theoretical Analysis	32
F.1	Risk-Minimizing Selection	33
F.2	An Entropy Certificate for Correctness	33
F.3	Sub-Gaussian Mean Similarity and Gating Reliability	34
F.4	Complexity–Coverage Trade-off	34
G	LLM Usage Disclosure	34
H	Limitation and future work	35

756 **A DATASET DETAILS**
757

758 **PersonaMem.** We use **PersonaMem**¹ (Jiang et al., 2025), a large-scale personalized memory
759 benchmark introduced at COLM 2025, as the core dataset for evaluating personalized retrieval and
760 generation. PersonaMem is designed to evaluate memory-augmented LLMs by requiring them to re-
761 trieve user-specific histories and preferences from long-term dialogue traces. To stress-test retrieval
762 under different scales, we follow the original paper and construct three memory corpora of increasing
763 size: 32K, 128K, and 1M entries. Table 7 reports dataset statistics, showing that query length
764 remains relatively stable across scales while memory size grows by orders of magnitude, creating a
765 challenging retrieval environment. Table 8 further summarizes the task distribution, covering diverse
766 domains such as family relations, study consultation, legal and medical consults, and recommendation
767 tasks (movies, food, books, etc.). These heterogeneous task types capture both fact-oriented and
768 reasoning-intensive scenarios, making PersonaMem a suitable benchmark for evaluating the balance
769 between *Familiarity*-based fast recall and *Recollection*-driven contextual reconstruction.

771 Table 7: Dataset Statistics across Different Memory Corpora.

772 Dataset name	773 32k memory corpus	774 128k memory corpus	775 1M memory corpus
776 # of samples	589	2727	2674
777 Avg tokens of question	464.6	416.3	415.1
778 Avg tokens of memory	24193.2	15185.1	911733.4
779 # of Revisit Reasons	99	269	235
780 # of Track Evolution	139	341	225
781 # of Latest Prefs	17	866	768
782 # of Aligned Recs	55	349	280
783 # of New Scenarios	57	213	295
784 # of Shared Facts	129	171	144
785 # of New Ideas	93	518	727

786 Table 8: Task Distribution across Different Memory Corpora

787 Dataset name	788 32k memory corpus	789 128k memory corpus	790 1M memory corpus
791 # of Home Decoration	3	153	164
792 # of Family Relations	32	144	193
793 # of Therapy	2	249	161
794 # of Travel Plan	71	155	192
795 # of Medical Consult	19	195	163
796 # of Legal Consult	32	283	197
797 # of Study Consult	35	157	191
798 # of Dating Consult	94	197	208
799 # of Financial Consult	72	198	181
800 # of Food Rec	2	229	191
801 # of Movie Rec	104	158	212
802 # of Music Rec	56	44	128
803 # of Book Rec	67	172	139
804 # of Sports Rec	–	197	148
805 # of Online Shopping	–	196	206

806 **PersonaBench.** We further evaluate on the **PersonaBench**² dataset, which benchmarks personal-
807 ized retrieval in multi-source user environments introduced in ACL 2025 (Tan et al., 2025a). As
808 shown in Table 9, PersonaBench aggregates heterogeneous user histories across six users, including
809 *conversations with friends*, *user-AI interactions*, and *e-commerce purchase records*. Each user con-
810 tributes on average 44 queries grounded in a corpus of about 88 items, yielding rich signals of both

811 ¹<https://github.com/bowen-upenn/PersonaMem>812 ²<https://github.com/SalesforceAIResearch/personabench>

social and transactional behavior. The resulting setting allows us to test retrieval robustness across diverse memory types, from casual dialogue to structured purchase history. This design contrasts with PersonaMem, which primarily focuses on long user-AI dialogues, and complements our study by introducing multi-modal user traces that better capture the breadth of personalization scenarios.

Table 9: Statistics of the PersonaBench dataset across users.

User Id	# of Queries	# of Corpus	# of Conversations with friends	# of User-AI Conversation	# of User e-commerce purchase histories
1	48	110	84	23	3
2	43	90	78	8	4
3	42	64	51	12	1
4	46	85	71	14	0
5	44	84	59	21	4
6	40	94	79	14	1
Sum	263	527	422	92	13
Avg	43.83	87.83	70.33	15.33	2.17

LongMemEval. We further evaluate on the **LongMemEval**³ dataset, which benchmarks the ability to retrieve task-relevant information from extended user-specific corpora. introduced in ICLR 2025 (Wu et al., 2025a). Each instance in the dataset consists of a factual question paired with a synthetic memory corpus simulating historical user data. The dataset includes two settings: *LongMemEval-s*, where each question is associated with approximately 50 memories, and *LongMemEval-m*, where each corpus contains over 500 memories. In total, both settings consist of 500 questions, allowing evaluation of memory retrieval precision under varying context lengths. This benchmark enables controlled analysis of personalized retrieval performance under realistic long-context scenarios.

Table 10: Statistics of the LongMemEval dataset, with different sizes of associated memory corpora.

Statistic	LongMemEval-s	LongMemEval-m
Total Questions	500	500
Total Session-level Memory	25,112	250,948
Min Session-level Memory per Question	39	501
Max Session-level Memory per Question	66	506
Avg Session-level Memory per Question	50.22	501.90

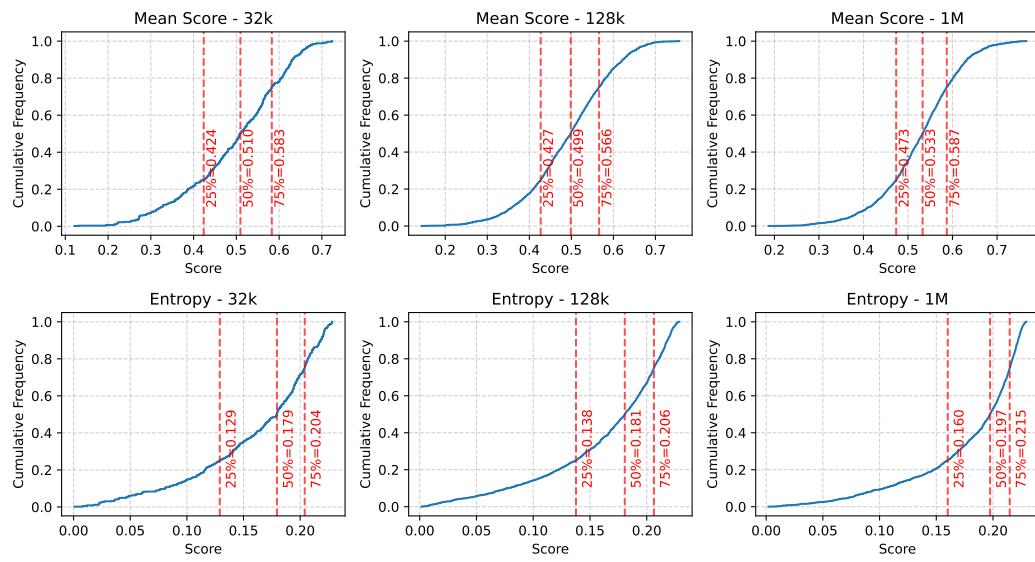
B IMPLEMENTATION DETAILS

All experiments are conducted on a single NVIDIA A100 GPU with Ubuntu OS, where the GPU is exclusively allocated to the process when measuring runtime.

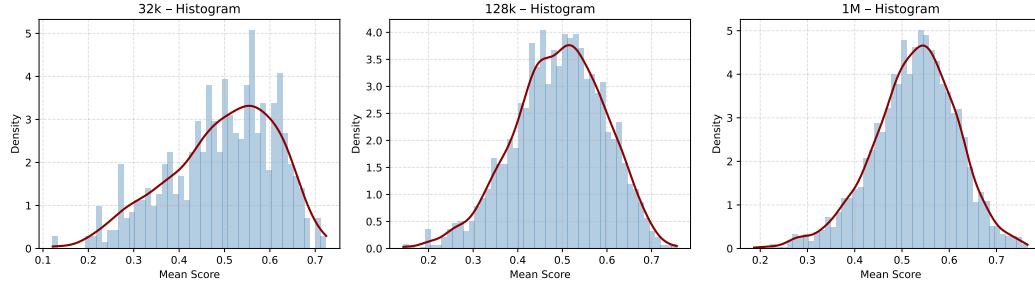
For **PersonaMem**, we follow the original setup and build the memory corpus at the dialogue-turn level, where each chunk corresponds to a user query and a single LLM response. We use GPT-4.1-mini as the generator and multi-qa-MiniLM-L6-cos-v1 as the retriever. The hyperparameters are set as $\lambda = 20$, $B = 3$, $F = 2$, with thresholds $\theta_{\text{high}} = 0.6$ and $\theta_{\text{low}} = 0.3$, ensuring stable regulation across turn-level retrieval. And prompt for generation can be found at Appendix C. And we illustrate the mean score \bar{s} and entropy $H(p)$ of the PersonaMem dataset in Figure 6. The cumulative distributions reveal a consistent pattern across corpus sizes: as the scale increases from 32K to 1M, the mean score distribution shifts slightly toward lower values, reflecting weaker overall familiarity in larger search spaces, whereas entropy remains concentrated within a narrow band (0.1-0.2), indicating stable uncertainty resolution. The annotated quartiles further confirm that the median values of both \bar{s} (≈ 0.50 -0.55) and $H(p)$ (≈ 0.17 -0.18) remain largely invariant, which demonstrates that the familiarity signal preserves a stable operating range across different scales. Such stability provides empirical support for RF-Mem’s threshold design, ensuring that

³<https://github.com/xiaowu0162/LongMemEval>

864 the switching mechanism can generalize without costly re-tuning and maintaining robustness under
 865 varying corpus sizes. For support our theoretical assumption in Appendix F.3, we show the empirical
 866 distribution of mean score \bar{s} in the Figure 7. All three datasets exhibit light-tailed, bounded distri-
 867 butions without heavy-tail behavior, and the tail shape remains stable as the corpus size grows. This
 868 empirically confirms that the similarity landscape does not display the heavy-tailed structure.
 869



888 Figure 6: Mean score \bar{s} and entropy $H(p)$ of the PersonaMem dataset.
 889



900 Figure 7: Empirical distributions of mean score \bar{s} of the PersonaMem dataset.
 901

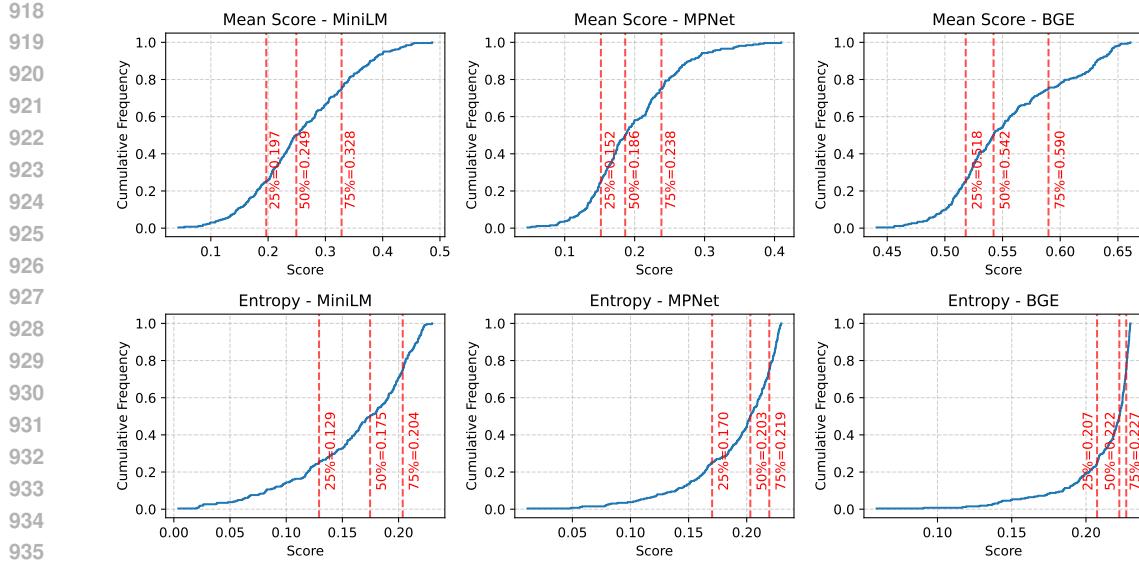
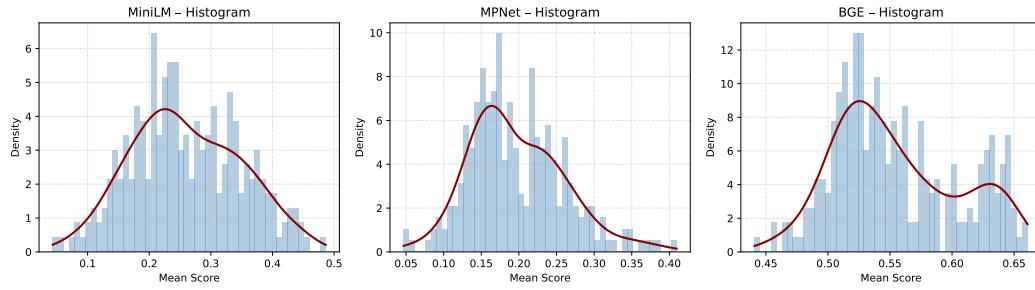
902 For **PersonaBench**, we adopt the session-level memory construction as in the benchmark paper,
 903 which enables fair evaluation of retrieval quality using Recall. We evaluate our method under
 904 multiple retrievers, including `multi-qa-MiniLM-L6-cos-v1`⁴, `all-MiniLM-L6-v2`⁵, and
 905 `bge-base-en-v1.5`⁶ to ensure generality. For Recall@5, we use $B = 3$, $F = 1$; for Recall@10,
 906 we use $B = 3$, $F = 2$, and $\lambda = 30$ for both. The thresholds are set to $\theta_{\text{high}} = 0.6$ and $\theta_{\text{low}} = 0.0$,
 907 reflecting the lower similarity scores in session-level indices. And we illustrate the mean score \bar{s} and
 908 entropy $H(p)$ of the PersonaMem dataset in Figure 8. Also, for support our theoretical assumption in
 909 Appendix F.3, we show the empirical distribution of mean score \bar{s} in the Figure 9.
 910

911 For **LongMemEval**, we also adopt the session-level memory construction as in the paper,
 912 with recall as a metric. We also evaluate RF-Mem under `multi-qa-MiniLM-L6-cos-v1`,
 913 `all-MiniLM-L6-v2`, and `bge-base-en-v1.5` to ensure generality. For LongMemEval-S and
 914 LongMemEval-M, we use $B = 4$, $F = 1$, and $\lambda = 20$. The thresholds are set to $\theta_{\text{high}} = 0.6$ and
 915 $\theta_{\text{low}} = 0.0$. And we illustrate the mean score \bar{s} and entropy $H(p)$ of the two datasets in Figure 10
 916 and Figure 12. The empirical distribution of mean score \bar{s} shown in Figure 11 and Figure 13 also
 917 support our theoretical assumption in Appendix F.3.
 918

⁴<https://huggingface.co/sentence-transformers/multi-qa-MiniLM-L6-cos-v1>

⁵<https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2>

⁶<https://huggingface.co/BAAI/bge-base-en-v1.5>

Figure 8: Mean score \bar{s} and entropy $H(p)$ of the PersonaBench dataset.Figure 9: Empirical distributions of mean score \bar{s} of the Personabench dataset.

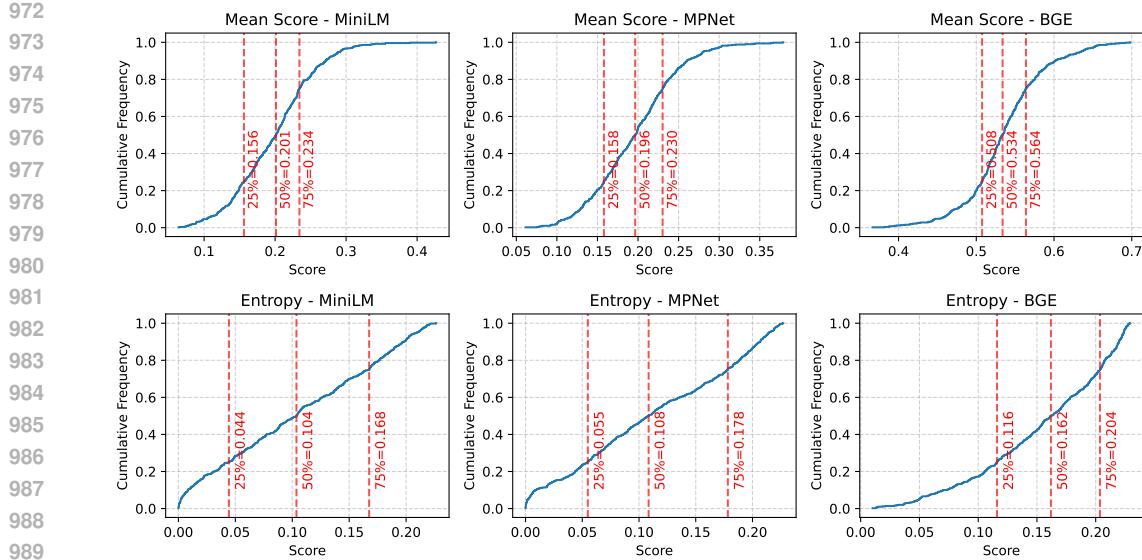
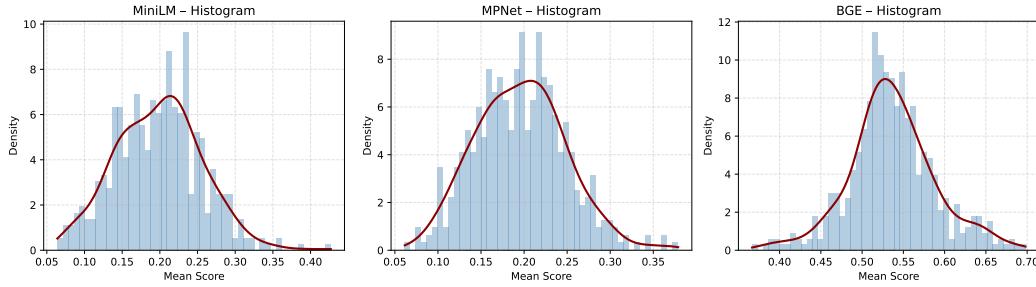
C PROMPT FOR PERSONAMEM

For the multiple-choice evaluation of PerosnaMem dataset, we adopted a strict prompt template to ensure consistency and avoid ambiguous model outputs. The instruction explicitly restricts the model to return exactly one option among (a), (b), (c), or (d), without any reasoning or additional text. This design prevents uncontrolled generation and makes results directly comparable across models.

Prompt Instruction

You are a multiple-choice answer generator. You **MUST** respond with exactly one option in the form of (a), (b), (c), or (d). Do not include any explanation, reasoning, or extra text. Do not output anything else besides the chosen option. If the correct answer is unknown, make the best guess and still only respond in that format. If your output does not exactly match one of (a), (b), (c), or (d), your answer will be considered incorrect.

During evaluation, the prompt is constructed by concatenating the question, the fixed instruction above, and all candidate options. Retrieved memory context (from RF-Mem or baselines) is prepended as dialogue history to provide user-specific background. This structure guarantees deterministic outputs while isolating the effect of retrieval on answer quality.

Figure 10: Mean score \bar{s} and entropy $H(p)$ in the LongMemEval-S dataset.Figure 11: Empirical distributions of mean score \bar{s} of the LongMemEval-S dataset.

Example Prompt

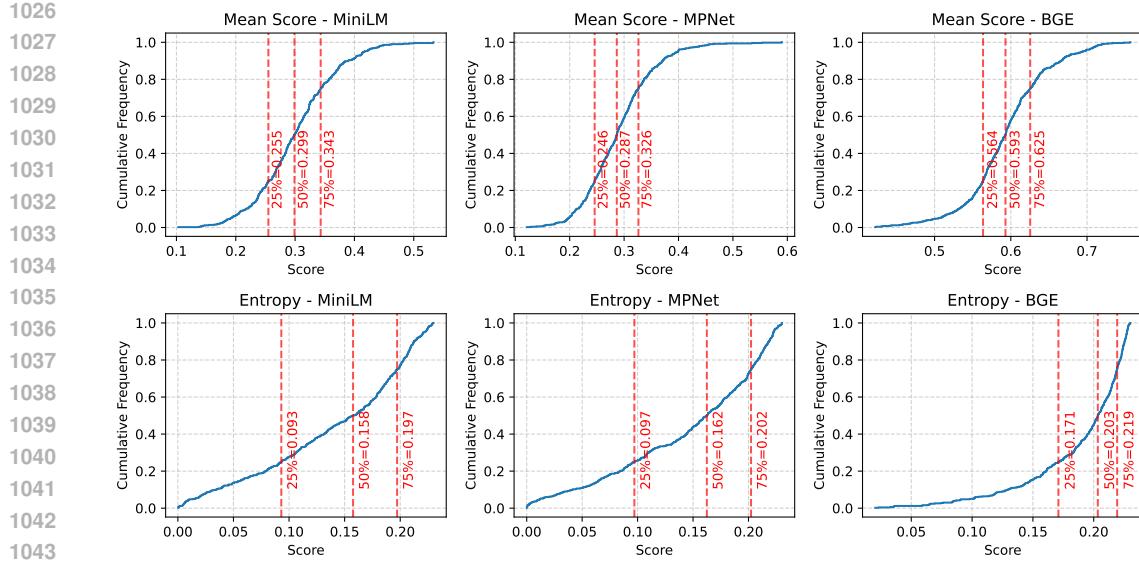
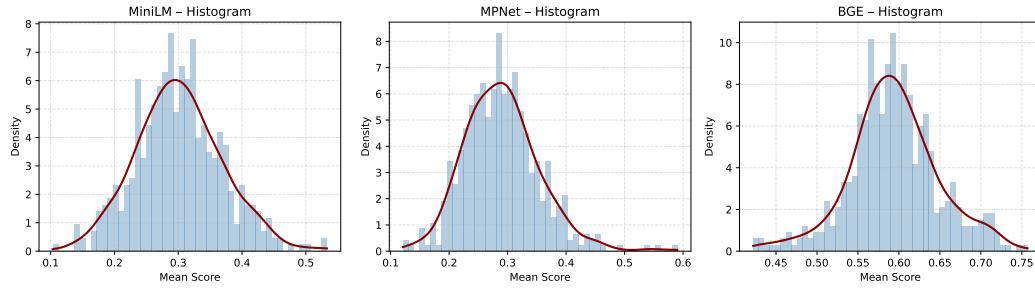
Question: Can you suggest some new evidence-based practices to explore for healthcare decision-making?

Instruction: You are a multiple-choice answer generator. You MUST respond with exactly one option in the form of (a), (b), (c), or (d). Do not include any explanation, reasoning, or extra text. Do not output anything else besides the chosen option. If the correct answer is unknown, make the best guess and still only respond in that format. If your output does not exactly match one of (a), (b), (c), or (d), your answer will be considered incorrect.

Options:

- (a) Exploring patient-centered communication strategies might be a great new evidence-based practice to consider...
- (b) One practice that could be impactful is the integration of artificial intelligence in predictive analytics for healthcare decision-making...
- (c) You might consider exploring systematic reviews and meta-analyses of clinical trials, as these often provide robust evidence for healthcare practices...
- (d) Implementing shared decision-making models in clinical practice is a promising evidence-based strategy to explore...

Correct Answer: (c) # This is the correct answer and not in the prompt.

Figure 12: Mean score \bar{s} and entropy $H(p)$ in the LongMemEval-M dataset.Figure 13: Empirical distributions of mean score \bar{s} of the LongMemEval-M dataset.

D ADDITIONAL EXPERIMENT

D.1 RESULT ACROSS CATEGORY IN PERSONAMEM

To further examine retrieval behaviors across different task types, we conduct a category-level analysis on **PersonaMem** (Table 11). This evaluation spans factual queries (e.g., *food recommendation*, *medical consult*), reasoning-intensive domains (e.g., *family relations*, *therapy*), and hybrid scenarios (e.g., *aligned recommendations*, *new scenarios*), allowing us to disentangle how each retrieval strategy responds to varying demands of factual precision, contextual reasoning, and personalization.

First, Familiarity excels in direct recall but struggles as complexity grows. As shown in Table 11, dense retrieval achieves peak scores on fact-centric categories where surface similarity is sufficient. For instance, it reaches perfect accuracy on *food recommendation* (1.0000 at 32k corpus) and strong results in *movie recommendation* (0.5759 at 128k). These cases confirm its cognitive role as a fast, coarse recognition process. However, as tasks demand contextual integration—such as *track evolution* or *aligned recommendations*—Familiarity shows clear degradation, particularly when scaling to 1M memories.

Second, Recollection proves valuable for reasoning-intensive tasks. In categories like *family relations*, *therapy*, and *dating consultation*, Recollection consistently surpasses Familiarity by reconstructing dispersed cues across sessions (e.g., 0.5938 vs. 0.5625 in *family relations* at 32k, and 0.5280 vs. 0.4534 in *therapy* at 1M). Yet, on factual categories such as *food recommendation* or *study consultation*, where surface matches are already diagnostic, its advantage diminishes or even reverses. This confirms its role as a slower but more diagnostic mode.

1080 **Third, RF-Mem achieves robust gains through adaptive switching.** As shown in Table 11, RF-
 1081 Mem consistently outperforms single-mode baselines by combining the efficiency of Familiarity
 1082 with the diagnostic depth of Recollection. For instance, it improves *legal consultation* at 32k (0.94
 1083 vs. 0.78/0.88) and sustains advantages in *family relations* at 1M (0.60 vs. 0.57/0.58). These examples
 1084 illustrate its ability to maintain high accuracy across both factual and reasoning categories. Impor-
 1085 tantly, RF-Mem also delivers the best overall results at all corpus scales, confirming that uncertainty-
 1086 aware routing enables robust retrieval without committing to a single mode.

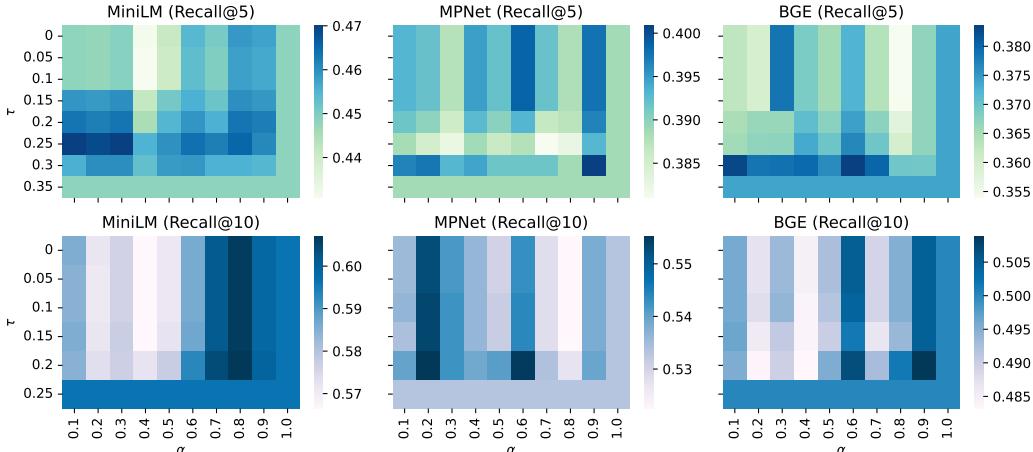
1087

1088

Table 11: Performance comparison on different memory corpus sizes.

Question Category	32k memory corpus			128k memory corpus			1M memory corpus		
	Famili.	Recol.	RF-Mem	Famili.	Recol.	RF-Mem	Famili.	Recol.	RF-Mem
Overall	0.5908	0.6214	0.6350	0.5259	0.5288	0.5394	0.4518	0.4544	0.4589
Home Decoration	0.6667	0.6667	0.6667	0.6275	0.6275	0.6471	0.4207	0.4451	0.4207
Family Relations	0.5625	0.5938	0.5938	0.5486	0.5625	0.5764	0.5734	0.5803	0.6010
Therapy	0.5000	0.5000	0.5000	0.5060	0.5301	0.5341	0.4534	0.5280	0.4845
Travel Plan	0.4789	0.5775	0.5634	0.5806	0.6194	0.6452	0.4948	0.4792	0.4896
Medical Consult	0.8421	0.7895	0.8421	0.4718	0.5128	0.5026	0.4294	0.4110	0.4356
Legal Consult	0.7812	0.8750	0.9375	0.5124	0.4735	0.4841	0.4061	0.3909	0.3909
Study Consult	0.6000	0.6000	0.6000	0.5096	0.4904	0.4773	0.4503	0.4293	0.4817
Dating Consult	0.5851	0.5851	0.6277	0.4772	0.5025	0.4975	0.5192	0.5000	0.5096
Financial Consult	0.5556	0.5972	0.6389	0.4899	0.4697	0.4899	0.4365	0.4309	0.4199
Food Rec	1.0000	1.0000	1.0000	0.5240	0.5721	0.5633	0.3717	0.4241	0.3874
Movie Rec	0.6154	0.6154	0.5865	0.5759	0.5696	0.5633	0.4434	0.4481	0.4575
Music Rec	0.6071	0.6250	0.6250	0.4091	0.4773	0.5096	0.4609	0.4688	0.5000
Book Rec	0.5373	0.5970	0.6418	0.5640	0.5407	0.5814	0.4964	0.4532	0.5036
Sports Rec	-	-	-	0.5228	0.4670	0.4975	0.4189	0.4392	0.4392
Online Shopping	-	-	-	0.5408	0.5459	0.5561	0.3738	0.3932	0.3786

1107

D.2 SENSITIVITY ANALYSIS OF α AND τ 

1125

Figure 14: Hyperparameter sensitivity study on PersonaBench. Heatmaps report Recall@5 and Recall@10 across different retrievers, varying α (query–centroid mixing) and τ (entropy threshold). To examine the robustness of RF-Mem, we conduct a systematic study varying two key hyperparameters, α and τ , across different retrievers (MiniLM, MPNet, BGE) and evaluation metrics (Recall@5/10). Figure 14 visualizes the results as heatmaps, where warmer colors indicate higher retrieval performance. This setup allows us to directly assess how query mixing (α) and entropy thresholding (τ) interact to balance efficiency and coverage.

1132

1133

First, the query–centroid mixing coefficient α controls how strongly recollection expands beyond the original probe. In Recall@5, moderate α (around 0.3–0.6) yields the best results, such

as MiniLM improving overall recall to ~ 0.47 , while extreme values ($\alpha = 0.0$ or $\alpha = 1.0$) reduce stability. For Recall@10, performance is less sensitive, but mid-range α still avoids degradation observed at the boundaries. This indicates that balanced mixing is crucial: too little restricts recollection, too much overwhelms with noisy expansions.

Second, the entropy threshold τ regulates the switch between Familiarity and Recollection. Low τ values push the system toward frequent recollection, leading to higher gains in complex categories but also exposing variance. For instance, MiniLM Recall@10 achieves its highest values (~ 0.60) when τ is set around 0.2–0.25, while overly high thresholds ($\tau \geq 0.35$) reduce adaptivity, as retrieval defaults prematurely to Familiarity. The results highlight that moderate entropy gating achieves the best trade-off between efficiency and contextual depth.

D.3 SENSITIVITY ANALYSIS OF B AND F

Figure 15 reports the effect of beam width B and fanout F on retrieval performance in LongMemEval-S and LongMemEval-M, under the retriever `multi-qa-MiniLM-L6-cos-v1` of recollection retrieval. We observe three consistent patterns.

First, increasing F generally reduces recall@5. As shown in the top-left and bottom-left plots, recall@5 steadily drops when F grows, since higher fanout expands the search too widely, diluting precision in top-ranked results. For example, in LongMemEval-S, recall@5 decreases from 0.72 ($F = 1$) to below 0.60 when $F = 4$.

Second, recall@10 is more stable under moderate F , but declines when B or F are too large. The middle plots show that recall@10 peaks around $F = 1$ or $F = 2$ (e.g., 0.83 in LongMemEval-S, 0.56 in LongMemEval-M), but drops once $F = 3$ or $F = 4$, reflecting over-expansion and redundancy. This suggests that moderate fanout provides useful diversification, while excessive expansion introduces noise.

Third, recall@50 is robust and even improves with higher F . As shown in the rightmost plots, recall@50 remains very high in LongMemEval-S (above 0.98 across all settings), and increases slightly in LongMemEval-M (up to 0.76 when $B = 3, F = 2$). This indicates that large fanout helps cover more relevant memories at longer retrieval depths, consistent with recollection’s role of broad exploration.

Overall, these results demonstrate that small beam width and low fanout ($B = 2$ or 3 , $F = 1$ or 2) offer the best balance between early precision and broad coverage, aligning with the intuition of controlled, stepwise recollection.

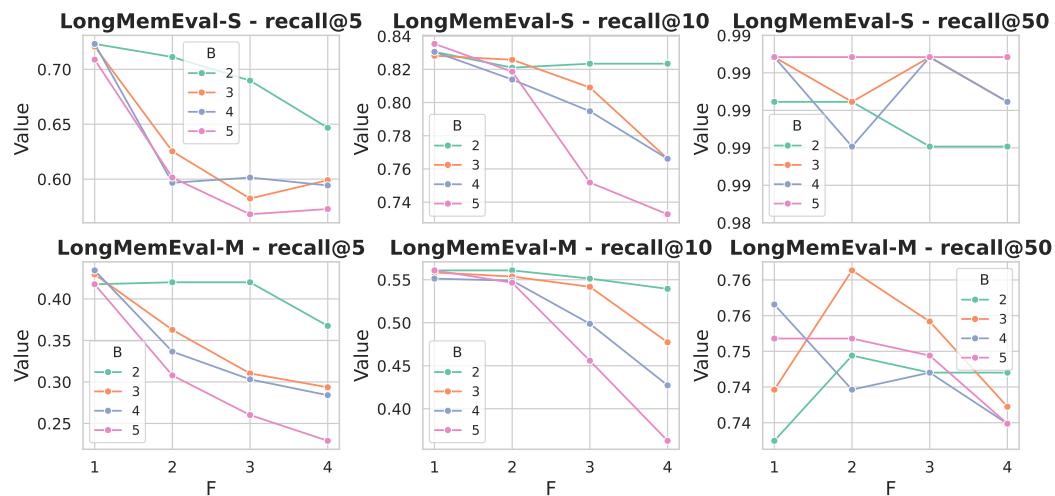
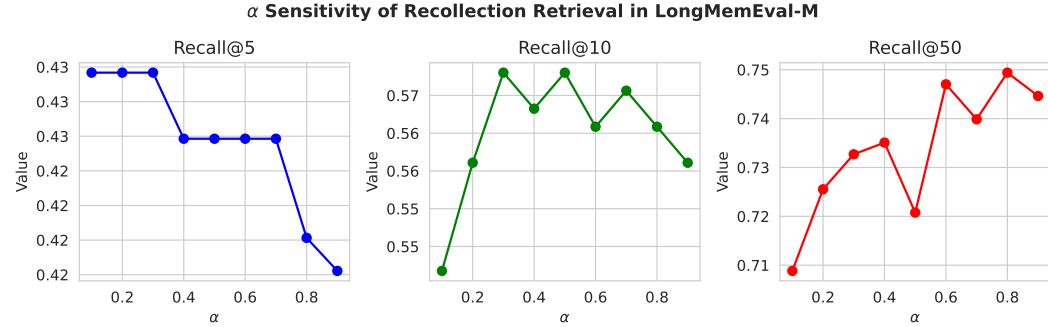


Figure 15: Hyperparameter B and F sensitivity of Recollection retrieval on LongMemEval-S and LongMemEval-M.

1188 D.4 IMPACT OF α UNDER VARYING RETRIEVAL SIZE K
1189

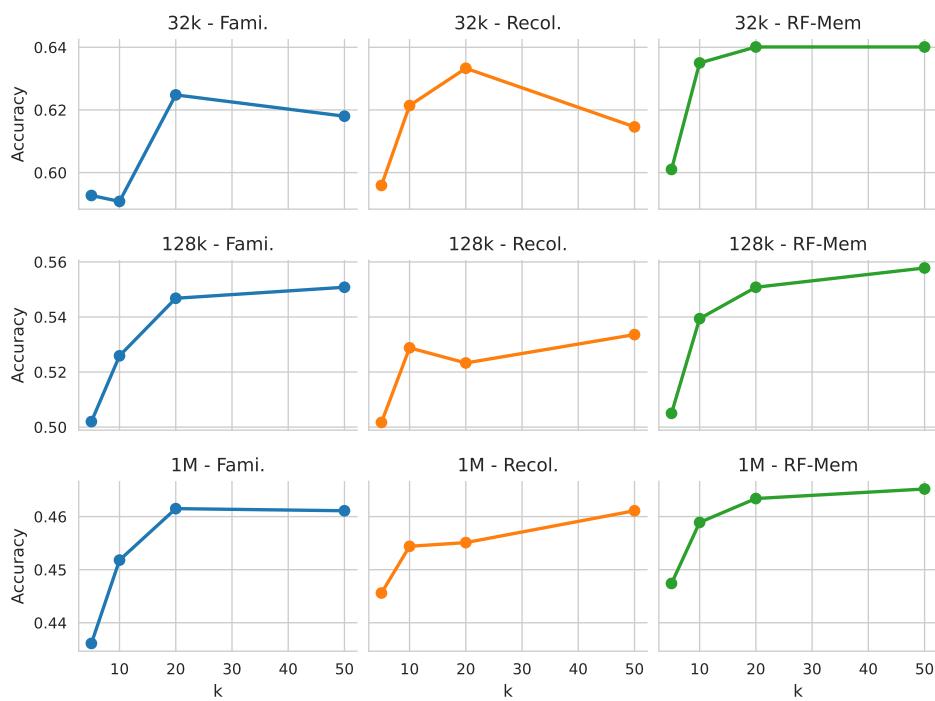
1190 **Effect of α on Retrieval.** To investigate the role of the mixing weight α , we conduct a sensitivity
1191 study on the LongMemEval-M dataset under the **Recollection** retrieval, measuring Recall@5, Re-
1192 call@10, and Recall@50. As shown in Figure 16, the impact of α exhibits a clear dependence on re-
1193 trieval depth. For Recall@5, which emphasizes short-hop retrieval precision, performance decreases
1194 steadily as α grows, suggesting that placing excessive weight on the original query suppresses ex-
1195 ploratory expansion and thereby reduces the system’s ability to capture nearby but diverse evidence.
1196 In contrast, Recall@50 improves markedly with larger α , indicating that stronger query–centroid
1197 mixing facilitates broader exploration and enables the retriever to recover more distant but rele-
1198 vant memories over long retrieval chains. Recall@10 demonstrates an intermediate pattern, peaking
1199 around $\alpha = 0.3\text{--}0.5$ before declining, which reflects the delicate balance between preserving the
1200 specificity of the original query and promoting contextual expansion through recollection.

1201 These results highlight a fundamental trade-off: smaller values of α favor precision in short-path re-
1202 trieval, while larger values enhance coverage in long-path retrieval. The presence of an intermediate
1203 optimum for Recall@10 further confirms that no single setting universally dominates across depths,
1204 underscoring the need to calibrate α according to application demands. More broadly, this sensitiv-
1205 ity analysis validates the design choice in RF-Mem to treat α as a tunable parameter, enabling the
1206 framework to flexibly adjust the balance between efficiency and breadth when navigating different
1207 levels of the memory space.

Figure 16: Effect of α on short- vs. long-path retrieval performance (Recall@ K).1221 D.5 SENSITIVITY ANALYSIS OF RETRIEVAL SIZE K
1222

1223 To further examine the sensitivity of RF-Mem to the probe retrieval parameter K , we vary K from
1224 5 to 50 and report the resulting accuracy under different corpus sizes (32K, 128K, and 1M) in
1225 PersonaMem. As shown in Figure 17, the overall performance of RF-Mem remains consistently
1226 stable across a wide range of K , demonstrating the robustness of our familiarity-based regulation.
1227 In contrast, the baselines exhibit stronger fluctuations: for Familiarity, accuracy quickly rises with K
1228 but plateaus once $K \geq 10$, while Recollection benefits from larger K due to finer entropy resolution,
1229 yet its gains taper off and even slightly degrade after $K = 20$.

1230 RF-Mem combines the advantages of both pathways, achieving higher accuracy than either baseline
1231 across all corpus scales, and crucially avoids the over-expansion problem of Recollection by adap-
1232 tively invoking recollection only when necessary. Notably, the performance curves at 128K and 1M
1233 confirm that the improvement saturates beyond moderate probe sizes, suggesting that small values
1234 of K (e.g., 10–20) are already sufficient for effective familiarity estimation and adaptive switching.
1235 These results highlight that RF-Mem does not depend on finely tuned probe parameters, making it
1236 both robust and practical for deployment in large-scale personalized memory retrieval scenarios.

Figure 17: Effect of probe size K on retrieval performance across different corpus scales.

D.6 LEARNING THE STRATEGY SELECTION MECHANISM

Although the gating thresholds in RF-Mem are manually specified, it is important to assess whether the routing policy can also be learned from data. To this end, we construct a binary classification task in which each memory instance is represented by the two gating signals, namely the mean similarity \bar{s} of the probe retrieval and the entropy $H(p)$ over the top- K similarity distribution. The classifier predicts whether the familiarity path or the recollection path yields higher retrieval quality. This setting allows us to examine (i) how much supervision is needed to approximate the decision boundary and (ii) whether the two handcrafted signals contain sufficient information for reliable automatic routing.

Training data. We utilize two subsets of PersonaMem: the 32k corpus (589 samples) and the 128k corpus (2727 samples). For 32k, the first 400 samples are used for training and the remaining 189 for evaluation; for 128k, the first 2000 samples are allocated for training and the remaining 727 for evaluation. Only cases in which one path clearly outperforms the other are retained, forming a clean binary-labeled dataset. Table 12 summarizes the distribution of positive and negative labels.

Training Details. A three-layer MLP is trained as a binary classifier, with hidden dimensions of 32 and 16, and a final sigmoid output unit. ReLU activations are used in the hidden layers. Training follows an 80/20 train-validation split.

Table 12: Training data statistics for the learned gating classifier.

Dataset	Fami. win	Recol. win	Tie	Training Samples
PersonaMem-32k	34	41	325	75 (34+41)
PersonaMem-128k	178	185	1637	363 (178+185)

Experimental findings. Tables 13 and 14 report detailed performance across evaluation categories. We can find **while the hand-tuned thresholds remain slightly superior, the learned gate**

1296 **shows clear improvements when trained on more data, demonstrating its potential applicability in real-world scenarios where larger-scale logs are accessible.** On the smaller 32k set, the
 1297 learned gate shows high variance across runs and does not consistently outperform simple heuristics, indicating that limited data makes the decision boundary difficult to estimate reliably.
 1298 When moving to the larger 128k set, the learned gate becomes considerably more stable and approaches
 1299 the performance of the manually tuned mechanism. These results suggest that the two handcrafted
 1300 signals already capture a meaningful structural separation between the two retrieval modes, and that
 1301 automatic tuning becomes increasingly effective as more user data is available.
 1302

1304
1305 Table 13: Results of the learned strategy selector on PersonaMem-32k (189 test samples).

Method	Overall	Revisit Reasons	Shared Facts	Track Evolution	Aligned Recs	Latest Prefs	New Scenarios	New Ideas	Num. of Famili.	Num. of Recol.
Dense	0.6296	0.9688	0.7297	0.6327	0.8125	0.2857	0.5385	0.2286	189	0
Recol.	0.6667	0.9688	0.7297	0.7551	0.8750	0.1429	0.7297	0.2286	0	189
RF-Mem	0.6720	1.0000	0.7838	0.6939	0.8750	0.1429	0.6154	0.2571	83	106
RF-Mem	0.6482	0.9688	0.7514	0.6878	0.8750	0.1429	0.5385	0.2286	97.5	91.5
(Learned)	± 0.0067	± 0.0000	± 0.0114	± 0.0255	± 0.0000	± 0.0000	± 0.0000	± 0.0000	± 6.70	± 6.70

1315
1316 Table 14: Results of the learned strategy selector on PersonaMem-128k (727 test samples).

Method	Overall	Revisit Reasons	Shared Facts	Track Evolution	Aligned Recs	Latest Prefs	New Scenarios	New Ideas	Num. of Famili.	Num. of Recol.
Dense	0.5131	0.7742	0.6410	0.6162	0.5176	0.5122	0.3529	0.3043	727	0
Recol.	0.5158	0.7634	0.5897	0.6162	0.5647	0.5366	0.3824	0.2609	0	727
RF-Mem	0.5199	0.7527	0.6410	0.6162	0.5059	0.5463	0.3824	0.2971	402	325
RF-Mem	0.5175	0.7591	0.6180	0.6091	0.5553	0.5400	0.3794	0.2718	334.4	392.6
(Learned)	± 0.0039	± 0.0055	± 0.0255	± 0.0048	± 0.0182	± 0.0108	± 0.0152	± 0.0070	± 28.33	± 28.33

1326
1327 D.7 CASE STUDY.1328
1329 D.7.1 RECOLLECTION-PATH WINNING CASE

1330 To illustrate the difference between one-shot familiarity retrieval and recollection retrieval, we con-
 1331 duct a case study on the **PersonaMem** dataset. For clarity, we set $B = 2$ and $F = 2$ in the
 1332 recollection process. Figure 18 presents the outputs under different retrieval modes for the query
 1333 “*Can you suggest some new evidence-based practices to explore for healthcare decision-making?*”.
 1334 The *Familiarity* retriever directly returns the top-10 highest-scoring entries, capturing salient but
 1335 fragmented memories such as mentions of “conventional medicine” or “therapeutic modalities.”
 1336 While efficient, this strategy surfaces isolated fragments—sometimes with noisy mentions like “try-
 1337 ing a new healthy recipe”—and fails to integrate them into a coherent chain. As a result, crucial
 1338 contextual cues that span across sessions remain overlooked, highlighting the inherent limitation of
 1339 one-shot retrieval.

1340 By contrast, the *Recollection* process unfolds in multiple rounds. At each step, retrieved items
 1341 are clustered into semantically coherent groups, and their centroids are blended with the query to
 1342 form new probes. As shown in Figure 18, this branching expansion progressively uncovers comple-
 1343 mentary evidence: for instance, $r=1$ surfaces “modern science blending with age-old methods,” $r=2$
 1344 brings in references to “gathering patient history” and “reviewing health records,” and $r=3$ integrates
 1345 higher-level anchors like “structured methodology and evidence-based practices.” This stepwise en-
 1346 richment not only reduces redundancy by grouping similar items but also reconstructs temporally
 1347 dispersed details into a coherent memory trace. Compared with the static list from *Familiarity* re-
 1348 trieval, RF-Mem’s recollection branch demonstrates a chain-like reconstruction process, aligning
 1349 with the dual-process theory by simulating deliberate, effortful recall. Ultimately, this yields more
 diagnostic and contextually grounded evidence for answering the user’s query.

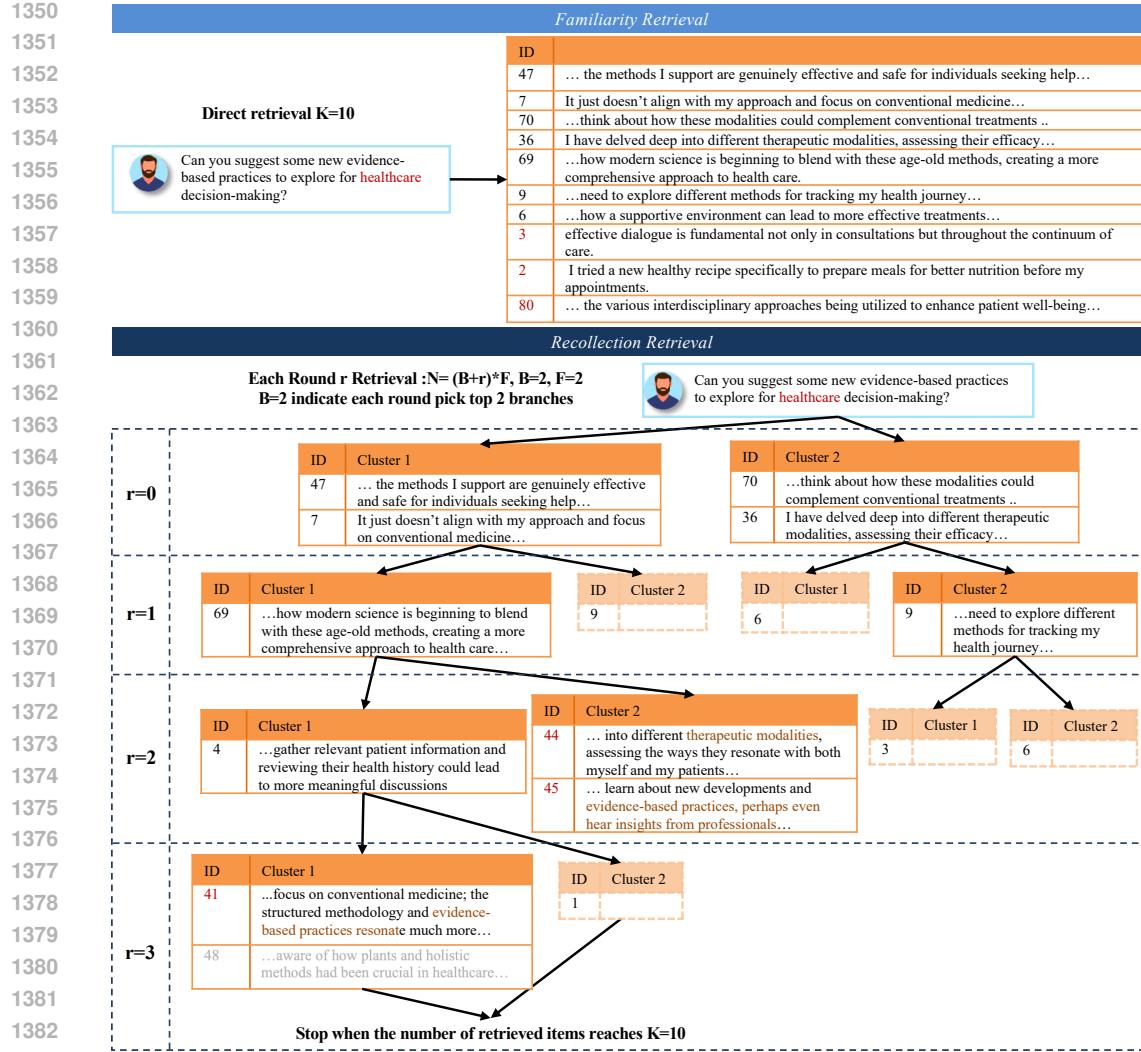


Figure 18: Case study from PersonaMem: comparison between *Familiarity* and *Recollection* retrieval where *Recollection* wins. *Familiarity* surfaces salient but fragmented evidence, while *Recollection* progressively reconstructs temporally distributed details via clustering and query refinement.

D.7.2 FAMILIARITY-PATH WINNING CASE

To analysis the failure case, we again compare one-shot *Familiarity* retrieval with the multi-round *Recollection* process on the PersonaMem dataset. As shown in Figure 19, we show the retrieval result of dual paths for the query “*I'm considering developing a tool to manage finances while traveling. How could I ensure it helps me prioritize experiences like local cuisine or guided tours?*”. *Familiarity* retrieval outperforms *Recollection* in serving the user's intent. The one-shot *Familiarity* retriever returns a broad and query-aligned set of memories, many of which explicitly mention ‘local experiences’, ‘finance management apps’, or ‘last trip’. These results directly address the user's need to “prioritize experiences while traveling,” illustrating that high-scoring surface cues can sometimes be sufficient for intent coverage.

In contrast, the multi-round *Recollection* process drifts along a different semantic trajectory. Although its iterative clustering-and-refinement mechanism successfully produces deeper and more structured traces, the retrieved branches gradually converge toward ‘long-term financial habits’ and ‘personal finance management’. This indicates that the recollection trajectory can overfit to dominant semantic clusters in the memory corpus, especially when several high-density branches are thematically coherent but misaligned with the user's immediate intent. As a result, the recollection path

1404 becomes increasingly anchored in financial-management narratives, overlooking the travel-related
 1405 aspects of the query.
 1406

1407 Despite being a bad case for retrieval accuracy, this example is instructive. It exposes a core trade-off
 1408 of deliberative recollection: the mechanism excels at reconstructing temporally dispersed, concep-
 1409 tually rich memory chains, yet it may over-emphasize internal coherence at the cost of task-oriented
 1410 alignment. This case highlights the importance of balancing depth with intent fidelity, and under-
 1411 scores the need for more precise familiarity-uncertainty-guided strategy selection in future work.
 1412

with DBSCAN and Spectral Clustering, replace the α -mix with gated mixing, and replace the entire module with graph-based expansion, while keeping all other components fixed. The comparison results in Table 15 highlight the generality of RF-Mem across diverse structural assumptions.

Table 15: Retrieval performance comparison under different recollection strategies.

Metrics	Recall@5					Recall@10				
	Basic Info	Social Info	Pref Easy	Pref Hard	Overall	Basic Info	Social Info	Pref Easy	Pref Hard	Overall
Basic KMeans										
Famili.	0.4515	0.4852	0.4904	0.3659	0.4484	0.5879	0.6220	0.6442	0.5561	0.5964
Recol.	0.4379	0.4903	0.5128	0.3854	0.4491	0.5924	0.6859	0.5659	0.6267	0.6062
RF-Mem	0.4788	0.5091	0.4872	0.3854	0.4701	0.5924	0.6799	0.5707	0.6267	0.6071
DBSCAN cluster (KMeans alternative)										
Recol.	0.4424	0.4940	0.4872	0.3512	0.4431	0.6045	0.6079	0.6891	0.5366	0.6028
RF-Mem	0.4879	0.5129	0.4744	0.3463	0.4669	0.5659	0.6079	0.6667	0.6015	0.6040
Spectral cluster (KMeans alternative)										
Recol.	0.4591	0.4739	0.5000	0.3756	0.4522	0.6045	0.5978	0.6474	0.5366	0.5957
RF-Mem	0.4818	0.4928	0.4872	0.3707	0.4651	0.6015	0.6041	0.6474	0.5610	0.6001
Gate (α-mix alternative)										
Recol.	0.4439	0.4739	0.5128	0.3902	0.4491	0.5924	0.6016	0.6795	0.5317	0.5936
RF-Mem	0.4667	0.4928	0.5000	0.3756	0.4602	0.5924	0.6079	0.6667	0.5610	0.5988
Graph + Breadth-First Search (whole alternative)										
Recol.	0.4167	0.4739	0.4872	0.3805	0.4314	0.5591	0.5887	0.5887	0.5366	0.5722
RF-Mem	0.4258	0.4739	0.4872	0.3756	0.4349	0.5742	0.6220	0.6442	0.5561	0.5899

D.8.1 DBSCAN RECOLLECTION (KMEANS ALTERNATIVE)

Experiment setup. To examine whether the assumptions of KMeans (balanced and approximately spherical clusters) influence recollection, we evaluate DBSCAN (Ester et al., 1996) as a density-based alternative. DBSCAN identifies arbitrarily shaped clusters and automatically detects noise points, providing a contrasting clustering geometry. The retrieval backbone, mixing rule, and evaluation setup remain unchanged to ensure a clean comparison between recollection mechanisms.

Findings. Results in Table 15 show that DBSCAN-based recollection performs competitively, and RF-Mem (DBSCAN) consistently improves over its recollection baseline. This demonstrates that the effectiveness of α -mixing is not tied to KMeans-specific assumptions and remains stable under density-driven neighborhood structures.

D.8.2 SPECTRAL CLUSTERING RECOLLECTION (KMEANS ALTERNATIVE)

Experiment setup. We further evaluate Spectral (Ng et al., 2001) Clustering, which identifies clusters via graph Laplacian eigenvectors and effectively models manifold-shaped structures. This setup tests whether recollection remains stable when memory clusters deviate from centroid-based geometry. All configurations follow the evaluation results summarized in Table 15.

Findings. As reported in Table 15, RF-Mem (Spectral) achieves consistent gains over the Spectral baseline, improving R@5 Overall from 0.4522 to 0.4651. These results indicate that α -mixing generalizes well across diverse cluster geometries and maintains its geometry-respecting update behavior even under manifold-structured partitions.

D.8.3 NONLINEAR GATED MIXING (α -MIX ALTERNATIVE)

Experiment setup. Motivated by nonlinear interpolation strategies, we implement a gated mixing variant in which the update coefficient is determined by a sigmoid gate applied to the similarity between the current query representation and the cluster centroid. Specifically, given the query vector $\mathbf{x}^{(r)}$ at iteration r and the corresponding centroid $\mathbf{g}_b^{(r)}$, the gated interpolation is defined as:

$$g(\mathbf{x}^{(r)}, \mathbf{g}_b^{(r)}) = \sigma(\mathbf{x}^{(r)\top} \mathbf{g}_b^{(r)}), \quad (9)$$

and the updated query is computed via:

$$\mathbf{x}_b^{(r+1)} = \text{norm}(\mathbf{g} \mathbf{x}^{(r)} + (1 - g) \mathbf{g}_b^{(r)} + \mathbf{x}_t), \quad (10)$$

1512 where $\sigma(\cdot)$ denotes the sigmoid function and \mathbf{x}_t is the original query. This formulation introduces
 1513 a nonlinear, content-adaptive interpolation mechanism that contrasts with the proposed linear α -
 1514 mixing. All experiments follow the unified evaluation protocol in Table 15 to ensure comparability.
 1515

1516 **Findings.** As shown in Table 15, gated mixing improves over Familiarity retrieval but does not
 1517 surpass the effectiveness of the proposed α -mixing rule. RF-Mem (Gate) obtains 0.4602 R@5
 1518 Overall, compared with 0.4701 for our KMeans-based implementation. The performance gap is
 1519 particularly noticeable in Social Info and Pref-Hard subsets, where recollection plays a critical role.
 1520 These results indicate that although nonlinear interpolation is a reasonable alternative, α -mixing
 1521 provides a stable and geometry-aligned update, consistent with its interpretation as a manifold-aware
 1522 update rule on the unit hypersphere.

1523 D.8.4 GRAPH-BASED RECOLLECTION (WHOLE ALTERNATIVE)

1525 **Experiment setup.** Finally, we examine a structure-free alternative by constructing a KNN
 1526 graph (Zhang et al., 2025) over a user memory corpus and performing Breadth-First Search (BFS)
 1527 expansion. This mechanism collects local neighborhoods via graph traversal rather than via cluster-
 1528 ing. The full evaluation follows the protocol summarized in Table 15.

1529 **Findings.** Table 15 shows that graph-based recollection performs weaker than clustering-based rec-
 1530 ollection. Nevertheless, RF-Mem consistently improves over its graph baseline, demonstrating the
 1531 robustness of our enhancement. The comparison suggests that clustering more effectively aggre-
 1532 gates semantically coherent neighborhoods, whereas BFS may over-expand into dense yet irrelevant
 1533 regions.

1535 D.9 FULL-EXPLORATION STUDY

1536 To further examine whether the effectiveness of RF-Mem depends on the early-stop rule used in
 1537 the recollection path, we conduct an additional analysis where the expansion process is allowed to
 1538 continue until all reachable candidates (within a predefined maximum depth) have been explored.
 1539

1540 1541 Table 16: Retrieval performance under full exploration.

1542 Metrics	1543 Recall@5					1544 Recall@10									
	1545 Methods	1546 Basic	1547 Social	1548 Pref	1549 Easy	1550 Pref	1551 Hard	1552 Overall	1553 Basic	1554 Social	1555 Pref	1556 Easy	1557 Pref	1558 Hard	1559 Overall
1550 Basic KMeans (Early-Stop)															
Famili.	0.4515	0.4852	0.4904	0.3659	0.4484	0.5879	0.6220	0.6442	0.5561	0.5964					
Recol.	0.4379	0.4903	0.5128	0.3854	0.4491	0.5924	0.6859	0.5659	0.6267	0.6062					
RF-Mem	0.4788	0.5091	0.4872	0.3854	0.4701	0.5924	0.6799	0.5707	0.6267	0.6071					
1551 Basic KMeans (Fully Exploration)															
Recol.	0.4530	0.4827	0.5128	0.3805	0.4537	0.6015	0.6204	0.6763	0.5415	0.6036					
RF-Mem	0.4848	0.5016	0.5000	0.3756	0.4709	0.6015	0.6267	0.6667	0.5659	0.6083					
1552 Graph + Breadth-First Search (Early-Stop)															
Recol.	0.4167	0.4739	0.4872	0.3805	0.4314	0.5591	0.5887	0.5887	0.5366	0.5722					
RF-Mem	0.4258	0.4739	0.4872	0.3756	0.4349	0.5742	0.6220	0.6442	0.5561	0.5899					
1553 Graph + Breadth-First Search (Fully Exploration)															
Recol.	0.4530	0.4701	0.4776	0.3902	0.4486	0.5818	0.5642	0.6635	0.5659	0.5841					
RF-Mem	0.4758	0.4890	0.4776	0.3854	0.4629	0.5924	0.6220	0.6442	0.5561	0.5986					

1556 **Experiment setup.** Unlike the default setting, in which the recollection process terminates once the
 1557 top- K quota is satisfied, this full-exploration variant aggregates the complete expanded set and per-
 1558 forms a final dense re-ranking step over all collected items. This design enables us to test whether
 1559 the proposed recollection mechanism remains robust when given a substantially larger search bud-
 1560 get. Table 16 summarizes the results for both the KMeans-based and Graph-based recollection
 1561 mechanisms under the early-stop and full-exploration settings. Across all categories, full explo-
 1562 ration increases the coverage of semantically relevant nodes, providing a stricter evaluation of the
 1563 recollection path.

1564 **Findings.** First, we observe that allowing full exploration followed by a global re-ranking step con-
 1565 sistently improves RF-Mem compared to the early-stopped variant. For instance, RF-Mem (Full)
 achieves an Overall Recall@5 of 0.4709 under KMeans, surpassing the early-stop score of 0.4701.

1566 This demonstrates that RF-Mem continues to benefit from deeper recollection when additional evi-
 1567 dence is made available, reinforcing the stability and scalability of the proposed α -mixing updates.
 1568 **Second**, under the full-exploration setting, the graph-based variant shows clear improvements over
 1569 both its early-stopped counterpart and the Familiarity (dense) baseline. RF-Mem (Graph+bfs, Full)
 1570 obtains an Overall Recall@10 of 0.5986, outperforming the early-stop result of 0.5899. This in-
 1571 dicates that graph-guided recollection, despite being weaker than KMeans in the default setting,
 1572 becomes more competitive when provided with additional traversal depth. These findings support
 1573 our broader claim that deliberate, structure-aware exploration of the memory space offers a valuable
 1574 and robust alternative formulation for retrieval.

1575 D.10 ROUTING ROBUSTNESS ACROSS EMBEDDING MODELS

1576 To assess the sensitivity of RF-Mem to the underlying embedding model, we investigate how em-
 1577 bedding quality and calibration influence routing decisions. Because both the similarity-based un-
 1579 certainty measure and the recollection path depend on the geometry of the embedding space, under-
 1580 standing the extent to which different retrievers alter routing behavior or introduce failure risks is
 1581 crucial for evaluating the robustness of the framework.

1582 **Experiment Setup** To answer the question of whether routing accuracy varies across different
 1583 retrievers, we measure routing statistics for three embedding models on PersonaBench:
 1584 multi-qa-MiniLM-L6-cos-v1, all-mpnet-base-v2, and bge-base-en-v1.5. For
 1585 each model, we record (i) routing frequencies into the familiarity and recollection branches, and
 1586 (ii) retrieval accuracy. All other components of RF-Mem remain fixed to isolate the effect of the
 1587 embedding backbone.

1588 **Findings.** Table 17 summarizes the result. We can find: **First**, Stronger retrievers route more queries
 1589 into the recollection path, while weaker retrievers rely more heavily on fast familiarity. MiniLM and
 1590 MPNet trigger substantially more recollection transitions, indicating that their embedding spaces
 1591 provide more reliable cluster structures for iterative refinement. In contrast, BGE, which exhibits
 1592 less stable similarity distributions, routes a significantly larger number of queries to familiarity. **Sec-
 1593 ond**, the routing behavior demonstrates that the mechanism adapts to the embedding geometry in
 1594 a principled way. Stronger retrievers provide clearer cluster boundaries, which encourages recol-
 1595 lection, whereas noisier or weakly calibrated embeddings shift routing toward familiarity as a more
 1596 reliable fallback.

1597
 1598 Table 17: Routing statistics and retrieval performance across different embedding models.

Retriever	Time	Route→Famili.	Route→Recol.	R@5 Overall
multi-qa-MiniLM-L6-cos-v1	9.16ms	60	203	0.4701
all-mpnet-base-v2	8.33ms	15	248	0.4009
bge-base-en-v1.5	10.14ms	140	123	0.3836

1604 E PSEUDOCODE OF RF-MEM

1605 **RF-Mem algorithm.** Algorithm 1 begins with a short probe to estimate retrieval certainty and
 1606 then switches between a fast *Familiarity* path and a deliberate *Recollection* path. Given the query
 1607 embedding \mathbf{x}_t , the retriever returns the top- k_p probe candidates and produces a temperature-scaled
 1608 score distribution p ; we compute the list entropy $H(p)$ and the mean score \bar{s} , then apply thresholds
 1609 ($\theta_{\text{high}}, \theta_{\text{low}}$) together with an entropy gate τ as specified in Eqs. (1)–(2). If the familiarity signal is
 1610 strong, that is $\bar{s} \geq \theta_{\text{high}}$ or $H(p) \leq \tau$, RF-Mem executes a one-shot *Familiarity* retrieval that returns
 1611 the top- K items by similarity. If the signal is weak, that is $\bar{s} \leq \theta_{\text{low}}$ or $H(p) > \tau$, or if the probe
 1612 yields no hits, RF-Mem invokes Algorithm 3 to perform stepwise *Recollection*. In each round r of
 1613 recollection, we retrieve top- N candidates with $N = (B + r)F$, cluster them by KMeans into at
 1614 most B groups, form a centroid for each group, and update the query by α -mixing the current query
 1615 with the centroid while retaining a residual from the original query, then continue with the resulting
 1616 queries as a beam of size B . Unique hits are accumulated across rounds, scores are aggregated per
 1617 item, and the process stops early when at least K unique items have been collected or when the
 1618 round limit R is reached. The probe therefore preserves one-shot efficiency when certainty is high,
 1619

1620 while the recollection loop builds chain-like evidence under uncertainty, where B and F regulate
 1621 breadth and α controls the balance between exploration and query stability. And theoretical analysis
 1622 can be found at Appendix F.
 1623

1624 **Algorithm 1** RF-Mem: Entropy-guided Switching Between Familiarity and Recollection (with in-
 1625 lined entropy)

1626 **Require:** Retriever \mathcal{R} with indexed memories $\{m_i\}_{i=1}^M$ and embeddings $z_i = \phi(m_i)$; query q
 1627 with embedding $x_t = \phi(q)$; probe size k_p ; temperature λ ; entropy threshold τ ; mean-score
 1628 thresholds $(\theta_{\text{high}}, \theta_{\text{low}})$; final budget K . Recollection params: beam B , fanout F , max rounds
 1629 R , mix rate α , per-round candidate size N .

1630 **Ensure:** Ranked memory set \mathcal{S} with $|\mathcal{S}| \leq K$.

```

1:  $(\mathbf{s}, \mathbf{id}) \leftarrow \mathcal{R}.\text{PROBE}(x_t, K)$  ▷ Top- $K$  probe scores
2:  $\bar{s} \leftarrow \text{mean}(\mathbf{s})$ 
3: (Calculate entropy) Let  $k \leftarrow |\mathbf{s}|$  and for  $i = 1..k$  set
4:  $z_i \leftarrow \lambda(s_i - \max_j s_j)$ ;  $p_i \leftarrow \exp(z_i) / \sum_{j=1}^k \exp(z_j)$ 
5:  $H \leftarrow -\sum_{i=1}^k p_i \log p_i$ 
6: if  $\bar{s} \geq \theta_{\text{high}}$  or  $H \leq \tau$  then
7:   return FAMILIARITYTOPK( $x_t, K, \mathcal{R}$ )
8: else if  $\bar{s} \leq \theta_{\text{low}}$  or  $H > \tau$  then
9:   return RECOLLECTION( $x_t, K, B, F, R, \alpha, N, \mathcal{R}$ )
10: end if

```

1641
 1642 **Algorithm 2** Familiarity Retrieval

1643 **Require:** Query x_t , budget K , retriever \mathcal{R}

1644 1: For each memory m_i , compute $s_i \leftarrow \langle x_t, z_i \rangle$ ▷ cosine or inner product after normalization
 1645 2: $\mathcal{S} \leftarrow$ top- K items by s_i (optionally filter by a floor)
 1646 3: **return** \mathcal{S}

1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673

1674 **Algorithm 3** Recollection Retrieval: retrieve → cluster → α -mix → iterate

1675 **Require:** $x_t, K, B, F, R, \alpha, N$, retriever \mathcal{R}

1676 **Ensure:** Ranked set \mathcal{S} with $|\mathcal{S}| \leq K$

1677 1: $x^{(0)} \leftarrow \text{norm}(x_t)$; Beam $\leftarrow \{x^{(0)}\}$; Seen $\leftarrow \emptyset$; Bag $\leftarrow \emptyset$

1678 2: **for** $r = 0$ **to** $R - 1$ **do**

1679 3: Next $\leftarrow \emptyset$; $N \leftarrow (B + r) \times F$ $\triangleright N < K$

1680 4: **for all** $x^{(r)} \in \text{Beam}$ **do**

1681 5: $C^{(r)} \leftarrow \mathcal{R}.\text{TOPN}(x^{(r)}, N)$ $\triangleright C^{(r)} = \text{Top-}N\{(m_i, \langle x^{(r)}, z_i \rangle)\}$

1682 6: Cluster $\{z_i : m_i \in C^{(r)}\}$ into $k = \min(B, |C^{(r)}|)$ groups by KMeans

1683 7: **for** $b = 1$ **to** k **do**

1684 8: $G_b^{(r)} \leftarrow \text{index set of cluster } b$; $g_b^{(r)} \leftarrow \text{norm}\left(\frac{1}{|G_b^{(r)}|} \sum_{i \in G_b^{(r)}} z_i\right)$

1685 9: $x_b^{(r+1)} \leftarrow \text{norm}(\alpha x^{(r)} + (1 - \alpha) g_b^{(r)} + x_t)$

1686 10: Append $(x_b^{(r+1)}, G_b^{(r)})$ to Next

1687 11: **end for**

1688 12: **end for**

1689 13: **if** Next $= \emptyset$ **then break**

1690 14: **end if**

1691 15: Score each $(x_b^{(r+1)}, G_b^{(r)})$ by $\sum_{i \in G_b^{(r)}} \langle x_b^{(r+1)}, z_i \rangle$; keep top- B as new Beam

1692 16: **for all** kept $(x_b^{(r+1)}, G_b^{(r)})$ **do**

1693 17: **for all** $i \in G_b^{(r)}$ **do**

1694 18: **if** $i \notin \text{Seen}$ **then** insert $(i, \langle x_b^{(r+1)}, z_i \rangle)$ into Bag; add i to Seen

1695 19: **end if**

1696 20: **end for**

1697 21: **end for**

1698 22: **if** $|\text{Bag}| \geq K$ **then break**

1699 23: **end if**

1700 24: **end for**

1701 25: For each id in Bag take top- K as \mathcal{S}

1702 26: **return** \mathcal{S}

F THEORETICAL ANALYSIS

1703 **Preliminaries.** Let the user memory be $\mathcal{M} = \{m_i\}_{i=1}^M$ with embeddings $\mathbf{z}_i = \phi(m_i)$ and a query q encoded as $\mathbf{x}_t = \phi(q)$, with unit normalization. Define similarity scores $s_i = \langle \mathbf{x}_t, \mathbf{z}_i \rangle$ and the probe list $\mathcal{C} = \text{Top-}K(\{(m_i, s_i)\}_{i=1}^M)$. Following the paper, define a tempered softmax over probe scores

$$p_i = \frac{\exp(\lambda(s_i - \max_j s_j))}{\sum_{j=1}^K \exp(\lambda(s_j - \max_\ell s_\ell))}, \quad i = 1, \dots, K, \quad (11)$$

1704 with entropy $H(p) = -\sum_{i=1}^K p_i \log p_i$ and mean similarity $\bar{s} = \frac{1}{K} \sum_{i=1}^K s_i$. The RF-Mem selection
1705 is

$$\text{Strategy}(q) = \begin{cases} \text{Familiarity,} & \bar{s} \geq \theta_{\text{high}}, \\ \text{Recollection,} & \bar{s} \leq \theta_{\text{low}}, \\ \begin{cases} \text{Familiarity,} & H(p) \leq \tau, \\ \text{Recollection,} & H(p) > \tau, \end{cases} & \theta_{\text{low}} < \bar{s} < \theta_{\text{high}}. \end{cases} \quad (12)$$

1706 In the Familiarity path, the retriever returns Top- K by s_i . In the Recollection path, the system
1707 iterates *retrieve–cluster–mix*: at round r it retrieves Top- N_r with $N_r = (B + r)F \leq K$, clusters
1708 into B groups with centroids $\mathbf{g}_b^{(r)}$, and forms recollect queries
1709

$$1710 \mathbf{x}_b^{(r+1)} = \text{norm}(\alpha \mathbf{x}^{(r)} + (1 - \alpha) \mathbf{g}_b^{(r)} + \mathbf{x}_t), \quad b = 1, \dots, B, \quad (13)$$

1711 for $r = 0, \dots, R - 1$, then returns Top- K from the union $\bigcup_{r=0}^R \mathcal{C}^{(r)}$. This matches the method
1712 description and notation in the main content.

1728 F.1 RISK-MINIMIZING SELECTION
1729

1730 We formalize the selection in equation 12 as minimizing a retrieval risk that trades correctness and
1731 cost. Let $\mathcal{E}(\text{mode} \mid q)$ denote the probability of returning an insufficient set for q under a mode
1732 $\text{mode} \in \{\text{Familiarity, Recollection}\}$, and let $C(\text{mode})$ denote the expected computation cost. For a
1733 penalty $\beta > 0$ define

$$1734 \mathcal{L}(\text{mode} \mid q) = \mathcal{E}(\text{mode} \mid q) + \beta C(\text{mode}). \quad (14)$$

1735 **Lemma 1 (Monotonicity of proxy signals)** *Assume the similarity distribution admits a monotone
1736 likelihood ratio in s_i between relevant and nonrelevant items, and that the probe softmax temper-
1737 ature λ is fixed. Then $\mathcal{E}(\text{Familiarity} \mid q)$ is nonincreasing in \bar{s} and nondecreasing in $H(p)$, while
1738 $C(\text{Familiarity}) < C(\text{Recollection})$.*

1740 *Proof.* Let $Y_i \in \{0, 1\}$ for the relevance label of item i (1 means relevant). Assume a monotone
1741 likelihood ratio for scores so the posterior relevance $\pi(s) = \Pr(Y = 1 \mid s)$ is nondecreasing in
1742 s . For Familiarity, the miss probability given scores is $\prod_{i \in K} (1 - \pi(s_i))$. Any coordinatewise
1743 increase of $(s_i)_{i \in K}$ decreases each factor, hence decreases the product, so $\mathcal{E}(\text{Familiarity} \mid q)$ is
1744 nonincreasing in \bar{s} . For entropy, softmax p is Schur-concave: smaller $H(p)$ implies larger p_{\max}
1745 and larger top margins $s_{(1)} - s_{(j)}$, which increase $\pi(s_{(1)})$ and $\sum_{i \in I_K} \pi(s_i)$, thus the product and
1746 its expectation are nonincreasing; therefore $\mathcal{E}(\text{Familiarity} \mid q)$ is nondecreasing in $H(p)$. For costs,
1747 $C(\text{Familiarity}) = \Theta(K c_{\text{sim}})$, while Recollection performs at least one extra retrieve-cluster-mix
1748 round, so $C(\text{Recollection}) \geq C(\text{Familiarity}) + R c_{\text{clust}}(B) > C(\text{Familiarity})$ for $R \geq 1$. \square

1749 **Theorem 1 (Threshold optimality within monotone policies)** *Consider the class Π of policies
1750 that are monotone in (\bar{s}, H) in the sense of Lemma 1. Within Π , a two-threshold policy of the
1751 form equation 12 minimizes the pointwise risk equation 14.*

1752 *Proof.* By Lemma 1, $\mathcal{E}(\text{Familiarity} \mid q)$ is nonincreasing in \bar{s} and nondecreasing in H . Define

$$1753 t := \mathcal{L}(\text{Recollection} \mid q), \quad f(\bar{s}, H) := \mathcal{L}(\text{Familiarity} \mid q) = \mathcal{E}(\text{Familiarity} \mid q) + \beta C(\text{Familiarity}). \quad (15)$$

1754 Then the Familiarity-region is the sublevel set

$$1755 \mathcal{D} := \{(\bar{s}, H) : f(\bar{s}, H) \leq t\}, \quad (16)$$

1756 which is a down-set in $(\bar{s} \uparrow, H \downarrow)$ (“south–east orthant”). Hence the risk-minimizing monotone
1757 policy is $\mathbf{1}_{\mathcal{D}}$. Introduce axis-aligned thresholds

$$1758 \theta_{\text{high}} := \inf\{\bar{s} : \sup_H f(\bar{s}, H) \leq t\}, \quad \theta_{\text{low}} := \sup\{\bar{s} : \inf_H f(\bar{s}, H) > t\}, \quad (17)$$

1759 and, on $\bar{s} \in (\theta_{\text{low}}, \theta_{\text{high}})$,

$$1760 H_{\star}(\bar{s}) := \inf\{H : f(\bar{s}, H) \leq t\}, \quad \tau := \sup_{\bar{s} \in (\theta_{\text{low}}, \theta_{\text{high}})} H_{\star}(\bar{s}). \quad (18)$$

1761 Therefore

$$1762 \text{Familiarity} \iff (\bar{s} \geq \theta_{\text{high}}) \text{ or } (\theta_{\text{low}} < \bar{s} < \theta_{\text{high}} \& H \leq \tau), \quad (19)$$

1763 and Recollection otherwise, which is exactly the two-threshold gate. \square

1771 F.2 AN ENTROPY CERTIFICATE FOR CORRECTNESS

1772 Let $p_{\max} = \max_i p_i$. For fixed p_{\max} , the maximal entropy occurs when the residual mass is uniform,
1773 that is

$$1774 H(p) \leq h_2(p_{\max}) + (1 - p_{\max}) \log(K - 1), \quad (20)$$

1775 where $h_2(x) = -x \log x - (1 - x) \log(1 - x)$ is the binary entropy. Define the inverse certificate

$$1776 \phi_K(\tau) = \max\{x \in [1/K, 1] : h_2(x) + (1 - x) \log(K - 1) \leq \tau\}. \quad (21)$$

1777 **Lemma 2 (Entropy certificate)** *If $H(p) \leq \tau$, then $p_{\max} \geq \phi_K(\tau)$.*

1778 *Proof.* Rearrange equation 20 and apply the definition of $\phi_K(\tau)$. \square

1782 **Proposition 1 (Bound on familiarity error under low entropy)** Suppose that returning the
 1783 *Top- K* set suffices whenever the true relevant item has $p_i \geq \rho$ for some $\rho \in (0, 1)$. Under
 1784 $H(p) \leq \tau$ with $\phi_K(\tau) \geq \rho$, the familiarity mode achieves negligible miss probability with respect
 1785 to this sufficient condition.

1786 Proposition 1 provides a certificate: a small entropy ensures a large p_{\max} , which guarantees that the
 1787 best evidence is included by *Top- K* under a mild sufficiency condition, hence Familiarity is safe
 1788 in the certified region.

1791 F.3 SUB-GAUSSIAN MEAN SIMILARITY AND GATING RELIABILITY

1793 Assume probe scores $\{s_i\}_{i=1}^K$ are independent sub-Gaussian with proxy mean μ and variance proxy
 1794 σ^2 . Let $\hat{\mu} = \bar{s}$ and fix thresholds $\theta_{\text{low}} < \theta_{\text{high}}$.

1795 **Proposition 2 (Gating error bound via concentration)** For any $\delta > 0$,

$$1798 \Pr(\hat{\mu} - \mu \leq -\delta) \leq \exp\left(-\frac{K\delta^2}{2\sigma^2}\right), \quad \Pr(\hat{\mu} - \mu \geq \delta) \leq \exp\left(-\frac{K\delta^2}{2\sigma^2}\right). \quad (22)$$

1800 If the true regime satisfies $\mu \geq \theta_{\text{high}} + \delta$ (familiar) or $\mu \leq \theta_{\text{low}} - \delta$ (unfamiliar), the probability of
 1801 mis-selection due to mean estimation is bounded by $\exp(-K\delta^2/(2\sigma^2))$.

1803 Proposition 2 shows that increasing K tightens the reliability of the mean-based selection of the
 1804 familiarity and the recollection paths.

1806 F.4 COMPLEXITY-COVERAGE TRADE-OFF

1808 Let the cost of a similarity evaluation be c_{sim} and of a B -way k -means update be $c_{\text{clust}}(B)$ on a batch
 1809 of size N_r .

1811 **Proposition 3 (Complexity bounds)** Familiarity has time $T_{\text{Fam}} = O(K c_{\text{sim}})$. Recollection with
 1812 parameters (B, F, R) has time

$$1814 T_{\text{Rec}} = O\left(\sum_{r=0}^R (N_r c_{\text{sim}} + c_{\text{clust}}(B))\right) = O(R(BF) c_{\text{sim}} + R c_{\text{clust}}(B)), \quad (23)$$

1817 since $N_r \leq (B+r)F \leq O(BF+RF)$. Therefore $T_{\text{Rec}} = O((BF+RF) c_{\text{sim}} + R c_{\text{clust}}(B))$, which
 1818 is polynomial in (B, F, R) and strictly lower than full-context processing $O(M)$ when $BF+RF \ll M$.

1821 This formalizes the method’s bounded overhead relative to full-context, consistent with empirical
 1822 latency advantages reported in the paper.

1824 **Discussion.** Lemmas 1 and 2 justify using (\bar{s}, H) as reliable control signals. Theorems 1 show that
 1825 the selection is optimal within a broad monotone class. Propositions 2 and 3 bound mis-selection
 1826 and computation. Together these results explain the empirical accuracy-latency improvements of
 1827 RF-Mem across corpora and tasks.

1829 G LLM USAGE DISCLOSURE

1832 In accordance with ICLR 2026 policy, we disclose our use of large language models (LLMs) in
 1833 preparing this manuscript. We employed GPT-5 (OpenAI) solely to aid in polishing the writing,
 1834 specifically for improving clarity, grammar, and sentence structure across sections. All technical
 1835 content, algorithmic contributions, experimental results, and scientific conclusions remain entirely
 the authors’ own work, without any LLM involvement.

1836 H LIMITATION AND FUTURE WORK

1838 **Limitations.** While RF-Mem demonstrates consistent advantages across corpora and tasks, several
1839 aspects remain simplified. First, our current evaluation is confined to dialogue-style personalized
1840 memory and does not yet explore other modalities (e.g., cross-modal histories). Second, we adopt
1841 list entropy as a lightweight uncertainty proxy; although effective, it may not fully capture finer-
1842 grained task difficulty or user intent. **Third, our uncertainty signal is based on similarity scores**
1843 **and entropy, which may not fully capture semantic ambiguity.** Finally, our retrieval operates over a
1844 static embedding index, without modeling temporal updates of memory or potential conflicts across
1845 long-term sessions. **Moreover, because RF-Mem improves the surfacing of long-term user history,**
1846 **downstream deployments should include safeguards to prevent unintended resurfacing of sensitive**
1847 **information, a direction we identify as important future work for quantifying and mitigating such**
1848 **risks.**

1849 **Future Work.** Several directions arise naturally from the above limitations. First, extending RF-
1850 Mem to multi-modal or cross-domain settings (e.g., multimodal dialogue) would allow testing its
1851 generality beyond personalized text-based memory. Second, uncertainty estimation could be en-
1852 hanced by integrating richer signals—such as calibration measures or user feedback—to comple-
1853 ment list entropy and better capture task difficulty. **In addition, incorporating semantic or contextual**
1854 **uncertainty cues beyond similarity distributions may further improve the reliability of the strategy**
1855 **selection mechanism.** Third, incorporating temporal dynamics into the memory index (e.g., recency
1856 weighting, conflict resolution, or session-aware updates) may further improve long-term personal-
1857 ization. Finally, exploring tighter integration between retrieval and generation—for example, jointly
1858 optimizing the entropy threshold with the LLM’s decoding behavior—could yield a more unified
1859 and adaptive personalized reasoning framework.

1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889