
You Only Look at Screens: Multimodal Chain-of-Action Agents

Anonymous ACL submission

Abstract

Autonomous graphical user interface (GUI)001
agents aim to facilitate task automation by in-002
teracting with the user interface without man-003
ual intervention. Recent studies have inves-004
tigated eliciting the capabilities of large lan-005
guage models (LLMs) for effective engage-006
ment in diverse environments. To align with007
the input-output requirement of LLMs, most008
existing approaches are developed under a sand-009
box setting where they rely on external tools010
and application-specific APIs to parse the en-011
vironment into textual elements and interpret012
the predicted actions. Consequently, those ap-013
proaches often grapple with inference ineffi-014
ciency and error propagation risks. To mitigate015
the challenges, we introduce Auto-GUI, a mul-016
timodal solution that directly interacts with the017
interface, bypassing the need for environment018
parsing or reliance on application-dependent019
APIs. Moreover, we propose a chain-of-action020
technique—leveraging a series of intermedi-021
ate previous action histories and future action022
plans—to help the agent decide what action to023
execute. We evaluate our approach on a new024
device-control benchmark AITW with 30K025
unique instructions, spanning multi-step tasks026
such as application operation, web searching,027
and web shopping. Experimental results show028
that Auto-GUI achieves state-of-the-art perfor-029
mance with an action type prediction accuracy030
of 90% and an overall action success rate of031
74%. Code is publicly available at Anonymous.032

1 Introduction033

Building intelligent autonomous agents that are ca-034

pable of task planning, decision making, and action035

execution in a particular environment is a long-036

standing goal of artificial intelligence (AI) (Searle,037

1969; Wooldridge and Jennings, 1995; Maes, 1995;038

Hendler, 1999). The advent of large language mod-039

els (LLMs) (Brown et al., 2020; Chowdhery et al.,040

2022; OpenAI, 2023) has flourished promising op-041

portunities for developing autonomous agents to042

assist users in completing tasks in distinct environ- 043

ments such as operation systems, specific appli- 044

cations, and web browsers (Adept, 2022; Rawles 045

et al., 2023; Liu et al., 2023; Zhou et al., 2023; 046

Wang et al., 2023c; Koh et al., 2024; Gao et al., 047

2023; Yang et al., 2023). 048

Recent studies have explored prompt engineer- 049

ing (Richards, 2023; Nakajima, 2023; Reworkd, 050

2023; Sumers et al., 2023; Liu et al., 2023) and 051

fine-tuning techniques (Rawles et al., 2023; Wen 052

et al., 2023; Sun et al., 2022) to elicit the capability 053

of language models to execute actions in interac- 054

tive environments. However, there are at least two 055

major challenges that have limited real-world ap- 056

plications of autonomous agents. 057

First, existing approaches commonly rely on 058

external tools such as optical character recogni- 059

tion (OCR) and icon detectors (Zhang et al., 2021; 060

Sunkara et al., 2022) to parse the environment into 061

textual elements (e.g., HTML layouts) as inputs 062

to a language model (Figure 1(a)) (Rawles et al., 063

2023). On the one hand, the parsed elements gen- 064

erate lengthy inputs, thus leading to inference in- 065

efficiency. Since computational latency is a key 066

measure in deployment, using lengthy inputs would 067

increase inference cost and may even exceed the 068

input length limit of the language model. On the 069

other hand, parsing the visual environment into 070

textual elements may also be prone to error propa- 071

gation or information loss because parsing mistakes 072

are inevitable using external tools. 073

Second, most existing approaches are under the 074

sand-box setting that requires accessing internal 075

APIs to interact with the environment (Zhou et al., 076

2023; Gur et al., 2023), e.g., using a JavaScript 077

element selection on a webpage or a Python inter- 078

preter to execute actions. However in practice, the 079

API interface is often inaccessible in third-party 080

applications (Apps). 081

These challenges have motivated more advanced 082

techniques that are capable of first principles think- 083

1

Screen Parsing:
OCR,

Icon Detection,
HTML Conversion

Language Model

Application-specific
API Calls

<img id=0 class=ICON_H
OME alt="Home Icon"></i
mg>
<img id=1 class=ICON_AR
ROW_UPWARD alt="Arro
w_Upward Icon">
<p id=2 class="text" alt="l
owes.com/search?searchT"
>lowes.com/search?search
T</p>

… …

<img id=48 class=ICON_N
AV_BAR_CIRCLE alt="Nav
_Bar Circle">
<img id=49 class=ICON_N
AV_BAR_RECT alt="NAV_
Bar Rect">

click [29]

(JavaScript)

Planning

Action

Memory

Action Prediction

Goal: Look up the best rated coffee maker on Lowe’s

Multimodal
Agent

action_type:

[DUAL_POINT],

touch_point:

[0.5595, 0.6261],

lift_point:

[0.5595, 0.6261]
typed_text: ””

Goal: Look up the best rated coffee maker on Lowe’s

(a) Sandbox Paradigm (b) First Principles Thinking Paradigm

Figure 1: Comparison of GUI agent paradigms. The sandbox paradigm depends on the intermediate transformation
between environments and agents, i.e., needing access to intermediate environment parsing or interval application-
dependent APIs. In contrast, our first principles thinking paradigm allows direct interactions on the screen without
intermediate transformation. Details of the action types and action points are presented in Section 3.3.

ing (Aristotle; Irwin, 1989)—allowing direct in-084

teractions on the screen without needing access085

to intermediate environment parsing or interval086

application-dependent APIs (Figure 1(b)). To ad-087

dress the challenges, we introduce Auto-GUI, a088

multimodal approach that directly interacts with089

the graphical user interfaces (GUIs). To further090

strengthen the agent’s action prediction capabil-091

ity, we propose a novel chain-of-action technique,092

where a chain of action is a series of intermediate093

previous action histories and future action plans094

that lead to action prediction.095

We evaluate Auto-GUI on a new device-control096

benchmark AITW (Rawles et al., 2023) with 30K097

unique instructions, spanning multi-step tasks of098

application operation, web searching, and web099

shopping. Experimental results show that Auto-100

GUI achieves state-of-the-art performance with an101

action type prediction accuracy of 90% and an ac-102

tion success rate of 74%.103

In summary, our work makes the following tech-104

nical contributions:105

(i) We introduce Auto-GUI, a multimodal agent106

for autonomous GUI control that can directly inter-107

act with the screens, thus circumventing the con-108

straints of environment parsing and application-109

specific API access.110

(ii) We propose a chain-of-action technique that111

leverages the previously executed actions and fu-112

ture action plans to help the agent decide what113

action to execute at each step.114

(iii) Auto-GUI achieves state-of-the-art perfor-115

mance with an action type prediction accuracy of116

90% and an action success rate of 74%. Notably, 117

Auto-GUI can infer an action as fast as within less 118

than one second. 119

2 Related Work 120

Our work falls into the field of language agents. 121

This section will first review the recent progress 122

in building language agents and then discuss the 123

approaches to conduct user interface control with 124

language agents. 125

2.1 Language Agents 126

Language agents refer to those agents that can 127

follow user instructions and interact with environ- 128

ments to complete tasks. Such agents expand the 129

landscape of language models to compete in spe- 130

cific fields, including application operation, web 131

searching, and web shopping. There are two pop- 132

ular types of language agents, autonomous agents 133

and communicative agents. Autonomous agents 134

aim to assist humans to achieve specific goals in 135

the real world. Typical examples of autonomous 136

agents are AutoGPT (Richards, 2023), BabyAGI 137

(Nakajima, 2023), and AgentGPT (Reworkd, 2023). 138

In contrast, communicative agents are personalized 139

and socialized agents (Park et al., 2023; Wang et al., 140

2023b; Zhu et al., 2023; Hong et al., 2023a) with 141

human behaviors that can communicate and collab- 142

orate with each other. They are often deployed in 143

immersive environments. 144

Inspired by the potential in real-world applica- 145

tions, this work focuses on autonomous agents, es- 146

pecially those working in mobile devices. We aim 147

2

Chain of Previous Action Histories:
action_type: type, touch_point: [-1.0, -1.0], lift_point: [-1.0, -1.0], typed_text: ”best rated coffee maker”
action_type: dual_point, touch_point: [0.2, 0.5], lift_point: [0.8, 0.5], typed_text: ””

Action Plan:
[DUAL_POINT,
STATUS_TASK_COMPLETE]

Language
Encoder

Image
Encoder

Self Attention

Decoder

Screen

Projection

Feedforward

Chain of Future Action Plans

Current Action Prediction

Action Decision:
action_type: [DUAL_POINT],
touch_point: [0.5595, 0.6261],
lift_point: [0.5595, 0.6261], typed_text: “”

Goal: Look up the best rated coffee maker on Lowe’s

Chain of Actions

𝑌!"#$%&

𝑋'%!(

𝑌)(!&

𝑋*$+#%,-

𝑋(!&'.!'/

𝑋+",//&

Action

Figure 2: Model architecture of Auto-GUI. A chain of action consists of a chain of previous action histories Xhistory
and a chain of future action plans Yplan in the illustration.

to assist users by completing multi-step tasks (e.g.,148

manipulating Apps, web shopping, and question an-149

swering) without any manual intervention. Given150

a user instruction in natural language, the agent is151

required to interpret the instruction and execute ac-152

tions by directly controlling its user interface. Due153

to the requirement in real-world applications, the154

agent is expected to be both effective and efficient.155

2.2 GUI Control with Natural Language156

Recently, LLMs have shown promise in build-157

ing autonomous GUI agents with abilities of in-158

struction following (Sanh et al., 2022; Taori et al.,159

2023b; Chiang et al., 2023) and chain-of-thought160

(CoT) prompting (Nye et al., 2022; Wei et al.,161

2022). Especially, CoT prompting (Wei et al.,162

2022; Kojima et al., 2022; Zhang et al., 2023a)163

elicit LLMs’ capacities of step-by-step planning,164

decision making, and action execution. Those ca-165

pacities have been shown to be effective in GUI166

control tasks (Rawles et al., 2023).167

However, the task environments are GUIs in-168

stead of natural language that LLMs can process169

directly. Therefore, the GUI states and actions are170

required to be converted to textual formats to be171

applicable to LLMs. For example, it is feasible172

to parse the GUI screens by icon recognition and173

OCR (Zhang et al., 2021; Sunkara et al., 2022;174

Song et al., 2023) and organize the parsed elements175

into HTML layouts. As a compromise, existing ap-176

proaches are restricted in a sandbox setting where177

they rely on external tools (Rawles et al., 2023;178

Wen et al., 2023) and application-specific APIs179

(Zhou et al., 2023; Gur et al., 2023) for environ-180

ment parsing and action interpretation; thus, com- 181

monly suffer from inference inefficiency and error 182

propagation. Although there are studies that have 183

considered multimodal architecture for processing 184

inputs in different modalities (Sun et al., 2022; Yan 185

et al., 2023), those studies still rely on fine-grained 186

environment parsing to ensure competitive perfor- 187

mance. As GUI tasks have shown prerequisites to 188

fine-grained grounding to the GUI contents, more 189

recent concurrent studies (Cheng et al., 2024; Hong 190

et al., 2023b) have explored GUI grounding pre- 191

training to improve the agent’s performance. 192

In contrast to the studies above, this work is 193

established upon first principles thinking, which 194

directly reads GUI without additional environment 195

parsing and provides the action (e.g., action type, 196

gesture coordinate, and typed text) that can be effi- 197

ciently executed without needing any extra APIs. 198

3 Methodology 199

In this section, we will first introduce the basic 200

concepts for the GUI control task and then describe 201

the design of our proposed Auto-GUI framework. 202

3.1 Problem Formalization 203

Given a user instruction (also known as a goal), 204

the agent needs to complete the task with multiple 205

steps of interactions. The entire process is called an 206

episode, which is composed of a series of screens. 207

For each step in the episode, the agent will be pro- 208

vided with a screenshot, and the agent is required 209

to predict the action until the task is complete. De- 210

tailed examples can be found in Appendix A.1. 211

3

3.2 Framework Overview212

Auto-GUI is a multimodal agent that decides what213

action to take given the input screenshot and a user214

instruction. To empower the agent’s decision mak-215

ing capability, we introduce a chain-of-action ap-216

proach by leveraging a series of intermediate pre-217

vious action histories and future action plans to218

predict actions.219

The model architecture of Auto-GUI is illus-220

trated in Figure 2. On a high level, Auto-GUI con-221

sists of three stages. First, we acquire encoded fea-222

tures from both vision and language inputs. Specifi-223

cally, the vision input, i.e., a screenshot, is encoded224

by a frozen vision encoder. Meanwhile, the lan-225

guage input, consisting of the goal and a chain of226

previous action histories—each history contains a227

tuple {action type, touch point, lift point, and typed228

text}, is encoded by a language encoder. Second,229

the encoded vision and language representations230

are integrated by a self-attention module. Third,231

the fused representation is fed to the decoder to232

generate a chain of future action plans (i.e., action233

types to execute in future steps) followed by action234

prediction. A chain of action consists of two parts235

in the procedure above: a chain of previous action236

histories on the input side and a chain of future237

action plans on the output side. In the following,238

we describe the entire procedure in detail.239

Encoding Suppose that an episode consists of k240

steps of interactions. Given a screenshot Xscreen ∈241

Rh×w×3 with height h and width w at step t ∈242

[1, k], we first feed it to a frozen image encoder243

(e.g., BLIP-2 (Li et al., 2023)) and extract vision244

features Hscreen ∈ R1×ds where ds is the dimension245

of the vision features. Additionally, we leverage a246

language encoder to extract the language features247

Hlanguage ∈ Rn×dl of the input goal Xgoal where248

n is the number of tokens and dl is the dimension249

of the language features. If t > 1, there will be250

a chain-of-action history already executed before251

step t. We denote the chain of action histories as252

Xhistory = [m1, . . . ,mt] where mi contains a tuple253

of action type, touch point, lift point, and typed text.254

Otherwise, if t = 1, Xhistory will be set empty:255

Xhistory =

{
[m1, . . . ,mt], if t > 1

<empty>, otherwise
(1)256

We concatenate Xgoal and Xhistory as the in-257

put to the language encoder: Xlanguage =258

{Xgoal, Xhistory}.259

Then, we obtain the encoded representations of 260

the vision and language inputs as follows: 261

Hscreen = VisionExtractor(Xscreen), (2) 262

H
′
screen = WHscreen, (3) 263

Hlanguage = LanguageEncoder(Xlanguage),(4) 264

where W is a trainable projection matrix to convert 265

Hscreen into the same dimensionality as Hlanguage. 266

Interaction We correlate H
′
screen and Hlanguage 267

with a single-head self-attention network (Vaswani 268

et al., 2017), where the query (Q), key (K), and 269

value (V) are Hlanguage, H
′
screen, and H

′
screen, respec- 270

tively. The attention output Hattn
screen ∈ Rn×d is de- 271

fined as: Hattn
screen = Softmax(QK⊤

√
dk

)V , where dk is 272

the same as the dimension of Hlanguage because a 273

single head is used. 274

Then, a gated fusion is adopted following prior 275

studies (Zhang et al., 2020; Wu et al., 2021; Zhang 276

et al., 2023b) to fuse Hlanguage and Hattn
screen. We have 277

the fused output Hfuse ∈ Rn×d by: 278

λ = Sigmoid(WlHlanguage +WvH
attn
vision), (5) 279

Hfuse = (1− λ) ·Hlanguage + λ ·Hattn
vision, (6) 280

where Wl and Wv are learnable parameters. 281

Decoding The fused representation Hfuse 282

is fed to a Transformer decoder to generate 283

the target predictions in a string format. The 284

target predictions consist of a chain of future 285

action plans Yplan and the current action pre- 286

diction Yaction separated by specific prompts: 287

{Action Plan: Yplan, Action Decision: Yaction}. 288

Concretely, Yplan is a chain of action types to 289

execute in future steps: Yplan = [action_typet, 290

. . . , action_typek]. Yaction contains four compo- 291

nents: Yaction = {“action_type”: <action_type>, 292

“touch_point”: <touch_point>, “lift_point”: 293

<lift_point>, “typed_text”: <typed_text>}. These 294

four components will be explained as follows. 295

3.3 Coordinate Normalization 296

Recall that a target action consists of four com- 297

ponents: action type, touch point, lift point, and 298

typed text. We consider six action types: dual- 299

point gesture, type, go_back, go_home, enter, 300

and status_complete. A dual-point gesture com- 301

prises a touch point and a lift point with [y, x] 302

coordinates. The gesture actions ensure a flex- 303

ible action space and can represent clicks and 304

scrolls at arbitrary locations. For example, a 305

4

gesture action {“touch_point”: [0.7761, 0.7089],306

“lift_point”: [0.7761, 0.7089]} means clicking at307

the coordinate [0.7761, 0.7089], while a gesture ac-308

tion {“touch_point”: [0.1898, 0.4477], “lift_point”:309

[0.8242, 0.4077]} means scrolling down. A310

type action means typing a text and the text is311

placed in the <typed_text> field. The other ac-312

tion types, i.e., go_back, go_home, enter, and313

status_complete are system actions, whose corre-314

sponding <touch_point>, <lift_point> fields are315

filled with -1, and the <typed_text> is empty.316

We observe that high-precision coordinates are317

not necessary for representing a click or scroll ac-318

tion. Therefore, we apply normalized values of the319

coordinates, which helps accelerate convergence320

and mitigate the ambiguity of coordinates. The321

normalization is applied to click and scroll actions.322

For click actions, we keep four decimal places. For323

scroll actions, we first determine the scroll direction324

with the touch and lift points. Then, we transform325

the touch and lift points into fixed directional co-326

ordinates as follows: “up”: {[0.8, 0.5], [0.2, 0.5]},327

“down”: {[0.2, 0.5], [0.8, 0.5]}, “left”: {[0.5, 0.8],328

[0.5, 0.2]}, “right”: {[0.5, 0.2], [0.5, 0.8]}, where329

{[·], [·]} consists of the touch point and lift point in330

the first [·] and second [·]. We provide examples of331

target actions in Appendix B.1.332

4 Experiments333

4.1 Dataset334

We use the AITW benchmark dataset (Rawles et al.,335

2023). AITW is a large-scale GUI control bench-336

mark dataset containing natural language instruc-337

tions, screenshots, and actions. There are 715K338

episodes spanning 30K unique instructions, cov-339

ering diverse multi-step tasks such as application340

operation, web searching, and web shopping, on341

over 350 Apps and websites. This dataset covers342

various device types and operation systems in vary-343

ing screen resolutions to ensure generality. There344

are five subsets in the benchmark dataset, namely,345

General, Install, GoogleApps, Single, and Web-346

Shopping. The details of the subsets and data statis-347

tics are presented in Appendix A.2.348

4.2 Baselines349

We adopt three types of baselines, allowing for350

a comprehensive comparison with our approach.351

The baselines encompass the in-context earning352

(ICL) and fine-tuning paradigms. They are based353

on various backbone models of different sizes.354

(i) In-context Learning LLMs. Few-shot PaLM 355

2, ChatGPT (turbo-3.5) are adopted. Following 356

prior studies (Rawles et al., 2023; Wang et al., 357

2023a), we feed the LLM a textual description 358

of the screen and a user instruction. The screen 359

is formatted as an HTML syntax, providing the 360

information of GUI elements derived from OCR 361

detection and icon detection from external tools 362

(Rawles et al., 2023). The model is required to 363

predict an action among pre-defined actions. In 364

addition, we report the results of the multimodal 365

GPT-4V by taking the vision image and action his- 366

tory as the input based on Yan et al. (2023). 367

(ii) Fine-tuned LLMs. We adopt Llama-2-7B 368

(Touvron et al., 2023) as the baseline and fine-tune 369

it with LoRA. We feed the model with the user 370

instruction and the screen descriptions in HTML 371

syntax (the same as in-context learning LLMs). 372

The model is expected to predict the action in the 373

same output format as in-context learning LLMs. 374

(iii) Specialized GUI Agent. We adopted the 375

Behavioural Cloning (BC) agent, which reported 376

the state-of-the-art performance in Rawles et al. 377

(2023). BC is a Transformer-based architecture 378

that takes a task instruction, the current screen, 379

and a stacked history of screen observations and 380

actions as input. All the embedded representations 381

are fused to predict the action by a decoder. There 382

are two BC variants, BC-single and BC-history, 383

depending on whether the model takes the screen- 384

action history as input. 385

More detailed implementation of the baselines 386

can be found in Appendix B.2. 387

4.3 Evaluation Measures 388

We compute the screen-wise action matching score 389

as the main evaluation measure, defined as the num- 390

ber of correct actions divided by the episode length. 391

A predicted action is considered correct if the ac- 392

tion type and dual-point gesture match the gold 393

ones. As we described in Section 3.3, the gesture 394

actions can represent the click actions and scroll ac- 395

tions at arbitrary locations. Following Rawles et al. 396

(2023), a click action is considered correct if its 397

touch point and lift point fall within a 14% screen 398

distance from the gold gestures or occur within the 399

same detected bounding box with the gold gestures. 400

A scroll action is considered correct if it has the 401

same scroll axis as the gold gesture. 402

The screen-wise action matching score has been 403

shown to correlate with the task complete score es- 404

timated by human evaluations (Rawles et al., 2023) 405

5

Model Unified w/o Anno. Overall General Install GoogleApps Single WebShopping

PaLM 2-CoT ✓ ✗ 39.6 - - - -
ChatGPT-CoT ✓ ✗ 7.72 5.93 4.38 10.47 9.39 8.42
GPT-4V ✓ ✗ 52.96 43.01 46.14 49.18 78.29 48.18

Fine-tuned Llama 2 ✗ ✗ 28.40 28.56 35.18 30.99 27.35 19.92

BC-single ✗ ✗ 68.7 - - - -
BC-history ✗ ✗ 73.1 63.7 77.5 75.7 80.3 68.5

Auto-GUIseparate ✗ ✓ 74.07 65.94 77.62 76.45 81.39 69.72
Auto-GUIunified ✓ ✓ 74.27 68.24 76.89 71.37 84.58 70.26

Table 1: Main results (%). Segment 1: specialized agent baselines; Segment 2: in-context learning LLM baselines;
Segment 3: fine-tuned Llama 2 baseline; Segment 4: our Auto-GUI results. Prior published best results are marked
with an underline. “Unified” means a general model that can work across subsets. “w/o Anno.” means no screen
description is needed. The PaLM-CoT and BC results are from Rawles et al. (2023). The GPT-4V result is from
Yan et al. (2023). The other results are based on our own implementations. The overall score is computed as the
average accuracy on all the subsets. The best average result is in bold face.

and is appropriate to measure the action success406

rate for user instructions. Besides the overall match-407

ing score, we will also compare the click region408

accuracy, scroll direction accuracy, action type ac-409

curacy, and typed text accuracy for a more compre-410

hensive reference (Section 5.1).411

The evaluation criteria above apply to the BC412

baselines and our Auto-GUI. For the LLMs, they413

can only click on detected GUI elements, rather414

than clicking at arbitrary locations. Therefore, we415

consider if the clicked GUI element is matched416

for click actions instead of comparing dual-point417

gestures for LLMs.418

4.4 Implementation Details419

We adopt the encoder-decoder architecture (Raf-420

fel et al., 2020) under small (60M), base (200M)421

and large (700M) settings in our framework.422

We apply FLAN-Alpaca to initialize our model423

weights.1 The vision features are obtained by the424

frozen BLIP-2 encoder (Li et al., 2023) (version:425

blip2_t5_instruct). We fine-tune the models up to426

10 epochs, with a learning rate of 1e-4. The max-427

imum input sequence length is 512. The batch428

size is 4. Our experiments are run on 8 NVIDIA429

Tesla V100 32G GPUs. Training the large and base430

models takes 75 and 25 hours, respectively.431

We develop two kinds of approaches to ana-432

lyze their generalization abilities, namely Auto-433

GUIseparate, and Auto-GUIunified. Specifically, Auto-434

GUIseparate is trained and evaluated independently435

on each subset. Auto-GUIunified is a unified model436

trained on the training sets of each subset and eval-437

uated on each test set. As the GoogleApps subset438

is 10-100 times larger than the other subsets, using439

1https://github.com/declare-lab/flan-alpaca.

Model Accuracy

Auto-GUI 74.27

w/o chain of actions 68.53
w/ previous action history 73.78
w/ future action plan 68.81

w/o coordinate normalization 70.23

Table 2: Ablation study of Auto-GUI.

all the training data to train a unified model would 440

suffer from the data imbalance issue (Zhang et al., 441

2022). Therefore, we only use 10% training data 442

of GoogleApps. At the same time, the overall com- 443

putation cost can also be saved by 80%. We use 444

Auto-GUIunified as the default model for analysis 445

unless otherwise stated. 446

4.5 Main Results 447

Table 1 shows the main results. Based on the re- 448

sults, we have the following observations. 449

(i) Auto-GUIunified achieves the best overall per- 450

formance compared with all the baselines. Com- 451

pared with separate (not unified) models, Auto- 452

GUIunified shows general effectiveness across var- 453

ious tasks. The results show that a unified multi- 454

modal model out of first principles thinking can 455

serve as a strong autonomous agent. Compared 456

with previous BC models, Auto-GUIunified has two 457

major advantages. First, Auto-GUIunified is a uni- 458

fied model that can be adapted to different scenar- 459

ios without the need to train specific models for 460

each task. Second, Auto-GUIunified does not need 461

additional annotations and is more practical in real- 462

world applications. Furthermore, Auto-GUI yields 463

divergent performance across subsets. We provide 464

the explanation in Appendix C.1 to save space. 465

6

https://github.com/declare-lab/flan-alpaca

0 2 4 6 8 10 12
50

55

60

65

70

(a) Previous Actions

A
cc

ur
ac

y

0 2 4 6 8 10 12
50

55

60

65

70

(b) Previous Actions w/ Screens
2 4 6 8 10

52

54

56

58

(c) Future Plans

Figure 3: Performance of Auto-GUI with respect to varying numbers of chains of actions.

General Install GoogleApps Single WebShopping
50

60

70

80

90

100

A
cc

ur
ac

y
(%

)

Click (67.4%) Scroll (82.0%) Action Type (90.1%) Typed Text (93.1%)

Figure 4: Category accuracy of Auto-GUI. Values in parentheses represent the average accuracy on the subsets.

(ii) Both the chain of actions and coordinate nor-466

malization contribute to the overall performance467

(+5.74% and 4.04%, respectively), as evidenced468

by the ablation study in Table 2. Additionally, we469

set the maximum numbers of the previous actions470

and future actions to 8 and 4, respectively. The471

choice is made according to our analysis of the472

General subset with Auto-GUIseparate (Figure 3).473

The model under those setups achieves the opti-474

mal performance, and neither the input nor output475

sequence lengths exceed the model limit.476

(iii) For the LLMs, using either prompting or477

fine-tuning techniques does not achieve competi-478

tive performance compared with multimodal ap-479

proaches. The most plausible reason is that they480

learn from the parsed HTML elements of the screen481

so that they may suffer from information loss com-482

pared with more informative vision features of the483

screens. Specifically, we find that ChatGPT is quite484

accurate at predicting the action type but fails at485

lower-level executions (Appendix C.4).486

5 Analysis487

5.1 Category accuracy488

To dive into the capability of Auto-GUI, we cal-489

culate the click region accuracy, scroll direction490

accuracy, action type accuracy, and typed text ac-491

curacy. Figure 4 presents the results. We see that492

Auto-GUI achieves over 90% action type accuracy493

on average. In contrast, the major challenges lie494

General Install GoogleApps SingleWebShopping

General

Install

GoogleApps

Single

WebShopping

Unified

66 52 39 17 38

45 78 42 16 29

52 48 76 21 34

25 17 18 81 34

52 35 32 30 70

68 77 71 85 70
20

30

40

50

60

70

80

Figure 5: Dataset transfer results of Auto-GUI.

within the click region and scroll direction predic- 495

tions. Although the model is able to predict the 496

right action most of the time, it tends to click a 497

wrong place or scroll in a wrong direction. The 498

result reveals a future direction of improving the 499

model’s ability to understand the screen layouts, 500

e.g., using more advanced vision features. 501

5.2 Generalization Ability 502

As our approach is designed under first principles 503

thinking and does not rely on pre-defined internal 504

APIs, it could be easily generalized to new task 505

domains. To verify the generality, we evaluate the 506

performance of Auto-GUIseparate on each subset in 507

Figure 5. For example, we train an Auto-GUIseparate 508

model on the training set of General and then test 509

its performance on the tests of each subset. 510

7

Model Overall General Install GoogleApps Single WebShopping

Auto-GUI on CLIP 71.84 66.28 74.40 69.71 81.60 67.23
Auto-GUI on BLIP-2 74.27 68.24 76.89 71.37 84.58 70.26

Auto-GUI on Vanilla-T5large 72.98 66.61 75.40 70.86 83.47 68.54
Auto-GUI on FLAN-T5large 73.36 67.59 76.35 70.71 83.01 69.12
Auto-GUI on FLAN-Alpacalarge 74.27 68.24 76.89 71.37 84.58 70.26

Auto-GUI on FLAN-Alpacasmall 71.38 65.26 74.90 68.70 81.20 66.83
Auto-GUI on FLAN-Alpacabase 72.84 66.97 75.93 70.29 82.56 68.46
Auto-GUI on FLAN-Alpacalarge 74.27 68.24 76.89 71.37 84.58 70.26

Table 3: Results varying vision features and pre-trained language model weights.

Model Feature Extraction (s/n) Model Inference (s/n) Peak GPU Memory (GB)

Auto-GUIbase 0.06 0.19 (45x) 4.6 (10x)
Auto-GUIlarge 0.06 0.59 (15x) 8.2 (6x)

Llama 2 - 8.5 49.7

Table 4: Computation cost of Auto-GUI and Llama. “s/n” is computed by time (s) divided by the number of
inferences (n). Llama 2 is hosted with 8-bit quantization and float16 precision to improve the inference speed.

We see that our approach is able to achieve a de-511

cent performance, though the domains vary. This512

result reveals that the model could capture gen-513

eral knowledge for the GUI control task; thus is514

applicable to different domains. In addition, the515

unified model Auto-GUIunified can serve as a po-516

tential choice in real-world applications owing to517

more coverage of training data.518

5.3 Comprehensive Analysis519

Here, we present a comprehensive analysis of the520

choice of pre-trained features and model scale. The521

results are summarized in Table 3.522

• Pre-trained Features. There are two kinds of523

pre-trained features used in this work, the vision524

features and language model weights. For vision525

features, we compare two popular types, CLIP526

(Radford et al., 2021) and BLIP-2 (Li et al., 2023).527

We observe that BLIP-2 achieves relatively better528

performance. Therefore, we use BLIP-2 by de-529

fault in Auto-GUI. For pre-trained language model530

weights, we compare initializing the model with the531

vanilla T5 (Raffel et al., 2020), FLAN-T5 (Chung532

et al., 2022), and FLAN-Alpaca (Taori et al., 2023a)533

weights under the large size. We see that FLAN-534

Alpaca achieves the best performance as it has been535

optimized with Stanford Alpaca synthetic instruc-536

tion tuning data.537

• Model Scale. Compared with the performance538

gains from our technique components (chain of ac-539

tions and coordinate normalization) in Table 2, the540

benefit of scaling parameter size becomes relatively541

marginal. As we observe that a larger model size542

does not lead to dramatic improvement in perfor-543

mance, we do not scale the model scale but focus 544

on the base (220M) and large (770M) models in 545

this work. In addition, our choice is also based on 546

other considerations, including the constriction of 547

GPU memory and computation budget. 548

5.4 Computation Cost 549

Table 4 compares the inference speed and GPU 550

memory cost for Auto-GUI and Llama 2. Auto- 551

GUI is able to achieve nearly real-time inference 552

(within less than one second for an action predic- 553

tion) with less than 10GB GPU memory. The in- 554

ference speed is over 10 times faster than Llama 2. 555

Our work shows the strength of the medium-sized 556

language model in building autonomous agents, 557

which is able to achieve competitive performance 558

with fast inference speed and modest resource cost. 559

6 Conclusion 560

This work presents an autonomous GUI agent 561

called Auto-GUI that can interact in a multimodal 562

GUI environment without environment parsing or 563

application-dependent API access. In addition, 564

we propose a chain-of-action technique that lever- 565

ages the previously executed actions and future 566

action plans to help the agent decide what action 567

to execute. Experimental results show that Auto- 568

GUI achieves superior performance to previous 569

prompting-based and fine-tuning baselines, verify- 570

ing that a unified multimodal model out of first prin- 571

ciples thinking can serve as a strong autonomous 572

agent. Besides the strong performance and gener- 573

ality across domains, Auto-GUI infers as fast as 574

within less than one second. 575

8

Limitations576

We acknowledge two primary limitations in our577

study. First, we opted not to extend the approach578

to extremely large models because our work aims579

to provide a simple yet effective solution for au-580

tonomous GUI agents. Besides, our empirical re-581

sults indicate that increasing model sizes does not582

result in significant performance gains for the task.583

Second, our experiments and analysis were exclu-584

sively conducted on AITW, which is the largest-585

scale and widely recognized benchmark dataset in586

the research line of autonomous GUI agents, to pro-587

vide timely and pertinent insights. Given the rapid588

development of the field, we anticipate future stud-589

ies to explore the application of our approach on590

other benchmark datasets as they become available.591

References592

Adept. 2022. Act-1: Transformer for actions.593
https://www.adept.ai/act.594

Aristotle. Physics 184a10–21.595

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie596
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind597
Neelakantan, Pranav Shyam, Girish Sastry, Amanda598
Askell, Sandhini Agarwal, Ariel Herbert-Voss,599
Gretchen Krueger, Tom Henighan, Rewon Child,600
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,601
Clemens Winter, Christopher Hesse, Mark Chen, Eric602
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,603
Jack Clark, Christopher Berner, Sam McCandlish,604
Alec Radford, Ilya Sutskever, and Dario Amodei.605
2020. Language models are few-shot learners. In Ad-606
vances in Neural Information Processing Systems 33:607
Annual Conference on Neural Information Process-608
ing Systems 2020, NeurIPS 2020, December 6-12,609
2020, virtual.610

Kanzhi Cheng, Qiushi Sun, Yougang Chu, Fangzhi Xu,611
Yantao Li, Jianbing Zhang, and Zhiyong Wu. 2024.612
Seeclick: Harnessing gui grounding for advanced613
visual gui agents. ArXiv preprint, abs/2401.10935.614

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,615
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan616
Zhuang, Yonghao Zhuang, Joseph E Gonzalez,617
et al. 2023. Vicuna: An open-source chat-618
bot impressing gpt-4 with 90%* chatgpt quality.619
https://vicuna.lmsys.org.620

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,621
Maarten Bosma, Gaurav Mishra, Adam Roberts,622
Paul Barham, Hyung Won Chung, Charles Sutton,623
Sebastian Gehrmann, et al. 2022. Palm: Scaling624
language modeling with pathways. ArXiv preprint,625
abs/2204.02311.626

Hyung Won Chung, Le Hou, Shayne Longpre, Bar- 627
ret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi 628
Wang, Mostafa Dehghani, Siddhartha Brahma, et al. 629
2022. Scaling instruction-finetuned language models. 630
ArXiv preprint, abs/2210.11416. 631

Difei Gao, Lei Ji, Zechen Bai, Mingyu Ouyang, Peiran 632
Li, Dongxing Mao, Qinchen Wu, Weichen Zhang, 633
Peiyi Wang, Xiangwu Guo, et al. 2023. Assistgui: 634
Task-oriented desktop graphical user interface au- 635
tomation. ArXiv preprint, abs/2312.13108. 636

Izzeddin Gur, Hiroki Furuta, Austin Huang, Mustafa 637
Safdari, Yutaka Matsuo, Douglas Eck, and Aleksan- 638
dra Faust. 2023. A real-world webagent with plan- 639
ning, long context understanding, and program syn- 640
thesis. ArXiv preprint, abs/2307.12856. 641

James Hendler. 1999. Is there an intelligent agent in 642
your future? Nature, 11. 643

Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng 644
Cheng, Jinlin Wang, Ceyao Zhang, Zili Wang, Steven 645
Ka Shing Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran, 646
Lingfeng Xiao, and Chenglin Wu. 2023a. Metagpt: 647
Meta programming for multi-agent collaborative 648
framework. 649

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng 650
Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan Wang, 651
Yuxiao Dong, Ming Ding, et al. 2023b. Cogagent: A 652
visual language model for gui agents. ArXiv preprint, 653
abs/2312.08914. 654

Terence Irwin. 1989. Aristotle’s first principles. Claren- 655
don Press. 656

Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram 657
Duvvur, Ming Chong Lim, Po-Yu Huang, Graham 658
Neubig, Shuyan Zhou, Ruslan Salakhutdinov, and 659
Daniel Fried. 2024. Visualwebarena: Evaluating mul- 660
timodal agents on realistic visual web tasks. ArXiv 661
preprint, abs/2401.13649. 662

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu- 663
taka Matsuo, and Yusuke Iwasawa. 2022. Large 664
language models are zero-shot reasoners. ArXiv 665
preprint, abs/2205.11916. 666

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. 667
2023. Blip-2: Bootstrapping language-image pre- 668
training with frozen image encoders and large lan- 669
guage models. ArXiv preprint, abs/2301.12597. 670

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu 671
Lei, Hanyu Lai, Yu Gu, Hangliang Ding, Kaiwen 672
Men, Kejuan Yang, et al. 2023. Agentbench: Evalu- 673
ating llms as agents. ArXiv preprint, abs/2308.03688. 674

Pattie Maes. 1995. Agents that reduce work and infor- 675
mation overload. In Readings in human–computer 676
interaction, pages 811–821. Elsevier. 677

Yohei Nakajima. 2023. Babyagi. 678
https://github.com/yoheinakajima/babyagi. 679

9

https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://arxiv.org/abs/2401.10935
https://arxiv.org/abs/2401.10935
https://arxiv.org/abs/2401.10935
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2210.11416
https://arxiv.org/abs/2312.13108
https://arxiv.org/abs/2312.13108
https://arxiv.org/abs/2312.13108
https://arxiv.org/abs/2312.13108
https://arxiv.org/abs/2312.13108
https://arxiv.org/abs/2307.12856
https://arxiv.org/abs/2307.12856
https://arxiv.org/abs/2307.12856
https://arxiv.org/abs/2307.12856
https://arxiv.org/abs/2307.12856
http://arxiv.org/abs/2308.00352
http://arxiv.org/abs/2308.00352
http://arxiv.org/abs/2308.00352
http://arxiv.org/abs/2308.00352
http://arxiv.org/abs/2308.00352
https://arxiv.org/abs/2312.08914
https://arxiv.org/abs/2312.08914
https://arxiv.org/abs/2312.08914
https://arxiv.org/abs/2401.13649
https://arxiv.org/abs/2401.13649
https://arxiv.org/abs/2401.13649
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2301.12597
https://arxiv.org/abs/2301.12597
https://arxiv.org/abs/2301.12597
https://arxiv.org/abs/2301.12597
https://arxiv.org/abs/2301.12597
https://arxiv.org/abs/2308.03688
https://arxiv.org/abs/2308.03688
https://arxiv.org/abs/2308.03688

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari,680
Henryk Michalewski, Jacob Austin, David Bieber,681
David Dohan, Aitor Lewkowycz, Maarten Bosma,682
David Luan, et al. 2022. Show your work: Scratch-683
pads for intermediate computation with language684
models. In Deep Learning for Code Workshop.685

OpenAI. 2023. Gpt-4 technical report.686

Joon Sung Park, Joseph C O’Brien, Carrie J Cai, Mered-687
ith Ringel Morris, Percy Liang, and Michael S Bern-688
stein. 2023. Generative agents: Interactive simulacra689
of human behavior. ArXiv preprint, abs/2304.03442.690

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya691
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-692
try, Amanda Askell, Pamela Mishkin, Jack Clark,693
Gretchen Krueger, and Ilya Sutskever. 2021. Learn-694
ing transferable visual models from natural language695
supervision. In Proceedings of the 38th International696
Conference on Machine Learning, ICML 2021, 18-24697
July 2021, Virtual Event, volume 139 of Proceedings698
of Machine Learning Research, pages 8748–8763.699
PMLR.700

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine701
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,702
Wei Li, and Peter J. Liu. 2020. Exploring the limits703
of transfer learning with a unified text-to-text trans-704
former. J. Mach. Learn. Res., 21:140:1–140:67.705

Christopher Rawles, Alice Li, Daniel Rodriguez, Ori-706
ana Riva, and Timothy P Lillicrap. 2023. An-707
droidinthewild: A large-scale dataset for android de-708
vice control. In Thirty-seventh Conference on Neural709
Information Processing Systems Datasets and Bench-710
marks Track.711

Reworkd. 2023. Agentgpt.712
https://github.com/reworkd/AgentGPT.713

Toran Bruce Richards. 2023. Auto-gpt: An autonomous714
gpt-4 experiment. https://github.com/Significant-715
Gravitas/Auto-GPT.716

Victor Sanh, Albert Webson, Colin Raffel, Stephen H.717
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine718
Chaffin, Arnaud Stiegler, Arun Raja, Manan Dey,719
M Saiful Bari, Canwen Xu, Urmish Thakker,720
Shanya Sharma Sharma, Eliza Szczechla, Taewoon721
Kim, Gunjan Chhablani, Nihal V. Nayak, Debajyoti722
Datta, Jonathan Chang, Mike Tian-Jian Jiang, Han723
Wang, Matteo Manica, Sheng Shen, Zheng Xin Yong,724
Harshit Pandey, Rachel Bawden, Thomas Wang, Tr-725
ishala Neeraj, Jos Rozen, Abheesht Sharma, An-726
drea Santilli, Thibault Févry, Jason Alan Fries, Ryan727
Teehan, Teven Le Scao, Stella Biderman, Leo Gao,728
Thomas Wolf, and Alexander M. Rush. 2022. Multi-729
task prompted training enables zero-shot task gener-730
alization. In The Tenth International Conference on731
Learning Representations, ICLR 2022, Virtual Event,732
April 25-29, 2022. OpenReview.net.733

John R Searle. 1969. Speech acts: An essay in the734
philosophy of language, volume 626. Cambridge735
university press.736

Yunpeng Song, Yiheng Bian, Yongtao Tang, and 737
Zhongmin Cai. 2023. Navigating interfaces with 738
ai for enhanced user interaction. ArXiv preprint, 739
abs/2312.11190. 740

Theodore Sumers, Shunyu Yao, Karthik Narasimhan, 741
and Thomas L Griffiths. 2023. Cognitive ar- 742
chitectures for language agents. ArXiv preprint, 743
abs/2309.02427. 744

Liangtai Sun, Xingyu Chen, Lu Chen, Tianle Dai, 745
Zichen Zhu, and Kai Yu. 2022. META-GUI: To- 746
wards multi-modal conversational agents on mobile 747
GUI. In Proceedings of the 2022 Conference on 748
Empirical Methods in Natural Language Processing, 749
pages 6699–6712, Abu Dhabi, United Arab Emirates. 750
Association for Computational Linguistics. 751

Srinivas Sunkara, Maria Wang, Lijuan Liu, Gilles 752
Baechler, Yu-Chung Hsiao, Jindong Chen, Abhan- 753
shu Sharma, and James W. W. Stout. 2022. To- 754
wards better semantic understanding of mobile inter- 755
faces. In Proceedings of the 29th International Con- 756
ference on Computational Linguistics, pages 5636– 757
5650, Gyeongju, Republic of Korea. International 758
Committee on Computational Linguistics. 759

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann 760
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang, 761
and Tatsunori B Hashimoto. 2023a. Alpaca: A 762
strong, replicable instruction-following model. Stan- 763
ford Center for Research on Foundation Models. 764
https://crfm. stanford. edu/2023/03/13/alpaca. html. 765

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann 766
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang, 767
and Tatsunori B Hashimoto. 2023b. Stanford 768
alpaca: An instruction-following llama model. 769
https://github.com/tatsu-lab/stanford_alpaca. 770

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 771
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 772
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 773
Bhosale, et al. 2023. Llama 2: Open founda- 774
tion and fine-tuned chat models. ArXiv preprint, 775
abs/2307.09288. 776

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 777
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz 778
Kaiser, and Illia Polosukhin. 2017. Attention is all 779
you need. In Advances in Neural Information Pro- 780
cessing Systems 30: Annual Conference on Neural 781
Information Processing Systems 2017, December 4-9, 782
2017, Long Beach, CA, USA, pages 5998–6008. 783

Bryan Wang, Gang Li, and Yang Li. 2023a. Enabling 784
conversational interaction with mobile ui using large 785
language models. In Proceedings of the 2023 CHI 786
Conference on Human Factors in Computing Systems, 787
pages 1–17. 788

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Man- 789
dlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and An- 790
ima Anandkumar. 2023b. Voyager: An open-ended 791
embodied agent with large language models. ArXiv 792
preprint, abs/2305.16291. 793

10

http://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2304.03442
https://arxiv.org/abs/2304.03442
https://arxiv.org/abs/2304.03442
http://proceedings.mlr.press/v139/radford21a.html
http://proceedings.mlr.press/v139/radford21a.html
http://proceedings.mlr.press/v139/radford21a.html
http://proceedings.mlr.press/v139/radford21a.html
http://proceedings.mlr.press/v139/radford21a.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://openreview.net/forum?id=j4b3l5kOil
https://openreview.net/forum?id=j4b3l5kOil
https://openreview.net/forum?id=j4b3l5kOil
https://openreview.net/forum?id=j4b3l5kOil
https://openreview.net/forum?id=j4b3l5kOil
https://openreview.net/forum?id=9Vrb9D0WI4
https://openreview.net/forum?id=9Vrb9D0WI4
https://openreview.net/forum?id=9Vrb9D0WI4
https://openreview.net/forum?id=9Vrb9D0WI4
https://openreview.net/forum?id=9Vrb9D0WI4
https://arxiv.org/abs/2312.11190
https://arxiv.org/abs/2312.11190
https://arxiv.org/abs/2312.11190
https://arxiv.org/abs/2309.02427
https://arxiv.org/abs/2309.02427
https://arxiv.org/abs/2309.02427
https://aclanthology.org/2022.emnlp-main.449
https://aclanthology.org/2022.emnlp-main.449
https://aclanthology.org/2022.emnlp-main.449
https://aclanthology.org/2022.emnlp-main.449
https://aclanthology.org/2022.emnlp-main.449
https://aclanthology.org/2022.coling-1.497
https://aclanthology.org/2022.coling-1.497
https://aclanthology.org/2022.coling-1.497
https://aclanthology.org/2022.coling-1.497
https://aclanthology.org/2022.coling-1.497
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://arxiv.org/abs/2305.16291
https://arxiv.org/abs/2305.16291
https://arxiv.org/abs/2305.16291

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao794
Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai Tang,795
Xu Chen, Yankai Lin, et al. 2023c. A survey on large796
language model based autonomous agents. ArXiv797
preprint, abs/2308.11432.798

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten799
Bosma, Ed Chi, Quoc Le, and Denny Zhou. 2022.800
Chain of thought prompting elicits reasoning in large801
language models. ArXiv preprint, abs/2201.11903.802

Hao Wen, Yuanchun Li, Guohong Liu, Shanhui Zhao,803
Tao Yu, Toby Jia-Jun Li, Shiqi Jiang, Yunhao Liu,804
Yaqin Zhang, and Yunxin Liu. 2023. Empowering805
llm to use smartphone for intelligent task automation.806
ArXiv preprint, abs/2308.15272.807

Michael Wooldridge and Nicholas R Jennings. 1995. In-808
telligent agents: Theory and practice. The knowledge809
engineering review, 10(2):115–152.810

Zhiyong Wu, Lingpeng Kong, Wei Bi, Xiang Li, and811
Ben Kao. 2021. Good for misconceived reasons: An812
empirical revisiting on the need for visual context813
in multimodal machine translation. In Proceedings814
of the 59th Annual Meeting of the Association for815
Computational Linguistics and the 11th International816
Joint Conference on Natural Language Processing817
(Volume 1: Long Papers), pages 6153–6166, Online.818
Association for Computational Linguistics.819

An Yan, Zhengyuan Yang, Wanrong Zhu, Kevin Lin,820
Linjie Li, Jianfeng Wang, Jianwei Yang, Yiwu Zhong,821
Julian McAuley, Jianfeng Gao, et al. 2023. Gpt-822
4v in wonderland: Large multimodal models for823
zero-shot smartphone gui navigation. ArXiv preprint,824
abs/2311.07562.825

Zhao Yang, Jiaxuan Liu, Yucheng Han, Xin Chen, Ze-826
biao Huang, Bin Fu, and Gang Yu. 2023. Appa-827
gent: Multimodal agents as smartphone users. ArXiv828
preprint, abs/2312.13771.829

Xiaoyi Zhang, Lilian de Greef, Amanda Swearngin,830
Samuel White, Kyle Murray, Lisa Yu, Qi Shan, Jef-831
frey Nichols, Jason Wu, Chris Fleizach, et al. 2021.832
Screen recognition: Creating accessibility metadata833
for mobile applications from pixels. In Proceedings834
of the 2021 CHI Conference on Human Factors in835
Computing Systems, pages 1–15.836

Zhuosheng Zhang, Kehai Chen, Rui Wang, Masao837
Utiyama, Eiichiro Sumita, Zuchao Li, and Hai Zhao.838
2020. Neural machine translation with universal839
visual representation. In 8th International Confer-840
ence on Learning Representations, ICLR 2020, Addis841
Ababa, Ethiopia, April 26-30, 2020. OpenReview.net.842

Zhuosheng Zhang, Shuohang Wang, Yichong Xu,843
Yuwei Fang, Wenhao Yu, Yang Liu, Hai Zhao, Chen-844
guang Zhu, and Michael Zeng. 2022. Task com-845
pass: Scaling multi-task pre-training with task prefix.846
In Findings of the Association for Computational847
Linguistics: EMNLP 2022, pages 5671–5685, Abu848
Dhabi, United Arab Emirates. Association for Com-849
putational Linguistics.850

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex 851
Smola. 2023a. Automatic chain of thought prompt- 852
ing in large language models. In The Eleventh Inter- 853
national Conference on Learning Representations. 854

Zhuosheng Zhang, Aston Zhang, Mu Li, Hai Zhao, 855
George Karypis, and Alex Smola. 2023b. Multi- 856
modal chain-of-thought reasoning in language mod- 857
els. ArXiv preprint, abs/2302.00923. 858

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, 859
Robert Lo, Abishek Sridhar, Xianyi Cheng, Yonatan 860
Bisk, Daniel Fried, Uri Alon, et al. 2023. Webarena: 861
A realistic web environment for building autonomous 862
agents. ArXiv preprint, abs/2307.13854. 863

Xizhou Zhu, Yuntao Chen, Hao Tian, Chenxin Tao, Wei- 864
jie Su, Chenyu Yang, Gao Huang, Bin Li, Lewei Lu, 865
Xiaogang Wang, et al. 2023. Ghost in the minecraft: 866
Generally capable agents for open-world enviroments 867
via large language models with text-based knowledge 868
and memory. ArXiv preprint, abs/2305.17144. 869

11

https://arxiv.org/abs/2308.11432
https://arxiv.org/abs/2308.11432
https://arxiv.org/abs/2308.11432
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2308.15272
https://arxiv.org/abs/2308.15272
https://arxiv.org/abs/2308.15272
https://doi.org/10.18653/v1/2021.acl-long.480
https://doi.org/10.18653/v1/2021.acl-long.480
https://doi.org/10.18653/v1/2021.acl-long.480
https://doi.org/10.18653/v1/2021.acl-long.480
https://doi.org/10.18653/v1/2021.acl-long.480
https://arxiv.org/abs/2311.07562
https://arxiv.org/abs/2311.07562
https://arxiv.org/abs/2311.07562
https://arxiv.org/abs/2311.07562
https://arxiv.org/abs/2311.07562
https://arxiv.org/abs/2312.13771
https://arxiv.org/abs/2312.13771
https://arxiv.org/abs/2312.13771
https://openreview.net/forum?id=Byl8hhNYPS
https://openreview.net/forum?id=Byl8hhNYPS
https://openreview.net/forum?id=Byl8hhNYPS
https://aclanthology.org/2022.findings-emnlp.416
https://aclanthology.org/2022.findings-emnlp.416
https://aclanthology.org/2022.findings-emnlp.416
https://arxiv.org/abs/2302.00923
https://arxiv.org/abs/2302.00923
https://arxiv.org/abs/2302.00923
https://arxiv.org/abs/2302.00923
https://arxiv.org/abs/2302.00923
https://arxiv.org/abs/2307.13854
https://arxiv.org/abs/2307.13854
https://arxiv.org/abs/2307.13854
https://arxiv.org/abs/2307.13854
https://arxiv.org/abs/2307.13854
https://arxiv.org/abs/2305.17144
https://arxiv.org/abs/2305.17144
https://arxiv.org/abs/2305.17144
https://arxiv.org/abs/2305.17144
https://arxiv.org/abs/2305.17144
https://arxiv.org/abs/2305.17144
https://arxiv.org/abs/2305.17144

A Data Details870

A.1 Data Examples871

We show the data examples from the AITW bench-872

mark dataset (Rawles et al., 2023). Figures 6-9873

show the examples in each subset, i.e., General, In-874

stall, GoogleApps, Single, and WebShopping. The875

gold actions for each screen are depicted in the876

illustrations for reference.877

A.2 Data Statistics878

We use the AITW benchmark dataset (Rawles et al.,879

2023). AITW is a large-scale benchmark dataset880

for GUI control, which contains natural language881

instructions, screenshots, and actions. There are882

715K episodes spanning 30K unique instructions,883

covering diverse multi-step tasks such as applica-884

tion operation, web searching, and web shopping,885

on over 350 Apps and websites. This dataset covers886

various device types and operation systems in vary-887

ing screen resolutions to ensure generality. There888

are five subsets in the benchmark dataset: General,889

Install, GoogleApps, Single, and WebShopping.890

(i) General contains miscellaneous tasks that891

need interaction with third-party Apps and web-892

sites, as well as question answering.893

(ii) Install contains tasks related to installing,894

uninstalling, logging Apps, and App login support.895

(iii) GoogleApps contains tasks about manipu-896

lating various Google applications such as Gmail,897

Calendar, Photos, and Settings.898

(iv) Single contains atomic tasks (e.g., “upvote899

the post”) whose preceding actions have been al-900

ready completed (e.g., opening Instagram, going to901

home feed, looking at a post).902

(v) WebShopping contains tasks related to online903

shopping on E-commerce websites, e.g., searching904

for an item, adding an item to the cart, and viewing905

the shopping cart.906

Table 5 presents the data statistics of the AITW907

dataset. Each subset is split episode-wise into a908

training, validation, and test set (80/10/10%).909

Dataset Episodes Screens Instructions

General 9,476 85,413 545
Install 25,760 250,058 688
GoogleApps 625,542 4,903,601 306
Single 26,303 85,668 15,366
WebShopping 28,061 365,253 13,473

Table 5: Dataset statistics.

0 100 200 300 400 500

0

200

400

600

800

1000

0 100 200 300 400 500

0

200

400

600

800

1000

0 100 200 300 400 500

0

200

400

600

800

1000

0 100 200 300 400 500

0

200

400

600

800

1000

0 100 200 300 400 500

0

200

400

600

800

1000

0 100 200 300 400 500

0

200

400

600

800

1000

0 100 200 300 400 500

0

200

400

600

800

1000

0 100 200 300 400 500

0

200

400

600

800

1000

0 100 200 300 400 500

0

200

400

600

800

1000
Set episode status as COMPLETE

Goal: Open a new Chrome private window

Figure 6: An example episode from General.

0 100 200 300 400 500

0

200

400

600

800

1000

0 100 200 300 400 500

0

200

400

600

800

1000

0 100 200 300 400 500

0

200

400

600

800

1000

0 100 200 300 400 500

0

200

400

600

800

1000

0 100 200 300 400 500

0

200

400

600

800

1000

0 100 200 300 400 500

0

200

400

600

800

1000

Input text "microsoft authenticator"
0 100 200 300 400 500

0

200

400

600

800

1000

0 100 200 300 400 500

0

200

400

600

800

1000

0 100 200 300 400 500

0

200

400

600

800

1000

0 100 200 300 400 500

0

200

400

600

800

1000

0 100 200 300 400 500

0

200

400

600

800

1000

0 100 200 300 400 500

0

200

400

600

800

1000

0 100 200 300 400 500

0

200

400

600

800

1000

Set episode status as COMPLETE

Goal: uninstall "Microsoft Authenticator"

Figure 7: An example episode from Install.

B Implementation Details 910

B.1 Coordinate Normalization 911

Recall that a target action consists of four com- 912

ponents: action type, touch point, lift point, and 913

typed text. We consider six action types: dual- 914

point gesture, type, go_back, go_home, enter, 915

and status_complete. A dual-point gesture com- 916

prises a touch point and a lift point with [y, x] 917

coordinates. The gesture actions ensure a flex- 918

ible action space and can represent clicks and 919

scrolls at arbitrary locations. For example, a 920

gesture action {“touch_point”: [0.7761, 0.7089], 921

“lift_point”: [0.7761, 0.7089]} means clicking at 922

the coordinate [0.7761, 0.7089], while a gesture ac- 923

tion {“touch_point”: [0.1898, 0.4477], “lift_point”: 924

[0.8242, 0.4077]} means scrolling down. A 925

type action means typing a text and the text is 926

placed in the <typed_text> field. The other ac- 927

12

Action Type Target Output

dual-point gesture (click) “action_type”: 4, “touch_point”: [0.8497, 0.5964], “lift_point”: [0.8497, 0.5964],
“typed_text”: “”

dual-point gesture (scroll) “action_type”: 4, “touch_point”: [0.2, 0.5], “lift_point”: [0.8, 0.5], “typed_text”:
“”

type “action_type”: 3, “touch_point”: [-1.0, -1.0], “lift_point”: [-1.0, -1.0],
“typed_text”: “what’s the news in chile?”

go_back “action_type”: 5, “touch_point”: [-1.0, -1.0], “lift_point”: [-1.0, -1.0],
“typed_text”: “”

go_home “action_type”: 6, “touch_point”: [-1.0, -1.0], “lift_point”: [-1.0, -1.0],
“typed_text”: “”

enter “action_type”: 7, “touch_point”: [-1.0, -1.0], “lift_point”: [-1.0, -1.0],
“typed_text”: “”

status_complete “action_type”: 10, “touch_point”: [-1.0, -1.0], “lift_point”: [-1.0, -1.0],
“typed_text”: “”

Table 6: Target output examples after the coordinate normalization.

0 50 100 150 200 250 300 350 400

0

100

200

300

400

500

600

700

0 50 100 150 200 250 300 350 400

0

100

200

300

400

500

600

700

0 50 100 150 200 250 300 350 400

0

100

200

300

400

500

600

700

0 50 100 150 200 250 300 350 400

0

100

200

300

400

500

600

700

0 50 100 150 200 250 300 350 400

0

100

200

300

400

500

600

700

0 50 100 150 200 250 300 350 400

0

100

200

300

400

500

600

700

0 50 100 150 200 250 300 350 400

0

100

200

300

400

500

600

700

0 50 100 150 200 250 300 350 400

0

100

200

300

400

500

600

700

0 50 100 150 200 250 300 350 400

0

100

200

300

400

500

600

700

0 50 100 150 200 250 300 350 400

0

100

200

300

400

500

600

700

0 50 100 150 200 250 300 350 400

0

100

200

300

400

500

600

700

0 50 100 150 200 250 300 350 400

0

100

200

300

400

500

600

700

0 50 100 150 200 250 300 350 400

0

100

200

300

400

500

600

700 Set episode status as COMPLETE

Goal: turn off javascript in the chrome app

Figure 8: An example episode from GoogleApps.

tion types, i.e., go_back, go_home, enter, and928

status_complete are system actions, whose corre-929

sponding <touch_point>, <lift_point> fields are930

filled with -1, and the <typed_text> is empty.931

We observe that high-precision coordinates are932

not necessary for representing a click or scroll ac-933

tion. Therefore, we apply normalized values of the934

coordinates, which helps accelerate convergence935

and mitigate the ambiguity of coordinates. The936

normalization is applied to click and scroll actions.937

For click actions, we keep four decimal places. For938

scroll actions, we first determine the scroll direction939

with the touch and lift points. Then, we transform940

the touch and lift points into fixed directional co-941

ordinates as follows: “up”: {[0.8, 0.5], [0.2, 0.5]},942

“down”: {[0.2, 0.5], [0.8, 0.5]}, “left”: {[0.5, 0.8],943

[0.5, 0.2]}, “right”: {[0.5, 0.2], [0.5, 0.8]}, where944

0 100 200 300 400 500 600 700

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500 600 700

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500 600 700

0

200

400

600

800

1000

1200

1400
Input text "lowe's"

0 100 200 300 400 500 600 700

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500 600 700

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500 600 700

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500 600 700

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500 600 700

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500 600 700

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500 600 700

0

200

400

600

800

1000

1200

1400
Input text "best rated coffee maker"

0 100 200 300 400 500 600 700

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500 600 700

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500 600 700

0

200

400

600

800

1000

1200

1400
Set episode status as COMPLETE

Goal: Look up the best rated coffee maker on Lowe's.

Figure 9: An example episode from WebShopping.

{[·], [·]} consists of the touch point and lift point in 945

the first [·] and second [·]. We provide examples of 946

target actions in Table 6. 947

B.2 Baselines 948

We adopt three types of baselines for comparisons. 949

The baselines encompass the in-context earning 950

(ICL) and fine-tuning paradigms, along with vari- 951

ous backbone models of different sizes. This choice 952

of baselines allows for a comprehensive compari- 953

son with our proposed approach. 954

(i) In-context Learning LLMs. Few-shot PaLM 955

2, ChatGPT (turbo-3.5) are adopted. Following 956

previous studies (Rawles et al., 2023; Wang et al., 957

2023a), we feed the LLM a textual description of 958

the screen and a user instruction. The textual de- 959

scription of the screen is formatted as an HTML 960

13

Model Overall General Install GoogleApps Single WebShopping

Auto-GUI 74.27 68.24 76.89 71.37 84.58 70.26

w/o chain of actions 68.53 58.99 72.06 67.50 81.25 62.86
w/ previous action history 73.78 67.97 76.66 71.00 83.64 69.62
w/ future action plan 68.81 59.01 72.34 67.95 81.53 63.24

w/o coordinate normalization 70.23 63.79 73.28 66.63 82.11 65.33

Table 7: Ablation study of Auto-GUI design components. We adopt Auto-GUIunified for analysis.

Model Overall General Install GoogleApps Single WebShopping

Auto-GUIbase 72.84 66.97 75.93 70.29 82.56 68.46
w/ Screen Descriptions 75.54 70.30 78.05 73.04 85.31 71.00

Table 8: Results of Auto-GUI when using annotated screen descriptions.

syntax, providing the information of GUI elements961

derived from OCR detection and icon detection962

from external tools (Rawles et al., 2023). The963

model is required to predict an action among pre-964

defined actions. If the action is clicking, the model965

will be required to provide the index of the clicked966

GUI element. Alternatively, the model needs to pro-967

vide the scroll direction if the action is scrolling. In968

addition, 5-shot CoT prompting is leveraged to im-969

prove the performance (Appendix B.3). In addition,970

we report the results of the multimodal GPT-4V by971

taking the vision image and action history as the972

input based on Yan et al. (2023).973

(ii) Fine-tuned LLMs. We adopt Llama 2 (Tou-974

vron et al., 2023) as the baseline and fine-tune it975

with LoRA. We feed the model with the user in-976

struction and the screen descriptions in HTML syn-977

tax (the same as adopted for in-context learning978

LLMs). The model is expected to predict the action979

in the same output format as in-context learning980

LLMs. As fine-tuning an LLM is expensive, we981

randomly sample 1% training data to help the LLM982

adapt to our tasks.983

(iii) Specialized GUI Agent. We adopted the984

Behavioural Cloning (BC) agent, which reported985

the state-of-the-art performance in Rawles et al.986

(2023). BC is a Transformer-based architecture987

that takes a task instruction, the current screen,988

and a stacked history of screen observations and989

actions as input. The task instruction and OCR-990

detected texts are encoded by a pre-trained BERT.991

The icons are represented by the embeddings for992

each of the bounding box points. The screen history993

is modeled by the {x, y} positions of the touch and994

lift actions. All the embedded representations are995

fused to predict the action by a decoder. There996

are two BC variants, BC-single and BC-history,997

depending on whether the model takes as input the 998

screen-action history. 999

B.3 LLM Prompt 1000

We use the prompt in Figures 10-11 for PaLM 2- 1001

CoT and ChatGPT-CoT owing to its optimal per- 1002

formance reported in Rawles et al. (2023). 1003

C Further Analysis 1004

C.1 Subset Analysis 1005

We notice that Auto-GUIunified performs relatively 1006

inferior to BC-history on the two App-centered 1007

subsets, Install and GoogleApps. It is reason- 1008

able because we only use 10% training data of 1009

GoogleApps considering the data balance and com- 1010

putation overhead. We observe that the perfor- 1011

mance does not improve when we use all the train- 1012

ing data of GoogleApps, possibly due to the data 1013

imbalance issue (Zhang et al., 2022). In contrast, 1014

our separate model Auto-GUIseparate can achieve 1015

better performance than BC-history, showing that 1016

our approach is better than BC-history under the 1017

same training setting. As we aim to study a simple 1018

and unified approach that achieves generally strong 1019

performance, we leave the treatment of the data 1020

imbalance issue in future work. 1021

C.2 Ablation Study 1022

Table 7 shows the detailed results of the ablation 1023

study. We see that both the chain of actions and 1024

coordinate normalization contribute to the overall 1025

performance (+5.74% and 4.04%, respectively). 1026

C.3 Using Screen Descriptions 1027

We are interested in whether Auto-GUI can be fur- 1028

ther improved when screen annotations are avail- 1029

able. Therefore, we incorporate screen descriptions 1030

14

containing icon and text information, organized in1031

HTML syntax, into our language input Xlanguage.1032

Detailed examples of screen descriptions can be1033

found in the “Screen” block in Appendix B.3.1034

In Table 8, we see that Auto-GUI can perform1035

better when the annotated screen descriptions are1036

available. The results show that there is still room1037

for performance gains for Auto-GUI. However, as1038

the annotations are not always available in real-1039

world applications, we do not include them by de-1040

fault in our framework.1041

C.4 Category Results with the ICL Baseline1042

To understand how the ICL baseline performs on1043

our task and assess the advantage of Auto-GUI, we1044

conduct a category comparison with ChatGPT.1045

Model Overall Action Type Click Scroll

ChatGPT 5.93 41.72 8.50 4.00
Auto-GUI 68.24 87.03 58.34 82.74

Table 9: Category comparison with the ICL baseline on
the General test set.

In Table 9, we see that the ICL method (Chat-1046

GPT) is quite accurate at predicting the action type1047

(41.72%) but fails at lower-level executions, e.g.,1048

clicking positions (8.5%) and scrolling directions1049

(4.0%). The results show that using HTML-based1050

layout information is not enough to accurately exe-1051

cute actions. In contrast, Auto-GUI has the advan-1052

tage of predicting both action types and performing1053

low-level executions by leveraging multimodal per-1054

ception and the chain-of-action technique.1055

15

Given a mobile screen and a question, provide the action based on the screen information.

Available Actions:
{"action_type": "click", "idx": <element_idx>}
{"action_type": "type", "text": <text>}
{"action_type": "navigate_home"}
{"action_type": "navigate_back"}
{"action_type": "scroll", "direction": "up"}
{"action_type": "scroll", "direction": "down"}
{"action_type": "scroll", "direction": "left"}
{"action_type": "scroll", "direction": "right"}

Previous Actions:
{"step_idx": 0, "action_description": "press [HOME key]"}
{"step_idx": 2, "action_description": "click [Google Icon]"}
{"step_idx": 3, "action_description": "click [search for hotels]"}

Screen:

<p id=2 class="text" alt="search for hotels"> search for hotels </p>
<p id=3 class="text" alt="in"> in </p>
<p id=4 class="text" alt="mexico city mexico"> mexico city mexico </p>

<p id=6 class="text" alt="Share"> Share </p>
<p id=7 class="text" alt="Select alI"> Select alI </p>
<p id=8 class="text" alt="Cut"> Cut </p>
<p id=9 class="text" alt="Copy"> Copy </p>
<p id=10 class="text" alt="hotel in mex"> hotel in mex </p>

<p id=12 class="text" alt="best hotel"> best hotel </p>
<p id=13 class="text" alt="mexico city"> mexico city </p>
<p id=14 class="text" alt="in"> in </p>

<p id=16 class="text" alt="K"> K </p>
<p id=17 class="text" alt="hotel ciudad"> hotel ciudad </p>
<p id=18 class="text" alt="de mexico"> de mexico </p>
<p id=19 class="text" alt="gran"> gran </p>

Instruction: What time is it in Berlin?
Answer: Let's think step by step. I see unrelated search results in the Google app,
I must clear the search bar, so the action is {"action_type": "click", "idx": 1}

Previous Actions:
{"step_idx": 0, "action_description": "click [DISMISS]"}

Screen:
<p id=0 class="text" alt="Update your"> Update your </p>
<p id=1 class="text" alt="Gmail app"> Gmail app </p>
<p id=2 class="text" alt="attach files from"> attach files from </p>
<p id=3 class="text" alt="To"> To </p>
<p id=4 class="text" alt="download the"> download the </p>
<p id=5 class="text" alt="Drive,"> Drive, </p>
<p id=6 class="text" alt="latest"> latest </p>
<p id=7 class="text" alt="version"> version </p>
<p id=8 class="text" alt="of"> of </p>
<p id=9 class="text" alt="Gmail"> Gmail </p>
<p id=10 class="text" alt="UPDATE"> UPDATE </p>
<p id=11 class="text" alt="DISMISS"> DISMISS </p>
<p id=12 class="text" alt="Got"> Got </p>
<p id=13 class="text" alt="it"> it </p>

Instruction: see creations saved in the google photos
Answer: Let's think step by step. I see a popup, I need to open Google Photos, so
the action is {"action_type": "click", "idx": 11}

Previous Actions:

Screen:
<p id=0 class="text" alt="M"> M </p>
<p id=1 class="text" alt="New in Gmail"> New in Gmail </p>

Figure 10: LLM Prompt (Part-I).

16

<p id=2 class="text" alt="All the features you"> All the features you </p>
<p id=3 class="text" alt="love with"> love with </p>
<p id=4 class="text" alt="a fresh"> a fresh </p>
<p id=5 class="text" alt="look"> look </p>
<p id=6 class="text" alt="new"> new </p>
<p id=7 class="text" alt="GOT IT"> GOT IT </p>

Instruction: open app "Google Play services"
Answer: Let's think step by step. I see the GMail app, I need to open the app
drawer, so the action is {"action_type": "navigate_home"}

Previous Actions:

Screen:
<p id=0 class="text" alt="Tuesday, Aug"> Tuesday, Aug </p>
<p id=1 class="text" alt="9"> 9 </p>

Instruction: open app "Messenger Lite" (install if not already installed)
Answer: Let's think step by step. I see the home screen, I need to open the app
drawer, I should swipe up, so the action is {"action_type": "scroll", "direction":
"down"}

Previous Actions:
{"step_idx": 0, "action_description": "scroll down"}

Screen:

<p id=1 class="text" alt="Search your phone and more"> Search your phone and more </p>
<p id=2 class="text" alt="M"> M </p>
<p id=3 class="text" alt="O"> O </p>

<p id=5 class="text" alt="Clock"> Clock </p>
<p id=6 class="text" alt="YouTube"> YouTube </p>
<p id=7 class="text" alt="Photos"> Photos </p>
<p id=8 class="text" alt="Gmail"> Gmail </p>
<p id=9 class="text" alt="All apps"> All apps </p>
<p id=10 class="text" alt="g"> g </p>
<p id=11 class="text" alt="O"> O </p>

<p id=13 class="text" alt="10"> 10 </p>
<p id=14 class="text" alt="Calendar"> Calendar </p>
<p id=15 class="text" alt="Camera"> Camera </p>
<p id=16 class="text" alt="Chrome"> Chrome </p>
<p id=17 class="text" alt="Clock"> Clock </p>
<p id=18 class="text" alt="0"> 0 </p>
<p id=19 class="text" alt="M"> M </p>
<p id=20 class="text" alt="B"> B </p>

<p id=22 class="text" alt="Gmail"> Gmail </p>
<p id=23 class="text" alt="Drive"> Drive </p>
<p id=24 class="text" alt="Files"> Files </p>
<p id=25 class="text" alt="Contacts"> Contacts </p>
<p id=26 class="text" alt="G OO"> G OO </p>

<p id=31 class="text" alt="Google"> Google </p>
<p id=32 class="text" alt="Maps"> Maps </p>

Instruction: Search for hotels in Chicago.
Answer: Let's think step by step. I see the app drawer, I need to search, so the
action is {"action_type": "click", "idx": 27}

Previous Actions:
<HISTORY>
Screen:
<SCREEN_REPRESENTATION>
Instruction: <GROUNDING_GOAL>
Answer: Let's think step by step. I see

Figure 11: LLM Prompt (Part-II).

17

	Introduction
	Related Work
	Language Agents
	GUI Control with Natural Language

	Methodology
	Problem Formalization
	Framework Overview
	Coordinate Normalization

	Experiments
	Dataset
	Baselines
	Evaluation Measures
	Implementation Details
	Main Results

	Analysis
	Category accuracy
	Generalization Ability
	Comprehensive Analysis
	Computation Cost

	Conclusion
	Data Details
	Data Examples
	Data Statistics

	Implementation Details
	Coordinate Normalization
	Baselines
	LLM Prompt

	Further Analysis
	Subset Analysis
	Ablation Study
	Using Screen Descriptions
	Category Results with the ICL Baseline

