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ABSTRACT

We consider a Bayesian diffusion control problem of expected terminal utility
maximization. The controller imposes a prior distribution on the unknown drift
of an underlying diffusion. The Bayesian optimal control, tracking the posterior
distribution of the unknown drift, can be characterized explicitly. However, in
practice, the prior will generally be incorrectly specified, and the degree of model
misspecification can have a significant impact on policy performance. To mitigate
this and reduce overpessimism, we introduce a distributionally robust Bayesian
control (DRBC) formulation in which the controller plays a game against an ad-
versary who selects a prior in divergence neighborhood of a baseline prior. The
adversarial approach has been studied in economics (Hansen & Sargent, 2008) and
efficient algorithms have been proposed in static optimization settings (Rahimian
& Mehrotra, 2019). We develop a strong duality result for our DRBC formulation.
Combining these results together with tools from stochastic analysis, we are able
to derive a loss that can be efficiently trained (as we demonstrate in our numerical
experiments) using a suitable neural network architecture. As a result, we obtain
an effective algorithm for computing the DRBC optimal strategy. The methodol-
ogy for computing the DRBC optimal strategy is greatly simplified, as we show, in
the important case in which the adversary chooses a prior from a Kullback-Leibler
distributional uncertainty set.

1 INTRODUCTION

Decision-making under uncertainty is a core challenge in reinforcement learning and control. In
many practical settings, agents must act without knowing key environment parameters (e.g., transi-
tion dynamics, reward biases). We consider a diffusion control problem for which a controller aims
at maximizing expected terminal utility by making decisions informed by observations. Since the
controller cannot directly observe model parameters, it is natural to consider a Bayesian approach
to learn while optimizing. Thus, the unknown parameter or factor is modeled as an unobservable
random element with a prior distribution. This approach, known as Bayesian control, is well studied
in the control literature and gives rise to sophisticated policies that naturally work well if the full
Bayesian model is well specified.

However, if the model is not well specified, the Bayesian policy will often deliver suboptimal results.
Adversarial approaches have been used to mitigate the impact of model misspecification. The con-
troller interacts with a fictitious adversary to maximize value function, while the adversary selects a
worst-case probability to ensure policy robustness. Distributionally robust control (DRC) (Hansen
& Sargent, 2001; 2008) is one of such method, and it is built on finding robust formulations that are
tractable in the sense of leading to a dynamic programming principle. In exchange of this type of
tractability, the approach leads to very pessimistic policies, because the adversary’s power is replen-
ished at every point in time. This also makes calibrating the size of the distributional uncertainty
difficult, because small variations on this parameter have a significant impact on performance.

To address over-conservatism, we consider a Distributionally Robust Bayesian Control (DRBC)
formulation in which we only build distributional robustness around the prior distribution in the
Bayesian control formulation. This allows us to combat pessimistic policies at the expense of loosing
the dynamic programming principle, yet we need to develop alternative methods for computing the
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optimal policy. Our motivating application is continuous-time control with unknown dynamics, but
DRBC applies broadly to problems where robustness to prior misspecification is critical.

1.1 OUR CONTRIBUTIONS

Our contributions are summarized as follows.

• We formulate a DRBC problem for misspecified priors in the context of diffusion control
using a ϕ-divergence uncertainty set around the prior (which is imposed on the drift of the
diffusion) (Section 2.2).

• We prove a strong duality result that reformulates DRBC into a tractable optimization prob-
lem. This connects our framework to smooth ambiguity models while making it directly
applicable to machine learning settings (Theorem 2).

• We provide sample complexity results showing that policy evaluation is possible with the
canonical rate Op

(
n−1/2

)
via a novel randomized multi-level Monte Carlo (rMLMC) un-

biased estimator (Algorithm 2 and Theorem 13).

• We introduce a class of policies that contains the optimal policy for a large class of util-
ity maximization problems of interest in the Bayesian control case and that are learnable
efficiently via deep learning methods (Theorem 17). In the important special case of KL
divergence, we find semi-closed form expressions to simplify the learning (Section 5.1).

• We present simulation results to demonstrate the accuracy of our deep learning method
(Section 6.1) and confirm the Op

(
n−1/2

)
convergence rate (Section H.1). Numerical re-

sults show the robustness of DRBC and it overcomes overpessimism (Section H.2).

1.2 RELATED WORK

Distributionally Robust Methods have been well-studied in a wide range of areas. For example,
Distributionally Robust Optimization (DRO) (i.e. the supervised learning case) can be shown to
recover a wide range of successful statistical estimators (including sqrt-Lasso, AdaBoost, group
Lasso etc.), by carefully choosing the uncertainty set, often in terms of ϕ-divergence or Wasserstein
sets (see Blanchet et al. (2021b; 2024)). Refer also to Rahimian & Mehrotra (2019); Bayraksan &
Love (2015) for comprehensive reviews on DRO.

Motivated by problems in areas such as economics and finance, among others, (Hansen & Sargent,
2001; 2008; Denis & Kervarec, 2013; Bartl et al., 2021) , DRO has been generalized to the setting of
dynamic decision-making with model uncertainty. This situation is significantly more complicated
and the literature has focused mostly on developing formulations that are amenable to dynamic pro-
gramming (DP), giving rise to Distributionally Robust Control (DRC) and Distributionally Robust
Markov Decision Processes (DRMDP). The availability of a dynamic programming principle fa-
cilitates the development of Distributionally Robust Reinforcement Learning (DRRL) and related
settings (Si et al., 2023; Wang & Zou, 2022; Wang et al., 2023a; Liu et al., 2022; Zhou et al., 2021;
Lu et al., 2024).

However, to develop a DP in the DRC, DRMDP, and DRRL settings, the adversary gets its power
replenished at every point in time, making the formulations pessimistic. That occurs at every point
in time, thus making these formulations overconservative.

In contrast, our formulation combines Bayesian stochastic control with DRO by introducing a single
distributional uncertainty set in the prior distribution. This combats overconservative solutions, but
at the expense of the DP. However, we develop a formulation and techniques that make the optimal
solution learnable by exploiting continuous time stochastic analysis.

Computations of static DRO problems has been studied by Levy et al. (2020); Blanchet & Kang
(2020); Wang et al. (2021). Compared with us, they consider different uncertainty sets and the esti-
mators are biased. We also mention the literature on RL in finance (Hambly et al., 2023), Bayesian
Optimization (Daulton et al., 2022) and Distributionally Robust Bayesian Optimization (DRBO,
(Kirschner et al., 2020)). Our setting is different from DRBO. We work in continuous time, which
allows us to use stochastic analysis (via the martingale method and other techniques) to obtain con-
venient expressions to define a suitable loss for the optimal strategy. Our formulation is also offline
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and not online as in DRBO. We wish to efficiently evaluate policies for the game corresponding to
our formulation. In addition, the work on Bayesian Distributionally Robust Optimization (BDRO,
Shapiro et al. (2023)) is more related to our setting here, but it focuses on a static setting.

2 SETTINGS AND FORMULATIONS

2.1 CLASSICAL BAYESIAN CASE

Let (Ω,F , P ) be a complete filtered probability space, and W is a standard Brownian motion under
P . B : Ω → R is a real-valued random variable such that B and W are independent. We denote
σ(B) as the σ-algebra generated by B and assume that B has a distribution µ ∈ P(R) (the space
of all Borel probability measures on R). We have the risk-free asset S0,0 = s0 > 0 and dS0,t =
rS0,tdt, 0 ≤ t ≤ T,with interest-free rate r > 0 and a risky asset S with drift B

dSt = St(Bdt+ σdWt), 0 ≤ t ≤ T. (1)

We next define filtrations: FS is the natural filtration of S, and G is the union of σ(B) and FW

(the natural filtration of W ). We denote the FS-adapted (the decisions are made based on only
the observations of the stock prices) stochastic process π = {πt}t∈[0,T ] as the amount of money
invested in the risky asset. This induces the dynamics of a controlled wealth process with X0 = x0
(we simplify the notation so that Xπ is written as X)

dXt = (Xt − πt)r dt+ πt (Bdt+ σdWt) . (2)

In this paper, control, policy, and strategy are used interchangeably. We call an FS-progressively
measurable stochastic processes (control) π = {πt}t∈[0,T ] admissible if X0 = x0,

∫ T

0
∥πt∥22 dt <

∞, and Equation (2) admits a unique strong solution. The collection of all admissible controls is
denoted as A(x0). The Bayesian diffusion control problem is defined as

V (x0) = sup
π∈A(x0)

EP [u(XT )] , (3)

where the utility function u : (0,∞) → R is strictly concave and strictly increasing. Without
loss of generality, in this paper, we consider the utility function u(x) = 1

αx
α with α ∈ (0, 1)

and Xt > 0 for any t ∈ [0, T ]. The optimal solution of Problem (3) is given by Theorem 28
in Appendix B (Karatzas & Zhao, 1998). The takeaway is that the optimal solution V (x0) is a
functional of the prior distribution µ, and the optimal policy is a random variable depending on µ
and the observations. In practice, the prior distribution is chosen by experts and other available
information, and the fraction of investment into risky asset is computed via the formula provided by
Theorem 28 with real observations.

2.2 AMBIGUITY SET FOR THE DISTRIBUTIONALLY ROBUSTNESS

Given a convex function ϕ : [0,∞) → R with ϕ(1) = 0, ϕ-divergence of Q from P is Dϕ(P∥Q) =∫
Ω
ϕ
(

dP
dQ

)
dQ, where dP

dQ is the Radon-Nikodym derivative of P with respect to Q. If ϕ(x) =

x log(x)− x+ 1, then Dϕ is the Kullback–Leibler (KL) divergence, denoted as DKL.

In the Bayesian problem (3), the imposed prior may not be exactly the same as the underlying
drift. Distributionally Robust Control (DRC) methods relying on dynamic programming principles
to mitigate this model misspecification (Hansen & Sargent, 2001) are often too pessimistic since in
every step the worst case is chosen. Thus we consider a distributionally robust Bayesian control
(DRBC) formulation where the controller engages in a game against an adversary who chooses a
prior for the drift at the beginning from a ϕ-divergence neighborhood (we call this ambiguity set
or uncertainty set) around the baseline prior to overcome this overpessimism. To rigorously define
the uncertainty set, we need to make sure only distribution of B is changed and all other conditions
(e.g. measurability) are kept the same. We denote P(Ω,F) as the collection of all Borel probability
measures on the measurable space (Ω,F). Then we define the following set (B ⊥ W means that
the two random variables B and W are independent)

Qδ =

{
Q ∈ P(Ω,F),

Q≪ P

∣∣∣∣ Q(B ∈ A) = ν(A) for some ν ∈ P(R),∀A ∈ B(R), Dϕ(ν∥µ) ≤ δ,

B ⊥W,W is a standard Brownian motion under Q.

}
.
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The set Qδ is endowed with the topology of weak convergence (Billingsley, 1986). We define a
relation on Qδ:

Q1 ∼ Q2 ⇐⇒ for any A ∈ B(R), Q1(B ∈ A) = Q2(B ∈ A). (4)

We use the quotient space Uδ = Qδ/ ∼ as the uncertainty set for the DRBC problem. The following
theorem gives an intuition of this.

Theorem 1. Uδ is well-defined. For all Q ∈ Uδ , there exists ν ≪ µ such that dQ
dP = dν

dµ (B)

P -almost surely and Dϕ (Q ∥ P ) = Dϕ (ν ∥ µ).

With Theorem 1, we define the goal of the DRBC problem

sup
π∈A(x0)

inf
Q∈Uδ

EQ [u(XT )] . (5)

We denote the optimal solution of Problem (5) as πDRBC. Compared with the DRC approach, Prob-
lem (5) looses the tractability in terms of dynamic programming principle (see Appendix I.3.2), thus
we need to develop another method to compute πDRBC. The first step is to use duality to simplify
the representation of the original problem. Note that for simplicity, all the settings above are one
dimensional case. High dimensional case is a natural analogy and can be found in B.2.

3 STRONG DUALITY

We begin with some notations. Suppose f : R → R is a real-valued function, we denote
f∗ as the convex conjugate of f , which is defined as f∗(x∗) = supx∈X (⟨x∗, x⟩ − f(x)) =
− infx∈X (f(x)− ⟨x∗, x⟩) and ⟨., .⟩ is the standard inner product in R (Rockafellar, 1970). More-
over, there exists unique class of probability measures {P b}b∈R ⊂ P(Ω,F) such that for any
A ∈ F , P (A) =

∫
R P

b(A)dµ(b). We then prove an extension of the strong duality result in Shapiro
(2017), which transforms the original infinite-dimensional problem to finite-dimensional.
Theorem 2.

inf
Q∈Uδ

EQ [u(XT )] = sup
λ≥0,β∈R

{
β − λδ +

∫
R
Φλ,β

(
EP b

[u(XT )]
)
dµ(b)

}
,

where for fixed λ ≥ 0, β ∈ R,
Φλ,β(x) := −(λϕ)∗(β − x).

In general, as a function of x, Φλ,β is always concave due to the convexity of ϕ, but it is not always
increasing. As a function of (λ, β)T , Φλ,β is always concave. For the convenience of the notations,
we denote Zb := EP b

[u(XT )]. If ϕ induces the KL divergence, then we denote the uncertainty set
as UKL,δ and have the following duality result.
Theorem 3.

inf
Q∈UKL,δ

EQ [u(XT )] = sup
λ≥0

{
−λδ − λ log

(∫
R
exp

(
−Zb

λ

)
dµ(b)

)}
,

where λ 7→ −λδ− λ log
(∫

R exp
(

−Zb

λ

)
dµ(b)

)
takes the value ess inf ZB when λ = 0 and ess inf

denotes the essential infimum.

The analysis of an extension which is called Cressie-Read divergence is provided in Appendix D.3.
We give assumptions on the ϕ-divergence to ensure the attainability of an optimal pair (λ∗, β∗)

T
=

(λ∗(π), β∗(π))T with λ∗(π) > 0 for a fixed π ∈ A(x0). The precise discussion can be found in
Appendix D.4. We notice that the duality can be further written as a univariate function Φλ or Φβ in
terms of the dual variable (as in Theorem 3). For the notational convenience, if Φλ or Φβ is strictly
concave in λ or β, we still say Φλ,β is strictly concave. This will not affect the rate of the asymptotic
analysis, and the impacts on explicit computation are discussed in Appendix D.4 and E.2.
Assumption 4. For a fixed control π ∈ A(x0), the norm of the pair of the optimal multipliers
(λ∗, β∗)

T has finite upper and lower bounds. In particular, λ∗ ̸= 0.

4
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Assumption 5. Φλ,β is strictly increasing and strictly concave in x, and it is strictly concave in
(λ, β)T . For any fixed λ ≥ 0 and β ∈ R, Φλ,β is continuously differentiable in a neighborhood of
Zb µ-almost surely, satisfies the linear growth condition, and DΦλ,β is locally Hölder continuous
with parameter w ≥ 1 and bounding constant K.

Assumption 6. For any fixed b ∈ R, the value Vb(x0) = supπ∈A(x0)E
P b

[u(XT )] < ∞. This
assumption is standard in portfolio optimizations problem (Karatzas et al., 1991). Moreover, we
denote for a fixed control π ∈ A(x0), ess inf XT = m ≥ 0. We assume that Φλ∗,β∗(0) > 0.

Both of the following assumptions will imply Assumption 4 in the KL divergence case.

Assumption 7. The prior µ is a light-tailed distribution such that 0 < M :=∫
R Vb(x0)

3(1+w)dµ(b) <∞.

Assumption 8. The density (or probability mass function) of EPB

[u(XT )] has a uniform lower
bound b > 0 and the domain of density (or probability mass function) is compact.

As mentioned in Si et al. (2023) and Duchi & Namkoong (2021), Assumption 4, 5, and 6 are satisfied
with mild conditions for KL and Cressie-Read divergences. From strong duality, the general form
of Problem (5) becomes

sup
π∈A(x0)

inf
Q∈Uδ

EQ [u(XT )] = sup
π∈A(x0)

sup
λ>0
β∈R

{
β − λδ +

∫
R
Φλ,β

(
Zb
)
dµ(b)

}
.

Solving Problem (5) is hard in general. We provide a heuristic example of closed-form computation
in Appendix F.5 to illustrate this difficulty. In particular, the difficulties are two-fold: the double
supremum is highly nonconvex and even doing policy learning with fixed λ and β is hard. Inspired
by the typical choices in distributionally robust contextual bandit (Si et al., 2023), we use an alter-
native optimization algorithm to get the well-approximated optimal solution π̂DRBC ≈ πDRBC (See
Algorithm 3 for the KL case). We learn π̂DRBC by first fixing π and optimizing (λ, β)T (we call
this step policy evaluation) and then by fixing (λ, β)T and optimizing π (we call this step policy
learning). We continue this alternative updating until the values of (λ, β)T converges. Simulation
results show that this alternative iterative algorithm works well in practice (see Section 6).

4 POLICY EVALUATION STEP

We first fix a control π ∈ A(x0) and aim to compute

QDRBC(π) = sup
λ>0
β∈R

{
β − λδ +

∫
R
Φλ,β

(
Zb
)
dµ(b)

}
(6)

for the general case, while for the KL divergence case, we have the policy evaluation

QDRBCKL(π) = supλ>0

{
−λδ − λ log

(∫
R exp

(
−Zb

λ

)
dµ(b)

)}
. The basic idea is to first de-

rive an unbiased estimator for the nested expectations (the inner samples depend on the outer
samples)

∫
R Φλ,β

(
Zb
)
dµ(b) and log

(∫
R exp

(
−Zb

λ

)
dµ(b)

)
and then use the standard Newton-

Raphson method or gradient descent methods to find the optimal λ∗ and β∗ (Theorem 37, 39).

We focus on the general case. Assume that for a fixed π ∈ A(x0), we have the access to the
simulator S which is able to generate samples from the distribution of µ and take one sample b from
µ as an input to generate unbiased samples from Zb. This is a standard assumption (Syed & Wang,
2023). For the KL divergence case, see the discussion and Algorithm 1 in Appendix E.2.

We quickly review an important method that we will use in the approximation of the solution. Multi-
level Monte Carlo (MLMC) methods are designed to reduce the total computational complexity in
the Monte Carlo estimations (Giles, 2008; 2015). Rhee & Glynn (2015) proposes a randomized
MLMC (rMLMC), which in addition produces unbiased estimates. The rMLMC estimator is also
used to produce unbiased estimates of single-layer nested expectations and solutions of stochastic
optimization problems (among other problems) (Blanchet & Glynn, 2015; Blanchet et al., 2019).
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In our case, the randomized (rMLMC) estimator first samples b ∼ µ, then independently samples
a random N b = Ñ b + n0, where n0 is a fixed non-negative integer and Ñ b ∼ Geo(R) with
R ∈

(
1
2 ,

3
4

)
, finally generates 2N

b+1 unbiased estimates
{
Ẑb
i

}
1≤i≤2Nb+1

of Zb = EP b

[u(XT )],

and the random estimator of
∫
R Φλ,β

(
Zb
)
dµ(b) is given by Eb = Eb

λ,β =
∆b

Nb

p(Nb)
+ Φλ,β

(
Sb
2n0

2n0

)
,

where p(.) is the probability mass function of N b and Sb
l =

∑l
i=1 Ẑ

b
i . For N b ≥ n0, we define

∆b
Nb = Φλ,β

(
Sb

2N
b+1

2Nb+1

)
− 1

2

(
Φλ,β

(
SO,b

2N
b

2Nb

)
+Φλ,β

(
SE,b

2N
b

2Nb

))
, where SO,b

l =
∑l

i=1 Ẑ
O,b
i and

SE,b
l =

∑l
i=1 Ẑ

E,b
i with

{
ẐE,b
i

}
1≤i≤2Nb+1

and
{
ẐO,b
i

}
1≤i≤2Nb+1

denotes the estimates indexed

by even and odd values, respectively. Our overall estimator E is (for fixed π and δ)

E = Eπ,δ,λ,β =
1

n

n∑
i=1

Ebi =
1

n

n∑
i=1

(
∆bi

Nbi

p(N bi)
+ Φλ,β

(
Sbi
2n0

2n0

))
(7)

given n i.i.d. samples {bi}1≤i≤n generated from µ.
Remark 9. When n0 = 0, then our estimator is exactly the same as the estimator in Blanchet &
Glynn (2015) and Blanchet et al. (2019). Note that N bi does not depend on bi, and the notation
represents the i.i.d. copies of the shifted geometric random variable. The reason to introduce the
non-negative shift n0 is that the estimator E loses the concavity due to the definition of ∆b

Nb , but if
we make n0 properly large, then ∆b

Nb looks more like a concave function, thus help the numerical
optimization steps in terms of (λ, β)T .

We make the following assumption that will be important in the analysis of the variance of the
estimator when the prior has a continuous density. The case when the prior is finitely supported can
be analyzed similarly.

Assumption 10. The map b 7→ Zb is continuously differentiable and injective on the support of B.

Theorem 11. Suppose Assumption 5, 6 and 7 hold, then Eπ,δ,λ,β is an unbiased estimator for∫
R Φλ,β

(
Zb
)
dµ(b). If Assumption 10 is satisfied, µ is compactly supported with a continuous

density, then Var
(
Eb1
λ,β

)
and Var (Eπ,δ,λ,β) are both finite.

We define the DRBC policy evaluation estimator Q̂DRBC(π) = supλ>0
β∈R

{β − λδ + Eπ,δ,λ,β} (see

Algorithm 2 in Appendix G.1). Note that this empirical version of optimization problem is no longer
strictly concave in (λ, β)T for finite sample size (it is strictly concave for n → ∞). It is natural to
have the following assumption, thus have the following Op

(
n−1/2

)
convergence rate guarantee.

Assumption 12. For a fixed π ∈ A(x0), with probability 1, argmax Q̂DRBC(π) has the same bounds
as the bounds for argmaxQDRBC(π) in Assumption 4.

Theorem 13. Suppose Assumption 4, 5, 6, 7, 10, and 12 hold, µ is compactly supported with a
continuous density. For fixed π ∈ A(x0), let n denote the number of i.i.d. samples of {Ebi

λ,β}1≤i≤n,
then √

n
(
Q̂DRBC(π)−QDRBC(π)

)
⇒ N

(
0,Var

(
Eb1
λ∗,β∗

))
,

where ⇒ denotes convergence in distribution, (λ∗, β∗)
T is defined in Section 3, and N (0, σ2) rep-

resents a normal distribution with mean 0 and standard deviation σ > 0.

5 POLICY LEARNING STEP

This section concentrates on the policy learning step. Section 5.1 focuses on the KL divergence case
with a finitely-supported prior. In Section 5.2, we slightly modify the class of admissible controls
and propose a general deep learning method, utilizing techniques from stochastic analysis. Interest-
ingly, when the Lagrangian multipliers λ and β are fixed, the policy learning step is equivalent to
solve a smooth ambiguity problem with functional parameters from the strong duality (Theorem 2).
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5.1 A FINITE PRIOR EXAMPLE: DUALITY THEORY

In the KL divergence case, if we fix λ > 0, then we essentially need to solve

sup
π∈A(x0)

{
−λ log

(∫
R
exp

(
−Zb

λ

)
dµ(b)

)}
. (8)

In fact, Problem (8) is equivalent to a problem in mathematical finance called the ambiguity aversion
measured by the entropic risk measure (Schied, 2007). Because of the special form of the KL diver-
gence, we obtain the duality form and thus a semi-closed form of the optimal solution. We define a
class of equivalent probability measures AC on the set (quotient space w.r.t the weak topology)

ACpre =

{
Q̃ ∈ P(Ω,F),

Q̃≪ P

∣∣∣∣∣ Q̃(B ∈ A) = ν(A) for some ν ∈ P(R),∀A ∈ B(R),
W is a standard Brownian motion under Q̃ and B ⊥W.

}
with respect to the equivalent relation ∼ defined in Section 2.2 That is, AC = ACpre/ ∼. Then
obviously, Uδ ⊂ AC.

Lemma 14. For all Q̃ ∈ AC, there exists ν ≪ µ such that dQ̃
dP = dν

dµ (B) P -almost surely and

Dϕ

(
Q̃ ∥ P

)
= Dϕ (ν ∥ µ).

Theorem 15.

sup
π∈A(x0)

{
−λ log

(∫
R
exp

(
−Zb

λ

)
dµ(b)

)}
= sup

π∈A(x0)

inf
Q̃∈AC

{
EQ̃ [u(XT )] + λDKL

(
Q̃ ∥ P

)}
.

Recall that for a fixed Q̃ ∈ AC, the problem becomes Problem (3), thus it would be easier to
solve the problem if we could interchange the sup and inf. In order to achieve this, we would like
to apply Sion’s min-max theorem (see Theorem 27 in Appendix A) to the functional f(Q̃, π) :=

EQ̃ [u(XT )] + λDKL

(
Q̃ ∥ P

)
, which is defined on AC ×A(x0) ⊂ P (R)×A(x0).

Theorem 16. Assume that µ is finitely supported, m = ess inf XT exists, P (XT = m) > 0, then

there exists an optimal pair
(
Q̃∗, π∗

)
such that π∗ is the optimal solution for Problem (3) with

underlying probability measure Q̃∗ (see Theorem 28) and

sup
π∈A(x0)

{
−λ log

(∫
R
exp

(
−Zb

λ

)
dµ(b)

)}
= sup

π∈A(x0)

inf
Q̃∈AC

{
EQ̃ [u(Xπ

T )] + λDKL

(
Q̃ ∥ P

)}
= inf

Q̃∈AC
sup

π∈A(x0)

{
EQ̃ [u(Xπ

T )] + λDKL

(
Q̃ ∥ P

)}
= f

(
Q̃∗, π∗

)
.

We focus on a commonly used example when the prior distribution takes value on a finite set
of points {b1, . . . , bd} with probability mass function P (B = bi) = pi ∈ (0, 1), for i =

1, 2, . . . , d, where d ≥ 1. For the fixed prior µ, the optimal value function becomes Ṽ (p) :=

(x0e
rT )

α

α

(∫
R

(
F̃p(T, z)

) 1
1−α

φT (z)dz

)1−α

, where F̃p(t, z) =
∑d

i=1 piLt(bi, z). If we want to

find the optimal probability measure Q̃∗(λ), then it suffices to solve the convex problem

inf
q=(q1,...,qd)∑d

i=1 qi=1,and qi≥0

V (q) = inf
q=(q1,...,qd)∑d

i=1 qi=1,and qi≥0

Ṽ (q) + λ

d∑
i=1

qi log
qi
pi
. (9)

The DRBC algorithm to iteratively solve Problem (5) (Algorithm 3) (we use (stochastic) gradient
descent here) can be found in Appendix G.2. The precise algorithm for updating π is given in Algo-
rithm 4 in Appendix G. We remark that the DRBC learning steps are done via simulated (training)
samples {St}t∈[0,T ] before we observe the real market data ({S̃t}t∈[0,T ]). In other words, we derive
optimal policies of the form in Theorem 28 with a worst-case probability, and π̂DRBCKL is com-
puted by this worst-case probability and {S̃t}t∈[0,T ]. Note Algorithm 4 is just an example for low
dimensional case, see Section H.3 and Appendix B for high dimensional discussions.
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5.2 GENERAL CASE: DEEP LEARNING APPROACH

In this section, we consider the case for the general ϕ-divergence, we solve for fixed (λ, β)T ,

sup
π∈A(x0)

∫
R
Φλ,β

(
EP b

[u(XT )]
)
dµ(b). (10)

Under Assumption 5, Φλ,β is strictly concave and strictly increasing in x, thus Problem (10) is a
continuous-time smooth ambiguity problem (Klibanoff et al., 2005). Such problems can be solved
recursively in discrete-time (Klibanoff et al., 2009), but in continuous-time only few blue cases can
be solved in closed-form, and there is few literature in numerical methods for this with generality.

We utilize tools from stochastic calculus and results from Guan et al. (2022) to design a deep learn-
ing method to solve Problem (10). This motivates an alternate definition of the set of admissi-
ble controls Ã(x0) that contains the optimal policy for a large class of Bayesian control prob-
lems (see Appendix F.4): the collection of all alternate admissible controls π, which is a subset
of A(x0) such that there exists a function v ∼ u such that there exists corresponding function
h : R → R and a functional ρ : L1 → R such that for the controlled terminal wealth Xπ

T ,∫
RE

P b

[v(Xπ
T )]λ(b)dµ(b) = h(x0)ρ(λ) and h(1) = v(erT ). For a fixed b ∈ R, define ηb∗t =

exp
(
−B−b

σ Wt − (B−b)2

2σ2 t
)

, dQb

dP

∣∣∣
FS

t

= ηb∗t , and W b
t = Wt +

B−b
σ t for t ∈ [0, T ], then under Qb,

the process W b is an FS-Brownian motion that is independent from B, hence under Qb, the stock
price S evolves as dSt = St

(
bdt+ σdW b

t

)
. Moreover, dXt = (Xt−πt)r dt+πt

(
bdt+ σdW b

t

)
.

For a fixed b ∈ R, EP b

[u(XT )] = EQb

[u(XT )] , therefore it is equivalent to study the problem
supπ∈Ã(x0)

∫
R Φλ,β

(
EQb

[u(XT )]
)
dµ(b), which is solved in Guan et al. (2022). Let b0 = EP [B]

and if b = b0, then we denote W b0 as Ŵ . We also define for t ∈ [0, T ], ηt = exp
(
−νŴt − 1

2ν
2t
)
,

where ν = b0−r
σ . For a fixed b ∈ R, we define t ∈ [0, T ], ηbt = exp

(
−νbŴt − 1

2ν
2
b t
)
, where

νb = b0−b
σ . The families of measures {P b}b∈R and {Qb}b∈R are quite different. For example, the

distribution of B under Qb is still µ (see Appendix F.6), where under P b, B is a constant b. In
the rest of this section, we assume that µ ∼ N

(
µ0, σ

2
0

)
. Now, we are able to derive sufficient

conditions that an optimal terminal wealth satisfies. Theorem 17 motivates a loss function that also
ensures numerical stability (Appendix G.5).
Theorem 17. If Assumption 5 holds,XT is a terminal wealth such that there exists a constant κ ∈ R
with EQr

[XT ] = x0e
rT and Lκ(XT ) = 0 with

Lκ(XT ) = κ− log (u′(XT ))−
K2

2

4K1
+ log

(
σ0
σQ

)
+
r − b0
σ

(
WT +

B − b0
σ

T

)
− (b0 − r)2

2σ2
T

+K3 + log

(∫
R
Φ′

λ,β

(
EQb

[u(XT )]
)
dµ(b)

)
− log

(∫
R
Φ′

λ,β

(
EQa

[u(XT )]
)
dµA(a)

)
D = WT + B−b0

σ T , K1 =
T

2σ2
+

1

2σ2
0

, K2 =
Tb0
σ2

+
D

σ
+
µ0

σ2
0

, K3 =
Tb20
2σ2

+
b0D

σ
+

µ2
0

2σ2
0

,

µA ∼ N
(
µQ, σ

2
Q

)
, σ2

Q =

(
T

σ2
+

1

σ2
0

)−1

, and µQ = σ2
Q

(
WT

σ
+
BT

σ2
+
µ0

σ2
0

)
, then XT is the

optimal terminal wealth for Problem (10).

From Theorem 17, we guess that the optimal terminal wealth has the form X∗
T = h(WT , B), where

h is a function that we plan to use neural network hθ to approximate (θ ∈ Rd). κ ∈ R is a
learnable scalar. We replace XT in Theorem 17 by hθ(WT , B), denote all the learnable parameters
as θ = (θ, κ)T ∈ Rd+1, and design the loss function as for a choice of b1 ∈ R (see Appendix G.5),

L(θ) = EQb1

[∥∥∥∥Lκ(hθ(WT , B)))

∥∥∥∥2
2

]
+

(
EQr

[hθ(WT , B)]− x0e
rT

)2

. (11)

If X∗
T = hθ(WT , B), then L(θ) = 0. The Algorithm 6 (Appendix G.5) can be used to minimize

L(θ) to find the optimal numerical solution θ∗. Discussion of DRBC algorithm in general case is in
Appendix G.6. Usage of hθ enables scaling with dimension n, for simplicity we don’t show it here.
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Table 1: Comparisons of learning results and closed-form solutions. Here b1 = 0.1, b2 = 0.3;
r1 = 0.05, r2 = 0.1. We run evaluations 100 times.

COMPARING TERM LEARNING RESULT CLOSED-FORM

EQb1
[u(X∗

T )] , r1 3.174± 0.013 3.226
EQb2

[u(X∗
T )] , r1 3.460± 0.030 3.380

EQb1
[u(X∗

T )] , r2 3.179± 0.014 3.267

Table 2: Comparison of mean Sharpe Ratios across methods for part of S&P 500 data.

METHOD MEAN OF SHARPE RATIO (↑)

MERTON 0.015± 0.301
BAYESIAN WITH NO AMBIGUITY (PRIOR 1) 0.493± 0.281
BAYESIAN WITH NO AMBIGUITY (PRIOR 2) 0.655± 0.282

DRC (PRIOR 1) −0.220± 0.292
DRC (PRIOR 2) −0.237± 0.293

DRBC (PRIOR 1) 0.818± 0.308
DRBC (PRIOR 2) 1.147± 0.311

6 NUMERICAL EXPERIMENTS

In this section, we present two numerical experiments to illustrate our theoretical findings. In Sec-
tion 6.1, we compare the performance of the neural network approach with the closed-form solution.
In Section 6.2, we apply our method and baselines to real stock data and use Sharpe Ratio as the
evaluation metric to compare the performances. More details on the implementation, choices of per-
formance measures and parameter settings are in Appendix I. Additional experiments on validation
the rate of convergence and comparisons between DRBC and baseline methods using simulated data
with user specified finite prior and KL uncertainty set and high dimensional case are provided in Ap-
pendix H. We find all experiment results align with our theoretical arguments in previous sections.

6.1 COMPARE WITH CLOSED-FORM SOLUTIONS

If we replace Φλ,β with a power function Φ, Problem (10) admits a closed-form solution (Guan et al.,
2022). This allows us to explicitly evaluate the performance of Algorithm 6 in this specific scenario.
In Table 1, we compare the closed-form optimal value EQb1

[u(X∗
T )] with the learned optimal value

EQb1
[u (hθ∗(WT , B))] across various market parameters r and different values of b1. To estimate

the learned optimal value EQb1
[u (hθ∗(WT , B))], we employ Monte Carlo approach by conducting

100 independent experiments, each utilizing 2000 samples of the pair (WT , B).

6.2 REAL DATA EXPERIMENTS

This experiment is motivated by Blanchet et al. (2021a). We use S&P 500 constituents data from
2015 to 2024 and evaluate different methods using average annualized Sharpe Ratio for all stocks.
We use a rolling window of one year to get the required parameters for all methods like interest rate
r and an estimation of σ. For the ease of computation, we choose two fixed priors across time based
on Wang & Zhou (2020), prior 1 is more deviated and prior 2 is less deviated. The uncertainty set
radius δ is chosen following the cross-validation type in Si et al. (2023). Results in Table 2 show
that the DRBC is substantially better than benchmarks and it reduces the overpessimism in real data.

7 CONCLUSION AND FUTURE WORK

We provided the DRBC model to mitigate misspecification and overpessimism. Though effecitve in
the ϕ-divergence uncertainty case, we believe that other efficient numerical methods under different
unccertainty measure can be found to reduce the overpessimism. We leave them for future work.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Daniel Bartl, Michael Kupper, and Ariel Neufeld. Duality theory for robust utility maximisation.
Finance and Stochastics, 25:469–503, 2021.
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APPENDIX

A PRELIMINARIES

In this section, we present preliminary definitions and results that will be used for the proofs.

A.1 PRELIMINARY DEFINITIONS

Definition 18. The Cressie-Read divergence is a ϕ- divergence where the convex function is taken
by for a fixed k > 1,

fk(t) =
tk − kt+ k − 1

k(k − 1)
.

Definition 19. Suppose g : Rd → R is a function, then we say g satisfies the linear growth condition
if there exists a constant c > 0 such that

|g(x)| ≤ c (1 + ∥x∥) ,

where ∥.∥ denotes a norm in the Euclidean space.
Definition 20. Suppose f : D ⊂ Rd → R is a function, then we say f is Hölder continuous with
parameter w and bounding constant K if there exists K > 0 and w > 0 such that for any x, y ∈ D,

|f(x)− f(y)| ≤ K ∥x− y∥w . (12)

We say f is locally Hölder continuous with parameter w and bounding constant K if Equation (12)
holds inside each compact neighborhood.
Definition 21. Let B1 and B2 be Banach spaces and G : B1 → B2 be a mapping. It is said that G
is directionally differentiable at a considered point µ ∈ B1 if the limits

G′
µ(d) = lim

t↓0

G(µ+ td)−G(µ)

t

exist for all d ∈ B1.

Furthermore, it is said that G is Gâteaux directionally differentiable at µ if the directional derivative
G′

µ(d) exists for all d ∈ B1 and G′
µ(d) is linear and continuous in d. For ease of notation, we also

denote Dµ(µ0) the operator G′
µ(·).

Finally, it is said that G is Hadamard directionally differentiable at µ if the directional derivative
G′

µ(d) exists for all d ∈ B1 and

G′
µ(d) = lim

t↓0

G(µ+ td′)−G(µ)

t
, d′ → d.

A.2 AUXILIARY RESULTS

Theorem 22. (Abstract Bayes Theorem (Elliott et al., 1995)) Suppose (Ω,F , P ) is a probability
space and G ⊆ F is a sub-σ-field. Suppose P̄ is another probability measure absolutely continuous
with respect to P and with Radon-Nikodym derivative dP̄

dP = Λ. Then if ϕ is any P̄ -integrable
random variable

EP̄ [ϕ | G] = ψ where ψ =
EP [Λϕ | G]
EP [Λ | G]

if EP [Λ | G] > 0

and ψ = 0 otherwise.
Theorem 23. (Syed & Wang (2023)) Let (Z1, Z2) be a 2-stage stochastic process and there exists
p ≥ 1, such that E[|Z2|p] < ∞. Conditioning on Z1, sample i.i.d. Z2(1), . . . , Z2(n). Then there
exists a constant Bp depending only on p such that

E

[∣∣∣∣∣ 1n
n∑

i=1

Z2(i)− E[Z2 | Z1]

∣∣∣∣∣
p]

≤

{
Bp

E[|Z2|p]
np/2 p > 2,

Bp
E[|Z2|p]
np−1 1 ≤ p ≤ 2.

14
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Theorem 24. (Danskin Theorem (Bonnans & Shapiro, 2013)) Let Θ ⊂ Rd be a nonempty compact
set and B be a Banach space. Suppose the mapping G : B × Θ → R satisfies that G(µ, θ) and
Dµ(µ, θ) are continuous onOµ0

×Θ, whereOµ0
⊂ B is a neighborhood around µ0. Let ϕ : B → R

be the inf-functional
ϕ(µ) = inf

θ∈Θ
G(µ, θ)

and Θ̄(µ) = argmaxθ∈ΘG(µ, θ). Then, the functional ϕ is directionally differentiable at µ0 and

G′
µ0
(d) = inf

θ∈Θ̄(µ0)
Dµ(µ0, θ)d.

Theorem 25. (Delta Theorem (Shapiro et al., 2009)) Let B1 and B2 be Banach spaces, equipped
with their Borel σ-algebras, YN be a sequence of random elements of B1, G : B1 → B2 be a
mapping, and τN be a sequence of positive numbers tending to infinity asN → ∞. Suppose that the
space B1 is separable, the mapping G is Hadamard directionally differentiable at a point µ ∈ B1,
and the sequence XN = τN (YN −µ) converges in distribution to a random element Y of B1. Then,

τN
(
G(YN )−G(µ)

)
⇒ G′

µ(Y ),

and
τN
(
G(YN )−G(µ)

)
= G′

µ(XN ) + op(1).

Theorem 26. ((Shapiro et al., 2009)) Let B1 and B2 be two Banach spaces, G : B1 → B2 and
µ ∈ B1. Then the following statements are true:

• (1) If G is Hadamard directionally differentiable at µ, then the directional derivative G′
µ is

continuous.

• (2) If G is Lipschitz continuous in a neighborhood of µ and directionally differentiable at
µ, then G is Hadamard directionally differentiable at µ.

Theorem 27. (Sion’s minmax Theorem (Sion, 1958)) Let M be any convex topological space and
O is a compact and convex space, h :M ×O → R is a function such that

• (1) For any fixed x ∈M , h(x, .) is lower semi-continuous and quasi-convex.

• (2) For any fixed y ∈ O, h(., y) is upper semi-continuous and quasi-concave.

Then
sup
x∈M

inf
y∈O

h(x, y) = inf
y∈O

sup
x∈M

h(x, y).

B REVIEW OF BAYESIAN AND MARTINGALE METHODS

B.1 MARTINGALE METHOD REVIEW

In the classical literature (Merton, 1971; Cox & Huang, 1991; Karatzas et al., 1991), B is not a
random variable but is a fixed real number. This problem is called Merton’s problem in financial
literature. In this case, we assume the controls are all F-adapted. There are two ways to solve
Problem (3) in this case: dynamic programming and martingale method.

The dynamic method is to guess a Hamilton–Jacobi–Bellman equation (HJB) equation (which is
typically a nonlinear partial differential equation in the portfolio optimization problems) that the
optimal control may satisfy, and then we use a verification method to show that solution (with some
regularity) of this HJB equation indeed gets the optimal control. The final step is to either solve the
HJB equation in closed-form or numerically. The dynamic programming method works well in the
time-consistent case, but not well in the time-inconsistent case (See, for example, a discussion in
He & Zhou (2016)). Thus, in this review section, we focus on another method. We remark that the
traditional distributionally robust control are done via a dynamic programming approach, which we
will revisit in Appendix I.3.2.

On the other hand, the martingale and duality method, which we will call martingale method later,
is a more probabilistic approach and works well for portfolio optimization problems in both time
consistent and inconsistent cases (notice that this is only for the financial problems which allows

15
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replication of the portfolios (Björk, 2009)). Thus, we focus on the martingale method in this section
now.

Recall that we want to solve
V (x0) = sup

π∈A(x0)

EP [u(XT )] ,

where A(x0) is the collection of all F-progressively measurable stochastic processes π =

{πt}t∈[0,T ] such that
∫ T

0
∥πt∥22 dt < ∞ and Equation (2) with B being a fixed constant admits a

unique strong solution. The hardness of this problem is that the optimal control is indeed a stochas-
tic process, which is infinite-dimensional. A change of measure argument will convert this problem
into one-dimensional (i.e. with respect to a single random variable rather than a stochastic process).

Consider the set of all portfolios that can be generated starting with an initial capital of x. By design,
our final wealth XT lies within this set, making it a suitable search domain for optimization with
respect toXT . Since we only have one risky asset, then the market is complete, and according to the
fundamental theorem of asset pricing (essentially Girsanov’s theorem), (Karatzas & Shreve, 1998)
there exists a unique probability measureQ that is equivalent to P such that underQ, the discounted
processes e−rtSt and e−rtXt are martingales. Thus the original problem becomes

V (x0) = sup
XT∈A(L2)

EP [u(XT )] ,

where A(L2) is the collection of L2 random variables such that e−rtXt is a martingale, which is
equivalent to

EQ
[
e−rTXT

]
= x0 = EP

[
dQ

dP
e−rTXT

]
= EP [ρTXT ] ,

where ρt = exp
(
−
(
r + θ2

2 − θWt

))
and θ = B−r

σ is called the market price of risk. (For the

computation of dQ
dP , see Karatzas et al. (1991)). Thus, writing down the Lagrangian duality of the

new problem and using the point-wise optimization technique (Liang & Liu, 2019), we derive the
optimal terminal wealth X∗

T .

Next we use the martingale property to derive the optimal wealth process by computing

X∗
t =

1

ρt
EP [ρTX

∗
T |Ft] .

Finally, from the martingale representation theorem (Øksendal, 2003) (since ρtXt is a martingale
under P ), there exists an F-adapted process {ϕt}t∈[0,T ] such that

ρtX
∗
t = x0 +

∫ t

0

ϕsdWs,

where Wt is the P -Brownian motion driving the dynamics of the risky asset. Applying Itô’s lemma
toX∗

t , we can match the diffusion term πtσdWt in the wealth equation to the diffusion term ϕtdWt.
This gives

π∗
t =

ϕt
σ
.

Thus, the optimal control π∗
t is directly expressed in terms of the martingale representation process

ϕt, which is determined by the terminal condition X∗
T .

There are two takeaways from this method. Firstly, as long as we can construct the appropriate
change of measure and the duality theory (in the complete market), then solving for the optimal
control is equivalent to solving for the optimal terminal wealth. Secondly, the explicit computa-
tion based on the martingale property and Itô’s lemma depends highly on the Gaussian (Brownian
motion) assumptions, thus this may not generalize to other cases (without specific distributions).

B.2 BAYESIAN TECHNIQUE REVIEW AND PROOF OF THEOREM 28

In practice, to use Merton’s model to guide the investment, constants B and σ need to be estimated
from the market data, then the model can be fitted with these estimators. However, in practice, even

16
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though the estimation of σ is relatively easy, the estimation of B as a constant is hard (Mehra &
Prescott, 1985). Thus, it is natural to consider the Bayesian technique to randomized B as a random
variable that is independent of the Brownian motionW , and the prior distribution ofB can be chosen
via experts’ advice. This is why this stochastic diffusion control problem is called Bayesian. In this
case, martingale method combined with Bayesian and filtering techniques can be used to derive
the closed-form solution, where for the dynamic programming approach we still need to solve a
second-order nonlinear partial differential equation (Bismuth et al., 2019; Rieder & Bäuerle, 2005).

Karatzas & Zhao (1998) builds the solvability of Problem (3), but the prior distribution is given to
the random market price of risk Θ = B−r

σ , which is equivalent to our setting theoretically, but the
exact closed form solution will be slightly different. In this section, we adapt the theory in Karatzas
& Zhao (1998) to give the optimal solution of Problem (3) in Theorem 28.
Theorem 28. The optimal value function of Problem (3) is given by V (x0) =
(x0e

rT )
α

α

(∫
R (F (T, z))

1
1−α φT (z)dz

)1−α

, and the optimal fraction invested in the stock for each
time t ≥ 0 is given by

π∗
t

X∗
t

=

∫
R ∇F (T, z + Yt) (F (T, z + Yt))

α
1−α φT−t(z)dz

(1− α)σ
∫
R (F (T, z + Yt))

1
1−α φT−t(z)dz

,

where φT is the density function of N (0, T ), Yt = B−r
σ t + Wt, and F (t, y) := Fµ(t, y) =∫

R Lt(z, y)dµ(z) with Lt(z, y) = 1 if t = 0 and Lt(z, y) = exp
(

z−r
σ y − 1

2

(
z−r
σ

)2
t
)

if t > 0.

Moreover, the filtration generated by the process {Yt}t∈[0,T ] is the same as FS .

Proof. To begin with, from Girsanov’s theorem (Karatzas & Shreve, 1991),

1

Zt
= L−1

t (B, Yt) = exp

(
−B − r

σ
Yt +

1

2

(
B − r

σ

)2

t

)
is a G-martingale under P (hence also FS-martingale under P ). If we define a probability measure
P̃ by dP̃

dP = 1
ZT

, then under P̃ , B still has the distribution µ and is independent of the Brownian
motion Y .

Next, from the tower property, for fixed t ∈ [0, T ],

Ẑt := Ẽ
[
ZT |FS

t

]
= Ẽ

[
Ẽ [ZT |Gt] |FS

t

]
= F (t, Yt).

Moreover, from the abstract Bayes’ rule (Elliott et al., 1995), the conditional expectation of B given
the stock price is

B̂t := EP
[
B|FS

t

]
= G(t, Yt),

where G(t, y) =
(∇F

F

)
(t, y).

Next, we introduce the so-called innovations process of filtering theory

Nt = Yt −
∫ t

0

G(s, Ys)ds,

and from Itô’s lemma with Λ̂t :=
1
Ẑt

, (⟨., .⟩t denotes the quadratic variation)

d
(
Λ̂t · e−rtXt

)
= Λ̂td

(
e−rtXt

)
+ e−rtXtdΛ̂t + d⟨e−rtX, Λ̂⟩t

= e−rt
[
Λ̂tπtσdYt − Λ̂tXtB̂tdNt − Λ̂tπtσB̂tdt

]
= e−rtΛ̂t

[
σπt −XtB̂t

]
dNt.

Therefore, the process f is an (FS , P ) local martingale, where f(t) = e−rtΛ̂tXt, thus we can use
the martingale method as usual. If we define

I(x) = (u′)
−1

(x),

17
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then it is not hard to show the optimal terminal wealth X∗
T is given by X∗

T = I
(

K(x0)e
−rT

F (T,Y (T ))

)
,

(Karatzas & Zhao, 1998)where K(x0) is a well-defined constant. Then Example 3.5 in Karatzas &
Zhao (1998) gives the formulas of Theorem 28.

Finally, it suffices to show that there exists a measurable function f such that Yt = f(t, St). We
denote S0 = s0 > 0, then for t ∈ [0, T ],

St = s0 exp

((
B − σ2

2

)
t+ σWt

)
.

Therefore,

logSt = log s0 +

(
B − σ2

2

)
t+ σWt,

which implies that

Wt =
log
(

St

s0

)
−
(
B − σ2

2

)
t

σ
.

Hence

Yt =
ln
(

St

s0

)
σ

+
(σ
2
− r

σ

)
t, (13)

which finishes the proof.

In high dimensional case, the dynamic of risky assets becomes:

dSi(t) = Si(t)

bidt+ d∑
j=1

σijdWj(t)

 , 0 ≤ t ≤ T,

where b = (b1, . . . , bd)
⊤ is the expected instantaneous rate of return of the asset, the invertible

matrix σ = {σij}1≤i,j≤d is the instantaneous standard deviation of returns, and 0 < T < ∞ is the
terminal time. Then the optimal value function becomes

V (x0) =

(
x0e

rT
)α

α

(∫
Rd

(F (T, z))
1

1−α φT (z)dz

)1−α

,

where F (t, z) := Fµ(t, z) =
∫
Rd Lt(x, z)dµ(x) with Lt(x, z) = 1 if t = 0 and

Lt(x, z) = exp

((
σ−1 (x− r1)

)⊤
z − 1

2

∥∥σ−1 (x− r1)
∥∥2
2
t

)
And the optimal fraction is

π∗(t)

X∗(t)
=
(
σ⊤)−1

∫
Rd ∇F (T, z + Y (t)) (F (T, z + Y (t)))

α
1−α φT−t(z)dz

(1− α)
∫
Rd (F (T, z + Y (t)))

1
1−α φT−t(z)dz

,

C PROOF OF RESULTS IN SECTION 2

C.1 PROOF OF THEOREM 1

Proof. • (1) It is easy to see by checking the definitions, Equation (4) defines an equivalence
relation, then the set of all equivalence classes under the quotient topology defines Uδ .

• (2) Fix Q ∈ Uδ , then there are 4 cases to check.

– (a) dQ
dP = f(B), where f : R → R is bounded and (Borel) measurable. Then from

definition of the uncertainty set, for any A ∈ B (R), there exists ν ≪ µ such that

Q(B ∈ A) = EQ
[
1{B∈A}

]
= EP

[
dQ

dP
1{B∈A}

]
= EP

[
f(B)1{B∈A}

]
= ν(A) =

∫
A

dν

dµ
dµ = EP

[
dν

dµ
(B)1{B∈A}

]
,

18
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which implies that dQ
dP = dν

dµ (B) P -almost surely from the uniqueness of Radon-
Nikodym derivative.

– (b) dQ
dP = f(W ), where f : Ω → R is bounded and measurable. In this case, it is

convenient to assume Ω = C ([0, T ];R). Thus the standard Brownion motion W :
Ω → Ω can be viewed as a function-valued random element. Therefore, for A ∈
B(Ω),

Q(W ∈ A) = EQ
[
1{W∈A}

]
= EP

[
dQ

dP
1{W∈A}

]
= EP

[
f(W )1{W∈A}

]
̸= P (W ∈ A)

unless f = 1, which is equivalent to the case when dQ
dP = dν

dµ (B) with ν = µ.

– (c) dQ
dP = f(B,W ), where f : R× Ω → R is bounded and jointly measurable. From

part (b) and independence between B and W , it is easy to construct a contradiction.
– (d) dQ

dP = f(Y ), where f : Ω → R is bounded and measurable, and Y is a stochastic
process that is independent of both B and W . From the definition of the equivalence
classes, this case is equivalent to the case when dQ

dP = dν
dµ (B) with ν = µ.

Moreover,

Dϕ(Q ∥ P ) =
∫
ϕ

(
dQ

dP

)
dP =

∫
ϕ

(
dν

dµ
(B)

)
dP =

∫
ϕ

(
dν

dµ

)
dµ = Dϕ(ν ∥ µ).

D PROOF OF RESULTS IN SECTION 3

D.1 PROOF OF THEOREM 2

Proof. The proof of this utilizes the law invariance theory developed in Shapiro (2017) for ϕ diver-
gence. Recall that we begin with the complete probability space (Ω,F , P ). Let F̂ = σ(B) ⊂ F ,
and define P̂ = P |F̂ , then the triple (Ω, F̂ , P̂ ) is a probability space (may not be complete) such
that for any F̂-measurable random variables Z,

EP [Z] = EP̂ [Z] . (14)

Now, for a fixed Q ∈ Uδ , we define the restriction of Q as Q̂ = Q|F̂ . We define the space

L1
(
Ω, F̂ , P̂

)
⊂ L1 (Ω,F , P ) as a subspace given that u(XT ) ∈ Lp (Ω,F , P ). We define an

equivalence relation ∼ϕ with respect to a convex function ϕ (which is easy to check) between two

functions with mean 1 X,Y ∈ L1
(
Ω, F̂ , P̂

)
by

X ∼ϕ Y if and only if
∫
Ω

ϕ (X) dP̂ =

∫
Ω

ϕ (Y ) dP̂ .

Following the notations in Shapiro (2017), we define a quotient space of L1
(
Ω, F̂ , P̂

)
with respect

to ∼ϕ by

Â = {
[
X̂
]
, where X̂ =

dQ̂

dP̂
,Q ∈ Uδ}.

Let Ûδ be the collection of restrictions of all Q ∈ Uδ on F̂ . For any Q ∈ Uδ , there is a unique
Q̂ ∈ Ûδ such that Q̂ = Q|F̂ from definition. On the other hand, for a fixed Q̂ ∈ Ûδ , there is also a
unique Q ∈ Uδ such that Q̂ = Q|F̂ . To see this, suppose Q1, Q2 ∈ Uδ and Q̂ = Q1|F̂ = Q2|F̂ ,
which implies that Q1 ∼ Q2, hence uniqueness is shown.
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We define two F̂-measurable random variables X and Y to be distributionally equivalent under the
measure P̂ if for anyA ∈ B(R), P̂ (X ∈ A) = P̂ (Y ∈ A) .Next, we notice that for anyX1 andX2

that are two F̂-measurable random variables such that X1 ∈ Â and X1 and X2 are distributionally
equivalent, then X2 ∈ Â.

For a fixed probability measure Q ∈ Uδ , we know that

EQ[u(XT )] = EQ
[
EQB

[u(XT )]
]
,

where QB is the regular conditional probability under Q (the current measure) conditioned on the
random variable B. The random variable EQB

[u(XT )] is F̂-measurable.

Next, we define the functional corresponding to the law invariant set Â, then from the law invariance
theory in Shapiro (2017), this functional is also law invariant thus implies the strong duality. We
firstly define a function space D = {αEPB

[u(XT )] , α ∈ R}, which is an one-dimensional linear
subspace of Lp

(
Ω, F̂ , P̂

)
given that u(XT ) ∈ Lp (Ω,F , P ). Note that here PB represents the

regular conditional distribution given B under P , and its notation will be changed to QB if the
underlying probability measure is changed to Q. From the one-to-one correspondence between Ûδ

and Â, the functional ρ : D → R defined by

ρ(Z) = inf
Q̂∈Ûδ

EQ̂ [Z] = inf
Q̂∈Ûδ

EQ̂
[
EQB

[u(XT )]
]

is law invariant with respect to
(
Ω, F̂ , P̂

)
.

Since the topological and convexity structures are the preserved, then with a similar argument as in
Section 3.2 in Shapiro (2017), the Lagrangian of the problem infQ̂∈Ûδ

EQ̂
[
EQB

[u(XT )]
]

is given
by

LZ

(
X̂, λ, β

)
=

∫
Ω

ZX̂dP + λ

(∫
Ω

ϕ
(
X̂
)
dP − δ

)
+ β

(
1−

∫
Ω

X̂dP

)
= β − λδ +

∫
Ω

(
ZX̂ + λϕ

(
X̂
)
− βX̂

)
dP,

and the Lagrangian dual problem is

sup
λ≥0,µ∈R

inf
X̂≥0

LZ

(
X̂, λ, β

)
.

Since the space Lp
(
Ω, F̂ , P̂

)
is decomposable, then as in Shapiro (2017),

inf
X̂≥0

LZ

(
X̂, λ, β

)
= β − λδ + inf

X̂≥0

{∫
Ω

(
ZX̂ + λϕ

(
X̂
)
− βX̂

)
dP̂

}
= β − λδ +

∫
Ω

inf
x≥0

(Zx+ λϕ(x)− βx) dP̂

= β − λδ +

∫
Ω

− (λϕ)
∗
(β − Z)dP̂

= β − λδ + EP̂
[
− (λϕ)

∗
(β − EPB

[u(XT )])
]

= β − λδ + EP̂
[
Φλ,β

(
EPB

[u(XT )]
)]
.
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Therefore,

inf
Q∈Uδ

EQ [u(XT )] = inf
Q∈Uδ

EQ
[
EQB

[u(XT )]
]

= inf
Q̂∈Ûδ

EQ̂
[
EQB

[u(XT )]
]

= sup
λ≥0,β∈R

{
β − λδ + EP̂

[
Φλ,β

(
EPB

[u(XT )]
)]}

= sup
λ≥0,β∈R

{
β − λδ + EP

[
Φλ,β

(
EPB

[u(XT )]
)]}

= sup
λ≥0,β∈R

{
β − λδ +

∫
R
Φλ,β

(
EP b

[u(XT )]
)
dµ(b)

}
,

which finishes the proof.

Remark 29. If we plug in u(XT ) as an F-measurable random variable, then the strong duality would
look like

inf
Q∈Uδ

EQ [u(XT )] = sup
λ>0,β∈R

{
β − λδ + λEP [Gλ,β(XT )]

}
,

where for fixed λ > 0, β ∈ R (assuming multipliers nonzero),

Gλ,β(x) := (−ϕ∗)
(
β − u(x)

λ

)
.

The strong duality looks better than the one stated in Theorem 2 since it is more tractable. However,
this is wrong since Uδ is not law invariant with respect to F . As in the language of Shapiro (2017),
suppose we have a Radon-Nikodym derivative X = f(B), where f is a measurable function and
B ∈ N (0, 1), define Y = f(W1), then X and Y are distributionally equivalent but Y cannot induce
a probability measure that belongs to Uδ (by Theorem 1).

D.2 PROOF OF THEOREM 3

Proof. Since ϕ(x) = x log x− x+ 1, then Φλ,β(x) = λ
(
1− exp

(
β−x
λ

))
if λ > 0. Therefore, if

optimal λ∗ ̸= 0, then

inf
Q∈UKL,δ

EQ [u(XT )] = sup
λ≥0,β∈R

{
β − λδ +

∫
R
λ

(
1− exp

(
β − EP b

[u(XT )]

λ

))
dµ(b)

}
.

If we take derivative with respect to β, then we get the optimal β∗

β∗ = −λ log

(∫
R
exp

(
−EP b

[u(XT )]

λ

)
dµ(b)

)
.

After plugging in, we have

inf
Q∈UKL,δ

EQ [u(XT )] = sup
λ≥0

{
−λδ − λ log

(∫
R
exp

(
−EP b

[u(XT )]

λ

)
dµ(b)

)}
.

The case when λ = 0 is from discussion of case 1 after Assumption 1 in Hu & Hong (2013).

D.3 EXTENSION TO CRESSIE-READ DIVERGENCE

We give a theorem for the Cressie-Read divergence with the uncertainty set is denoted as Uk,δ for
ϕk(x) =

xk−kx+k−1
k(k−1) with k ∈ (1,∞). We further define k∗ = k

k−1 and ck(δ) = (1 + k(k − 1)δ)
1
k .

Theorem 30.

inf
Q∈Uk,δ

EQ [u(XT )] = sup
β∈R

{
β − ck(δ)

(∫
R

(
β − EP b

[u(XT )]
)k∗

+
dµ(b)

) 1
k∗
}
.
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Proof. From Duchi & Namkoong (2021), we know that

ϕ∗k(x) =
1

k
((k − 1)x+ 1)

k∗
+ − 1

k
.

Therefore, by plugging in this to Theorem 2, we have

inf
Q∈Uk,δ

EQ [u(XT )]

= sup
λ≥0,β∈R

{
β − λδ + λEP

[
Φλ,β

(
EPB

[u(XT )]
)]}

= sup
λ≥0,β∈R

{
β − λ

(
δ − 1

k

)
− λ1−k∗

(k − 1)k∗

k
EP

[(
β − EPB

[u(XT )] +
λ

k − 1

)k∗

+

]}

= sup
λ≥0,β̃∈R

{
β̃ − λ

(
δ +

1

k(k − 1)

)
− λ1−k∗

(k − 1)k∗

k
EP

[(
β̃ − EPB

[u(XT )]
)k∗

+

]}
,

where we define β̃ = β + λ
k−1 thus the last equality holds. Noting that k∗−1

k∗
= 1

k and taking
derivatives with respect to λ to minimize the preceding expression, we have

λ = (k − 1) (δk(k − 1) + 1)
− 1

k∗

(
EP

[(
β̃ − EPB

[u(XT )]
)k∗

+

]) 1
k∗

.

By substituting back, we have

inf
Q∈Uk,δ

EQ [u(XT )]

= sup
β̃∈R

{
β̃ − (δk(k − 1) + 1)

1
k

(
EP

[(
β̃ − EPB

[u(XT )]
)k∗

+

]) 1
k∗
}

= sup
β̃∈R

{
β̃ − ck(δ)

(∫
R

(
β̃ − EP b

[u(XT )]
)k∗

+
dµ(b)

) 1
k∗
}
,

which finishes the proof.

D.4 EXISTENCE AND UNIQUENESS OF THE DUAL OPTIMIZER

Theorem 31. Assume Assumption 6 and 7 hold, then for a fixed π ∈ A(x0), there exist positive and
finite λ̄ and λ such that any optimal λ∗(π) ∈ [λ, λ̄].

Proof. From Jensen’s inequality, we have

log

(∫
R
exp

(
−Zb

λ

)
dµ(b)

)
≥
∫
R
log

(
exp

(
−Zb

λ

))
dµ(b) =

−1

λ
EP [ZB ],

thus

−λ log
(∫

R
exp

(
−Zb

λ

)
dµ(b)

)
− λδ ≤ EP [ZB ]− λδ ≤M − λδ.

On the other hand,
inf

Q∈UKL,δ
EQ [u(XT )] ≥ ess inf u(XT ) ≥ 0

sinceXT ≥ 0 and u is strictly increasing, thenM−λδ ≥ 0 gives the upper bound λ∗(π) ≤ λ̄ := M
δ .

For the lower bound, it suffices to show there exists λ > 0 such that

−λ log

(∫
R
exp

(
−EP b

[u(XT )]

λ

)
dµ(b)

)
− λδ > ess inf EPB

[u(XT )] ≥ u(m),

which is equivalent to

E

[
exp

(
−EP b

[u(XT )] + u(m)

λ

)]
< e−δ.
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Since as λ → 0, LHS → 0 (as a left limit), thus as long as we pick λ > 0 small enough, then the
inequality is achieved, thus the optimal λ∗ > 0, thus the optimal λ∗ is attained inside the interval
[λ, λ̄].

Remark 32. We remark that for the proof of upper bound of the dual optimizer, the moment condition
can be relaxed to

∫
R Vb(x0)dµ(b) <∞. The bound

∫
R
(
Vb(x0)

)3(1+w)
dµ(b) <∞ is essential in the

construction of the rMLMC estimator.
Theorem 33. If Assumption 6 and 8 satisfied, then for a fixed π ∈ A(x0), there exist positive and
finite λ̄ and λ such that any optimal λ∗(π) ∈ [λ, λ̄].

Proof. The proof of the upper bound is the same as proof of Theorem 31. For the lower bound, even
though the same proof as Theorem 31 can be done, we adapt the proof of Lemma A12 from Si et al.
(2023) to illustrate the usefulness of the stronger Assumption 8.

Essentially, the proof of density and mass function cases are the same, so without loss of gen-
erality, we use f to denote the continuous density of EPB

[u(XT )] on a compact set K, thus
b̄ = supx∈K f(x) < ∞ exists. Further, we define for a fixed π ∈ A(x0), g(λ) = gπ(λ) =

−λ log
(∫

R exp
(

−Zb

λ

)
dµ(b)

)
− λδ. Therefore, since

lim
λ→0

g(λ) = 0,

it suffices to show that

lim inf
λ→0

dg(λ)

dλ
> 0.

Indeed,

dg(λ)

dλ
=

∫
R

−Zb

λ exp
(

−Zb

λ

)
dµ(b)∫

R exp
(

−Zb

λ

)
dµ(b)

− δ − log

(∫
R
exp

(
−Zb

λ

)
dµ(b)

)
.

We notice that

lim
λ→0

− log

(∫
R
exp

(
−Zb

λ

)
dµ(b)

)
= ∞

and

lim inf
λ→0

∫
R

−Zb

λ exp
(

−Zb

λ

)
dµ(b)∫

R exp
(

−Zb

λ

)
dµ(b)

= lim inf
λ→0

∫
R

−Zb

λ exp
(

−Zb

λ

)
dµ(b)/λ∫

R exp
(

−Zb

λ

)
dµ(b)/λ

≥ − b̄
b

since ∫ ∞

0

y

λ
e−

y
λ dy =

∫ ∞

0

e−
y
λ dy = λ.

As a result,

lim inf
λ→0

dg(λ)

dλ
= ∞.

Since the objective function is strictly concave in λ (Theorem 39), then the uniqueness is shown,
thus finishes the proof.

Remark 34. Similarly, mild assumptions on the moments (Duchi & Namkoong, 2021) gives the
uniqueness and strictly concavity of the objective function in the Cressie-Read divergence case.

E SUPPLEMENTARY FOR SECTION 4

We first provide two lemmas that will be used in the proof of Theorem 11.
Lemma 35. Suppose Assumption 10 holds and µ is compactly supported with a continuous density,
then for each fixed π ∈ A(x0), there exists a constant M > 0 such that with probability one,

0 ≤ ZB = EPB

[u(XT )] ≤M.

That is, the random variable ZB has a compact support.
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Proof. Since function b 7→ Zb is continuously differentiable and monotone on its support, thus the
random variable ZB has a continuous density. Since the support is compact, then with probability
one, ZB has attainable maximum and minimum.

Remark 36. Lemma 35 helps establish the finite variance of the estimator Eπ,δ,λ,β . The same result
will be automatically true if Assumption 8 holds.

E.1 PROOF OF THEOREM 11

Proof. With no confusion in the notation, we use Eb = Eb
λ,β and E = Eπ,δ,λ,β for simplicity.

Since Φλ,β satisfies the linear growth condition, then for a fixed b ∈ R, there exists c1 > 0 such that∣∣∣∣Φλ,β

(
Sb
n

n

)∣∣∣∣2 ≤ c1

(
1 +

∥∥∥∥Sb
n

n

∥∥∥∥2
2

)
.

Hence, Assumption 6 implies that

EP b

[∣∣∣∣Φλ,β

(
Sb
n

n

)∣∣∣∣2
]
≤ c1

1 +
Varb

(
Ẑb
1

)
n

+ EP b
[
Ẑb
1

] <∞, (15)

where Varb represents the corresponding expectation is taken with respect to the measure P b. Thus
Φλ,β

(
Sb
n

n

)
is uniformly integrable with respect to P b. Since for each n ≥ n0 (samples are i.i.d.),

EP
[
∆b1

n

]
= EP

[
Φλ,β

(
Sb1
2n+1

2n+1

)]
− EP

[
Φλ,β

(
Sb1
2n

2n

)]
,

then from the dominated convergence theorem,

EP b1
[E ] = EP

[
Eb1
]

= EP

[
∆b1

Nb1

p(N b1)

]
+ EP

[
Φλ,β

(
Sb1
2n0

2n0

)]

=

∞∑
n=n0

EP
[
∆b1

n

]
+ EP

[
Φλ,β

(
Sb1
2n0

2n0

)] ∞∑
n=n0+1

EP
[
∆b1

n

]
= lim

m→∞
EP

[
Φλ,β

(
Sb1
2m

2m

)]
= EP

[
lim

m→∞
Φλ,β

(
Sb1
2m

2m

)]
= Φλ,β

(
Zb1
)
.

Finally, from tower property, we have

EP [E ] = EP
[
EPB

[E ]
]
=

∫
R
EP b

[E ] dµ(b) =
∫
R
Φλ,β

(
Zb
)
dµ(b),

which shows the unbiasedness.

Lemma 35 and Assumption 4 imply that it suffices to restrict the study of the function
Φ((λ, β), Zb) = Φλ,β

(
Zb
)

on a compact product K1 ×K2, thus Assumption 5 implies that there
exists a constant K > 0 such that

sup
((λ,β),Zb)∈K1×K2

∥∥D2Φλ,β

∥∥ < K. (16)

In order to show Var
(
Eb1
)
<∞, from Equation (15), it suffices to show EP

[(
∆B

N

p(N)

)2]
<∞.

From Taylor’s expansion, we have for fixed n ∈ N, with probability one, there exists ξBn+1 between

ZB and
SB
2n+1

2n+1 , ξO,B
n between ZB and SO,B

2n

2n , and ξE,B
n between ZB and SE,B

2n

2n such that

Φλ,β

(
SB
2n+1

2n+1

)
= Φλ,β

(
ZB
)
+DΦλ,β

(
ZB
)(SB

2n+1

2n+1
− ZB

)
+
1

2
D2Φλ,β

(
ξBn+1

)(SB
2n+1

2n+1
− ZB

)2

,
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Φλ,β

(
SO,B
2n

2n

)
= Φλ,β

(
ZB
)
+DΦλ,β

(
ZB
)(SO,B

2n

2n
− ZB

)
+
1

2
D2Φλ,β

(
ξO,B
n

)(SO,B
2n

2n
− ZB

)2

,

and

Φλ,β

(
SE,B
2n

2n

)
= Φλ,β

(
ZB
)
+DΦλ,β

(
ZB
)(SE,B

2n

2n
− ZB

)
+
1

2
D2Φλ,β

(
ξE,B
n

)(SE,B
2n

2n
− ZB

)2

.

Therefore,

∆B
n = Φλ,β

(
SB
2n+1

2n+1

)
− 1

2

(
Φλ,β

(
SO,B
2n

2n

)
+Φλ,β

(
SE,B
2n

2n

))

= DΦλ,β

(
ZB
)(SB

2n+1

2n+1
− ZB

)
+

1

2
D2Φλ,β

(
ξBn+1

)(SB
2n+1

2n+1
− ZB

)2

− 1

2

DΦλ,β

(
ZB
)(SO,B

2n

2n
− ZB

)
+

1

2
D2Φλ,β

(
ξO,B
n

)(SO,B
2n

2n
− ZB

)2


− 1

2

DΦλ,β

(
ZB
)(SE,B

2n

2n
− ZB

)
+

1

2
D2Φλ,β

(
ξE,B
n

)(SE,B
2n

2n
− ZB

)2
 .

Since ẐB is an unbiased estimate of ZB , then from the boundedness of second derivative (Equation
(16)),

EP
[(
∆B

n

)2] ≤ 1

4
EP

∥∥∥∥∥D2Φλ,β

(
ξBn+1

)(SB
2n+1

2n+1
− ZB

)2
∥∥∥∥∥
2

2


+

1

8
EP


∥∥∥∥∥∥D2Φλ,β

(
ξO,B
n

)(SO,B
2n

2n
− ZB

)2
∥∥∥∥∥∥
2

2

+
1

8
EP


∥∥∥∥∥∥D2Φλ,β

(
ξE,B
n

)(SE,B
2n

2n
− ZB

)2
∥∥∥∥∥∥
2

2


≤ K

4
EP

∥∥∥∥∥
(
SB
2n+1

2n+1
− ZB

)2
∥∥∥∥∥
2

2

+
K

8
EP


∥∥∥∥∥∥
(
SO,B
2n

2n
− ZB

)2
∥∥∥∥∥∥
2

2

+
K

8
EP


∥∥∥∥∥∥
(
SE,B
2n

2n
− ZB

)2
∥∥∥∥∥∥
2

2

 .
From Jensen’s inequality and Lemma 23, there exists a constant K2 such that

EP

∥∥∥∥∥
(
SB
2n+1

2n+1
− ZB

)2
∥∥∥∥∥
2

2

 ≤ EP

[∥∥∥∥SB
2n+1

2n+1
− ZB

∥∥∥∥4
2

]
≤ K2

22(n+1)
EP

[∥∥ZB
∥∥4
2

]
≲ O

(
2−2n

)
,

where f(n) ≲ O
(
2−2n

)
means there is a constant C > 0 such that f(n) ≤ C2−2n.

Therefore, there exists a constant C > 0 such that

EP

[(
∆B

N

p(N)

)2
]
=

∞∑
n=0

EP
[(
∆B

n

)2]
p(n)

≤ C

∞∑
n=0

2−2n

p(n)
<∞,

from the discussion of in Section 3 in Blanchet & Glynn (2015). Therefore, Var (Eπ,δ,λ,β) is also
finite.

E.2 FIRST AND SECOND ORDER CONDITIONS

In this section, we give the first and second order conditions for the general ϕ-divergence case with
Φλ,β strictly concave and strictly increasing in (λ, β)T for large n. We remark that for a fixed
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n ∈ N, the value function is not strictly concave in (λ, β)T since the definition of rMLMC estimator
introduces negative linear combination of strictly concave functions. Since the estimator is not
strictly concave and is random, it may be better to use the (stochastic) gradient descent method to
escape from irregular points (e.g. saddle points).

Theorem 37. Define F (λ, β;π, δ) = β − λδ + E for fixed δ > 0 and policy π, then F is strictly
concave in (λ, β) as n→ ∞ under Assumption 5 and its first and second (mixed) partial derivatives
admit the expressions

∂F

∂λ
:=

∂F (λ, β;π, δ)

∂λ
=

1

n

n∑
i=1

∆bi
Nbi ,λ

p(N bi)
− δ +

∂Φλ,β

∂λ

(
Sbi
2n0

2n0

)
, (17)

∂F

∂β
:=

∂F (λ, β;π, δ)

∂β
=

1

n

n∑
i=1

∆bi
Nbi ,β

p(N bi)
+ 1 +

∂Φλ,β

∂β

(
Sbi
2n0

2n0

)
, (18)

∂2F

∂λ∂β
:=

∂2F (λ, β;π, δ)

∂λ∂β
=

1

n

n∑
i=1

∆bi
Nbi ,λ,β

p(N bi)
+
∂2Φλ,β

∂λ∂β

(
Sbi
2n0

2n0

)
, (19)

∂2F

∂λ2
:=

∂2F (λ, β;π, δ)

∂λ2
=

1

n

n∑
i=1

∆bi
Nbi ,λ2

p(N bi)
+
∂2Φλ,β

∂λ2

(
Sbi
2n0

2n0

)
, (20)

and
∂2F

∂β2
:=

∂2F (λ, β;π, δ)

∂β2
=

1

n

n∑
i=1

∆bi
Nbi ,β2

p(N bi)
+
∂2Φλ,β

∂β2

(
Sbi
2n0

2n0

)
, (21)

where for fixed b ∈ R, n ∈ N, and y, y′ ∈ {λ, β},

∆b
n,y =

∂

∂y
Φλ,β

(
Sb
2n+1

2n+1

)
− 1

2

∂

∂y

(
Φλ,β

(
SO,b
2n

2n

)
+Φλ,β

(
SE,b
2n

2n

))
,

∆b
n,y2 =

∂2

∂y2
Φλ,β

(
Sb
2n+1

2n+1

)
− 1

2

∂2

∂y2

(
Φλ,β

(
SO,b
2n

2n

)
+Φλ,β

(
SE,b
2n

2n

))
,

and

∆b
n,y,y′ =

∂2

∂y∂y′
Φλ,β

(
Sb
2n+1

2n+1

)
− 1

2

∂2

∂y∂y′

(
Φλ,β

(
SO,b
2n

2n

)
+Φλ,β

(
SE,b
2n

2n

))
.

Proof. Since Φλ,β is strictly concave in (λ, β)T and E is an unbiased and consistent estimator, then
so is F as n→ ∞. The computation of derivatives is elementary.

Next, we give a specific example of the KL divergence case. Recall that in this case,

QDRBCKL(π) = sup
λ>0

{
−λδ − λ log

(∫
R
exp

(
−Zb

λ

)
dµ(b)

)}
,

which has a form that is more complicated than the general case: in the KL case there are two
nonlinear transformations log and exp in the nested expectation, thus to get an unbiased estimator
of QDRBCKL(π) we need to apply the rMLMC method recursively (Syed & Wang, 2023).
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Another way is to keep the form when there are two multipliers λ and β rather than using the form
QDRBCKL(π) = supλ>0

{
−λδ − λ log

(∫
R exp

(
−Zb

λ

)
dµ(b)

)}
. This can avoid the multi-layer

nested expectation and nonlinear transformations if the Φλ,β corresponding to the KL divergence is
strictly concave. However, this is always false.
Theorem 38. When ϕ(x) = x log x− x+1, then Φλ,β is concave but it is never strictly concave in
(λ, β)T (jointly).

Proof. If ϕ(x) = x log x − x + 1, then Φλ,β(x) = λ
(
1− exp

(
β−x
λ

))
if λ > 0. Therefore, if

optimal λ∗ ̸= 0, then

∂

∂λ
Φλ,β(x) = 1 + exp

(
β − x

λ

)(
β − x

λ
− 1

)
,

∂

∂β
Φλ,β(x) = − exp

(
β − x

λ

)
,

∂2

∂λ∂β
Φλ,β(x) =

β − x

λ2
exp

(
β − x

λ

)
,

∂2

∂λ2
Φλ,β(x) = − (β − x)2

λ3
exp

(
β − x

λ

)
,

and
∂2

∂β2
Φλ,β(x) = − 1

λ
exp

(
β − x

λ

)
.

Therefore,

|H(Φλ,β)| =

∣∣∣∣∣
[

∂2Φλ,β

∂λ2

∂2Φλ,β

∂λ∂β
∂2Φλ,β

∂λ∂β
∂2Φλ,β

∂β2

]∣∣∣∣∣
= exp

(
2(β − x)

λ

)
(β − x)

2

(
1

λ3 · λ
− 1

λ2 · λ2

)
= 0,

thus Φλ,β is never strictly concave in (λ, β)T .

A solution to this is to focus on the form when there is only one multiplier term. We can do the
recursive rMLMC method to get an unbiased final estimate, but we can also do the plug-in method
(which is biased) to get the same central limit theorem in the KL case as Theorem 13. Doing this
not only simplify the code and the numerical analysis, but also keep the same rate of convergence.
To be more specific, let Φλ(x) = exp

(−x
λ

)
for x > 0 and λ > 0, the rMLMC estimator first

samples b ∼ µ, then independently samples a random N b = Ñ b + n0, where n0 is a fixed non-
negative integer and Ñ b ∼ Geo(R) with R ∈

(
1
2 ,

3
4

)
, finally generates 2N

b+1 unbiased estimates{
Ẑb
i

}
1≤i≤2Nb

of Zb = EP b

[u(XT )], and the random estimator of
∫
R Φλ

(
Zb
)
dµ(b) is given by

Eb
KL = Eb

λ,KL =
∆b

Nb

p(Nb)
+ Φλ

(
Sb
2n0

2n0

)
, where p(.) is the probability mass function of N b and Sb

l =∑l
i=1 Ẑ

b
i . For N b ≥ n0, we define

∆b
Nb = Φλ

(
Sb
2Nb+1

2Nb+1

)
− 1

2

(
Φλ

(
SO,b

2Nb

2Nb

)
+Φλ

(
SE,b

2Nb

2Nb

))
,

where SO,b
l =

∑l
i=1 Ẑ

O,b
i and SE,b

l =
∑l

i=1 Ẑ
E,b
i with

{
ẐE,b
i

}
1≤i≤2Nb+1

and
{
ẐO,b
i

}
1≤i≤2Nb+1

denotes the estimates indexed by even and odd values, respectively. The estimator EKLpre for∫
R exp

(
−Zb

λ

)
dµ(b) is (for fixed π and δ)

EKLpre = Eπ,δ,λ,KL =
1

n

n∑
i=1

Ebi
KL, (22)
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given n i.i.d. samples {bi}1≤i≤n generated from µ. We then use the plug-in estimator EKL =

−λδ − λ log (EKLpre) as a biased but consistent estimator for −λδ − λ log
(∫

R exp
(

−Zb

λ

)
dµ(b)

)
.

Similarly as the general case, we define Q̂DRBCKL(π) := supλ>0 {EKL}.

The first order condition is given by Theorem 39 and the steps are given by Algorithm 1. Because of
the complexity of the derivative information, we will use (stochastic) gradient method in this case.
We also provide the theoretical guarantee in Theorem 40. The proofs are given in Appendix E.4.

Theorem 39. The map λ 7→ −λδ − λ log
(∫

R exp
(

−Zb

λ

)
dµ(b)

)
is strictly concave,

lim
n→∞

P (EKL is strictly concave) = 1, and the derivative of the map λ 7→ EKL admits the expres-
sion
∂

∂λ
EKL = −δ − log (EKLpre) (23)

− 1

EKLpre

1

n

n∑
i=1

A(Sbi
2n0

2n0λ

)
+

1

p(N bi)

A( Sbi

2N
bi+1

2N
bi+1λ

)
− 1

2

A
 SO,bi

2N
bi

2N
biλ

+A

 SE,bi

2N
bi

2N
biλ

 ,

where A(x) = xe−x for x > 0.
Theorem 40. Suppose Assumption 6, 7, 10, and 12 hold, µ is compactly supported with a continuous
density. For fixed π ∈ A(x0), let n denote the number of i.i.d. samples of {Ebi

KL}1≤i≤n, then

√
n
(
Q̂DRBCKL(π)−QDRBCKL(π)

)
⇒ N

0,
(λ∗)

2 Var
(
Eb1
λ∗,KL

)
[∫

R exp
(

−Zb

λ∗

)
dµ(b)

]2
 ,

where λ∗ is defined in Section 3.

Algorithm 1 rMLMC DRBC Policy Evaluation Step in the KL Divergence Case
Input: A simulator S, rMLMC parameter R ∈ ( 12 ,

3
4 ), prior distribution µ, parameter n0, initializa-

tion of λ and k = 0, policy π, step-size sequence {αk : k ∈ Z≥0}.
Output: Estimator of rMLMC DRBC policy value Q̂DRBCKL(π).
repeat

• Draw n i.i.d. samples {bi}1≤i≤n from µ. For each i = 1, 2, . . . , n, sample Ñ bi ∼ Geo(R)
independently, and compute N bi = Ñ bi + n0, then give bi to S and generate 2N

bi+1 i.i.d.
samples of Ẑb

i .

• Compute EKLpre, EKL, and GF := ∂
∂λEKL (Theorem 39).

• Update λ = λ+ αkGF and update k = k + 1.
until λ converges.
Return Q̂DRBCKL(π) = EKL (Equation (22)).

E.3 PROOF OF THEOREM 13

Proof. The proof is adapted from the proof of Theorem 1 from Si et al. (2023). Since the estimator
(7) is unbiased and has finite variance under the assumptions, then from (the classical) central limit
theorem,

√
n

(
Eπ,δ,λ,β −

∫
R
Φλ,β

(
Zb
)
dµ(b)

)
⇒ N

(
0,Var

(
Eb1
λ,β

))
. (24)

From Assumption 4, there exists lb, ub ∈ R such that
∥∥(λ∗, β∗)T

∥∥2
2
∈ K = [lb, ub]. Without loss

of generality, we abuse the notation and denote the support of optimizers as K. Since the function
(λ, β)T 7→ Eπ,δ,λ,β over K is Lipschitz continuous (continuously differentiable on a compact set),
then √

n (f(.)− g(.)) ⇒ L(.) (25)
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uniformly in the Banach space C (K;R) of continuous functions φ : K → R equipped with
the sup norm, where f((λ, β)) = Eπ,δ,λ,β , g((λ, β)) =

∫
R Φλ,β

(
Zb
)
dµ(b), and L((λ, β)) ∼

N
(
0,Var

(
Eb1
λ,β

))
. L is a random element taking values in C (K;R).

Define the functionals
G
(
φ, (λ, β)T

)
= −β + λδ − φ(λ, β)

and
V (φ) = inf

(λ,β)T∈K
G (φ, (λ, β)) ,

then by Danskin theorem, V is directionally differentiable at any µ ∈ C (K;R) with µ > 0 and for
any ν ∈ C (K;R),

V ′
µ(ν) = inf

(λ,β)T∈X̄(µ)
−ν(λ, β),

where X̄(µ) = argmin(λ,β)T∈K {−β + λδ − µ(λ, β)} and V ′
µ(ν) is the directional derivative of V

at µ in the direction of ν. In addition, V is Hadamard directionally differentiable at g(.) since

g((λ, β)) =

∫
R
Φλ,β

(
EP b

[u(XT )]
)
dµ(b) ≥

∫
R
Φλ,β (u(m)) dµ(b) > 0 (26)

and V (φ) is Lipschitz continuous if φ is bounded below away from zero.

Therefore, by the Delta Theorem, we have
√
n (V (f(.))− V (g(.))) ⇒ V ′

g(.) (L) .

Since the map (λ, β)T 7→ −β + λδ −
∫
R Φλ,β

(
Zb
)
dµ(b) is strictly convex, then we have the

uniqueness of the optimizer and

V ′
g(.) (L) = −L (λ∗, β∗) ∼ N

(
0,Var

(
Eb1
λ∗,β∗

))
.

Recall that

QDRBC(π) = − inf
λ>0
β∈R

{
−β + λδ −

∫
R
Φλ,β

(
Zb
)
dµ(b)

}
= −V (g(.))

and
Q̂DRBC(π) = − inf

λ>0
β∈R

{−β + λδ − Eπ,δ,λ,β} .

Notice that from Assumption 12 we have

lim
n→∞

P
(
Q̂DRBC(π) ̸= −V (f(.))

)
→ 0. (27)

Then from Slutsky’s theorem,
√
n
(
Q̂DRBC(π)−QDRBC(π)

)
=

√
n
(
Q̂DRBC(π) + V (f(λ, β))

)
+

√
n (V (f(λ, β))− V (g(λ, β)))

⇒ 0 +N
(
0,Var

(
Eb1
λ∗,β∗

))
∼ N

(
0,Var

(
Eb1
λ∗,β∗

))
,

which finishes the proof.

E.4 PROOF OF RESULTS FOR THE KL DIVERGENCE CASE

E.4.1 PROOF OF THEOREM 39

Proof. Since EKL is a consistent estimator of −λδ − λ log
(∫

R exp
(

−Zb

λ

)
dµ(b)

)
, it suffices to

show the strict concavity of g(λ) = −λ log
(∫

R exp
(

−Zb

λ

)
dµ(b)

)
. To do this, we compute the

first and second order derivatives:

∂

∂λ
g(λ) = − log

(∫
R
e−Zb/λ dµ(b)

)
−
∫
R Z

be−Zb/λ dµ(b)

λ
∫
R e

−Zb/λ dµ(b)
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and

∂2

∂λ2
g(λ) = −

∫
R(Z

b)2e−Zb/λ dµ(b)

λ3
∫
R e

−Zb/λ dµ(b)
+

(∫
R Z

be−Zb/λ dµ(b)
)2

λ3
(∫

R e
−Zb/λ dµ(b)

)2
=

1

λ3
(∫

R e
−Zb/λ dµ(b)

)2
((∫

R
Zbe−Zb/λ dµ(b)

)2

−
∫
R
(Zb)2e−Zb/λ dµ(b)

∫
R
e−Zb/λ dµ(b)

)
≤ 0,

where from Cauchy Schwartz inequality, the equality holds if and only if ZB is constant almost
surely, which is not true in our case. Therefore, strict concavity is shown. Then the computations of
the derivatives are elementary.

E.4.2 PROOF OF THEOREM 40

Proof. The proof is similar to the proof of Theorem 13; the only difference is that we will have
more explicit forms of the limiting Gaussian variance. Since the function Φλ(x) = exp

(−x
λ

)
satisfies Assumption 5, together with other assumptions, it is easy to see that EKLpre is an unbiased

estimator for
∫
R exp

(
−Zb

λ

)
dµ(b) and has a finite variance. Therefore, from central limit theorem,

√
n

(
EKLpre −

∫
R
exp

(
−Zb

λ

)
dµ(b)

)
⇒ N

(
0,Var

(
Eb1
λ,KL

))
. (28)

Recall that from Theorem 31, the optimal λ∗ ∈ K, where K = [λ, λ̄] ⊂ R is compact. From the
Lipschitz continuity of λ 7→ EKLpre over K, we have

√
n (f(.)− g(.)) ⇒ L(.) (29)

uniformly in the Banach space C (K;R) of continuous functions φ : K → R equipped with the sup
norm, where f(λ) = EKLpre, g(λ) =

∫
R exp

(
−Zb

λ

)
dµ(b), and L(λ) ∼ N

(
0,Var

(
Eb1
λ,KL

))
. L is

a random element taking values in C (K;R). We next define the functionals

G (φ, λ) = λ log (φ(λ)) + λδ

and
V (φ) = inf

λ∈K
G (φ, λ) ,

then by Danskin theorem, V is directionally differentiable at any µ ∈ C (K;R) with µ > 0 and for
any ν ∈ C (K;R),

V ′
µ(ν) = inf

λ∈X̄(µ)
λ

(
1

µ(λ)

)
ν(λ),

where X̄(µ) = argminλ∈K {λ log (µ(λ)) + λδ} and V ′
µ(ν) is the directional derivative of V at µ in

the direction of ν. In addition, V is Hadamard directionally differentiable at g(.) since (Assumption
6)

g(λ) =

∫
R
exp

(
−Zb

λ

)
dµ(b) > 0 (30)

and V (φ) is Lipschitz continuous if φ is bounded below away from zero.

Therefore, by the Delta Theorem, we have
√
n (V (f(.))− V (g(.))) ⇒ V ′

g(.) (L) .
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Since the map λ 7→
∫
R exp

(
−Zb

λ

)
dµ(b) is strictly convex, then we have the uniqueness of the

optimizer and

V ′
g(.) (L) = λ∗

 1∫
R exp

(
−Zb

λ∗

)
dµ(b)

L (λ∗)

∼

 λ∗∫
R exp

(
−Zb

λ∗

)
dµ(b)

N
(
0,Var

(
Eb1
λ∗,KL

))

∼ N

0,
(λ∗)

2 Var
(
Eb1
λ∗,KL

)
[∫

R exp
(

−Zb

λ∗

)
dµ(b)

]2
 .

Recall that

QDRBCKL(π) = − inf
λ>0

{
λδ + λ

∫
R
exp

(
−Zb

λ∗

)
dµ(b)

}
= −V (g(.))

and
Q̂DRBCKL(π) = − inf

λ>0
{EKL} .

Notice that from Assumption 12 we have

lim
n→∞

P
(
Q̂DRBCKL(π) ̸= −V (f(.))

)
→ 0. (31)

Then from Slutsky’s theorem,
√
n
(
Q̂DRBCKL(π)−QDRBCKL(π)

)
=

√
n
(
Q̂DRBCKL(π) + V (f(λ))

)
+
√
n (V (f(λ))− V (g(λ)))

⇒ 0 +N

0,
(λ∗)

2 Var
(
Eb1
λ∗,KL

)
[∫

R exp
(

−Zb

λ∗

)
dµ(b)

]2
 ∼ N

0,
(λ∗)

2 Var
(
Eb1
λ∗,KL

)
[∫

R exp
(

−Zb

λ∗

)
dµ(b)

]2
 ,

which finishes the proof.

F PROOF OF RESULTS IN SECTION 5

F.1 PROOF OF LEMMA 14

Proof. The proof is the same as the proof of Theorem 1.

F.2 PROOF OF THEOREM 15

Proof. If we denote γ = 1
λ , then from a dual representation of the entropic risk measure (Föllmer

& Schied, 2016),

sup
π∈A(x0)

{
−λ log

(∫
R
exp

(
−Zb

λ

)
dµ(b)

)}
= sup

π∈A(x0)

{
− 1

γ
log

(∫
R
exp

(
−γEP b

[u(XT )]
)
dµ(b)

)}

= sup
π∈A(x0)

{
− sup

Q̃∈AC

{
EQ̃

[
−EQ̃b

[u(XT )]
]
− 1

γ
DKL

(
Q̃ ∥ P

)}}

= sup
π∈A(x0)

{
inf

Q̃∈AC

{
EQ̃

[
EQ̃b

[u(XT )]
]
+

1

γ
DKL

(
Q̃ ∥ P

)}}
= sup

π∈A(x0)

inf
Q̃∈AC

{
EQ̃ [u(XT )] + λDKL

(
Q̃ ∥ P

)}
.
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F.3 PROOF OF THEOREM 16

Proof. In order to use Sion’s minmax theorem, we need the compactedness of AC, which is not true
in general. However, since m = essinfXT exists and P (XT = m) > 0, we denote the set where
XT = m as E and define a measure such that for any measurable set A,

Q(A) =
P (A ∩ E)

P (E)
,

then Q ∈ AC and for any Q̃ ∈ AC,

EQ̃[u(XT )] ≥ u(m) = EQ[u(XT )],

thus Q is an optimizer of infQ̃∈AC E
Q̃[u(XT )]. Moreover,

dQ

dP
=

1E

P (E)
,

thus for a fixed integer p > 1,
∥∥∥dQ
dP

∥∥∥
p
≤ 1

P (E) , thus the optimal Q for infQ̃∈AC E
Q̃[u(XT )] is

attained inside a compact set K1 in the topology of weak convergence by Prokhorov’s theorem.
Note that the proof of the above argument does not use the finite support assumption.

On the other hand, since µ is finitely supported, and for any Q̃ ∈ AC, there exists ν ≪ µ such that
dQ̃
dP = dν

dµ (B), then ν is also finitely supported and Q̃ ∈ P(K0), where K0 is compact. Thus we
can also restrict the choice of Q to a weakly compact set K2 and define K = K1 ∩K2, thus K is
compact. As a conclusion, infQ̃∈AC E

Q̃[u(XT )] = infQ̃∈K EQ̃[u(XT )].

In addition, we notice that the mapping Q̃ 7→ EQ̃[u(XT )] + λDKL

(
Q̃ ∥ P

)
is convex and

weakly continuous since the first part is linear and the second part is convex, and the mapping
π 7→ EQ̃[u(XT )] + λDKL

(
Q̃ ∥ P

)
is concave, and the constraint sets are both convex, then from

Sion’s minmax theorem,

sup
π∈A(x0)

inf
Q̃∈AC

{
EQ̃ [u(Xπ

T )] + λDKL

(
Q̃ ∥ P

)}
= sup

π∈A(x0)

inf
Q̃∈K

{
EQ̃ [u(Xπ

T )] + λDKL

(
Q̃ ∥ P

)}
= inf

Q̃∈K
sup

π∈A(x0)

{
EQ̃ [u(Xπ

T )] + λDKL

(
Q̃ ∥ P

)}
= inf

Q̃∈AC
sup

π∈A(x0)

{
EQ̃ [u(Xπ

T )] + λDKL

(
Q̃ ∥ P

)}
,

where the last equality holds since if we assume the existence of optimal π∗ for the inner supremum
problem, then for a fixed control, the optimal Q̃∗ is taken in a weakly compact set. Finally, since
µ is finitely supported, then the optimizers are attained from this compactedness, which finishes the
proof.

Theorem 41. Problem (9) is convex on the set AC for any prior distribution µ.

Proof. Since for fixed P , DKL(Q ∥ P ) is convex in Q, then it is enough to show that Ṽ is convex,
which follows from the fact that convexity are preserved under linear transform and it is also pre-
served under composition between a convex function and a convex and nondecreasing function.

F.4 ALTERNATE ADMISSIBLE CONTROLS

In this section, we give the definition of the admissible controls that will help the tractability of the
general case.

To illustrate our definition of the admissible set, we go back to Problem (3) with the strictly con-
cave utility function u. (For a full review, see Appendix B.2) It is shown that the optimal terminal
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wealth X∗
T is given by X∗

T = I
(

K(x0)e
−rT

F (T,Y (T ))

)
(Karatzas & Zhao, 1998). For a density function

λ : R → R, we define the inner product
〈
EP .

[u(X∗
T )] , λ

〉
:=

∫
RE

P b

[u(X∗
T )]λ(b)dµ(b) =∫

RE
P b
[
(u ◦ I)

(
K(x0)e

−rT

F (T,Y (T ))

)]
λ(b)dµ(b). We want to see whether there exists a function h : R →

R and a functional ρ : L1 → R such that∫
R
EP b

[u(X∗
T )]λ(b)dµ(b) = h(x0)ρ(λ) (32)

and
h(1) = u(erT ). (33)

Theorem 42. For the following cases (1) and (2), the conditions (32) and (33) are met, where for
case (3), the conditions are not met:

• (1) u(x) = 1
αx

α, where α < 1 and α ̸= 0.

• (2) u(x) = −1
γ e

−γx, where γ > 0.

• (3) u(x) = log(x).

Proof. • (1) Here,
I(y) = y

1
1−α ,

thus
(u ◦ I)(y) = 1

α
y

α
1−α ,

which implies that∫
R
EP b

[u(X∗
T )]λ(b)dµ(b) =

∫
R
EP b

[
(u ◦ I)

(
K(x0)e

−rT

F (T, Y (T ))

)]
λ(b)dµ(b)

=

∫
R
EP b

[
1

α

(
K(x0)e

−rT

F (T, Y (T ))

) α
1−α

]
λ(b)dµ(b)

=
1

α

(
K(x0)e

−rT
) α

1−α

∫
R
EP b

[
(F (T, Y (T )))

α
α−1

]
λ(b)dµ(b)

= h(x0)ρ(λ),

where
h(x) =

1

α

(
K(x)e−rT

) α
1−α

and
ρ(λ) =

∫
R
EP b

[
(F (T, Y (T )))

α
α−1

]
λ(b)dµ(b).

• (2) Here,

I(y) =
−1

γ
log(y),

thus
(u ◦ I)(y) = −1

γ
y,

which implies that∫
R
EP b

[u(X∗
T )]λ(b)dµ(b) =

∫
R
EP b

[
(u ◦ I)

(
K(x0)e

−rT

F (T, Y (T ))

)]
λ(b)dµ(b)

=

∫
R
EP b

[
−1

γ

(
K(x0)e

−rT

F (T, Y (T ))

)]
λ(b)dµ(b)

= h(x0)ρ(λ),
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where

h(x) =
−1

γ
K(x0)e

−rT

and

ρ(λ) =

∫
R
EP b

[
1

F (T, Y (T ))

]
λ(b)dµ(b).

• (3) Here,

I(y) =
1

y
and K(x0) =

1

x0
,

thus
(u ◦ I)(y) = − log(y),

which implies that∫
R
EP b

[u(X∗
T )]λ(b)dµ(b) =

∫
R
EP b

[
(u ◦ I)

(
K(x0)e

−rT

F (T, Y (T ))

)]
λ(b)dµ(b)

=

∫
R
EP b

[
− log

(
K(x0)e

−rT

F (T, Y (T ))

)]
λ(b)dµ(b)

= x0 + rT +

∫
R
EP b

[log (F (T, Y (T )))]λ(b)dµ(b),

which shows that the decomposition is impossible.

Remark 43. In general, if u ◦ I satisfies

u ◦ I
(a
b

)
= f(a)g(b),

then the decomposition condition holds. There are other examples satisfying this condition.

Now we define a subset Ã(x0) ⊂ A(x0) such that for all π ∈ Ã(x0), there exists corresponding
function h : R → R and a functional ρ : L1 → R such that for the controlled terminal wealth Xπ

T ,∫
RE

P b

[u(Xπ
T )]λ(b)dµ(b) = h(x0)ρ(λ) and h(1) = u(erT ). Thus for some utility functions, Prob-

lem (3) is equivalent to supπ∈Ã(x0)
EP [u(XT )] . Besides, if we define a function ũ(x) = u(x)+C,

where C is a constant that does not depend on x, then the problems supπ∈Ã(x0)
EP [u(XT )] and

supπ∈Ã(x0)
EP [ũ(XT )] should have the same optimal solution (not the same value function), at

least in the definition of the classical problem. However this is not true if we follow our current
definition of admissible controls since the decomposition cannot be satisfied by these two problems
at the same time.

To rescue this, we firstly define an equivalence relation for two real-valued function f and g

f ∼ g ⇐⇒ there exists a constant C such that f(x) = g(x) + C.

We call Ã(x0) the collection of all alternate admissible controls π, which is a subset of A(x0) such
that there exists a function v ∼ u (u is the utility function in the objective function) such that there
exist corresponding function h : R → R and a functional ρ : L1 → R such that for the controlled
terminal wealth Xπ

T ,
∫
RE

P b

[v(Xπ
T )]λ(b)dµ(b) = h(x0)ρ(λ) and h(1) = v(erT ).

In the DRBC formulation, since the deviation from the prior distribution and its corresponding
underlying probability space is small, it is reasonable to continue to search for optimal solutions in
the space of Ã(x0) for those utilities. Thus we call Ã(x0) the collection of all alternate admissible
controls and Problem (10) becomes

sup
π∈Ã(x0)

∫
R
Φλ,β

(
EP b

[u(XT )]
)
dµ(b). (34)
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F.5 DISCUSSION ON CLOSED-FORM COMPUTATIONS

In this section, we review how the closed-form computation for a smooth ambiguity problem is
derived in some special cases, and how does this method fail in our case.

Recall that the DRBC problem becomes

sup
π∈Ã(x0)

inf
Q∈Uδ

EQ [u(XT )] = sup
π∈Ã(x0)

sup
λ>0
β∈R

{
β − λδ +

∫
R
Φλ,β

(
EP b

[u(Xπ
T )]
)
dµ(b)

}
.

For simplicity, suppose there exists a unique pair (π∗, λ∗, β∗) such that

sup
π∈Ã(x0)

inf
Q∈Uδ

EQ [u(XT )] = β∗ − λ∗δ +

∫
R
Φλ∗,β∗

(
EP b

[u(Xπ∗

T )]
)
dµ(b),

thus it suffices to solve the smooth ambiguity problem with strictly concave and strictly increasing
function Φλ∗,β∗ :

sup
π∈Ã(x0)

{∫
R
Φλ∗,β∗

(
EP b

[u(Xπ
T )]
)
dµ(b)

}
. (35)

We remark that this unique pair assumption is hard to check because of the jointly non-convexity in
terms of π and (λ, β)T . For notational convenience, we use (λ, β)T in the rest of this section instead
of (λ∗, β∗)T .

Therefore, the duality theory in Guan et al. (2022) can be applied (for a brief review, see Section
5.2) and we derive the conditions to derive the optimal terminal wealth: From Corollary 3.8 in Guan
et al. (2022), if XT is a terminal wealth such that there exists a constant κ > 0 withu

′(XT ) =
κηT

∫
R Φ′

λ,β

(
EQb

[u(XT )]
)
dµ(b)∫

R Φ′
λ,β

(
EQb [u(XT )]

)
ηbT dµ(b)

EQr

[XT ] = x0e
rT ,

(36)

then XT is the optimal terminal wealth corresponding to Problem (35). In Guan et al. (2022), a
closed-form solution is provided when the nonlinear transformation function (Problem (35) with
Φλ,β changed to ϕ) is

ϕ(x) =

{
xγ

γ , if x ≥ 0,
−(−x)γ

γ , if x < 0,
where γ ∈ (0, 1) is a fixed constant.

With the nonlinear function ϕ and the utility function u(x) = 1
αx

α with α ∈ (0, 1), we guess that
the optimal terminal wealth X∗

T has the form (p,q, and c are parameters to solve later)

X∗
T = exp

(
1

α

( p

2T
Ŵ 2

T + qŴT + c
))

.

Hence,

EQb

[u(X∗
T )] = EQ̂

[
1

α
X∗

T
αηbT

]
=

1

α
√
1− p

exp

(
pT

2(1− p)
ν2b − qT

1− p
νb +

q2T

2(1− p)
+ c

)
.

Therefore, if we assume µ ∼ N
(
µ0, σ

2
0

)
, then∫

R
ϕ′
(
EQb

[u(X∗
T )]
)
ηbT dµ(b) (37)

∝
∫
R
exp

(
(γ − 1)

2

pT

1− p
ν2b − (γ − 1)

qT

1− p
νb −

T

2
ν2b − ŴT νb −

σ2
0T

2
ν2b

)
dνb

∝ exp

 1

2T
(

1−γp
1−p + σ2

0

) (Ŵ 2
T +

2(γ − 1)Tq

1− p
ŴT

) .
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Substituting Equation (37) into Equation (36), we obtain the following equations
(γ + σ2

0)p
2 −

(
σ2
0 +

1
1−α

)
p+ α

1−α = 0,
(1−α)(1−γp)

α(1−p) q = ν,

exp

(
(ν− q

α )
2

2(1− p
α )T

− 1
2ν

2T + c
α

)
= x0e

rT ,

which admits a solution of pair (p, q, c) if p < 1.

The essential part of the above computation is that when we plug in the composition of power
and exponential functions, the result is still exponential and this fits well with the computation
of Gaussian integrals. However, in our case, the nonlinear transformation is defined by for fixed
λ ≥ 0, β ∈ R,

Φλ,β(x) := −(λϕ)∗(β − x).

Thus, even though we use the ϕ-divergence which induces a power-type Φλ,β (e.g. the Cressie-Read
divergence), the above computation cannot be adapted unless the utility function ũ = u + C(λ, β)
(we call it an artificial utility) contains the information of the optimal λ and β, which is highly
non-practical and it seems that this is only true in theory.

However, the validity of this artificial utility is not guaranteed. To begin with, note that we cannot
simply regard λ and β as constants and thus u and ũ are not equivalent. Thus, even though u is a
good utility function with the alternative admissible controls (Theorem 42), we do not know whether
ũ is also a good one. Thus, the method may not apply in this case.

F.6 PROPERTIES OF Qb

Theorem 44. Under Qb for any b ∈ R, the distribution of B is still µ.

Proof. Let A ∈ F , then from independence of B and W , we have

µb(A) = Qb(B ∈ A) = EQb [
1{B∈A}

]
= EP

[
dQb

dP
1{B∈A}

]
= EP

[
exp

(
−B − b

σ
WT − (B − b)2

2σ2
T

)
1{B∈A}

]
=

∫
A

∫
R
exp

(
−x− b

σ
y − (x− b)2

2σ2
T

)
µ(x)fWT

(y)dydx

=

∫
A

∫
R
exp

(
−x− b

σ
y − (x− b)2

2σ2
T

)
µ(x)

1√
T
φ

(
y√
T

)
(y)dydx.

Therefore,

µb(x) = µ(x)

∫
R

1√
T

exp

(
−y(x− b)

σ
− (x− b)2

2σ2
T

)
φ

(
y√
T

)
dy

=
µ(x)√
2πT

∫
R
exp

(
y(b− x)

σ
− (x− b)2

2σ2
T − y2

2T

)
dy

=
µ(x)√
2πT

∫
R
exp

(
− 1

2T

(
y2 − 2Ty(b− x)

σ
+

(x− b)2

σ2
T 2

))
dy

=
µ(x)√
2πT

∫
R
exp

(
− 1

2T

(
y − b− x

σ
T

)2
)
dy

= µ(x).
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F.7 PROOF OF THEOREM 17

Proof. From Corollary 3.8 in Guan et al. (2022), if XT is a terminal wealth such that there exists a
constant κ > 0 with u

′(XT ) =
κηT

∫
R Φ′

λ,β

(
EQb

[u(XT )]
)
dµ(b)∫

R Φ′
λ,β

(
EQb [u(XT )]

)
ηbT dµ(b)

EQr

[XT ] = x0e
rT ,

(38)

then XT is the optimal terminal wealth corresponding to Problem (10). Since u and Φλ,β are both
strictly increasing and strictly concave, then u′ > 0 and Φ′

λ,β > 0, hence the first equation is
equivalent to (we abuse the notation by using κ for both the positive multiplier and its logarithm)

log (u′(XT )) = κ+ log(ηT ) + log

(∫
R
Φ′

λ,β

(
EQb

[u(XT )]
)
dµ(b)

)
− log

(∫
R
Φ′

λ,β

(
EQb

[u(XT )]
)
ηbT dµ(b)

)
,

where log(ηT ) = r−b0
σ

(
WT + B−b0

σ T
)
− (b0−r)2

2σ2 T and log
(
Φ′

λ,β

(
EQb

[u(XT )]
)
dµ(b)

)
does

not involve an exponential term so it will not explode. Therefore it suffices to simplify
log
(∫

R Φ′
λ,β

(
EQb

[u(XT )]
)
ηbT dµ(b)

)
.

Suppose A : Ω → R is a random variable that is independent from B and W with distribution µ,
and if we denote the σ-algebra generated by B and WT as G, then∫

R
Φ′

λ,β

(
EQb

[u(XT )]
)
ηbT dµ(b)

=

∫
R
Φ′

λ,β

(
EQa

[u(XT )]
)
exp

(
−b0 − a

σ

(
WT +

B − b0
σ

T

)
− (b0 − a)2

2σ2
T

)
dµ(a)

= EP

[
Φ′

λ,β

(
EQA

[u(XT )]
)
exp

(
−b0 −A

σ

(
WT +

B − b0
σ

T

)
− (b0 −A)2

2σ2
T

) ∣∣∣∣G]
= EQ

[
Φ′

λ,β

(
EQA

[u(XT )]
) ∣∣∣G]EP

[
exp

(
−b0 −A

σ

(
WT +

B − b0
σ

T

)
− (b0 −A)2

2σ2
T

) ∣∣∣∣G] ,
where the last equality is from abstract Bayes’ rule (Elliott et al., 1995) with the Radon-Nikodym
derivative

dQ

dP
=

exp
(
− b0−A

σ

(
WT + B−b0

σ T
)
− (b0−A)2

2σ2 T
)

EP
[
exp

(
− b0−A

σ

(
WT + B−b0

σ T
)
− (b0−A)2

2σ2 T
) ∣∣∣G] .

For the first term, we need to know the distribution of A under Q conditioned on G. That is, for any
Borel measurable set E ⊂ R, from the abstract Bayes’ rule, we want to compute

Q (A ∈ E | G) = EQ
[
1{A∈E}

∣∣G] = EP

[
dQ

dP
1{A∈E}

∣∣∣∣G]
EP

[
dQ

dP

∣∣∣∣G]

=

EP

[
exp

(
−b0 −A

σ
D − (b0 −A)2

2σ2
T

)
1{A∈E}

∣∣∣∣G]
EP

[
exp

(
−b0 −A

σ
D − (b0 −A)2

2σ2
T

) ∣∣∣∣G] .

Moreover, if D =WT + B−b0
σ T , then

Numerator =
∫
E

exp

(
−b0 − a

σ
D − (b0 − a)2

2σ2
T

)
· 1√

2πσ2
0

exp

(
− (a− µ0)

2

2σ2
0

)
da,

Denominator =
∫ ∞

−∞
exp

(
−b0 − a

σ
D − (b0 − a)2

2σ2
T

)
· 1√

2πσ2
0

exp

(
− (a− µ0)

2

2σ2
0

)
da.
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If we defineK1 =
T

2σ2
+

1

2σ2
0

, K2 =
Tb0
σ2

+
D

σ
+
µ0

σ2
0

, K3 =
Tb20
2σ2

+
b0D

σ
+
µ2
0

2σ2
0

, andC =
K2

2

4K1
−K3,

then

Q (A ∈ E | G) =
exp(C)

∫
E

exp

(
−K1

(
a− K2

2K1

)2
)
da

exp(C)
∫∞
−∞ exp

(
−K1

(
a− K2

2K1

)2
)
da

=

exp(C)

∫
E

exp

(
−K1

(
a− K2

2K1

)2
)
da

exp(C)

√
π

K1

=

∫
E

1√
π/K1

exp

(
−K1

(
a− K2

2K1

)2
)
da

=

∫
E

1√
2πσ2

Q

exp

(
− (a− µQ)

2

2σ2
Q

)
da,

where µQ =
K2

2K1
= σ2

Q

(
Tb0
σ2

+
D

σ
+
µ0

σ2
0

)
= σ2

Q

(
WT

σ
+
BT

σ2
+
µ0

σ2
0

)
and σ2

Q =
1

2K1
=(

T

σ2
+

1

σ2
0

)−1

. This computation also gives the second term

EP

[
exp

(
−b0 −A

σ
D − (b0 −A)2

2σ2
T

) ∣∣∣∣G] = exp(C)
σQ
σ0
.

Thus, under Q conditioned on G, A follows a Gaussian distribution N
(
µQ, σ

2
Q

)
∼ µA. Therefore,

log term = log

(∫
R
Φ′

λ,β

(
EQb

[u(XT )]
)
ηbT dµ(b)

)
= log

(
exp(C)

σQ
σ0

)
+ log

(∫
R
Φ′

λ,β

(
EQa

[u(XT )]
)
dµA(a)

)
= C + log (σQ)− log (σ0) + log

(∫
R
Φ′

λ,β

(
EQa

[u(XT )]
)
dµA(a)

)
.

Hence, if XT is a terminal wealth such that there exists a constant κ > 0 with EQr

[XT ] = x0e
rT

and

log (u′(XT )) = κ+
r − b0
σ

(
WT +

B − b0
σ

T

)
− (b0 − r)2

2σ2
T

+ log

(∫
R
Φ′

λ,β

(
EQb

[u(XT )]
)
dµ(b)

)
− log

(∫
R
Φ′

λ,β

(
EQb

[u(XT )]
)
ηbT dµ(b)

)
= log(κ) +

r − b0
σ

(
WT +

B − b0
σ

T

)
− (b0 − r)2

2σ2
T

+ log

(∫
R
Φ′

λ,β

(
EQb

[u(XT )]
)
dµ(b)

)
− log

(∫
R
Φ′

λ,β

(
EQa

[u(XT )]
)
dµA(a)

)
− C − log (σQ) + log (σ0) ,
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then XT is the optimal terminal wealth corresponding to Problem (10). If we define

Lκ(XT ) = κ− log (u′(XT )) + log

(∫
R
Φ′

λ,β

(
EQb

[u(XT )]
)
dµ(b)

)
− log

(∫
R
Φ′

λ,β

(
EQa

[u(XT )]
)
dµA(a)

)
+K3 −

K2
2

4K1
− log (σQ) + log (σ0) +

r − b0
σ

(
WT +

B − b0
σ

T

)
− (b0 − r)2

2σ2
T,

then Lκ(XT ) = 0.

G ALGORITHMS

G.1 DEFERRED POLICY EVALUATION ALGORITHM

Algorithm 2 rMLMC DRBC Policy Evaluation Step
Input: A simulator S, rMLMC parameter R ∈ ( 12 ,

3
4 ), prior distribution µ, parameter n0, R, func-

tion ϕ, initializations of (λ, β)T , policy π.
Output: Estimator of DRBC policy value Q̂DRBC(π).
repeat

• Draw n i.i.d. samples {bi}1≤i≤n from µ. For each i = 1, 2, . . . , n, sample Ñ bi ∼ Geo(R)
independently, and compute N bi = Ñ bi + n0, then give bi to S and generate 2N

bi+1 i.i.d.
samples of Ẑb

i .

• Compute ∇F and H(F ) by Theorem 37. Update (λ, β)T = (λ, β)T −H(F )−1∇F .
until (λ, β)T converges.
Return Q̂DRBC(π) = β − λδ + Eπ,δ,λ,β (Equation (7)).

G.2 DEFERRED ALGORITHM FOR FINITE PRIOR EXAMPLE

Algorithm 3 DRBC KL Problem Solver

Input: A simulator S, simulation observations S = {St}t∈[0,T ], real observations S̃ = {S̃t}t∈[0,T ]

rMLMC parameterR ∈ ( 12 ,
3
4 ) and n0, prior p, initializations of λ, π, and k = 0, step-size sequence

{αk : k ∈ Z≥0}.
Output: DRBC optimal policy π̂DRBCKL.
repeat

• Draw n i.i.d. samples {bi}1≤i≤n from µ. For each i = 1, 2, . . . , n, sample Ñ bi ∼ Geo(R)
independently, and compute N bi = Ñ bi + n0, then give bi to S and generate 2N

bi+1 i.i.d.
samples of Ẑb

i .

• Compute GF := ∂
∂λEKL (Theorem 39). Update λ = λ+ αkGF and update k = k + 1.

• Update π by Algorithm 4 with λ and S.
until λ converges.
Return π̂DRBCKL = output of Algorithm 4 with λ and S̃.

G.3 LEARNING THE OPTIMAL ALTERNATIVE MEASURE FOR THE FINITE PRIOR EXAMPLE

Recall that the problem that we want to solve is

inf
q=(q1,...,qd)∑d

i=1 qi=1,and qi≥0

V (q) = inf
q=(q1,...,qd)∑d

i=1 qi=1,and qi≥0

Ṽ (q) + λ

d∑
i=1

qi log
qi
pi
,
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where Ṽ (p) :=
(x0e

rT )
α

α

(∫
R

(
F̃p(T, z)

) 1
1−α

φT (z)dz

)1−α

and F̃p(t, z) =
∑d

i=1 piLt(bi, z).

Note that the value function can be seen as an expectation with respect to the Gaussian distribution
N (0, T ), thus it can be computed via simulation methods (plain Monte Carlo).

On the other hand, the gradient information of Ṽ (p) is hard to compute. Thus, we will focus on
the zero-order methods (Nesterov & Spokoiny, 2017; Shamir, 2017; Duchi et al., 2015). We will
mimic first-order optimization strategies by replacing the gradient of the objective function with an
approximation built through finite differences (LeVeque, 2007): for a fixed i = 1, 2, . . . , d, let h > 0
small, then

∂Ṽ (p)

∂pi
≈ 1

2h

[
Ṽ (p+ hei)− Ṽ (p− hei)

]
,

where ei is the unit vector in the ith coordinate direction. Note that here we use the central difference
method, which has the O(h2) rate of convergence, instead of the backward or forward difference
method, which both have the O(h) rate of convergence. The exact steps to solve Problem (9) are
summarized in Algorithm 4.

Algorithm 4 rMLMC DRBC KL Policy Learning Step
Input: Prior distribution p, step-size sequence {αk}k∈Z≥0

, parameter h > 0 and λ > 0, observa-
tions {St}t∈[0,T ] (see remark in Section 5.1 for which process to plug in), initializations of q and
k = 0.
Output: DRBC optimal policy {π∗

λ,t}t∈[0,T ].
repeat

• For each i = 1, 2, . . . , d, approximate Ṽ (q + hei) and Ṽ (q − hei)) by simulations.

• For each i = 1, 2, . . . , d, compute GFi = 1
2h

[
Ṽ (q + hei)− Ṽ (q − hei)

]
+

λ
(
log
(

qi
pi

)
+ 1
)

.

• Update q = q − αkGF, update q = softmax(q), and update k = k + 1.
until q converges to q∗.

Return π∗
λ,t =

∫
R ∇Fq∗ (T,z+Yt)(Fq∗ (T,z+Yt))

α
1−α φT−t(z)dz

(1−α)σ
∫
R(Fq∗ (T,z+Yt))

1
1−α φT−t(z)dz

, for each t ∈ [0, T ], where Yt is given by

Equation (13).

G.4 IMPLEMENTATION DETAILS FOR THE KL DIVERGENCE CASE (ALGORITHM 3)

Here we elaborate on the details of simulating a sample of the optimal terminal wealth XT . Recall
that the controlled SDE is given by

dXt = (Xt − πt)r dt+ πt (Bdt+ σdWt) , (39)

where πt is the amount of money invested in the stock at time t ∈ [0, T ]. Theorem 28 provides the
optimal fraction of total wealth invested in stock at time t. If we model πt as the fraction of total
wealth invested in stock at time t, then the controlled SDE becomes

dXt = Xt (rdt+ πt (B − r) dt+ σdWt) . (40)

These two formulations are equivalent since they give the same optimal value function (thus the
same optimal terminal wealth) and the optimal fraction for the formulation (39) indeed gives the
optimal control for the formulation (40). Thus, in Algorithm 3, when we sample XT for the KL
divergence case, we plug in the optimal fraction for Equation (40) and use either Euler’s method or
rMLMC method (Rhee & Glynn, 2015).

G.5 DEEP LEARNING METHOD TO LEARN OPTIMAL TERMINAL WEALTH FOR THE
GENERAL CASE

In this section, we discuss and give the Algorithm 5 to compute the loss function L(θ) with fixed
neural network parameter (get high quality estimates (e.g. unbiased, low variance, and fast comput-
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ing speed)), and then auto-differentiation (back propagation neural network (Rumelhart et al., 1986;
LeCun et al., 2015)) can be used to do the optimizations (Algorithm 6).

Before discussing the loss function (11), we remark that Equation (38) also motivates a loss function
for b1 ∈ R,

L̃(θ) = EQb1

[∥∥∥∥u′(hθ(WT , B))

∫
R
Φ′

λ,β

(
EQa

[u(XT )]
)
∗ (41)

exp

(
−b0 − a

σ

(
WT +

B − b0
σ

T

)
− (b0 − a)2

2σ2
T

)
dµ(a)

− κ exp

(
r − b0
σ

(
WT +

B − b0
σ

T

)
− (b0 − r)2

2σ2
T

)∫
R
Φ′

λ,β

(
EQb

[u(hθ(WT , B))]
)
dµ(b)

∥∥∥∥2
2

]

+

(
EQr

[hθ(WT , B)]− x0e
rT

)2

.

In theory, loss (11) and (41) are equivalent. However, in terms of numerical computation, (41) is
bad since when we initializing neural network parameters and do the optimization steps, we cannot
control the flow and with high probability, the terms in (41) becomes ∞ since 1

σ2 is small. Moreover,
the scalar learnable parameter in (41) is restricted to be positive so we need to do projected gradient
descent, while in (11) the scalar learnable parameter can be any real number. Therefore, in order to
achieve the numerical stability and convenience for implementation, we choose loss (11).

Recall that from Theorem 17, if we replace Φλ,β by ϕ, then the conditions that the parametrized
optimal terminal wealth hθ(WT , B) needs to satisfy are

EQr

[hθ(WT , B)] = x0e
rT

and

log (u′(hθ(WT , B))) = log

(∫
R
ϕ′
(
EQb

[u(hθ(WT , B))]
)
dµ(b)

)
(constant log term) (42)

− log

(∫
R
ϕ′
(
EQa

[u(hθ(WT , B))]
)
dµA(a)

)
(random log term) (43)

+ κ+K3 −
K2

2

4K1
− log (σQ) + log (σ0) (44)

+
r − b0
σ

(
WT +

B − b0
σ

T

)
− (b0 − r)2

2σ2
T, (45)

where the second condition is an equation of random variables, thus for each b1 in the support of µ,
we need to sample WT and B under the probability measure Qb1 . From Appendix F.6, under Qb1 ,
the distribution of B is unchanged. Moreover, since under Qb1 , W b1 is a standard Brownian motion
and W b1

t = Wt +
B−b1

σ t, then we get samples of WT by first sampling N ∼ N (0, T ), B ∼ µ, and
then compute WT = N − B−b1

σ T . The reason to do this can be found in Section G.6.

Once we sample from WT and B under Qb1 , we need to compute the nested expectations (42)
and (43) since (45) is easy to compute. Essentially, computations of (42) and (43) are the same,
except the outermost distribution in (42) is deterministic, where the outermost distribution in (43)
depends on the sampling of WT and B under Qb1 . We can view the whole loss function as a nested
expectation with layers in x 7→ x2 and x 7→ log(x) and then apply the method in Syed & Wang
(2023), but then the regularity conditions are hard to check. Thus, we only consider the rMLMC
method for the nonlinear transform ϕ′. For the rest of the estimator, we use the plug-in method.

G.6 DEEP LEARNING METHOD TO LEARN OPTIMAL POLICY FOR THE GENERAL CASE

Suppose we have numerically computed the approximation of the optimal terminal wealth X∗
T ≈

hθ∗(WT , B), then for the policy evaluation step (Section 4), the simulation is simpler than the KL
case (since we can directly sample unbiased terminal wealth directly without simulating an SDE).
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Algorithm 5 Loss Estimator with rMLMC
Input: Functions ϕ and u, scalar parameters (x0, b0, T, µ0, σ0, r, σ), fixed parameters κ and θ,
data sets {W (1)

k }1≤k≤n(1) , {B(1)
k }1≤k≤n(1) , {W (3)

i,j }1≤j≤n(2),1≤i≤2N+1,, {B
(3)
i,j }1≤j≤n(2),1≤i≤2N+1 ,

{W (3)
i,j,k}1≤j≤n(2),1≤i≤2N+1,1≤k≤n(1) , and {B(3)

i,j,k}1≤j≤n(2),1≤i≤2N+1,1≤k≤n(1) , sample N .
Output: Estimate of L(θ) = L (θ, κ).

• Compute the constant log term: For each j = 1, . . . , n(2)

– For each i = 1, . . . , 2N+1, define Yi,j =
(
W

(3)
i,j , B

(3)
i,j

)T
and compute Xi,j =

u (hθ (Yi,j)).

– Split the sequence ofXi,j into odd and even indices for i. Compute Sj,l =
∑l

i=1Xi,j ,
SO
j,l =

∑k
i=1X

O
i,j , and SE

j,l =
∑l

i=1X
E
i,j .

– Compute ∆N = ϕ′
(

Sj,2N+1

2N+1

)
− 1

2

(
ϕ′
(

SO
j,2N

2N

)
+ ϕ′

(
SE
j,2N

2N

))
.

– Compute Zj = ∆N

p(N) + ϕ′
(

Sj,2n0

2n0

)
, where p(N) is the probability mass function of

N .

end for Compute Îc = log
(

1
n(2)

∑n(2)

j=1 Zj

)
.

• Compute D = W
(1)
k +

B
(1)
k −b0
σ T , K1 =

T

2σ2
+

1

2σ2
0

,, K2 =
Tb0
σ2

+
D

σ
+
µ0

σ2
0

, and

K3 =
Tb20
2σ2

+
b0D

σ
+

µ2
0

2σ2
0

.

• Compute Îr1 = r−b0
σ

(
W

(1)
k +

B
(1)
k −b0
σ T

)
− (b0−r)2

2σ2 T +K3− K2
2

4K1
− log (σQ)+log (σ0) .

• Compute the random log term: For each k = 1, . . . , n(1)

– For each j = 1, . . . , n(2)

* For each i = 1, . . . , 2N+1, define Yi,j,k =
(
W

(3)
i,j,k, B

(3)
i,j,k

)T
and compute

Xi,j,k = u (hθ (Yi,j,k)).
* Split the sequence of Xi,j,k into odd and even indices for i. Compute Sj,l,k =∑l

i=1Xi,j,k, SO
j,l,k =

∑k
i=1X

O
i,j,k, and SE

j,l,k =
∑l

i=1X
E
i,j,k.

* Compute ∆N,k = ϕ′
(

Sj,2N+1,k

2N+1

)
− 1

2

(
ϕ′
(

SO
j,2N,k

2N

)
+ ϕ′

(
SE
j,2N,k

2N

))
and

Zj,k =
∆N,k

p(N) + ϕ′
(

Sj,2n0 ,k

2n0

)
.

end for Compute Îr2 = log
(

1
n(2)

∑n(2)

j=1 Zj,k

)
. end for

• Compute L2 =
(

1
n(1)

∑n(1)

k=1 hθ

(
W

(1)
k , B

(1)
k

)
− x0e

rT
)2

.

Return: L (θ) = 1
n(1)

∑n(1)

k=1

(
κ− log

(
u′
(
hθ

(
W

(1)
k , B

(1)
k

)))
+ Îr1 − Îr2 + Îc

)2
+ L2.
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Algorithm 6 rMLMC DR Policy Learning Step for the General Case
Input: Functions ϕ and u, scalar parameters (x0, b0, T, µ0, σ0, r, σ), step-size sequence {αk}k∈Z≥0

,
initilizations θ = (θ, κ)T and k = 0.
Output: DR optimal terminal wealth XT .
Samples for constant log term: sample Ñ ∼ Geo(R) and compute N = Ñ + n0; sample n(2)

i.i.d. values {B(2)
j }1≤j≤n(2) from N (µ0, σ

2
0). For each j = 1, . . . , n(2)

• Sample 2N+1 i.i.d. samples {B(3)
i,j }1≤i≤2N+1 from N (µ0, σ

2
0).

• Sample 2N+1 i.i.d. samples {N (3)
i,j }1≤i≤2N+1 from N (0, T ).

• For each i = 1, . . . , 2N+1, compute W (3)
i,j = N

(3)
i,j − B

(3)
i,j −B

(2)
j

σ T .

Sample n(1) i.i.d. values {B(1)
k }1≤k≤n(1) from N (µ0, σ

2
0) and n(1) i.i.d. values {N (1)

k }1≤k≤n(1)

from N (0, T ). For each k = 1, . . . , n(1), compute W (1)
k = N

(1)
k − B

(1)
k −r

σ T . Compute σ2
Q =(

T

σ2
+

1

σ2
0

)−1

.

Samples for random log term: For each k = 1, . . . , n(1)

• Compute µQ = σ2
Q

(
W

(1)
k

σ
+
B

(1)
k T

σ2
+
µ0

σ2
0

)
. Sample n(2) i.i.d. values {B(2)

j,k}1≤j≤n(2)

from N (µQ, σ
2
Q). For each j = 1, . . . , n(2)

– Sample 2N+1 i.i.d. samples {B(3)
i,j,k}1≤i≤2N+1 from N (µ0, σ

2
0).

– Sample 2N+1 i.i.d. samples {N (3)
i,j,k}1≤i≤2N+1 from N (0, T ).

– For each i = 1, . . . , 2N+1, compute W (3)
i,j,k = N

(3)
i,j,k − B

(3)
i,j,k−B

(2)
j,k

σ T .
repeat

• Compute L (θ) by Algorithm 5 and the above samples.
• Update θ = θ− αk∇θL (θ), where the gradient is computed by back propagation; update
k = k + 1.

until θ = (θ, κ)T converges to θ∗ = (θ∗, κ∗)T .
Return XT = hθ∗(WT , B).
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Table 3: Policy evaluation for different sample sizes of B.

δ n = 102 n = 103 n = 104

0.01 3.7642± 0.0399 3.7663± 0.0124 3.7654± 0.0040
0.05 3.6951± 0.0413 3.6971± 0.0130 3.6964± 0.0040
0.10 3.6425± 0.0421 3.6449± 0.0135 3.6446± 0.0041

However, in order to use the rMLMC estimator for QDRBC, we still need to draw {b1, b2, . . . , bn}
from the distribution of µ and generate unbiased estimator of

EP bi
[u(XT )] = EQbi

[u(XT )] = EQbi
[u(hθ∗(WT , B))] .

Thus, it is better to design a loss function for each bi rather than choose a ”uniformly” best Qb∗ for
the loss function.

Suppose the multipliers of the alternative optimization algorithm converge finally, then we get real-
izations of V̂ (x0) in the worst case. Since the optimal value function of the distributionally robust
problem is just plugging the worst case probability µ∗ into the original form of the solution (Theo-
rem 28), thus we can solve the optimization problem infθ L(θ) to derive µ∗ if we parametrize the
density by a neural network:

L(θ) = EP

[∥∥∥V̂ (x0)− V (x0, fθ)
∥∥∥2
2

]
,

where θ represents the parameter of the neural network fθ for the approximation of ρµ∗ and

V (x0, µ) =
(x0e

rT )
α

α

(∫
R (Fµ(T, z))

1
1−α φT (z)dz

)1−α

for a fixed distribution µ ∈ P(R). To
simplify the trackability issue, we may parametrize ρµ∗ as exponential family or Gaussian mixtures
(Goodfellow et al., 2016). Finally, to get the DRBC optimal control with real observations of stock
prices, we plug in Theorem 28 with the learned worst-case probability and the observations.

H ADDITIONAL EXPERIMENTS

H.1 RATE OF CONVERGENCE FOR POLICY EVALUATION

In this section, we investigate the convergence rate in the KL case established by Theorem 13 (specif-
ically, Theorem 40) for values of δ equal to 0.01, 0.05, and 0.1. For each fixed δ, we sample and
compare three different numbers of independent and identically distributed copies of B: n = 102,
103, and 104. Table 3 presents the means and standard deviations of the estimator with a fixed policy
π, computed from 100 independent experiments. The numerical results demonstrate that the estima-
tor Q̂DRBCKL(π) converges, and both the scaling rates of the standard deviation and the difference∣∣∣Q̂DRBCKL(π)−QDRBCKL(π)

∣∣∣ are consistent with the Op

(
n−1/2

)
rate predicted by theory.

To make sure the validity of our comparison, we first run the policy learning step to get the π initial-
ization. We run policy learning step with prior values [0.01, 0.46, 0.30, 0.21, 0.27] and probability
mass function of prior random variable B [0.05, 0.35, 0.35, 0.15, 0.1]. We equally divide [0, T ] into
1000 intervals, and initialize λ = 100. When calculating the gradient of Ṽ , we set h = 10−6 and
learning rate αk = 10−5 a same number across all loops k. We set the convergence condition to be
the sum of squared errors of qk − qk−1 less than 10−5. After we get the converged q∗, we get π
from Equation (13), as in Algorithm 4.

Then we run Algorithm 1. We set n0 = 3 and αk = 0.01. Other hyperparameters are the same as
Section I.1.2 and prior is the same as above. Here we set the convergence condition to be ∂

∂λEKL <

0.3δ. For using inner samples to estimate EP b

[u(XT )], we simulate Equation (40) with B = b 100
times to get XT and then get the average. Finally we use the converged λ∗ to calculate EKL with
different sizes of n 100 times to get the results in Table 3. We document that using 4 Intel Skylake
6148, 20-core, 2.4GHz, 150W processors, the whole process including all three n takes about 40
hours.
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Table 4: Setting 1: comparison of average Sharpe ratios and expected utilities for Bayesian with
correct prior (BCP), Bayesian with incorrect prior (BIP), and DRBC ( δ = 10−3/10−2).

METHOD SHARPE RATIO EXPECTED UTILITY

BIP 0.68057 3.41674
BCP 1.05472 4.37966
DRBC (10−3) 0.93987 3.89788
DRBC (10−2) 0.93989 3.89793

Table 5: Setting 2: comparison of average Sharpe ratios and expected utilities for Bayesian with
correct degenerate prior (BCPD); DRC and DRBC (δ = 10−3/10−2).

METHOD SHARPE RATIO EXPECTED UTILITY

BCPD 2.44595 6.07575
DRC(10−3) 1.04900 3.46948
DRC(10−2) 0.91977 3.38634
DRBC (10−3) 1.48139 4.43138
DRBC (10−2) 1.48136 4.43145

H.2 THE FINITE PRIOR CASE WITH KL UNCERTAINTY SET

In this section, we use Sharpe ratio and value function (expected utility) for Problem (3) as evaluation
metrics to compare DRBC method with different baselines in different settings. In Setting 1, market
paths are generated from Equation (1) multiple times with a groundtruth distribution of drift. We
choose an incorrect prior for both Bayesian and DRBC methods. We compare the performance of
the Bayesian approach with the incorrect prior (BIP), the correct prior (BCP) (using grondtruth) to
DRBC method and report the results in Table 4. The results indicate the effectiveness of DRBC over
prior misspecification.

Setting 2 gives comparisons between DRBC and DRC methods under another market setting where
drift B in Equation (1) degenerates to a single point. Again, we choose an incorrect prior for both
DRBC and DRC to compute the optimal policies, and report evaluation metrics of them together
with the BCP in this case (BCPD) in Table 5. The results clearly show that DRBC reduces the
overpessimism and is relatively stable in terms of δ compared with DRC.

H.3 HIGH DIMENSIONAL SYNTHETIC EXPERIMENTS WITH KL UNCERTAINTY SET

In this section, we scale the dimension of SDE up from one to one hundred to show the performance
of our method with Sharpe Ratio and also show the necessity practicality of our method since it is
designed beyond low dimensional cases. We apply Theorem 27 and modify algorithm 4 to high di-
mensional formulas to get optimal fractions. The results confirm DRBC can reduce over-pessimism,
and certify our method in high dimensional settings. Details of implementation of DRBC and DRC
are in section I.4.

Table 6: Comparison of average Sharpe ratios for Bayesian with correct degenerate prior (BCPD);
DRC and DRBC for 100 assets.

METHOD SHARPE RATIO

BCPD 0.954
DRC 0.397

DRBC 0.591
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I EXPERIMENT DETAILS

I.1 DETAILS OF EXPERIMENTS IN SECTION 6.1

I.1.1 CHOICE OF PERFORMANCE MEASURES

From Guan et al. (2022), if

Φ(x) =

{
xγ

γ , if x ≥ 0,
−(−x)γ

γ , if x < 0,
where γ ∈ (0, 1) is a fixed constant,

then the optimal terminal wealth has the closed-form

X∗
T = exp

(
1

α

(
p

2T

(
WT +

B − b0
σ

)2

+ q

(
WT +

B − b0
σ

)
+ c

))
, (46)

where 

p =

1
1−α + σ2

0 −
√
σ4
0 +

2−4α
1−α σ

2
0 +

1
(1−α)2 − 4α

1−αγ

2(σ2
0 + γ)

,

q =
α(1− p)

(1− α)(1− γp)
ν,

c = α

[
log(x0) + rT +

(
ν2 −

(
ν − q

α

)2
1− p

α

)
T

2

]
.

From Guan et al. (2022), for a fixed b ∈ R (more precisely in the support of the prior)

EQb

[u(X∗
T )] =

1

α
√
1− p

exp

(
pT

2(1− p)
ν2b − qT

1− p
νb +

q2T

2(1− p)
+ c

)

=
1

α
√
1− p

exp

(
pT

2(1− p)

(b− b0)
2

σ2
+

qT

1− p

b− b0
σ

+
q2T

2(1− p)
+ c

)
.

Following the discussion in Appendix G.6, in the alternate optimization steps for the DRBC algo-
rithm, the essential property is how accurate that this optimal terminal wealth can be used to compute
EQb1 [u(XT )] for a fixed b1 ∈ R, thus we choose it to compare with the closed form solution. The
performance measures that we taken into considerations are their equivalence properties are used in
the alternative optimization procedures.

I.1.2 IMPLEMENTATION DETAILS

We start with the hyperparameter settings for the synthetic data, then introduce our neural network
settings. The network is trained on 1 Nvidia A100 GPU for about one GPU hours.

Sample size is set to be 2000. Second level sample size for rMLMC method to be 100, and geo-
metric distribution parameter R = 0.65. To make the synthetic data close to real financial market
observations, we let σ = 0.4, σ0 = 2, r = 0.05/0.1, b0 = 0.1, T = 1, µ0 = 0.1, b = 0.1/0.3,
and x0 = 1. For the function Φ′, to get numerical stability, we use a truncation to approximate at
0.01 and 2, when x is smaller than 0.001, Φ′ gives a constant; when x is larger than 2, Φ′ is x−

1
2 ;

between 0.001 and 2, Φ′ is the linear interpolation of above two functions.

We use a modified multi-layer perceptron (MLP) hθ to estimate X∗
T . The MLP has four layers in

total, first layer takes 2-dim input (WT , B) and maps to 128 hidden nodes; second layer maps 128
nodes to 256 hidden nodes; third layer maps 256 nodes to 256 nodes, and final layer maps 256 nodes
to one output. We use LeakyReLU (Maas et al., 2013) as activation function with parameter 0.01.
Since our parameter settings mimic real financial data, we need to modify the output of the MLP to
satisfy non-negative constraint and match the real terminal wealth distribution easier. We impose a
partial linear structure on top of the MLP with constant 1 and learnable parameter b. The constant
is from financial practices that under optimal portfolio strategy, investor earns excess return. b is set
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here for an easier learning process and better gradient flow. We also set κ a learnable parameter and
use gradient descent alternatively for MLP parameters, b and κ in the training pipeline.

For learning rate schedule, we adopt a Warmup-Stable-Decay (Wen et al., 2024) learning rate sched-
ule which achieves great success in large language models. We use 1000 epochs in total, with 10
epochs to linearly warmup the learning rate to 0.001, then steadily train 400 epochs, and finally
decay to 0.0003 for the rest 590 epochs. For b, learning rate is fixed at 10−4. For κ, learning rate
linearly decays from 0.01 to 10−4, then stays until training is done. We use Adam (Kingma & Ba,
2015) as the optimizer and saved models can be found at our repository. Training losses for different
b and r values are shown in Figure 1. In all three hyperparameter settings, our network shows stable
loss curves and achieve good performances comparing to theory results, as stated in Section 6.1.

Figure 1: Training losses for different b and r values

We denote the trained optimal parameter as θ∗. We evaluate the model by randomly generating new
input pairs (WT , B) of 2000 samples with different seeds to get EQb

[u(hθ∗(WT , B))]. And we run
such experiment 100 times to get the mean and standard deviations shown in Table 1.

I.2 DETAILS OF EXPERIMENTS IN SECTION 6.2

The daily S&P 500 constituents data from 2015-01-01 to 2024-12-31 is from Wharton Research
Data Services. For the ease of data cleaning and to avoid stock inclusion and exclusion to the index,
we only keep stocks that are S&P 500 constituents in the whole time window, resulting in 326
stocks left. Interest rate data is from Federal Reserve Bank of St.Louis. We use a rolling window
of 1 year for getting the interest rate r and σ, and use them in DRBC and baseline methods for the
following month’s investment allocation.

We remark the choice of δ is more a managerial decision rather than a scientific choice, and too
large δ will not give meaningful solutions. Here we follow Si et al. (2023) to use the existing
data to estimate the distributional shift, which implies a choice of δ. Over the 326 stocks, the
mean of δ ≈ 0.15, thus we choose it for the experiments. For the prior, we choose two fixed
finite priors with supports inspired by Wang & Zhou (2020). Prior 1 is [-0.08,0.16,-0.02,0.04,0.10],
with probability [0.35,0.08,0.25,0.22,0.10]. Prior 2 is [-0.05,0.15,0.00,0.05,0.10], with probability
[0.45,0.05,0.25,0.15,0.1]. The histograms of sharpe ratios for two priors are shown in figure 2. We
documented that using a single Intel Skylake 6148, 20-core, 2.4GHz, 150W processor, looping over
all stocks for a single prior takes about 30 hours.

I.3 DETAILS OF EXPERIMENTS IN SECTION H.2

I.3.1 DETAILS OF SETTING 1

For experiments in Section H.2, we run full DRBC Algorithm 3 to get π̂DRBCKL. Most hyperparam-
eters are the same as in previous settings. One change here is the initialization of λ. Due to the hard-
ness of convergence of Algorithm 3, we need finer pre-condition of λ. Based on Faury et al. (2020),
which proves λ = O( 1√

δ
), we make our λ = 0.33√

δ
. Another change here is we shift the prior distri-
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(a) Prior 1 (b) Prior 2

Figure 2: Histogram of Sharpe Ratios under different priors.

bution, which is also noted as incorrect prior in Table 4 to [0.5, 0.05, 0.2, 0.15, 0.1], with support of
the prior random variable B unchanged. The correct prior distribution is [0.05, 0.5, 0.1, 0.15, 0.2].
The convergence condition is set to be |λk − λk−1| < 10−3.

We regard the full DRBC process in Algorithm 3 as the pre-training phase to get the optimal policy.
Then we run the evaluation process as follows: First, we generate market data {St}t∈[0,T ] 200 times
by Equation (1) to get 200 paths. Then use Equation (13) to transform {St}t∈[0,T ] to {Yt}t∈[0,T ].
Thirdly, calculate optimal fractions π for BIP, BCP and DRBC cases using Theorem 28 with trans-
formed Yt. Fourthly, simulate Equation (2) or equivalently Equation (40) with πBIP, πBCP and πDRBC
with the same Brownian terms Wt as the first step to get the wealth paths Xt. Finally, we use two
metrics to evaluate the performances of BIP, BCP and DRBC. Since DRBC only focuses on termi-
nal wealth, to remove other randomness, we choose the Sharpe ratio definition as in Wang & Zhou
(2020). Another metric is expected terminal utility, as defined in Equation (3), which is also the
value function. We collect terminal utility from all 200 paths to get the mean and we report them
in Table 4. We document that using 2 Intel Skylake 6148, 20-core, 2.4GHz, 150W processors, the
whole process takes about half an hour.

I.3.2 DETAILS OF SETTING 2

Recall that when B degenerates to a constant, then the Bayesian problem (3) becomes the Merton’s
problem. By applying the dynamic programming principle, it suffices to consider the terminal value
problem with V (T ) = 1 and

dV

dt
+ αV sup

π

{
1

2
σ2π2 (α− 1) + (B − r)π + r

}
= 0.

An verification argument shows that it suffices to solve the supremum problem in the ordinary dif-
ferential equation and the optimal fraction invested in the stock is a constant over time. Based on
the theory from Hansen & Sargent (2001), the Hamilton-Jacobi-Bellman-Isaacs (HJBI) equation for
the distributionally robust control (DRC) is

dV

dt
+ αV sup

π
inf
ν∈Uδ

{
1

2
σ2π2 (α− 1) + (Eν [B]− r)π + r

}
= 0,

where we denote the distribution of B as µ, the uncertainty set is Uδ = {ν : DKL(ν ∥ µ) ≤ δ}, and
the notation Eν [B] denotes the mean of random variable B if its distribution is ν. Similarly as the
non-robust Merton’s problem, it suffices to solve the sup-inf problem and get the optimal fraction
invested in the stock.

For the inner infimum problem, we formulate it as below. Distributions ν and µ share same finite
support {bi}di=1. We denote the probability mass of two distributions {qi}di=1 and {pi}di=1 respec-
tively.
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minimize
d∑

i=1

qibi,

subject to
d∑

i=1

qi ln
(

qi
pi

)
≤ δ,

d∑
i=1

qi = 1, qi ≥ 0 ∀i.

(47)

After solving the infimum problem, we can directly get the optimal πDRC as in Merton problem,
which is a constant across time. For the degenerate prior cases, we can get πBCPD as above.

The experiment here is similar to Section I.3.1. In experiment, we choose the prior with d = 5.
We choose the same incorrect prior. First and second steps are the same, except for the prior now
is a point mass at 0.46. Then we follow the third step to get πDRBC. Finally, we run the final step
with πDRC, πBCPD and πDRBC to get performance metrics. Using the same hardware as setting 1, we
document similar time for the whole process.

I.4 DETAILS OF HIGH DIMENSIONAL EXPERIMENT RESULTS

We first randomly generate high dimensional SDE, then for DRBC, we use theorem 27 to calculate
the empirical centers of B with formula in Appendix B by optimizing V (x0). For DRC, we slightly
modify the one dimensional implementation in section I.3.2 with below.

Given: P = (p1, . . . , pm), z1, . . . , zm ∈ Rd, B(z) =

d∑
k=1

zk, δ > 0.

Define the tilted distribution: qi(α) =
pi e

αB(zi)∑m
j=1 pje

αB(zj)
.

Then: µQ(α) =

m∑
i=1

qi(α) zi =

∑m
i=1 pi zi e

αB(zi)∑m
j=1 pje

αB(zj)
.

DKL(Q(α) ∥P ) = αEQ(α)[B(Z)] − log

(
m∑
j=1

pje
αB(zj)

)
.

Find α∗ such that DKL(Q(α∗) ∥P ) = δ.

Get: α∗, µQ∗ = µQ(α
∗).

Using Merton Style Formula to get Optimal Fraction: π∗ =
1

1− α
Σ−1(µQ∗ − r)

In both DRBC and DRC case, we choose δ = 0.4. All other settings are the same as section I.3.2.
Remark 45. Wang et al. (2023b) discusses the distributionally robust control (choose the worst case
in every step) formulation in the discrete state space case, and derive conditions to apply the dynamic
programming approaches similar to Hansen & Sargent (2001). We remark that these conditions are
assumed in Hansen & Sargent (2001) rather than derived. A takeaway of this is that we may also
do the similar theoretical foundation as in Wang et al. (2023b) and then do the similar steps as in
Hansen & Sargent (2001): derive the HJB equation for the Bayesian problem and then get the HJBI
equation for the DRBC formulation, which will have super complicated form and will be hard to
solve. This is why we say the DRBC formulation looses the dynamic programming principle and
another efficient method is needed to get the optimal policy.

J USAGE OF LLM

LLM is used to polish some of the writings of this paper.
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