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ABSTRACT

We consider a Bayesian diffusion control problem of expected terminal utility
maximization. The controller imposes a prior distribution on the unknown drift
of an underlying diffusion. The Bayesian optimal control, tracking the posterior
distribution of the unknown drift, can be characterized explicitly. However, in
practice, the prior will generally be incorrectly specified, and the degree of model
misspecification can have a significant impact on policy performance. To mitigate
this and reduce overpessimism, we introduce a distributionally robust Bayesian
control (DRBC) formulation in which the controller plays a game against an ad-
versary who selects a prior in divergence neighborhood of a baseline prior. The
adversarial approach has been studied in economics (Hansen & Sargent,[2008) and
efficient algorithms have been proposed in static optimization settings (Rahimian
& Mehrotral 2019). We develop a strong duality result for our DRBC formulation.
Combining these results together with tools from stochastic analysis, we are able
to derive a loss that can be efficiently trained (as we demonstrate in our numerical
experiments) using a suitable neural network architecture. As a result, we obtain
an effective algorithm for computing the DRBC optimal strategy. The methodol-
ogy for computing the DRBC optimal strategy is greatly simplified, as we show, in
the important case in which the adversary chooses a prior from a Kullback-Leibler
distributional uncertainty set.

1 INTRODUCTION

Decision-making under uncertainty is a core challenge in reinforcement learning and control. In
many practical settings, agents must act without knowing key environment parameters (e.g., transi-
tion dynamics, reward biases). We consider a diffusion control problem for which a controller aims
at maximizing expected terminal utility by making decisions informed by observations. Since the
controller cannot directly observe model parameters, it is natural to consider a Bayesian approach
to learn while optimizing. Thus, the unknown parameter or factor is modeled as an unobservable
random element with a prior distribution. This approach, known as Bayesian control, is well studied
in the control literature and gives rise to sophisticated policies that naturally work well if the full
Bayesian model is well specified.

However, if the model is not well specified, the Bayesian policy will often deliver suboptimal results.
Adversarial approaches have been used to mitigate the impact of model misspecification. The con-
troller interacts with a fictitious adversary to maximize value function, while the adversary selects a
worst-case probability to ensure policy robustness. Distributionally robust control (DRC) (Hansen
& Sargent, [2001;|2008) is one of such method, and it is built on finding robust formulations that are
tractable in the sense of leading to a dynamic programming principle. In exchange of this type of
tractability, the approach leads to very pessimistic policies, because the adversary’s power is replen-
ished at every point in time. This also makes calibrating the size of the distributional uncertainty
difficult, because small variations on this parameter have a significant impact on performance.

To address over-conservatism, we consider a Distributionally Robust Bayesian Control (DRBC)
formulation in which we only build distributional robustness around the prior distribution in the
Bayesian control formulation. This allows us to combat pessimistic policies at the expense of loosing
the dynamic programming principle, yet we need to develop alternative methods for computing the
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optimal policy. Our motivating application is continuous-time control with unknown dynamics, but
DRBC applies broadly to problems where robustness to prior misspecification is critical.

1.1 OUR CONTRIBUTIONS
Our contributions are summarized as follows.

* We formulate a DRBC problem for misspecified priors in the context of diffusion control
using a ¢-divergence uncertainty set around the prior (which is imposed on the drift of the
diffusion) (Section 2.2)).

* We prove a strong duality result that reformulates DRBC into a tractable optimization prob-
lem. This connects our framework to smooth ambiguity models while making it directly
applicable to machine learning settings (Theorem [2)).

* We provide sample complexity results showing that policy evaluation is possible with the

canonical rate O, (n~'/2) via a novel randomized multi-level Monte Carlo ({MLMC) un-
biased estimator (Algorithm [2]and Theorem [T3).

* We introduce a class of policies that contains the optimal policy for a large class of util-
ity maximization problems of interest in the Bayesian control case and that are learnable
efficiently via deep learning methods (Theorem [I7). In the important special case of KL
divergence, we find semi-closed form expressions to simplify the learning (Section [5.1).

(Section i and confirm the O, (nil/ 2) convergence rate (Section . Numerical re-

* We present simulation results to demonstrate the accuracy of our deep learning method
i)
sults show the robustness of DRBC and it overcomes overpessimism (Section [H.2).

1.2 RELATED WORK

Distributionally Robust Methods have been well-studied in a wide range of areas. For example,
Distributionally Robust Optimization (DRO) (i.e. the supervised learning case) can be shown to
recover a wide range of successful statistical estimators (including sqrt-Lasso, AdaBoost, group
Lasso etc.), by carefully choosing the uncertainty set, often in terms of ¢-divergence or Wasserstein
sets (see Blanchet et al.| (2021b}; 2024))). Refer also toRahimian & Mehrotra (2019); Bayraksan &
Love|(2015) for comprehensive reviews on DRO.

Motivated by problems in areas such as economics and finance, among others, (Hansen & Sargent,
200152008 |Denis & Kervarec,|2013]; Bartl et al.,2021)) , DRO has been generalized to the setting of
dynamic decision-making with model uncertainty. This situation is significantly more complicated
and the literature has focused mostly on developing formulations that are amenable to dynamic pro-
gramming (DP), giving rise to Distributionally Robust Control (DRC) and Distributionally Robust
Markov Decision Processes (DRMDP). The availability of a dynamic programming principle fa-
cilitates the development of Distributionally Robust Reinforcement Learning (DRRL) and related
settings (Si et al.| 2023} [Wang & Zou, |2022; |Wang et al.,|2023a} |Liu et al.| 2022} |[Zhou et al.| 2021}
Lu et al.| [2024).

However, to develop a DP in the DRC, DRMDP, and DRRL settings, the adversary gets its power
replenished at every point in time, making the formulations pessimistic. That occurs at every point
in time, thus making these formulations overconservative.

In contrast, our formulation combines Bayesian stochastic control with DRO by introducing a single
distributional uncertainty set in the prior distribution. This combats overconservative solutions, but
at the expense of the DP. However, we develop a formulation and techniques that make the optimal
solution learnable by exploiting continuous time stochastic analysis.

Computations of static DRO problems has been studied by [Levy et al.| (2020); |Blanchet & Kang
(2020); |Wang et al.[(2021)). Compared with us, they consider different uncertainty sets and the esti-
mators are biased. We also mention the literature on RL in finance (Hambly et al.,|2023)), Bayesian
Optimization (Daulton et al., |2022) and Distributionally Robust Bayesian Optimization (DRBO,
(Kirschner et al.| [2020)). Our setting is different from DRBO. We work in continuous time, which
allows us to use stochastic analysis (via the martingale method and other techniques) to obtain con-
venient expressions to define a suitable loss for the optimal strategy. Our formulation is also offline
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and not online as in DRBO. We wish to efficiently evaluate policies for the game corresponding to
our formulation. In addition, the work on Bayesian Distributionally Robust Optimization (BDRO,
Shapiro et al.[(2023))) is more related to our setting here, but it focuses on a static setting.

2 SETTINGS AND FORMULATIONS

2.1 CLASSICAL BAYESIAN CASE

Let (2, F, P) be a complete filtered probability space, and W is a standard Brownian motion under
P. B : Q — Ris a real-valued random variable such that B and W are independent. We denote
o(B) as the o-algebra generated by B and assume that B has a distribution 1 € P(R) (the space
of all Borel probability measures on R). We have the risk-free asset Sp.0 = sg > 0 and dSp: =
rSpdt, 0 <t < T, with interest-free rate » > 0 and a risky asset S with drift B

dS, = Sy(Bdt + odW,), 0 <t <T. )

We next define filtrations: F* is the natural filtration of S, and G is the union of o(B) and F"V
(the natural filtration of 7/). We denote the F°-adapted (the decisions are made based on only
the observations of the stock prices) stochastic process 7 = {m;};c[o,7] as the amount of money
invested in the risky asset. This induces the dynamics of a controlled wealth process with Xg = xg
(we simplify the notation so that X™ is written as X)

dXt = (Xt — 7Tt)7" dt —+ T (Bdt + G'th) . (2)

In this paper, control, policy, and strategy are used interchangeably. We call an F°-progressively

measurable stochastic processes (control) m = {7 };c[o,7 admissible if Xo = xo, fOT ||7Tt||§ dt <
o0, and Equation admits a unique strong solution. The collection of all admissible controls is
denoted as A(zg). The Bayesian diffusion control problem is defined as

V(xo) = sup )EP [u(X7)], 3)

where the utility function u : (0,00) — R is strictly concave and strictly increasing. Without
loss of generality, in this paper, we consider the utility function u(z) = 12® with o € (0,1)
and X; > 0 for any ¢ € [0,7]. The optimal solution of Problem (3)) is given by Theorem
in Appendix [B| (Karatzas & Zhaol [1998). The takeaway is that the optimal solution V' (x¢) is a
functional of the prior distribution p, and the optimal policy is a random variable depending on
and the observations. In practice, the prior distribution is chosen by experts and other available
information, and the fraction of investment into risky asset is computed via the formula provided by
Theorem 28] with real observations.

2.2 AMBIGUITY SET FOR THE DISTRIBUTIONALLY ROBUSTNESS

Given a convex function ¢ : [0, 00) — R with ¢(1) = 0, ¢-divergence of Q from P is Dy(P||Q) =
Jo @ (%) dQ, where % is the Radon-Nikodym derivative of P with respect to Q. If ¢(z) =
zlog(z) — x + 1, then Dy is the Kullback-Leibler (KL) divergence, denoted as Dy .

In the Bayesian problem (3)), the imposed prior may not be exactly the same as the underlying
drift. Distributionally Robust Control (DRC) methods relying on dynamic programming principles
to mitigate this model misspecification (Hansen & Sargent, 2001) are often too pessimistic since in
every step the worst case is chosen. Thus we consider a distributionally robust Bayesian control
(DRBC) formulation where the controller engages in a game against an adversary who chooses a
prior for the drift at the beginning from a ¢-divergence neighborhood (we call this ambiguity set
or uncertainty set) around the baseline prior to overcome this overpessimism. To rigorously define
the uncertainty set, we need to make sure only distribution of B is changed and all other conditions
(e.g. measurability) are kept the same. We denote P (€2, F) as the collection of all Borel probability
measures on the measurable space (€2, F). Then we define the following set (B L W means that
the two random variables B and W are independent)

05 — QeP(QF),| QB e A) =v(A)forsome v € P(R),VA € B(R), Dy(v||pn) <9,
°= RKP B 1 W, W is a standard Brownian motion under Q). '
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The set Qs is endowed with the topology of weak convergence (Billingsley}, [1986). We define a
relation on Qg:

Q1 ~Qy — forany A € B(R),Q1(B € A) = Qy(B € A). )

We use the quotient space Us = Q;/ ~ as the uncertainty set for the DRBC problem. The following
theorem gives an intuition of this.

Theorem 1. Us is well-defined. For all Q € Us, there exists v < such that % = dv(p)

m
P-almost surely and Dy (Q || P) = Dy (v || p).
With Theorem |1} we define the goal of the DRBC problem

sup inf E9u(Xr)]. (5)

TEA(zo) Qels

We denote the optimal solution of Problem (5) as mprgc. Compared with the DRC approach, Prob-
lem (5) looses the tractability in terms of dynamic programming principle (see Appendix[[.3.2), thus
we need to develop another method to compute mprpc. The first step is to use duality to simplify
the representation of the original problem. Note that for simplicity, all the settings above are one
dimensional case. High dimensional case is a natural analogy and can be found in[B.2]

3 STRONG DUALITY

We begin with some notations. Suppose f : R — R is a real-valued function, we denote
f* as the convex conjugate of f, which is defined as f*(z*) = sup,x ((z*,2) — f(z)) =
—infrex (f(z) — (=*,x)) and {(.,.) is the standard inner product in R (Rockafellar, |1970). More-
over, there exists unique class of probability measures {P’},cr C P(€2, F) such that for any
A€ F,P(A) = [, P’(A)du(b). We then prove an extension of the strong duality result in|Shapiro
(2017), which transforms the original infinite-dimensional problem to finite-dimensional.

Theorem 2.

inf E9[u(Xr) = sup {ﬁ —Y) —l—/qu\,,@ (EPb [U(XT)]) dﬂ(b)} ;

QeUs A>0,8€R
where for fixed A > 0,5 € R,
Dy 5(x) = —(Ap)" (B — ).

In general, as a function of x, @, g is always concave due to the convexity of ¢, but it is not always
increasing. As a function of (A, 8 )T, ®, s is always concave. For the convenience of the notations,

we denote Z° := EF’ [u(X7T)]. If ¢ induces the KL divergence, then we denote the uncertainty set
as Uxr,s and have the following duality result.

Qeigﬁm E° [u(X7)] = sup {—Aé — Mog (/R exp (_Azb) du(b)> } ,

where A — —\d — Alog (fR exp (*TZU du(b)) takes the value ess inf ZB when A = 0 and ess inf

denotes the essential infimum.

Theorem 3.

The analysis of an extension which is called Cressie-Read divergence is provided in Appendix
We give assumptions on the ¢-divergence to ensure the attainability of an optimal pair (\*, 8*)" =
(A*(m), B*(m))T with A\*(7) > 0 for a fixed 7 € A(z). The precise discussion can be found in
Appendix We notice that the duality can be further written as a univariate function ®, or ®5 in
terms of the dual variable (as in Theorem . For the notational convenience, if ® or ®g is strictly
concave in A or 3, we still say @ g is strictly concave. This will not affect the rate of the asymptotic
analysis, and the impacts on explicit computation are discussed in Appendix [D.4]and [E.Z]

Assumption 4. For a fixed control 7 € A(xg), the norm of the pair of the optimal multipliers
(A, ,B*)T has finite upper and lower bounds. In particular, A* # 0.
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Assumption 5. &, g is strictly increasing and strictly concave in x, and it is strictly concave in
(A, B)T. For any fixed A > 0 and 8 € R, ®, g is continuously differentiable in a neighborhood of
7" p-almost surely, satisfies the linear growth condition, and D®) 4 is locally Hélder continuous
with parameter w > 1 and bounding constant K.

Assumption 6. For any fixed b € R, the value V(7o) = Sup,e 4(sy) EP" [u(Xr)] < oo. This
assumption is standard in portfolio optimizations problem (Karatzas et al., |1991). Moreover, we
denote for a fixed control m € A(xg), essinf X7 = m > 0. We assume that @~ g-(0) > 0.

Both of the following assumptions will imply Assumption[d]in the KL divergence case.

Assumption 7. The prior p is a light-tailed distribution such that 0 < M :=
j]'RVb(xo)s(ler)du(b) < 00.

Assumption 8. The density (or probability mass function) of E¥ i [u(X7)] has a uniform lower
bound b > 0 and the domain of density (or probability mass function) is compact.

As mentioned in[Si et al.|(2023)) and [Duchi & Namkoong|(2021)), Assumption[d] 5] and[6]are satisfied
with mild conditions for KL and Cressie-Read divergences. From strong duality, the general form
of Problem (5) becomes

sup inf E9[u(Xr)]= sup sup {ﬁ — A0+ / Dy 5 (Zb) d,u(b)} .
rEA(zo) REUs reA(zo) 2@1% R

Solving Problem (3) is hard in general. We provide a heuristic example of closed-form computation
in Appendix to illustrate this difficulty. In particular, the difficulties are two-fold: the double
supremum is highly nonconvex and even doing policy learning with fixed A and j3 is hard. Inspired
by the typical choices in distributionally robust contextual bandit (Si et al., |2023), we use an alter-
native optimization algorithm to get the well-approximated optimal solution prpc ~ Tprac (See
Algorithm [3 for the KL case). We learn #pgrpc by first fixing 7 and optimizing (A, 3)7 (we call
this step policy evaluation) and then by fixing (A, 3)7 and optimizing 7 (we call this step policy
learning). We continue this alternative updating until the values of (\, 3)7 converges. Simulation
results show that this alternative iterative algorithm works well in practice (see Section [6)).

4 PoLicy EVALUATION STEP

We first fix a control m € A(x) and aim to compute

QpraC(T) = sup {5 — A0+ /]R Oy (2°) du(b)} (6)

A>0
BER
for the general case, while for the KL divergence case, we have the policy evaluation

QoreckL(T) = supy., {—)\6 ~ Mog ( Jp exp (—TZ”) du(b)) } The basic idea is to first de-
rive an unbiased estimator for the nested expectations (the inner samples depend on the outer
samples) [, ®x (Z°) dp(b) and log (f]R exp (_sz) du(b)) and then use the standard Newton-
Raphson method or gradient descent methods to find the optimal A\* and 3* (Theorem [37] 39).

We focus on the general case. Assume that for a fixed 7 € A(x(), we have the access to the
simulator S which is able to generate samples from the distribution of 1 and take one sample b from
4 as an input to generate unbiased samples from Z°. This is a standard assumption (Syed & Wang,
2023)). For the KL divergence case, see the discussion and Algorithm[I]in Appendix

We quickly review an important method that we will use in the approximation of the solution. Multi-
level Monte Carlo (MLMC) methods are designed to reduce the total computational complexity in
the Monte Carlo estimations (Giles, [2008; 2015). [Rhee & Glynn| (2015) proposes a randomized
MLMC (rMLMC), which in addition produces unbiased estimates. The rMLMC estimator is also
used to produce unbiased estimates of single-layer nested expectations and solutions of stochastic
optimization problems (among other problems) (Blanchet & Glynn, 2015; Blanchet et al., [2019).
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In our case, the randomized (rtMLMC) estimator first samples b ~ p, then independently samples

a random N® = N® 4 ng, where ng is a fixed non-negative integer and N® ~ Geo(R) with
1 N°+1 b b _ pP*
R € (3,3), finally generates 2" ™! unbiased estimates {Zi }1§z<2Nb+1 of Z° = EF [u(X7)),

- b b
and the random estimator of [, ®x 5 (2°) dpu(b) is given by £* = &} 5 = % + Oy 3 (S;JLO ),
where p(.) is the probability mass function of N* and S? = S>'_| ZP. For N* > ng, we define
gb S,o b gEb .
A?Vb = Oap ( 221\17\rbb4—+11> <(I)>\ B ( oND ) +®ap ( 2]\I,Vbb >) , where Slo’b = Zli:l Zio’b and
SlE’b = 22:1 Zf’b with {Zfb and {Zio’b denotes the estimates indexed

1<i<2Nb+1 1<i<2Nb+1
by even and odd values, respectively. Our overall estimator £ is (for fixed 7 and d)

1 n L, I A% S
f-cns =1 3o =13 (o (B "

i=1 i=1

given n i.i.d. samples {b;},,,, generated from p.

Remark 9. When ng = 0, then our estimator is exactly the same as the estimator in |Blanchet &
Glynn| (2015) and Blanchet et al.| (2019). Note that N b does not depend on b;, and the notation
represents the i.i.d. copies of the shifted geometric random variable. The reason to introduce the
non-negative shift ng is that the estimator £ loses the concavity due to the definition of A b, but if
we make ng properly large, then A% v looks more like a concave function, thus help the numerical
optimization steps in terms of (\, 3)7.

We make the following assumption that will be important in the analysis of the variance of the
estimator when the prior has a continuous density. The case when the prior is finitely supported can
be analyzed similarly.

Assumption 10. The map b — Z° is continuously differentiable and injective on the support of 3.

Theorem 11. Suppose Assumption and [7] hold, then E 5 p is an unbiased estimator for
fR W (Z b) du(b). If Assumption is satisfied, p is compactly supported with a continuous

density, then Var (5&%) and Var (Ex 55, p) are both finite.

We define the DRBC policy evaluation estimator QDRB(j(ﬂ') = supa>0 {8 — A0 + Ex 50,8} (see
BER

Algorithm[2]in Appendlx@ Note that this empirical version of optimization problem is no longer
strictly concave in ( for finite sample size (it is strictly concave for n — o0). It is natural to
have the following assumptlon, thus have the following O, (n ( -1/ 2) convergence rate guarantee.

Assumption 12. For a fixed 7 € A(xq), with probability 1, arg max Oprac (7) has the same bounds
as the bounds for arg max Qprpc(7) in Assumption

Theorem 13. Suppose Assumption 6l 1 and [I2| hold, 11 is compactly supported with a
continuous density. For fixed m € A(xg), let n denote the number of i.i.d. samples of{Ei’;B}lSign,
then '

vn (QDRBC(W) — QDRBc‘(ﬂ')) =N (0, Var (gf\i,ﬁ*)) ,

where = denotes convergence in distribution, (\*, 3*)" is defined in Section|3| and N'(0, o) rep-
resents a normal distribution with mean 0 and standard deviation o > 0.

5 PoLICY LEARNING STEP

This section concentrates on the policy learning step. Section[5.1]focuses on the KL divergence case
with a finitely-supported prior. In Section we slightly modify the class of admissible controls
and propose a general deep learning method, utilizing techniques from stochastic analysis. Interest-
ingly, when the Lagrangian multipliers A and [ are fixed, the policy learning step is equivalent to
solve a smooth ambiguity problem with functional parameters from the strong duality (Theorem [2)).
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5.1 A FINITE PRIOR EXAMPLE: DUALITY THEORY

In the KL divergence case, if we fix A > 0, then we essentially need to solve

_zb
sup {—)\log (/ exp () du(b)) } . (8)
rEA(wo) R A

In fact, Problem (8) is equivalent to a problem in mathematical finance called the ambiguity aversion
measured by the entropic risk measure (Schied, 2007). Because of the special form of the KL diver-
gence, we obtain the duality form and thus a semi-closed form of the optimal solution. We define a
class of equivalent probability measures AC on the set (quotient space w.r.t the weak topology)

e - Qe P(Q,F), | QB e A) = v(A) for some v € P(R),VA € B(R),
e Q <P W is a standard Brownian motion under Q and B 1L W.

with respect to the equivalent relation ~ defined in Section That is, AC = ACp./ ~. Then
obviously, Us C AC.

Lemma 14. For all Q € AC, there exists v < such that % = %(B) P-almost surely and
Dy (@I P) = Dy (v || ).
Theorem 15.

_zb ] ~ ~
WES.E(IZO) {—)\log (/R exp <)\> d,u(b))} = Tres;lao) Qlellflc {EQ [u(X7)] + ADgz (Q I P)} .

Recall that for a fixed Q € AC, the problem becomes Problem , thus it would be easier to
solve the problem if we could interchange the sup and inf. In order to achieve this, we would like

to apply Sion’s min-max theorem (see Theorem [27|in Appendix |A) to the functional f (Q, ) =
E? [u(X7)] + ADxw (Q I P), which is defined on AC x A(zo) C P (R) x A(o).

Theorem 16. Assume that y is finitely supported, m = ess inf X exists, P(Xp = m) > 0, then

*

there exists an optimal pair (Q*, 7 ) such that 7" is the optimal solution for Problem (3) with

underlying probability measure Q* (see Theorem and

_zpb ) ~ . -
ﬂesxao) {—)\log (/R exp ()\) d,u(b))} = ﬂ:ﬁ(}io) Qlenftc {EQ [w(XT)] + ADg1 (Q I P)}

= ot sup {B2 (XD +AD QI P) } =7 (@)

QEAC e A(zo)

We focus on a commonly used example when the prior distribution takes value on a finite set
of points {b1,...,bq} with probability mass function P (B =b;) = p;, € (0,1), for i =
1,2,...,d, where d > 1. For the fixed prior u, the optimal value function becomes V (p) :=

o
(woe™)

1 -«
L (fR (FP(T, z)) e @T(z)dz) , where Fp(t,2) = Z?:l piL¢(bi, z). If we want to

find the optimal probability measure Q* (M), then it suffices to solve the convex problem

d
. . o qi
q=(qllr7l-f--7qd) V(g q=(<111r,1f7q<i) Vig+A ; ailog Pi ©)
>4 gi=1and g;>0 S4 | gi=land ¢;>0
The DRBC algorithm to iteratively solve Problem (3)) (Algorithm [3)) (we use (stochastic) gradient
descent here) can be found in Appendix [G.2] The precise algorithm for updating 7 is given in Algo-
rithm [ in Appendix [G] We remark that the DRBC learning steps are done via simulated (training)
samples {S; }c[o,r] before we observe the real market data ({ S }¢[o,77). In other words, we derive
optimal policies of the form in Theorem with a worst-case probability, and 7prgckL iS com-
puted by this worst-case probability and {S; };c[0,r). Note Algorithm [4is just an example for low
dimensional case, see Section[H.3]and Appendix B for high dimensional discussions.
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5.2 GENERAL CASE: DEEP LEARNING APPROACH

In this section, we consider the case for the general ¢-divergence, we solve for fixed (), 3)7,

swp [ B (B (X)) o). (10)
meA(zo) JR

Under Assumption [5] @, s is strictly concave and strictly increasing in z, thus Problem (I0) is a
continuous-time smooth ambiguity problem (Klibanoff et al., 2005). Such problems can be solved
recursively in discrete-time (Klibanoff et al., 2009), but in continuous-time only few blue cases can
be solved in closed-form, and there is few literature in numerical methods for this with generality.

We utilize tools from stochastic calculus and results from|Guan et al.|(2022) to design a deep learn-
ing method to solve Problem (I0). This motivates an alternate definition of the set of admissi-
ble controls A(xzg) that contains the optimal policy for a large class of Bayesian control prob-
lems (see Appendix [F4): the collection of all alternate admissible controls 7, which is a subset
of A(x) such that there exists a function v ~ wu such that there exists corresponding function
h : R — R and a functional p : L' — R such that for the controlled terminal wealth X7,

Iz EF’ [0(XZ)] A(b)dp(b) = h(zo)p(A) and k(1) = v(e™T). For a fixed b € R, define n’* =

exp (—?Wt — <32;§>2t), % . nt*, and WP = W, + Z=L¢ for t € [0, 77, then under Q°,
t

the process W is an F°-Brownian motion that is independent from B, hence under @Q°, the stock
price S evolves as dS; = S, (bdt + O’thb) . Moreover, dX; = (X; — m)rdt +m (bdt + O’thb) .

For a fixed b € R, EF’ [u(X7)] = E?" [u(X7r)], therefore it is equivalent to study the problem
SUD, e A(an) S B8 (EQ” [u(XT)]) dyu(b), which is solved in Guan et al.(2022). Let by = E¥[B]

and if b = by, then we denote WP as TW. We also define for ¢ € [0,T],n: = exp (—I/Wt - %1/215) ,

where v = 2= For a fixed b € R, we define t € [0,T], 5} = exp (—l/bWt - %Vgt) , where

vy = %. The families of measures {P®},cr and {Q°},cr are quite different. For example, the

distribution of B under Q" is still 1 (see Appendix [F.6), where under P°, B is a constant b. In
the rest of this section, we assume that y ~ N (uo, 00). Now, we are able to derive sufficient
conditions that an optimal terminal wealth satisfies. Theorem [I7] motivates a loss function that also
ensures numerical stability (Appendix [G.5).

Theoren} 17. If AssumptionPlholds, X is a terminal wealth such that there exists a constant . € R
with E9" [Xr1] = zoe"! and L.(X7) = 0 with

K2 o r—b B—b by —r)?
LN(XT):m—log(u’(XT))—rKgl—i-log <02?) +— 0 (WT+ . 0T> _( 0202) T

+ o [ 85,5 (B9 Cen)]) du) )~ 1og ([ 4 (B9 o)) dua(a)

_ T 1 Tbo D Ho Tb2 boD ‘LLQ
D=Wp+ 8t K = — 4+ — K, = — 4= Ky = =0 0
TS D2 + 203 2 o? + o + o8 57 952 o 203
T 1\ " Wr BT | o
2 2 _ _ 2 .
pa NN(MQ,UQ), oy = 02—&—02 , and [1g —0Q< 5 + o2 +08 , then X is the

optimal terminal wealth for Problem .

From Theorem we guess that the optimal terminal wealth has the form X}, = h(Wr, B), where
h is a function that we plan to use neural network hy to approximate (§ € R%). x € Ris a
learnable scalar. We replace X1 in Theoremby ho(Wr, B), denote all the learnable parameters
as 0 = (0, KZ)T € R4 and design the loss function as for a choice of b; € R (see Appendix ,

9 2
£(@) = E" [HLn(ha(WT, B))) ] + (EQT [he(Wr, B)] — moeTT> : (11)
If X3 = he(Wr, B), then £(0) = 0. The Algorithm [6] (Appendix [G.5) can be used to minimize
L(0) to find the optimal numerical solution 8*. Discussion of DRBC algorithm in general case is in
Appendix [G.6] Usage of hy enables scaling with dimension n, for simplicity we don’t show it here.
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Table 1: Comparisons of learning results and closed-form solutions. Here b, = 0.1, b, = 0.3;
r1 = 0.05, 7o = 0.1. We run evaluations 100 times.

COMPARING TERM LEARNING RESULT CLOSED-FORM

B9 [w(X3)],m 3.174+0.013 3.226
B9 [w(X3)],m 3.460+ 0.030 3.380
EQ" [w(X3)], 2 3.179+0.014 3.267

Table 2: Comparison of mean Sharpe Ratios across methods for part of S& P 500 data.

METHOD MEAN OF SHARPE RATIO (1)

MERTON 0.015 £ 0.301

BAYESIAN WITH NO AMBIGUITY (PRIOR 1) 0.493 £ 0.281
BAYESIAN WITH NO AMBIGUITY (PRIOR 2) 0.655 £ 0.282

DRC (PRIOR 1) —0.220 + 0.292

DRC (PRIOR 2) —0.237 4+ 0.293

DRBC (PRIOR 1) 0.818 +0.308

DRBC (PRIOR 2) 1.147 £+ 0.311

6 NUMERICAL EXPERIMENTS

In this section, we present two numerical experiments to illustrate our theoretical findings. In Sec-
tion[6.1] we compare the performance of the neural network approach with the closed-form solution.
In Section we apply our method and baselines to real stock data and use Sharpe Ratio as the
evaluation metric to compare the performances. More details on the implementation, choices of per-
formance measures and parameter settings are in Appendix [} Additional experiments on validation
the rate of convergence and comparisons between DRBC and baseline methods using simulated data
with user specified finite prior and KL uncertainty set and high dimensional case are provided in Ap-
pendix [Hl We find all experiment results align with our theoretical arguments in previous sections.

6.1 COMPARE WITH CLOSED-FORM SOLUTIONS

If we replace @ 3 with a power function ®, Problem admits a closed-form solution (Guan et al.,
2022). This allows us to explicitly evaluate the performance of Algorithm|6]in this specific scenario.

In Table we compare the closed-form optimal value £@"" [w(X})] with the learned optimal value
ER" [u(hg-(Wr, B))] across various market parameters r and different values of by. To estimate

the learned optimal value E" [u (hg« (W, B))], we employ Monte Carlo approach by conducting
100 independent experiments, each utilizing 2000 samples of the pair (Wr, B).

6.2 REAL DATA EXPERIMENTS

This experiment is motivated by Blanchet et al.| (2021a). We use S& P 500 constituents data from
2015 to 2024 and evaluate different methods using average annualized Sharpe Ratio for all stocks.
We use a rolling window of one year to get the required parameters for all methods like interest rate
r and an estimation of o. For the ease of computation, we choose two fixed priors across time based
on |(Wang & Zhou| (2020), prior 1 is more deviated and prior 2 is less deviated. The uncertainty set
radius ¢ is chosen following the cross-validation type in[Si et al| (2023). Results in Table [2] show
that the DRBC is substantially better than benchmarks and it reduces the overpessimism in real data.

7 CONCLUSION AND FUTURE WORK

We provided the DRBC model to mitigate misspecification and overpessimism. Though effecitve in
the ¢-divergence uncertainty case, we believe that other efficient numerical methods under different
unccertainty measure can be found to reduce the overpessimism. We leave them for future work.



Under review as a conference paper at ICLR 2026

REFERENCES

Daniel Bartl, Michael Kupper, and Ariel Neufeld. Duality theory for robust utility maximisation.
Finance and Stochastics, 25:469-503, 2021.

Giizin Bayraksan and David K. Love. Data-driven stochastic programming using phi-divergences.
In The Operations Research Revolution, pp. 1-19. Institute for Operations Research and the Man-
agement Sciences (INFORMS), Catonsville, MD, 2015.

Patrick Billingsley. Probability and Measure. Wiley Series in Probability and Statistics. Wiley, 2nd
edition, 1986.

A. Bismuth, O. Guéant, and J. Pu. Portfolio choice, portfolio liquidation, and portfolio transition
under drift uncertainty. Mathematics and Financial Economics, 13:661-719, 2019.

Tomas Bjork. Arbitrage Theory in Continuous Time. Oxford Finance Series. Oxford University
Press, 3rd edition, 2009.

J. Blanchet, P. Glynn, and Y. Pei. Unbiased multilevel monte carlo: Stochastic optimization, steady-
state simulation, quantiles, and other applications. arXiv preprint, 2019.

J. H. Blanchet and P. W. Glynn. Unbiased monte carlo for optimization and functions of expectations
via multi-level randomization. In 2015 Winter Simulation Conference (WSC), pp. 3656-3667,
2015.

Jose Blanchet and Yiyuan Kang. Semi-supervised learning based on distributionally robust opti-
mization. In Data Analysis and Applications 3: Computational, Classification, and Statistical
Learning Approaches, pp. 281-297. Wiley Online Library, 2020.

Jose Blanchet, Lin Chen, and Xun Yu Zhou. Distributionally robust mean-variance portfolio selec-
tion with Wasserstein distances. Management Science, 68(9):6382-6410, 2021a.

Jose Blanchet, Karthyek Murthy, and Viet Anh Nguyen. Statistical analysis of Wasserstein dis-
tributionally robust estimators. In Tutorials in Operations Research: Emerging Optimization
Methods and Modeling Techniques with Applications, pp. 227-254. INFORMS, 2021b. doi:
10.1287/educ.2021.0233.

Jose Blanchet, Jiajin Li, Sirui Lin, and Xuhui Zhang. Distributionally robust optimization and robust
statistics. arXiv preprint, arXiv:2401.14655, 2024.

J. Frédéric Bonnans and Alexander Shapiro. Perturbation Analysis of Optimization Problems.
Springer Science & Business Media, 2013.

John C. Cox and Chi-fu Huang. A variational problem arising in financial economics. Journal of
Mathematical Economics, 20(5):465-487, 1991.

Sam Daulton, Sait Cakmak, Maximilian Balandat, Michael A. Osborne, Enlu Zhou, and Eytan
Bakshy. Robust multi-objective bayesian optimization under input noise. In Proceedings of the
39th International Conference on Machine Learning, pp. PMLR 162, 2022.

Laurent Denis and Magali Kervarec. Optimal investment under model uncertainty in nondominant
models. SIAM Journal on Control and Optimization, 51(3):1803-1822, 2013.

J. Duchi and H. Namkoong. Learning models with uniform performance via distributionally robust
optimization. Annals of Statistics, 49:1378-1406, 2021.

J. C. Duchi, M. L. Jordan, M. J. Wainwright, and A. Wibisono. Optimal rates for zero-order convex
optimization: The power of two function evaluations. IEEE Transactions on Information Theory,
61(5):2788-2806, 2015.

R. J. Elliott, L. Aggoun, and J. B. Moore. Hidden Markov Models: Estimation and Control, vol-
ume 29. Springer, New York, NY, 1995.

10



Under review as a conference paper at ICLR 2026

Louis Faury, Ugo Tanielian, Elvis Dohmatob, Elena Smirnova, and Flavian Vasile. Distributionally
robust counterfactual risk minimization. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pp. 3850-3857, 2020.

Hans Follmer and Alexander Schied. Stochastic Finance: An Introduction in Discrete Time. De
Gruyter, Berlin, 4th edition, 2016.

M. B. Giles. Multilevel monte carlo methods. Acta Numerica, 24:259, 2015.

Michael B. Giles. Multilevel monte carlo path simulation. Operations Research, 56(3):607-617,
2008.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.

G. Guan, Z. Liang, and Y. Song. The continuous-time pre-commitment kmm problem in incomplete
markets. arXiv preprint arXiv:2210.13833, 2022.

Ben Hambly, Renyuan Xu, and Huining Yang. Recent advances in reinforcement learning in finance.
Mathematical Finance, 33:437-503, 2023.

Lars Peter Hansen and Thomas J Sargent. Robust control and model uncertainty. American Eco-
nomic Review, 91(2):60-66, 2001.

Lars Peter Hansen and Thomas J Sargent. Robustness. Princeton University Press, Princeton, NJ,
2008.

Xue Dong He and Xun Yu Zhou. Hope, fear, and aspirations. Mathematical Finance, 26(1):3-50,
2016.

Z.Hu and L. J. Hong. Kullback-Leibler divergence constrained distributionally robust optimization.
Optimization Online, 2013.

I. Karatzas and X. Zhao. Bayesian adaptive portfolio optimization. In E. Jouini, J. Cvitanic, and
M. Musiela (eds.), Handbooks in Mathematical Finance: Option Pricing, Interest Rates and Risk
Management, pp. 632—-669. Cambridge University Press, Cambridge, 1998.

Joannis Karatzas and Steven E. Shreve. Brownian Motion and Stochastic Calculus, volume 113 of
Graduate Texts in Mathematics. Springer Science & Business Media, New York, 1991.

Ioannis Karatzas and Steven E. Shreve. Methods of Mathematical Finance, volume 39. Springer,
New York, 1998.

Ioannis Karatzas, John P. Lehoczky, Steven E. Shreve, and Gan-Lin Xu. Martingale and duality
methods for utility maximization in an incomplete market. SIAM Journal on Control and Opti-
mization, 29(3):702-730, May 1991.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua Bengio
and Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

Johannes Kirschner, Ilija Bogunovic, Stefanie Jegelka, and Andreas Krause. Distributionally ro-
bust bayesian optimization. In Silvia Chiappa and Roberto Calandra (eds.), Proceedings of the
Twenty Third International Conference on Artificial Intelligence and Statistics, volume 108 of
Proceedings of Machine Learning Research, pp. 2174-2184. PMLR, 26-28 Aug 2020. URL
https://proceedings.mlr.press/v108/kirschner20a.html.

P. Klibanoff, M. Marinacci, and S. Mukerji. A smooth model of decision making under ambiguity.
Econometrica, 73(6):1849-1892, 2005.

Peter Klibanoff, Massimo Marinacci, and Sujoy Mukerji. Recursive smooth ambiguity preferences.
Journal of Economic Theory, 144:930-976, 2009.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436-444,
May 2015.

11


https://proceedings.mlr.press/v108/kirschner20a.html

Under review as a conference paper at ICLR 2026

Randall J. LeVeque. Finite Difference Methods for Ordinary and Partial Differential Equations:
Steady-State and Time-Dependent Problems. Society for Industrial and Applied Mathematics
(SIAM), 1st edition, 2007.

Daniel Levy, Yair Carmon, John C. Duchi, and Aaron Sidford. Large-scale methods for distribu-
tionally robust optimization. In Advances in Neural Information Processing Systems, volume 33,
pp- 8847-8860, 2020.

Zongxia Liang and Yang Liu. Central-planned portfolio selection, pareto frontier, and pareto im-
provement. Available at SSRN, October 2019.

Zijian Liu, Qinxun Bai, Jose Blanchet, Perry Dong, Wei Xu, Zhengqing Zhou, and Zhengyuan
Zhou. Distributionally robust g-learning. In Proceedings of the 39th International Conference on
Machine Learning, volume 162 of Proceedings of Machine Learning Research, pp. 13623—-13643.
PMLR, 2022.

Miao Lu, Han Zhong, Tong Zhang, and Jose Blanchet. Distributionally robust reinforcement learn-
ing with interactive data collection: Fundamental hardness and near-optimal algorithm. Neural
Information Processing Systems, 2024.

Andrew L Maas, Awni Y Hannun, Andrew Y Ng, et al. Rectifier nonlinearities improve neural
network acoustic models. In Proc. icml, volume 30, pp. 3. Atlanta, GA, 2013.

Rajnish Mehra and Edward C. Prescott. The equity premium: A puzzle. Journal of Monetary
Economics, 15(2):145-161, 1985.

Robert C. Merton. Optimum consumption and portfolio rules in a continuous-time model. Journal
of Economic Theory, 3:373-413, 1971.

Y. Nesterov and V. Spokoiny. Random gradient-free minimization of convex functions. Foundations
of Computational Mathematics, 17:527-566, 2017.

Hamed Rahimian and Sanjay Mehrotra. Distributionally robust optimization: A review. arXiv
preprint arXiv:1908.05659, 2019.

C.-H. Rhee and P. W. Glynn. Unbiased estimation with square root convergence for SDE models.
Operations Research, 63(5):1026-1043, 2015.

Ulrich Rieder and Nicole Biuerle. Portfolio optimization with unobservable markov-modulated drift
process. Journal of Applied Probability, 42(2):362-378, 2005.

R. Tyrrell Rockafellar. Convex Analysis. Princeton University Press, 1970.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning representations by
back-propagating errors. Nature, 323(6088):533—-536, October 1986.

Alexander Schied. Optimal investments for risk-and ambiguity-averse preferences: a duality ap-
proach. Finance and Stochastics, 11(1):107-129, 2007.

O. Shamir. An optimal algorithm for bandit and zero-order convex optimization with two-point
feedback. The Journal of Machine Learning Research, 2017.

A. Shapiro. Distributionally robust stochastic programming. SIAM Journal on Optimization, 27(4):
2258-2275, 2017.

Alexander Shapiro, Darinka Dentcheva, and Andrzej Ruszczynski. Lectures on Stochastic Program-
ming: Modeling and Theory. STAM, 2009.

Alexander Shapiro, Enlu Zhou, and Yifan Lin. Bayesian distributionally robust optimization. SIAM
Journal on Optimization, 33(2):1279-1304, 2023. doi: 10.1137/21M1465548. URL https:
//doi.org/10.1137/21M1465548.

N. Si, F. Zhang, Z. Zhou, and J. Blanchet. Distributionally robust batch contextual bandits. Man-
agement Science, 69(10):5772-5793, 2023.

12


https://doi.org/10.1137/21M1465548
https://doi.org/10.1137/21M1465548

Under review as a conference paper at ICLR 2026

Maurice Sion. On general minimax theorems. Pacific Journal of Mathematics, 8(1):171-176, 1958.

Y. Syed and G. Wang. Optimal randomized multilevel monte carlo for repeatedly nested expecta-
tions. arXiv preprint arXiv::2301.04095v3, 2023.

H. Wang and X.Y. Zhou. Continuous-time mean—variance portfolio selection: A reinforcement
learning framework. Mathematical Finance, 30(3):1012-1035, 2020.

Jiacheng Wang, Ruihao Gao, and Yao Xie. Sinkhorn distributionally robust optimization. arXiv
preprint arXiv:2109.11926, 2021.

Shengbo Wang, Nian Si, Jose Blanchet, and Zhengyuan Zhou. A finite sample complexity bound
for distributionally robust q-learning. In Proceedings of the International Conference on Artificial
Intelligence and Statistics, pp. 3370-3398. PMLR, 2023a.

Shengbo Wang, Nian Si, Jose Blanchet, and Zhengyuan Zhou. On the foundation of distribution-
ally robust reinforcement learning. arXiv preprint, arXiv:2311.09018, November 2023b. URL
https://arxiv.org/abs/2311.09018.

Yue Wang and Shaofeng Zou. Policy gradient method for robust reinforcement learning. In Pro-
ceedings of the 39th International Conference on Machine Learning, volume 162 of Proceedings
of Machine Learning Research, pp. 23484-23526. PMLR, 2022.

Kaiyue Wen, Zhiyuan Li, Jason Wang, David Hall, Percy Liang, and Tengyu Ma. Understand-
ing warmup-stable-decay learning rates: A river valley loss landscape perspective, 2024. URL
https://arxiv.org/abs/2410.05192.

Zhengqing Zhou, Zhengyuan Zhou, Qinxun Bai, Linhai Qiu, Jose Blanchet, and Peter Glynn. Finite-
sample regret bound for distributionally robust offline tabular reinforcement learning. In Proceed-
ings of The 24th International Conference on Artificial Intelligence and Statistics, volume 130 of
Proceedings of Machine Learning Research, pp. 3331-3339. PMLR, 2021.

Bernt @ksendal. Stochastic Differential Equations: An Introduction with Applications. Universitext.
Springer, 6th edition, 2003.

13


https://arxiv.org/abs/2311.09018
https://arxiv.org/abs/2410.05192

Under review as a conference paper at ICLR 2026

APPENDIX

A PRELIMINARIES

In this section, we present preliminary definitions and results that will be used for the proofs.

A.1 PRELIMINARY DEFINITIONS

Definition 18. The Cressie-Read divergence is a ¢- divergence where the convex function is taken
by for a fixed k£ > 1,

th—kt+k—1

t) = ———F—F—

fr(t) Rk — 1)

Definition 19. Suppose g : R? — R is a function, then we say g satisfies the linear growth condition
if there exists a constant ¢ > 0 such that

lg(@)] < e(l+[lz]),

where ||.|| denotes a norm in the Euclidean space.

Definition 20. Suppose f : D C R? — R is a function, then we say f is Holder continuous with
parameter w and bounding constant K if there exists K > 0 and w > 0 such that for any =,y € D,

[f(x) = F)l < K [lz —yl”. (12)
We say f is locally Hélder continuous with parameter w and bounding constant K if Equation (12)
holds inside each compact neighborhood.

Definition 21. Let B; and By be Banach spaces and G : By — Bj be a mapping. It is said that G
is directionally differentiable at a considered point 1 € Bj if the limits

" tl0 t

exist for all d € Bj.

Furthermore, it is said that G is Gdteaux directionally differentiable at p if the directional derivative
G',(d) exists for all d € By and G,(d) is linear and continuous in d. For ease of notation, we also
denote D, (j10) the operator G, (-).

Finally, it is said that G is Hadamard directionally differentiable at p if the directional derivative
G',(d) exists for all d € By and

! J—
@ (d) = lim Gluttd) =G g
t}0 t

A.2 AUXILIARY RESULTS

Theorem 22. (Abstract Bayes Theorem (Elliott et al.| |1995)) Suppose (2, F, P) is a probability
space and G C F is a sub-o-field. Suppose P is another probability measure absolutely continuous

with respect to P and with Radon-Nikodym derivative % = A. Then if ¢ is any P-integrable
random variable

EP[A¢ | G]

. 2P
g ERIG0

EP[¢ |Gl =0 where o =

and ¢ = 0 otherwise.

Theorem 23. (Syed & Wang|(2023)) Let (Z1, Z2) be a 2-stage stochastic process and there exists
p > 1, such that E[|Z3[P] < oo. Conditioning on Z1, sample i.i.d. Z2(1),...,Za(n). Then there
exists a constant B, depending only on p such that

P

E
BHZN 1<p<

=3 20) - Bl | 2)
i=1

(o o
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Theorem 24. (Danskin Theorem (Bonnans & Shapiro, 2013)) Let © C R? be a nonempty compact
set and B be a Banach space. Suppose the mapping G : B x © — R satisfies that G(u,0) and
D,,(u, ) are continuous on O,,, X ©, where O,,, C B is a neighborhood around p. Let ¢ : B — R

be the inf-functional
¢(n) = inf G(u,0)

and ©(p) = arg maxycg G (1, 0). Then, the functional ¢ is directionally differentiable at o and

/ .
Cud) = int Dy(po, ).

Theorem 25. (Delta Theorem (Shapiro et al.| 2009)) Let B and By be Banach spaces, equipped
with their Borel o-algebras, Yy be a sequence of random elements of By, G : By — Bs be a
mapping, and Ty be a sequence of positive numbers tending to infinity as N — oo. Suppose that the
space By is separable, the mapping G is Hadamard directionally differentiable at a point p € By,
and the sequence X ny = TN (Y — 1) converges in distribution to a random element Y of By. Then,

™ (G(YN) = G(p) = GL(Y),

and

™(G(YNn) = G(p)) = G(Xn) + 0p(1).
Theorem 26. ((Shapiro et al.| |2009)) Let By and By be two Banach spaces, G : By — By and
w € By. Then the following statements are true:

* (1) If G is Hadamard directionally differentiable at i, then the directional derivative G;L is
continuous.

* (2) If G is Lipschitz continuous in a neighborhood of p and directionally differentiable at
i, then G is Hadamard directionally differentiable at .

Theorem 27. (Sion’s minmax Theorem (Sion, |1958)) Let M be any convex topological space and
O is a compact and convex space, h : M x O — R is a function such that

* (1) For any fixed x € M, h(x,.) is lower semi-continuous and quasi-convex.

* (2) For any fixed y € O, h(.,y) is upper semi-continuous and quasi-concave.

Then
sup inf h(z,y) = inf sup h(z,y).
xeM Y€O @) y€0 e (@9)

B REVIEW OF BAYESIAN AND MARTINGALE METHODS

B.1 MARTINGALE METHOD REVIEW

In the classical literature (Merton, [1971; |(Cox & Huang, [1991} |[Karatzas et al., |1991)), B is not a
random variable but is a fixed real number. This problem is called Merton’s problem in financial
literature. In this case, we assume the controls are all F-adapted. There are two ways to solve
Problem (3)) in this case: dynamic programming and martingale method.

The dynamic method is to guess a Hamilton—Jacobi—Bellman equation (HJB) equation (which is
typically a nonlinear partial differential equation in the portfolio optimization problems) that the
optimal control may satisfy, and then we use a verification method to show that solution (with some
regularity) of this HIB equation indeed gets the optimal control. The final step is to either solve the
HIJB equation in closed-form or numerically. The dynamic programming method works well in the
time-consistent case, but not well in the time-inconsistent case (See, for example, a discussion in
He & Zhoul|(2016)). Thus, in this review section, we focus on another method. We remark that the
traditional distributionally robust control are done via a dynamic programming approach, which we
will revisit in Appendix [[.3.2]

On the other hand, the martingale and duality method, which we will call martingale method later,
is a more probabilistic approach and works well for portfolio optimization problems in both time
consistent and inconsistent cases (notice that this is only for the financial problems which allows
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replication of the portfolios (Bjorkl 2009)). Thus, we focus on the martingale method in this section
now.

Recall that we want to solve
V(zo) = sup EF[u(X7)],
TeA(xo)
where A(zg) is the collection of all F-progressively measurable stochastic processes m =

{mt}tefo, 1) such that fOT ||7rt||§ dt < oo and Equation l) with B being a fixed constant admits a
unique strong solution. The hardness of this problem is that the optimal control is indeed a stochas-
tic process, which is infinite-dimensional. A change of measure argument will convert this problem
into one-dimensional (i.e. with respect to a single random variable rather than a stochastic process).

Consider the set of all portfolios that can be generated starting with an initial capital of z. By design,
our final wealth X lies within this set, making it a suitable search domain for optimization with
respect to X7. Since we only have one risky asset, then the market is complete, and according to the
fundamental theorem of asset pricing (essentially Girsanov’s theorem), (Karatzas & Shrevel [1998)
there exists a unique probability measure () that is equivalent to P such that under @), the discounted
processes e~ "tS; and e~ "t X, are martingales. Thus the original problem becomes

V(zo) = sup EF [u(X7)],
XreA(L?)

where A(L?) is the collection of L? random variables such that e~"X; is a martingale, which is
equivalent to
dQ

E° [e7TXr] =29 = B [ 75

€_TTXT} = E" [prX7],
where p; = exp (— (r + 9—; - HWt)) and 0 = % is called the market price of risk. (For the

computation of %, see |[Karatzas et al.| (1991)). Thus, writing down the Lagrangian duality of the

new problem and using the point-wise optimization technique (Liang & Liu, 2019), we derive the
optimal terminal wealth X7.

Next we use the martingale property to derive the optimal wealth process by computing

* 1 *
X = ;EP lor X7 |F].-
t

Finally, from the martingale representation theorem (@ksendal, 2003) (since p;X; is a martingale
under P), there exists an F-adapted process {¢; };c[o,] such that

t
X7 = 30+ / 6oV,
0

where W; is the P-Brownian motion driving the dynamics of the risky asset. Applying Itd’s lemma
to X/, we can match the diffusion term 7,0dW; in the wealth equation to the diffusion term ¢:dW;.
This gives

P

s
¢ o
Thus, the optimal control 7} is directly expressed in terms of the martingale representation process
¢, which is determined by the terminal condition X7.

There are two takeaways from this method. Firstly, as long as we can construct the appropriate
change of measure and the duality theory (in the complete market), then solving for the optimal
control is equivalent to solving for the optimal terminal wealth. Secondly, the explicit computa-
tion based on the martingale property and It6’s lemma depends highly on the Gaussian (Brownian
motion) assumptions, thus this may not generalize to other cases (without specific distributions).

B.2 BAYESIAN TECHNIQUE REVIEW AND PROOF OF THEOREM [2§]

In practice, to use Merton’s model to guide the investment, constants B and ¢ need to be estimated
from the market data, then the model can be fitted with these estimators. However, in practice, even
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though the estimation of o is relatively easy, the estimation of B as a constant is hard (Mehra &
Prescott, |1985)). Thus, it is natural to consider the Bayesian technique to randomized B as a random
variable that is independent of the Brownian motion W, and the prior distribution of B can be chosen
via experts’ advice. This is why this stochastic diffusion control problem is called Bayesian. In this
case, martingale method combined with Bayesian and filtering techniques can be used to derive
the closed-form solution, where for the dynamic programming approach we still need to solve a
second-order nonlinear partial differential equation (Bismuth et al.,|2019; Rieder & Bauerle, [2005).

Karatzas & Zhao| (1998)) builds the solvablhty of Problem (3] . but the prior distribution is given to
the random market price of risk © = T which is equivalent to our setting theoretically, but the
exact closed form solution will be slightly different. In this section, we adapt the theory in|Karatzas
& Zhao| (1998) to give the optimal solution of Problem (3) in Theorem [28]

Theorem 28. The optimal value function of Problem is given by V(zg) =
(o) (fR 1 « @T(z)dz) o , and the optimal fraction invested in the stock for each
time t > 0 is given by

g VE T2+ Y5) (F(T 2+ Y)) T pri(2)dz

Xr (1—a)o [ (F(T, z+Yt))ﬁ<pT_t(z)dz

where @t is the density function of N'(0,T), Y, = B2t + Wy, and F(t,y) = Fu(t,y) =
fRLt(z,y)dp(z) with Li(z,y) = 1ift = 0 and Li(z,y) = exp (Z;Ty % = T ) ift > 0.
Moreover the filtration generated by the process {Y }1c(o,1) is the same as F>. S

Proof. To begin with, from Girsanov’s theorem (Karatzas & Shreve, |1991)),
1

B-r_, 1(B-r\’
— =L7YBY,) = — Y+ = t
b e 220 (5))

is a G-martingale under P (hence also F S_martingale under P). If we define a probability measure

%T’ then under 15, B still has the distribution p and is independent of the Brownian
motion Y.

Next, from the tower property, for fixed t € [0, T1,
7= E[2|Ff) = B [E (Z7]G] \fﬂ = F(t,Y}).

Moreover, from the abstract Bayes’ rule (Elliott et al.| |1995)), the conditional expectation of B given
the stock price is

B, := EY [B|FY] = G(1,Y3),
where G(t,y) = (%£) (t,y).

Next, we introduce the so-called innovations process of filtering theory
t
Nt = )/t - / G(Svn>d85
0

and from It6’s lemma with At = Zi, ({., .)¢ denotes the quadratic variation)
t

d (Kt . e_TtXt) = th (B_TtXt) + e_”Xtd/A\t + d<€_TtX, K>t
= e_/"t |:Kt7TtO'dYE — KtXtB\tht — Kﬂrtaﬁtdt
= 677‘th [O”]Tt — Xt./B\t:| dNt

Therefore, the process f is an (F5, P) local martingale, where f(t) = e~"'A; X, thus we can use
the martingale method as usual. If we define
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then it is not hard to show the optimal terminal wealth X7 is given by X7 = I (%) ,

(Karatzas & Zhaol |1998)where /() is a well-defined constant. Then Example 3.5 in [Karatzas &
Zhao| (1998)) gives the formulas of Theorem@

Finally, it suffices to show that there exists a measurable function f such that Y; = f(¢,5;). We
denote Sy = s¢ > 0, then for ¢ € [0, T,

o2
Sy = sgexp <(B— 2) t—i—aWt) .

2
IOgSt :10g80—|— <B— O-2> t+0’Wt,

()= (- 9):

Therefore,

which implies that

Hence

+ (g - f) t, (13)
which finishes the proof. O

In high dimensional case, the dynamic of risky assets becomes:

d
j=1
where b = (by,..., bq) " is the expected instantaneous rate of return of the asset, the invertible

matrix ¢ = {0y, }1<;,j<a is the instantaneous standard deviation of returns, and 0 < T' < oo is the
terminal time. Then the optimal value function becomes

Vi = O ([ iy )

«

where F(t,z) := F,,(t,2) = [pa Li(x, 2)dp(x) with Ly (z,z) = 1if t = 0 and

Li(x,2) = exp ((o—-l (@—r1)" 2 % o= (= — r1)||2 t)
And the optimal fraction is
() _ >T)! Joa VF (T, 2+ Y (1)) (F (T, z + Y(f)))ﬁ @T,t(z)d27
X+ () (1= ) fou (F (T, 2+ Y () ™7 ori(2)dz

C PROOF OF RESULTS IN SECTION 2]

C.1 PROOF OF THEOREM[I]

Proof. * (1) Itis easy to see by checking the definitions, Equation (@) defines an equivalence
relation, then the set of all equivalence classes under the quotient topology defines Us.

¢ (2) Fix Q € Us, then there are 4 cases to check.

- (a) Z—g = f(B), where f : R — R is bounded and (Borel) measurable. Then from
definition of the uncertainty set, for any A € B (R), there exists v < p such that

Q(B € A) = E® [1(geay] = E [Zgl{BeA}] = E” [f(B)1{peay]

dv dv
=v(Ad)= [ —=d :EP{Bl }

18
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which implies that % = Z—Z(B) P-almost surely from the uniqueness of Radon-
Nikodym derivative.
- (b) 3 dQ = f(W), where f : Q& — R is bounded and measurable. In this case, it is

convement to assume 2 = C ([0, T];R). Thus the standard Brownion motion W :

) — Q can be viewed as a function-valued random element. Therefore, for A €
B(%),

QW € A) = E° [lgweny] = B” B?,l{wefx}}
=B [f(W)Liweay] # POV € 4)

unless f = 1, which is equivalent to the case when Z?D = Z—Z(B) with v = p.

- ()3 dQ = f(B,W), where f : R x 2 — R is bounded and jointly measurable. From
part (b) and independence between B and W, it is easy to construct a contradiction.

-3 dQ = f(Y), where f : Q — R is bounded and measurable, and Y is a stochastic
process that is independent of both B and W From the definition of the equivalence
classes, this case is equivalent to the case when 2 5= fil—”(B) with v = p.

Moreover,

vl P= [o(G8) ar= [o(Sw) ar= [o(5) du=Dutv )
O

D PROOF OF RESULTS IN SECTION [3]

D.1 PROOF OF THEOREM[2|

Proof. The proof of this utilizes the law invariance theory developed in |Shapiro| (2017) for ¢ diver-
gence. Recall that we begin with the complete probability space (2, F, P). Let F = o(B) C F,
and define P = P | . then the triple (£2, F , ]5) is a probability space (may not be complete) such
that for any F-measurable random variables Z s

EP (7] = EF[7]. (14)

Now, for a fixed Q € Us, we define the restriction of () as Q = Q|z. We define the space
Lt (Q,]:', P) C L' (Q,F,P) as a subspace given that u(X7) € LP (92, F, P). We define an
equivalence relation ~ 4 with respect to a convex function ¢ (which is easy to check) between two
functions with mean 1 X,Y € L! (Q, ]:"7 ]5) by

X~¢Yifandonlyif/¢(X)dl5:/¢(Y dpP
Q Q

Following the notations in|Shapiro|(2017), we define a quotient space of L' (Q, F , 15) with respect
to ~¢ by

A:{[X'] , WhereX:%,QEZ/L;}.

Let Z/[5 be the collection of restrictions of all Q € Us on F. For any Q € Us, there is a unique
Q € Us such that Q = Q)| 7 from definition. On the other hand, for a fixed Q € Uj, there is also a

unique Q € Uy such that Q = Q| #- To see this, suppose Q1,2 € Us and Q= Qilr = Q2| 2,
which implies that Q1 ~ )2, hence uniqueness is shown.

19
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We define two F-measurable random variables X and Y’ to be distributionally equivalent under the
measure P if forany A € B(R), P(X € A) = P (Y € A). Next, we notice that for any X; and X5
that are two J-measurable random variables such that X 1 € Aand X 1 and X are distributionally
equivalent, then X, € A.

For a fixed probability measure ) € U;, we know that
Bu(Xr)] = B? B [u(X7)]|

where QP is the regular conditional probability under ) (the current measure) conditioned on the
random variable B. The random variable £?” [u(X7T)] is F-measurable.

Next, we define the functional corresponding to the law invariant set A, then from the law invariance
theory in [Shapiro| (2017), this functional is also law invariant thus implies the strong duality. We

firstly define a function space D = {aEF” [u(X7)],a € R}, which is an one-dimensional linear
subspace of L? (Q, F, P) given that u(X7) € LP (Q,F, P). Note that here PP represents the

regular conditional distribution given B under P, and its notation will be changed to Q7 if the
underlying probability measure is changed to (). From the one-to-one correspondence between U;
and A, the functional p : D — R defined by

p(Z) = inf E?[Z]= inf E?|E” [u(Xr)
QEUs QEUs

is law invariant with respect to (Q, F , P) .

Since the topological and convexity structures are the preserved, then with a similar argument as in
Section 3.2 in|Shapiro| (2017), the Lagrangian of the problem inf 5 _,; E< {EQB [u(XT)]} is given
by

Ly (X,A,@) :/ ZXdP + ) (/ QS(X) chS) +8 <1/Xdp>
Q Q Q
:ﬂ—)\5+/ﬂ (ZX+>\¢<X) —BX)dP,
and the Lagrangian dual problem is

sup inf Ly (X,A,ﬁ) .
A>0,u€R X >0

Since the space L” <Q7 F , }5) is decomposable, then as in|Shapiro| (2017)),

nf £z (X A,B) =B+ int {/Q (ZX Ao (X) - ﬂX) dﬁ}
=B—A+ /Qgiarzlfo (Zx + Ap(x) — Bx) dP
= 8=+ [~ 00 (8- 2)iP
=B+ E” [~ (3)" (8- B [u(Xr)))]

— 8-\ +EF [%,B (EPB [u(XT)])] .

20
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Therefore,
; Q — Q |pe”
Juf E* [u(X7)] = inf E {E [U(XT)]}
= inf B9 [EQB [u(XT)]}
QEUs
= su f/\5+E‘£)<I> EP” [w(x
{520+ o (7" )
= su —M+EP|® EP” u(x
{52 o (7" )
—  sup {5A5+/q>m (pr [u(XT)])du(b)},
A>0,8€R R
which finishes the proof. O

Remark 29. If we plug in u(X ) as an F-measurable random variable, then the strong duality would
look like
inf E€u(Xr)] = sup {B—A5+AEF[Grs(X7)]},
QEeU; A>0,8€R

where for fixed A > 0, 8 € R (assuming multipliers nonzero),

Gralo) = (-7 (2512).

The strong duality looks better than the one stated in Theorem 2]since it is more tractable. However,
this is wrong since U is not law invariant with respect to F. As in the language of [Shapiro| (2017),
suppose we have a Radon-Nikodym derivative X = f(B), where f is a measurable function and
B e N(0,1), define Y = f(W7), then X and Y are distributionally equivalent but Y cannot induce
a probability measure that belongs to Us (by Theorem|[I).

D.2 PROOF OF THEOREM[3]

Proof. Since ¢(z) = zlogz — x + 1, then @y s(z) = A (1 —exp (5;1)) if A > 0. Therefore, if
optimal \* # 0, then

. _ B~ B [u(Xr)]
Qelgfm E° [u(Xr)] = /\2801,1[1;)6]R {ﬁ — A0+ /R A (1 — exp ( 5 )) du(b)} .

If we take derivative with respect to 3, then we get the optimal 5*

B8* = —Alog (/}R exp <EP[;L(XT)]> du(b)) )

After plugging in, we have

. —EP" [u(Xr)]
ot E9 [u(X7)] = sup {—Ad — Alog < /R exp (AT> du(b)> } .

The case when A = 0 is from discussion of case 1 after Assumption 1 inHu & Hong| (2013). O

D.3 EXTENSION TO CRESSIE-READ DIVERGENCE
We give a theorem for the Cressie-Read divergence with the uncertainty set is denoted as U}, 5 for

or(z) = % with k € (1, 00). We further define k. = £+ and ¢, (6) = (1 + k(k — 1)5)%.

Theorem 30.
ol , B X)) = sup {5 —a) ([ (-5 ) aun) } |
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Proof. From Duchi & Namkoong|(2021)), we know that

Gi@) = (k= D+ 1) - 2.

Therefore, by plugging in this to Theorem 2] we have
inf E° [u(X7)]

Qe s

_ - B -

= sw {5 A+ \E [cpw (E [U(XT)])} }

= 1 1—k. (k B 1)]{* P pB A k.

) Azso‘f?ek{ﬁ Ao ) A B | (9B e + HM }

- 72 () e (e o) ),

where we define 5 = [+ ﬁ thus the last equality holds. Noting that k*kfl = % and taking
derivatives with respect to A to minimize the preceding expression, we have

A= (k—1)(6k(k — 1)+ 1) % (EP [(5 — g’ [U(XT)])j_*:| ) "
By substituting back, we have
inf E¢ [u(X7T)]

QU s
s {B k-1 4 1)t (EP {(g _ P [u(XT)})'er*}
_ Zg; {B — e (6) </]R (B o [u(XT)D]j: dﬂ(b)> k} ’
which finishes the proof. -

D.4 EXISTENCE AND UNIQUENESS OF THE DUAL OPTIMIZER

Theorem 31. Assume Assumption@and hold, then for a fixed m € A(xo), there exist positive and
finite A and A such that any optimal \*(w) € [\, \].

Proof. From Jensen’s inequality, we have
A VA -1
log (/ exp () du(b)> > / log <eXp ()) du(b) = —E" (77,
R A R A A

—\log (/R exp (‘AZb> du(b)) — A< EP[ZB]— X6 < M — ).
On the other hand,
o Ei&fm E® [u(Xr)] > essinf u(X7) >0
since X7 > 0and u is strictly increasing, then M —\J > 0 gives the upper bound \*(7) < \ := %.
For the lower bound, it suffices to show there exists A > 0 such that

—Alog (/R exp <_EP[A“(XT)]> du(b)> — X6 > essinf EP” [u(X7)] > u(m),

which is equivalent to

E

A

. <EP” [u(X1)] + u<m)>] ot

22



Under review as a conference paper at ICLR 2026

Since as A — 0, LHS — 0 (as a left limit), thus as long as we pick A > 0 small enough, then the
inequality is achieved, thus the optimal A* > 0, thus the optimal \* is attained inside the interval
(A, Al O
Remark 32. We remark that for the proof of upper bound of the dual optimizer, the moment condition

can be relaxed to [, V4 (o )dp(b) < co. The bound [ (%(mo))3(1+w)du(b) < oo is essential in the
construction of the ’IMLMC estimator.

Theorem 33. If Assumption @ and|8| satisfied, then for a fixed m € A(x), there exist positive and
finite \ and \ such that any optimal \*(7) € [\, A].

Proof. The proof of the upper bound is the same as proof of Theorem 31} For the lower bound, even
though the same proof as Theorem [31]can be done, we adapt the proof of Lemma A12 from|Si et al.
(2023) to illustrate the usefulness of the stronger Assumption 8]

Essentially, the proof of density and mass function cases are the same, so without loss of gen-

erality, we use f to denote the continuous density of E¥ B[u(XT)] on a compact set K, thus
b = sup,cx f(z) < oo exists. Further, we define for a fixed 7 € A(zg), g(\) = g=(\) =

—\log (fR exp (’sz) du(b)) — M. Therefore, since
limg(A) =0,

it suffices to show that

dg(N\)
)

lim inf > 0.
A—0

Indeed,

dg) fRfTZbexp(’fb)du(b) 5 log (/ exp (‘Zb> du(z;)).
R

A e (S2) dut) A
We notice that
2N g
lim —1 — =
o () ) -
and
_ b _ b _ b _ b
- RTZGXP(TZ dpb) fRTZeXp( f)du(b)/A ;
lim in - = hg\n in pn > 3
S0 fpexp (S2) du(h) 20 fpexp (S£) duv)/A
since - -
/ ge_%dy = / e Xdy =\
0o A 0
As aresult,
_Ledg(N)
it =
Since the objective function is strictly concave in A (Theorem [39), then the uniqueness is shown,
thus finishes the proof. O

Remark 34. Similarly, mild assumptions on the moments (Duchi & Namkoong, |2021) gives the
uniqueness and strictly concavity of the objective function in the Cressie-Read divergence case.

E SUPPLEMENTARY FOR SECTION [

We first provide two lemmas that will be used in the proof of Theorem

Lemma 35. Suppose Assumption[I0holds and p is compactly supported with a continuous density,
then for each fixed m € A(xy), there exists a constant M > 0 such that with probability one,

0< 28 = EP"[u(X7)] < M.

That is, the random variable Z® has a compact support.
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Proof. Since function b — Z° is continuously differentiable and monotone on its support, thus the
random variable Z” has a continuous density. Since the support is compact, then with probability
one, ZE has attainable maximum and minimum. O

Remark 36. Lemma [35]helps establish the finite variance of the estimator £ 5 x 5. The same result
will be automatically true if Assumption [§|holds.

E.1 PROOF OF THEOREM [11]

Proof. With no confusion in the notation, we use £ = £% g and & = &x 5 5 g for simplicity.

Since @ g satisfies the linear growth condition, then for a fixed b € R, there exists ¢; > 0 such that

st st |1
s (B 0 (1)
2

Hence, Assumption [6]implies that
+EY [Zﬂ < oo, (15)

Sb
o fons ()
n

where Var® represents the corresponding expectation is taken with respect to the measure P°. Thus

2

Var® (Z%)

2
]Scl 1+

Dy 5 (S'ﬁ ) is uniformly integrable with respect to P?. Since for each n > ng (samples are i.i.d.),

Sgh o
a5 <23L++f> Pas ( o

then from the dominated convergence theorem,

EPb1 [5] _ EP [gbl]
So
(I))\7B < 227100>

b1
Nb1
p(N™)
P [ AD P S;’}LO
Z K [Anl] tE [P 20
Sh, . SoL,
Prp < 2m ) o P2 ( om
Finally, from tower property, we have
EP[§) = EP [EPB [5]} - / EP" €] dp(b) = / ®y 5 (2°) du(b),
R R

n=no
which shows the unbiasedness.

_EF

b

EP [Al] = E"

P —|—EP

S B [al)

n=no+1

— lim EF =EF

m—o0

=0y 5(2").

Lemma [35] and Assumption [ imply that it suffices to restrict the study of the function
®((\,B),2°) = x4 (Z°) on a compact product K1 x Ko, thus Assumptionimplies that there
exists a constant /' > 0 such that

sup | D@ 5| < K. (16)
(A5, 2%) €K1 X K

2
In order to show Var (£°1) < oo, from Equation , it suffices to show EX {(;ﬁz@)) ] < 0.

From Taylor’s expansion, we have for fixed n € N, with probability one, there exists 2 1 between

SB 50,8 SE.B
78 and 225, £9°5 between Z5 and 22—, and ¢5F between Z7 and “Z— such that

o Sy =®, 5 (ZB)+D®, 5 (ZP Sgnin 7B 1D2<I> B Sgnin 7B
M\ gnyr ) T Aﬁ( )+ /\ﬁ( ) on+l +§ Aﬁ(gnﬂ) ontl )
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and (
g

GEB SEB 1 GEB 2
Dy p < o ) = x5 (27)4D0x 5 (27) | =50 - ZB>+2D2<I> (") ( o ZB>
Therefore,
SB 1 S Syi”
B _ on+1 on on
Ay = Dy 5 <2n+1 ) ~3 <(I),\’5 ( on + Py on

B S2B"+1 B 2 SQBnJrl B 2
= Doy 5 (Z ) on+l 2 + 2D SV (gnJrl) on+1l 2

1 1 Sgi® ’]
=5 [P (27) ( o ZB> + 5D (677) (;n - ZB>

SEB 1 GEB 2]
—5 | D®rs (27) ( T ZB) + 5D (677) <§n - ZB)

Since Z7 is an unbiased estimate of ZZ, then from the boundedness of second derivative (Equation
(L

2112

B
(AB) EEP qu) ( ) 527L+1 o ZB
=4 AB\Sn+1 on+1

2
2

1 g0.B 2 1 BB 2||?
+ 5B ||D* s (€07) <2 - ZB) + 3B ||[D*as (677 (2 - ZB>

2n 2n
2 2

2 0.B 2||? E,B 2
—|—5EP SL_ZB —|—5EP SL_ZB
) 8 2n 8 n
2

From Jensen’s inequality and Lemma[23] there exists a constant K such that

2

< EEP S2B"+1 _ ZB
- 4 on+1

2112 4

SQB"+1 _ ZB < EP S2B"+1 o ZB EP ||ZB|| < O (27277,)
2n+1 — on+1 — 22(n+1 ~ !
2
where f(n) < O (272") means there is a constant C' > 0 such that f(n) < C272",

Therefore, there exists a constant C' > 0 such that

AN = BT [(aB)] 5 2n
(p<fvv>> =2 SO <>

from the discussion of in Section 3 in Blanchet & Glynn| (2015). Therefore, Var (€ 5.x,5) is also
finite.

O

E.2 FIRST AND SECOND ORDER CONDITIONS

In this section, we give the first and second order conditions for the general ¢-divergence case with
®, s strictly concave and strictly increasing in (), 3)T for large n. We remark that for a fixed

25
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n € N, the value function is not strictly concave in (A, )7 since the definition of IMLMC estimator
introduces negative linear combination of strictly concave functions. Since the estimator is not
strictly concave and is random, it may be better to use the (stochastic) gradient descent method to
escape from irregular points (e.g. saddle points).

Theorem 37. Define F/(\, 8;7,0) = 8 — A + & for fixed 6 > 0 and policy 7, then F is strictly
concave in (X, B) asm — oo underAssumption@and its first and second (mixed) partial derivatives
admit the expressions

OF :_ (/\ ﬂ,w 0) lz b;)\ 3‘I>A75 Song ’ (17
E)N n < p(N") oA AL
OF _OF(\Bim0) 1 NH, L 0% s,
98 PR Z o8 \ 2m | (18)
0*F - 82F()‘75;7775) 7& Ab )\ﬁ azé)\.ﬂ Sgilro (19)
ONOB T~ ONOB "o (2m )
PF  PFOBim ) 1 A?;’bi,xz 920y 5 [ Shi,
) A ﬁ; o e (o ) (20)
and b,
OPF  2F(\B:im,0) 1=Bpoi g 020 Sbis
_FFX B ) 1y bﬁ + P (S ) 21
02 92 n < p(Nb) T opz | 2

where for fixedb € R, n € N, and y,y’ € {\, 5},
0 St
b _ 2n+1
An,y = Fy@/\ﬁ ( on+1 )
10 sSSP S
T 20y (q)”’ < on ) T2 ( o | )
82 Sb
b _ 2nt1
o =gt (357
19 Sob San?
- |® 2 P =
2 0y ( W( o ) TP\ ) )
0? S
b . 2n+1
S = g0 (55

1 o2 SO0 Sanb
 20y0y (qhﬁ ( o | TP ) )

Proof. Since @) g is strictly concave in (A, 3)7 and £ is an unbiased and consistent estimator, then
so is ' as n — oo. The computation of derivatives is elementary. O

and

Next, we give a specific example of the KL divergence case. Recall that in this case,

@orncr () = sup { <33~ Ao [ exp (‘fb) )}

which has a form that is more complicated than the general case: in the KL case there are two
nonlinear transformations log and exp in the nested expectation, thus to get an unbiased estimator
of QpreckL () we need to apply the rMLMC method recursively (Syed & Wang] [2023).
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Another way is to keep the form when there are two multipliers A and ( rather than using the form

QoreckL(™) = sup,_, {—/\5 ~ Mog ( [ exp (—sz) du(b)) } This can avoid the multi-layer
nested expectation and nonlinear transformations if the ® 3 corresponding to the KL divergence is
strictly concave. However, this is always false.

Theorem 38. When ¢(x) = xlogx —x + 1, then @ g is concave but it is never strictly concave in
(A, B)T (jointly).

Proof. If ¢(z) = zlogz — x + 1, then By 5(z) = A (1 — exp (ﬁ;f)) if A > 0. Therefore, if

optimal \* # 0, then
0 B B —x 8 —x
a)\‘I),\,g(x)1+exp< 5 ) < 5 1),

9 _
%@A,B(x) = —€exp (ﬂ by x) )

7 B B
anag o) = A?mexp( A$>’
82 _ 2 _

W‘bw(w) N k) exp (6 x) )

A3 A
and 52 8
1 -z
a—BQ(I)Aﬁ(x) =~ exp ( 3 ) .
Therefore,
82<I>)\,[3 6243‘)1/3
2
- || 4 A7
aroB 9p?
2(8 — =) 2 1 1
—eXP(A) B \wx ) =%
thus @, s is never strictly concave in (), 3)7. O

A solution to this is to focus on the form when there is only one multiplier term. We can do the
recursive IMLMC method to get an unbiased final estimate, but we can also do the plug-in method
(which is biased) to get the same central limit theorem in the KL case as Theorem [I3] Doing this
not only simplify the code and the numerical analysis, but also keep the same rate of convergence.
To be more specific, let ®(z) = exp (5%) for z > 0 and A > 0, the rMLMC estimator first

samples b ~ p, then independently samples a random N® = N? + ng, where ng is a fixed non-

negative integer and N* ~ Geo(R) with R € (1, 3), finally generates 2"V "+1 unbiased estimates

{Zf}1<¢<2m of Zb = EF’ [u(Xr)], and the random estimator of [, ®x (Z°) du(b) is given by
<i< , )
&y = Eﬁ)KL = % + & (SQZ—"OD> where p(.) is the probability mass function of N and S} =

Zézl ZP. For N® > ng, we define

b O,b Eb
AL — @ Synba _ 1 P h 1o Sy
Nb — ¥ 2Nb+1 2 A 2Nb A 2Nb )

O0b =l  50pb Eb __~~l SEb . 5E.b 50,b
where S;" =3, | Z " and S, =", | Z;" with {Zi }1gi§2Nb+1 and {Zi }1gi§21\”’+1
denotes the estimates indexed by even and odd values, respectively. The estimator Ejpre for
Jg exp (’sz) du(b) is (for fixed 7 and &)

R
EkLpre = W,5,A,KL:EZI€K’L, (22)
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given n ii.d. samples {b;},.,, generated from ;. We then use the plug-in estimator &, =
—Ad — Alog (Ekipre) as a biased but consistent estimator for —\d — Alog (fR exp (’sz) du(b)).
Similarly as the general case, we define QDRBCKL(’R’) = supyso {EkL}-

The first order condition is given by Theorem[39]and the steps are given by Algorithm[I] Because of
the complexity of the derivative information, we will use (stochastic) gradient method in this case.
We also provide the theoretical guarantee in Theorem[d0] The proofs are given in Appendix [E.4]
Theorem 39. The map X — —)\d — MAlog ( fR exp (_sz> du(b)) is strictly concave,
lim P (Eky is strictly concave) = 1, and the derivative of the map \ — Eki admits the expres-

sion

0
aSKL =—0—log (gKLpre) (23)

LIS~ (St L, S L[, Sonts N Sy
_5KLpreE; 2rx | () NPty | 2 ooy | T4 vy

where A(x) = xe~* for x > 0.

Theorem 40. Suppose Assumption|6}[7][I0) and[I2|hold, 1 is compactly supported with a continuous
density. For fixed m € A(xg), let n denote the number of i.i.d. samples Of{gl}&hgign, then

()2 var (€2 1)

[ exp (52) dut)]”

Vn (QDRBCKL(W) — QDRBCKL(W)) =N |0,

9

where \* is defined in Section 3}

Algorithm 1 rtMLMC DRBC Policy Evaluation Step in the KL Divergence Case

Input: A simulator S, rMLMC parameter R € (%, %) prior distribution y, parameter ng, initializa-
tion of A and k& = 0, policy =, step-size sequence {a, : k € Z>¢}.
Output: Estimator of ’MLMC DRBC policy value QprpckL (7).

repeat

« Draw 7 i.i.d. samples {b;}1<i<, from p. Foreachi = 1,2,...,n, sample N% ~ Geo(R)
independently, and compute N = N + ng, then give b; to S and generate 2V 1 i.i.d.
samples of Z?.

» Compute ki pre, £k, and GF := %EKL (Theorem .

e Update A = A + a;GF and update k = k + 1.

until A converges.
Return QDRBCKL(’/T) = EKL (Equation )

E.3 PROOF OF THEOREM [13]

Proof. The proof is adapted from the proof of Theorem 1 from Si et al. (2023). Since the estimator
is unbiased and has finite variance under the assumptions, then from (the classical) central limit
theorem,

NG (&nm,g - / Dy 5 (2°) dﬂ(b)> = N <O,Var (5'§fﬁ)) . (24)
R
From Assumption there exists (b, ub € R such that ||()\*,5*)T||§ € K = [lb,ub]. Without loss

of generality, we abuse the notation and denote the support of optimizers as K. Since the function
(A, B)T + Ex 5.5 over K is Lipschitz continuous (continuously differentiable on a compact set),

then
Vv (f(.) —g()) = L(.) (25)
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uniformly in the Banach space C (K;R) of continuous functions ¢ : K — R equipped with
the sup norm, where f((X,8)) = Exsxg, 9(A,B) = [z Prp (Z2°) du(b), and L((X,B)) ~
N (O, Var (82@)) . L is arandom element taking values in C' (K; R).

Define the functionals
G (p,(MB)T) = =B+ A — (), B)
and

Vip) = oG (e, (A 8))

then by Danskin theorem, V is directionally differentiable at any p € C' (K;R) with x> 0 and for
any v € C (K;R),

Vi(v) = inf_ —v(\p),

AB)TeX (1)

where X (1) = argming gyrep {—8+ A6 — u(X, 5)} and V/, (v) is the directional derivative of V/
at 44 in the direction of v. In addition, V' is Hadamard directionally differentiable at g(.) since

o8 = [ s (B X)) dp(®) = [ o (ulm)au) >0 26)

and V(i) is Lipschitz continuous if ¢ is bounded below away from zero.
Therefore, by the Delta Theorem, we have
ViV (f() =V (g() = Vg, (L)

Since the map (X, 8)T +— —B + A6 — [ g (Z2°) du(b) is strictly convex, then we have the
uniqueness of the optimizer and

30 (D) = =LV, 5 ~ N (0, Var (2. )).

Recall that
Qprac(m) = — inf {5 + A6 — / D55 (2°) dﬂ(b)} =-V(g())

A>0 R

BER
and .

Qprec(T) = — )1\f>1f0 {=B+ X —Ersrp}h-
BER
Notice that from Assumption[I2]we have
Tim P (Qorsc(m) # ~V (£())) = 0. 27)

Then from Slutsky’s theorem,

Vit (Qorac(m) = Qorac(m)) = Vit (Qorac(m) + V (FA8))) + VA (V (FA8) = V (9(A. 8)))
= 0+ N (0, Var (&}t 5. )) ~ A (0, Var (&2 5.))

which finishes the proof. O

E.4 PROOF OF RESULTS FOR THE KL DIVERGENCE CASE

E.4.1 PROOF OF THEOREM [39]

Proof. Since gy is a consistent estimator of —Ad — Alog (fR exp (‘sz> du(b)), it suffices to
show the strict concavity of g(A\) = —Alog (fR exp (_sz) d,u(b)). To do this, we compute the

first and second order derivatives:

o g [ ZPe=2"/X dpu(b)
Zeoy =10 ([ i) - J TR
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and

O L\ = Ju(2)2e= 2" dpu(b) (fugZ"@‘Zb“du(b))2

zd) N fgem 22 dpub) N3 ([ e=2"/N du(b))®

- 1 bo—2"/X 2 - b2 2" /3 23
X (Jye 2 d(b)? <</Z )~ [ ) [ du<b>>

<0,

where from Cauchy Schwartz inequality, the equality holds if and only if ZZ is constant almost
surely, which is not true in our case. Therefore, strict concavity is shown. Then the computations of
the derivatives are elementary.

O

E.4.2 PROOF OF THEOREM [40]

Proof. The proof is similar to the proof of Theorem the only difference is that we will have
more explicit forms of the limiting Gaussian variance. Since the function ®)(z) = exp (‘Tg”)
satisfies Assumption?] together with other assumptions, it is easy to see that Exppre is an unbiased
_zb

estimator for fR exp ) du(b) and has a finite variance. Therefore, from central limit theorem,

b

NG (SKLPW - /R exp <_AZ> du(b)) = N (0, var (&01,)) (28)

Recall that from Theorem [31] the optimal \* € K, where K = [\, A] C R is compact. From the
Lipschitz continuity of A — Exypre Over K, we have

Vi (f() —g()) = L() (29)
uniformly in the Banach space C' (K; R) of continuous functions ¢ : K — R equipped with the sup
norm, where f(A) = Ekipre, 9(N) = [ exp (%) du(b), and L(A\) ~ N (O, Var (E/IQKL>) .Lis
a random element taking values in C' (K'; R). We next define the functionals

G (9. A) = Alog (9()) + A6

and

Vip) = AiggG(W),

then by Danskin theorem, V' is directionally differentiable at any u € C (K; R) with x> 0 and for

any v € C (K;R),
1
V!(v) = inf A()V)\,
h) AeX(w) \ (N )

where X (1) = arg minyex {Alog (u(X)) + A6} and V| (v) is the directional derivative of V" at 1 in
the direction of v. In addition, V' is Hadamard directionally differentiable at g(.) since (Assumption

(&)

g0) = /ReXp (Ab) du(b) > 0 (30)

and V(i) is Lipschitz continuous if ¢ is bounded below away from zero.

Therefore, by the Delta Theorem, we have

Vi (V(£() =V (g()) = Vg, (L)
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Since the map \ — fR exp (‘sz> du(b) is strictly convex, then we have the uniqueness of the
optimizer and

1

Vi (L) = x b L(V)
: (IR e (52) du(b))

A* 1
~ [ exp (—TZ’“> du(b) N(O,Var (5§*7KL>)

()2 Var (02 )

~N o, .
—_7b
e exp (52°) diut)]
Recall that
A
QprckL(T) = — inf {)\5 + )\/ exp ( - ) du(b)} = -V (9(.)
A>0 R A
and .
QpreekL(m) = — inf {Ex} -
A>0
Notice that from Assumption[I2]we have
Tim P (Qorscx (7) £ =V (/())) 0. 3D

Then from Slutsky’s theorem,

vn (QDRBCKL(W) - QDRBCKL(W)) =vn (QDRBCKL(W) +V (f()\))> + vV (V(f(N) =V (g(N))

=0+N |0, (A*)Qvar(ggi’“) ~N |0, (A*)QVar(é’ii,KL) ;

e () ao) "\ [ () o]
which finishes the proof. O

F PROOF OF RESULTS IN SECTION [3]

F.1 PROOF OF LEMMA [T4]

Proof. The proof is the same as the proof of Theorem [I] [

F.2 PROOF OF THEOREM 13|

Proof. 1f we denote v = %, then from a dual representation of the entropic risk measure (F6llmer
& Schied, [2016),

2 {oen (Lo (55 ) o)
= o {}y log (/R exp (fvEPb [U(XT)]) du(b)> }

s {— sup {E@ [~ wxn)] - =D (Q1 P)}}

QeAC
(219
= wesj&) Qiélftc {EQ [u(X7)] + ADkL (Q I P)} .
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F.3 PROOF OF THEOREM[I 6]

Proof. In order to use Sion’s minmax theorem, we need the compactedness of AC, which is not true
in general. However, since m = essinf X exists and P(X7 = m) > 0, we denote the set where
X7 = m as F and define a measure such that for any measurable set A,

o = S5,

then Q € AC and for any Q € AC,
E9u(Xr)] > u(m) = Eu(X7)),
thus @ is an optimizer of inf5 4¢ EC[u(X1)]. Moreover,
dQ  1g

dP  P(E)’

%Hp < pigy» thus the optimal Q for infy. 4o E?[u(X7)] is

attained inside a compact set K in the topology of weak convergence by Prokhorov’s theorem.
Note that the proof of the above argument does not use the finite support assumption.

On the other hand, since . is finitely supported, and for any Q € AC, there exists v <y such that
Z—g = g—Z(B), then v is also finitely supported and Q € P(Ky), where K; is compact. Thus we
can also restrict the choice of @ to a wpakly compact set Ko apd define K = K N K>, thus K is

compact. As a conclusion, inf 5. 4o E9u(Xr)] = inf 5 E¢fu(Xr)].

In addition, we notice that the mapping Q — E9[u(X7)] + ADkL (Q I P) is convex and
weakly continuous since the first part is linear and the second part is convex, and the mapping
T EQ [u(X7)] + ADxkL (Q I P) is concave, and the constraint sets are both convex, then from
Sion’s minmax theorem,

sup inf {EQ[ (X )]—|—/\DKL< I )}

rEA(zo) QeAc

Q
= sup inf {EQ[ (XT)] + ADxko (Q I P)}
(¢

rEA(z0) QEK

= inf sup {E [u(XT)] +ADxL (@ || P)}
QGK’ITG.A(:E())

= ut sw {Bu(XPI+ADa (Q I P)}

where the last equality holds since if we assume the existence of optimal 7* for the inner supremum
problem, then for a fixed control, the optimal QQ* is taken in a weakly compact set. Finally, since
 is finitely supported, then the optimizers are attained from this compactedness, which finishes the
proof. O

Theorem 41. Problem ([9) is convex on the set AC for any prior distribution fu.
Proof. Since for fixed P, Dgi (Q || P) is convex in Q, then it is enough to show that V' is convex,

which follows from the fact that convexity are preserved under linear transform and it is also pre-
served under composition between a convex function and a convex and nondecreasing function. [

F.4 ALTERNATE ADMISSIBLE CONTROLS

In this section, we give the definition of the admissible controls that will help the tractability of the
general case.

To illustrate our definition of the admissible set, we go back to Problem (EI) with the strictly con-
cave utility function u. (For a full review, see Appendix [B.2)) It is shown that the optimal terminal
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F(T,Y(T))
A : R — R, we define the inner product (E* [u(X7)], ) = [; EP' [w(X3)) A(b)du(d) =
Jz EF {(u ol) (%)} A(b)du(b). We want to see whether there exists a function h : R —
R and a functional p : L' — R such that

wealth X7 is given by X} = I (M) (Karatzas & Zhao| [1998). For a density function

[ B XA d(8) = b)) (32)

and
h(1) = u(e™). (33)

Theorem 42. For the following cases (1) and (2), the conditions (32)) and (33) are met, where for
case (3), the conditions are not met:

* (1) u(z) = L2 where o < 1 and o # 0.
s 2)u(x) = _716_7“’, where v > 0.
o (3) u(x) = log(z).

Proof. * (1) Here,

thus

which implies that

[ B e = [ £ | ( ﬁg;@;)} AB)du(b)

pb l IC(.Z‘Q)G_TT =
- [= 3 (Rvay) | oo
= 2 (Kleo)e ™)™ [ B [ YD) =T A0l
R
= h(zo)p(N),
where )
h(z) = > (K(z)e ") ==
and
o) = [ B [P Y1) 7] b
* (2) Here,
I(y) = -1 log(y),
thus .
(uol)(y) = —uy,
which implies that
Pt * _ pb -
B e a = [ £ |won (Fy ))} u()
B IC( —TT
= [ [v (F( T)))]
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where
h(z) = —K(zg)e T
and
p(\) /REPb {F(T’;(T))} AB)dpu(b)
¢ (3) Here,
I(y) = — and K(z0) .
thus

which implies that
/REPb (X)) A /EP [u o) (’C((T ;(_T)T)ﬂ A(b)dpu(b)
b

T

— o 41T+ / EF" [log (F(T, Y (T)))] A(b)dyu(b),

A(b)d

which shows that the decomposition is impossible.

Remark 43. In general, if u o [ satisfies

a
wol (%)= Fla)g(®).
then the decomposition condition holds. There are other examples satisfying this condition.

Now we define a subset A(z) C A(xo) such that for all 7 € A(x), there exists corresponding
function h : R — R and a functional p : L' — R such that for the controlled terminal wealth X7,
Jr EP' [u(XT)] A(b)du(b) = h(xo)p(\) and k(1) = u(e"T). Thus for some utility functions, Prob-
lem H is equivalent to sup,. ¢ 1, EF [u(Xr)] . Besides, if we define a function @(z) = u(z)+C,
where C'is a constant that does not depend on z, then the problems sup,_ . Awo) EP [u(X7)] and
SUD ¢ A(w0) EF [4(X7)] should have the same optimal solution (not the same value function), at

least in the definition of the classical problem. However this is not true if we follow our current
definition of admissible controls since the decomposition cannot be satisfied by these two problems
at the same time.

To rescue this, we firstly define an equivalence relation for two real-valued function f and g

f ~g <= there exists a constant C' such that f(z) = g(x) + C.

We call A(x) the collection of all alternate admissible controls 7, which is a subset of A(xo) such
that there exists a function v ~ wu (u is the utility function in the objective function) such that there
exist corresponding function A : R — R and a functional p : L' — R such that for the controlled

terminal wealth X7, [, EF [0(XT)] A(b)dp(b) = h(zo)p(A) and h(1) = v(e™T).

In the DRBC formulation, since the deviation from the prior distribution and its corresponding
underlying probability space is small, it is reasonable to continue to search for optimal solutions in

the space of A(z) for those utilities. Thus we call .A(z) the collection of all alternate admissible
controls and Problem (T0) becomes

sup / By 5 (EPb [u(XT)]) dp(b). (34)

n€A(zo) /R
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F.5 DiscUSSION ON CLOSED-FORM COMPUTATIONS

In this section, we review how the closed-form computation for a smooth ambiguity problem is
derived in some special cases, and how does this method fail in our case.

Recall that the DRBC problem becomes

sup inf E9[u(Xr)]= sup sup {ﬂ — A0+ / Dy (pr [u(X%)]) d,u(b)} .
reA(zo) QEUs meA(zo) A20 R

For simplicity, suppose there exists a unique pair (7*, \*, 5*) such that

sup inf E@[u(X7)] = B* =\ + / Dy g (pr [u(X;E*)}) du(b),
reA(zo) QEeUs R

thus it suffices to solve the smooth ambiguity problem with strictly concave and strictly increasing
function @y« g«:

b
sp { [ s (B X)) )} (5)
TeA(xo) R

We remark that this unique pair assumption is hard to check because of the jointly non-convexity in

terms of 7 and (), 3)”. For notational convenience, we use (), 3)7 in the rest of this section instead
of (\*, B*)T.

Therefore, the duality theory in (Guan et al.| (2022) can be applied (for a brief review, see Section
[5.2) and we derive the conditions to derive the optimal terminal wealth: From Corollary 3.8 in|Guan
et al. (2022), if X7 is a terminal wealth such that there exists a constant x > 0 with

o f @ (B9 [u(X0)]) di)
e ® s (B [w(X)]) 1 dia(b) (36)
E? [X7] = oe’”

then X7 is the optimal terminal wealth corresponding to Problem (33). In|Guan et al| (2022), a
closed-form solution is provided when the nonlinear transformation function (Problem with
®, g changed to ¢) is

u'(Xr)

%, ifz >0, ,
p(x) =9 J(Zay <0 where v € (0,1) is a fixed constant.
vy ’

With the nonlinear function ¢ and the utility function u(z) = Lz with a € (0,1), we guess that
the optimal terminal wealth X7 has the form (p,¢, and c are parameters to solve later)

* 1 D 3 7
X =exp <a (ﬁW% +qWr + c>> .
Hence,
51
B9 u(xp)] = B9 | 1 X3t
o
1

T 5 4T ¢*T )
= exp vy — vy + +c|.
a/T—p (2(1—19) b 1-p 2(1-p)

Therefore, if we assume p ~ N (,uo, 03), then

b
[ (B9 X ) bt @7
(v=1) pT qT T - 02T
oc/Rexp< 3 1_p1/37(771)1_pl/b751/§fWT1/b7071/§ dvy
1 A 2(v—-1D)Tq »
xexp | ———~ (W% + UIWT>

1—
o7 (52 + 03)
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Substituting Equation (37) into Equation (36)), we obtain the following equations

O+ 030 — (08 + 125 ) p+ 725 = 0,

(A—a)(1=vp) , _
a(l-p) q2— Y,
exp (2((11_2))T - 2T + 2) = zge’ T,

which admits a solution of pair (p, ¢,c) if p < 1.

The essential part of the above computation is that when we plug in the composition of power
and exponential functions, the result is still exponential and this fits well with the computation
of Gaussian integrals. However, in our case, the nonlinear transformation is defined by for fixed
A>0,8€R,

Py p(z) == —(Ag)" (B — ).

Thus, even though we use the ¢-divergence which induces a power-type ®, g (e.g. the Cressie-Read
divergence), the above computation cannot be adapted unless the utility function & = u + C(\, §)
(we call it an artificial utility) contains the information of the optimal A and 3, which is highly
non-practical and it seems that this is only true in theory.

However, the validity of this artificial utility is not guaranteed. To begin with, note that we cannot
simply regard A and 3 as constants and thus » and @ are not equivalent. Thus, even though w is a
good utility function with the alternative admissible controls (Theorem[42)), we do not know whether
4 is also a good one. Thus, the method may not apply in this case.

F.6  PROPERTIES OF Q°

Theorem 44. Under Q° for any b € R, the distribution of B is still .

Proof. Let A € F, then from independence of B and W, we have

ip(A) = Q"(B € A) = E?" [1;pcay]

dQ° B-b B —b)?
=FFf {dPl{BeA}] =EF [exp < e W — ( 202) T) l{BeA}}
x—b (x —b)?
N /A/Rexp ( o VT 202 T> () fwr (y)dyda

N ~/A~/]Rexp <_x - - (x2;2b)2T> “(z)%¢ (\%) (y)dydz.

Therefore,
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F.7 PROOF OF THEOREM[I /|

Proof. From Corollary 3.8 in|Guan et al.|(2022), if X7 is a terminal wealth such that there exists a
constant k > 0 with

wnr fy @5 (B [u(X1)]) dp(b)
Je @55 (B9 [u(X7)]) nfy du(b) (38)
E?" [Xr] = xoe” T

then X7 is the optimal terminal wealth correspondlng to Problem (10| . Since u and ® g are both
strictly increasing and strictly concave, then ' > 0 and @) \p > 0, hence the first equation is

equivalent to (we abuse the notation by using « for both the posmve multiplier and its logarithm)

g (o () = -+ o) + 1o ([ @45 (B9 (X)) o))

o ([ @4 (B )] ok ).

where log(nr) = % (Wr + B;bOT) (bo r) T and log <<I> \g (EQ [u (XT)]) du(b)) does
not involve an exponential term so it w111 not explode. Therefore it suffices to simplify

log ( fi, @, 5 (E<" [u(Xr)]) - du(b)).

Suppose A : 2 — R is a random variable that is independent from B and W with distribution g,
and if we denote the o-algebra generated by B and Wr as G, then

/R A (EQ*’ [u(XT)]> o dp()
e e I

_EP[ (EQA[ (XT)]>exp(—bO;A (WT+B;50T)—(bO2_2 )‘Q]
_pe { (EQ 0 (XT)D ’g} gP [eXp <_bo;A (WT+ B;boT) B (bo—A)2T> ’Q} :

202

where the last equality is from abstract Bayes’ rule (Elliott et al., [1995) with the Radon-Nikodym
derivative

u'(Xr) =

A (WT + B;bo T) _ (b02*124)2 T)

dQ exp (7
dP EP [exp (_ bo;A (WT + B;bo T) (b020124) T) ’g} '
For the first term, we need to know the distribution of A under () conditioned on G. That is, for any
Borel measurable set £/ C R, from the abstract Bayes’ rule, we want to compute
dQ
EF | =1
{ dP {A€E}

d
[arld

b — A by — A)?
EF {exp (— 00 D — ( 0202) T) liacrmy

E? {exp(—bo;AD—(bo2 5 )’g}

Moreover, if D = W + B ;bo T, then

by — by — a)?
Numerator:/ exp < 0 an (b — )

1 a
o 202 ) /2mo2 AP\ T 952
E Toq 0

oo _ N2 _ 2
Denominator = / exp <— bo—a D— (bo — a) T) L exp (_W) da.
g,

oo o 202 \/2mod

QA€ E[G) = E? [1{aepy |G] =

dl
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T o1 Ty D o T3 boD | 43 K3
we define K = 5 +2 2 2 2 +U+Ug, 3 202+ - +2037an e 35

then

exp(C) K,

/ﬁ( <a_;;;1>2>da
/Fexp< (a ;U’é )2>da

K Tb D 1% BT 1
Whefe/iQ:2=(fé<0++uo>:Ué<T+ +'u0)andaé::

2 2 2 2
o o og o o og

T o1\, , .
— + = . This computation also gives the second term

EP {exp (- bo=Ap_ (b= A)2T> ‘ g} = exp(0)22.

o 202 00

Thus, under @) conditioned on G, A follows a Gaussian distribution A/ (MQ, U‘é) ~ 114. Therefore,
log term = log (/ Mg (EQb [U(XT)}) nr du(b)>
R
o a
= log (exp(C)Q> + log (/ ) 4 (EQ [u(XT)]) duA(a))
0o R

= C +log (0g) —log (09) + log (/R P 4 (EQa [u(XT)]> d,uA(a)> .

Hence, if X7 is a terminal wealth such that there exists a constant x > 0 with EQ" [X7] = zoe™ T

and

log (u/(X7)) = T

_ 2
(WT+BUbOT>(bO r)

202
1o ([ @ (B9 1)) dn))

(f
~tos / ¥, (B X)) )

_ _ 2
bo B—bo\ _ (bo—7)"
o 202

(WT +
s (B X)) dutt)

¥, (B9 (X)) dua @) — € = log (o) + ot 00),
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then X is the optimal terminal wealth corresponding to Problem (I0). If we define

() = =Yg (1) + 1o | @45 (B9 xo)]) auh) )

o ([ @45 (B 1)) (o))

K3 - B— — )2
+ K3 — —2 —log (0q) + log (co) + - Ubo (WT+ UbOT) _ (o =1) T,

4K1 20’2
then L, (X71) = 0. O

G ALGORITHMS

G.1 DEFERRED PoLICY EVALUATION ALGORITHM

Algorithm 2 rMLMC DRBC Policy Evaluation Step
Input: A simulator S, rMLMC parameter R € (3, 2
tion ¢, initializations of (X, 3)T, policy 7.

Output: Estimator of DRBC policy value QDRBc(W).
repeat

), prior distribution i, parameter ng, R, func-

* Draw n i.i.d. samples {b;}1<i<, from p. Foreachi = 1,2,...,n, sample N% ~ Geo(R)
independently, and compute N% = N + ng, then give b; to S and generate 2V +1 i.i.d.
samples of Zf

» Compute VF and H(F) by Theorem[37] Update (), 3)" = (\, )T — H(F)~'VF.

until (A, 3)7 converges.
Return QDRB(;(W) =8 — A + &x.513 (Equation ).

G.2 DEFERRED ALGORITHM FOR FINITE PRIOR EXAMPLE

Algorithm 3 DRBC KL Problem Solver

Input: A simulator S, simulation observations S = {S };¢[o,77, real observations S = {S’t}tG[O,T]
rMLMC parameter R € ( L 3) and ng, prior p, initializations of A, 7, and k = 0, step-size sequence

274
{Oék ke Zzo}.
QOutput: DRBC optimal policy TpreckL-
repeat

* Draw n i.i.d. samples {b;}1<i<, from p. Foreachi = 1,2,...,n, sample N% ~ Geo(R)
independently, and compute N = NY + ng, then give b; to S and generate 2V +1 i i.d.
samples of Z?.

e Compute GF := c’%\gKL (Theorem . Update A = A + aGF and update k = k + 1.

* Update 7 by Algorithm @] with X and S.

until A converges. }
Return 7prpckr. = output of AlgorithmE]with Aand S.

G.3 LEARNING THE OPTIMAL ALTERNATIVE MEASURE FOR THE FINITE PRIOR EXAMPLE

Recall that the problem that we want to solve is

d

. . - 4q;

inf V(q) = inf Vig) + A q; log —,
a=(q1,---,44) @ a=(q1,---,q4) @ 1—21 s

¢4 gi=1,and ¢;>0 ¢, gi=1,and ¢; >0 -
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- T\ - = l—a -
where 7(p) = (o) < Jo (ol )’ apT(z)dz> and Fp(t,2) = S0, pilLa(bi, 2).
Note that the value function can be seen as an expectation with respect to the Gaussian distribution
N(0,T), thus it can be computed via simulation methods (plain Monte Carlo).

On the other hand, the gradient information of V' (p) is hard to compute. Thus, we will focus on
the zero-order methods (Nesterov & Spokoiny} 2017} [Shamir, |2017; |Duchi et al.l [2015). We will
mimic first-order optimization strategies by replacing the gradient of the objective function with an
approximation built through finite differences (LeVeque, 2007): for a fixedi = 1,2,...,d,leth >0
small, then ~

oV 1 1~ -
a;f)) ~ op V(P +hei) = V(p —hei)|,
where e; is the unit vector in the ith coordinate direction. Note that here we use the central difference
method, which has the O(h?) rate of convergence, instead of the backward or forward difference
method, which both have the O(h) rate of convergence. The exact steps to solve Problem @]) are
summarized in Algorithm ]

Algorithm 4 rMLMC DRBC KL Policy Learning Step

Input: Prior distribution p, step-size sequence {ay } k€Zs,» Parameter h > 0and A > 0, observa-
tions {S¢ }¢ejo,7] (see remark in Section for which process to plug in), initializations of g and

Output: DRBC optimal policy {73 ; }+c(0,7)-
repeat

« Foreachi=1,2,...,d, approximate V(g + he;) and V (q — he;)) by simulations.
e For each i = 1,2,...,d, compute GF;, = % [f/(q+hei) —V(g— hei)} +

2r
a4
A <log (zn) + 1).

* Update ¢ = g — «;,GF, update q = softmax(q), and update k = k + 1.
until g converges to g*.
Return 7y , = [ Vg (T2 ¥0) (T (T’Zﬂ/ﬁl_a pr_i®)

’ (1—a)o fR(Fq* (T,z-i—Yt)) I—a pp_y(2)dz

Equation (T3).

= foreacht € [0, T'], where Y} is given by

G.4 IMPLEMENTATION DETAILS FOR THE KL DIVERGENCE CASE (ALGORITHM

Here we elaborate on the details of simulating a sample of the optimal terminal wealth X 7. Recall
that the controlled SDE is given by

dX; = (X¢ — my)rdt + m (Bdt + odWy) , (39)

where 7 is the amount of money invested in the stock at time ¢ € [0, 7). Theorem provides the
optimal fraction of total wealth invested in stock at time ¢. If we model 7; as the fraction of total
wealth invested in stock at time ¢, then the controlled SDE becomes

dXt :Xt (T‘dt+7'('t (B—T') dt+Jth) (40)

These two formulations are equivalent since they give the same optimal value function (thus the
same optimal terminal wealth) and the optimal fraction for the formulation indeed gives the
optimal control for the formulation (#0). Thus, in Algorithm [3] when we sample X for the KL
divergence case, we plug in the optimal fraction for Equation (40) and use either Euler’s method or
rMLMC method (Rhee & Glynn, [2015)).

G.5 DEEP LEARNING METHOD TO LEARN OPTIMAL TERMINAL WEALTH FOR THE
GENERAL CASE

In this section, we discuss and give the Algorithm [5|to compute the loss function £(0) with fixed
neural network parameter (get high quality estimates (e.g. unbiased, low variance, and fast comput-
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ing speed)), and then auto-differentiation (back propagation neural network (Rumelhart et al., 1986
LeCun et al.;2015)) can be used to do the optimizations (Algorithm @)

Before discussing the loss function (IT]), we remark that Equation (38)) also motivates a loss function
for by € R,

£(9) :EQ“[ u’(h,<)(WT,B))/R 5B (EQ“ [U(XT)D * (41)
exp <—boa_ a (WT + B:’%) — (bOQ;f)QT) dy(a) 2
~woxp (7200 (wr e B0r) 2R [y (B9 kot 5)) )| |

+ (EQ” [he(Wr, B)] — erTT> .

In theory, loss and are equivalent. However, in terms of numerical computation, is
bad since when we initializing neural network parameters and do the optimization steps, we cannot
control the flow and with high probability, the terms in becomes oo since ﬁ is small. Moreover,
the scalar learnable parameter in (1) is restricted to be positive so we need to do projected gradient
descent, while in @ the scalar learnable parameter can be any real number. Therefore, in order to
achieve the numerical stability and convenience for implementation, we choose loss .

Recall that from Theorem [I7} if we replace ®) g by ¢, then the conditions that the parametrized
optimal terminal wealth hy (W, B) needs to satisfy are

E9 [hg(Wp, B)] = xge™

and
log (u/(hg(Wr, B))) = log (/R ¢ (EQb [u(hg(Wr, B))]) du(b)) (constant log term)  (42)

~log ( /]R ¢ (EQa[u(hg(WT,B))Dd,uA(a)) (random log term) ~ (43)

K2
+ K+ Kz — —2 —log (0q) + log (00) (44)
4K,
—b B-b bo — )2
+ 720 (g op)— o=y (45)
202

where the second condition is an equation of random variables, thus for each b; in the support of (,
we need to sample W7 and B under the probability measure Q°*. From Appendix under Q',
the distribution of B is unchanged. Moreover, since under le , W is a standard Brownian motion

and W = W, + B=%1¢, then we get samples of Wy by first sampling N ~ A(0,T), B ~ p, and

o

then compute W = N — %T. The reason to do this can be found in Section

Once we sample from Wz and B under Q”*, we need to compute the nested expectations
and (43) since @3) is easy to compute. Essentially, computations of {@2)) and [@3) are the same,
except the outermost distribution in is deterministic, where the outermost distribution in (43)
depends on the sampling of W7z and B under Q%*. We can view the whole loss function as a nested
expectation with layers in # — 22 and z ~ log(x) and then apply the method in Syed & Wang
(2023)), but then the regularity conditions are hard to check. Thus, we only consider the rMLMC
method for the nonlinear transform ¢’. For the rest of the estimator, we use the plug-in method.

G.6 DEEP LEARNING METHOD TO LEARN OPTIMAL POLICY FOR THE GENERAL CASE
Suppose we have numerically computed the approximation of the optimal terminal wealth X7 ~

hg«(Wr, B), then for the policy evaluation step (Section [, the simulation is simpler than the KL
case (since we can directly sample unbiased terminal wealth directly without simulating an SDE).
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Algorithm 5 Loss Estimator with MLMC
Input: Functions ¢ and wu, scalar parameters (o, bo, T, 0, 00,7, 0), fixed parameters « and 6,

1) (1 (3) 3)
data sets {Wk }1<k:<n(1>’ {B )}1<k<n(1>»{ }1<;<n(2> 1<i<2N+1 5 {Bz(J H<j<n® 1<i<on+1s

3
{W( )k}1<]<n(2) 1<i<2N+1 1<k<n(), and {Bz] k-}1<_]<n(2) 1<i<2N+1 1<k <n(1)> sample V.
Output Estimate of £(0) = L (6, k).

« Compute the constant log term: For each j = 1,...,n(?

For each i = 1,...,2N*!, define Yi; = (Wz(f),B(g)) and compute X; ; =

u (ho (Yi,5))-

Split the sequence of X ; into odd and even indices for . Compute S;; = 2221 X
SO =, X0, and SE =S| XE,

¢ SiaN+1 1 ’ ozN / EzN
Compute Ay = ¢ ( CRER ) 39| = R :
Compute Z; = % + ¢ (Séfgo ) , where p(N) is the probability mass function of
N.
end for Compute I, = log (ﬁ Z;’:i Zj) .

i)j’

. _ w® o BY—bo _ 1 A D o
Compute D = W,/ + =+—T, Ky = 292 + %,, Ky = 2 T + JT%, and
Ky = L0, boD "ig

202 o 203
a_
« Compute I,, = (W,El) B’“a b"T) (bo T) T+K3———log (cg)+log (o0) -
 Compute the random log term: Foreach k = 1,..., n(

- Foreachj=1,...,n®

s For each i = 1,...,2N%1 define V;;; = (W.(B.) B®

0,5,k? 71,k
Xijk =u(hy (Yijr))-
* Split the sequence of X; ;1 into odd and even indices for i. Compute Sj ;1 =

l E
Zf X;Jk’ jlk_Zz 1X7jk’andsjlk_2’b 1 'ij

50 g
« Compute ANJc = (%) <¢/< JzN h) + ¢’ (J2Nk>> and

AN,k S, om0 i
Zig =S5k + o (Sugoe)

T
) and compute

(2)

end for Compute 7,, = log ( & D=1 ZM.). end for

2
. Compute Lo = (ﬁ Z( ihe (W(l) (1)) _ acoeTT> .

Return: £ (6) — 1 Zn( ) (K g (u’ <h9 (ngl)’Bl(cl)))) + 1, — 1., + 0)2 + Lo.
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Algorithm 6 rtMLMC DR Policy Learning Step for the General Case

Input: Functions ¢ and u, scalar parameters (xo, by, T, o, 00, T, 0), step-size sequence {o, rez-
initilizations @ = (6, )" and k = 0. )
Output: DR optimal terminal wealth Xr.

Samples for constant log term: sample N ~ Geo(R) and compute N = N + ng; sample n(?)
i.i.d. values {B;Q)}1§j§n<2> from A (pi0,02). For each j = 1,...,n(?

* Sample 2V+1 ii.d. samples {Bz‘(?j)}léiéwﬂ from N (o, 03).

+ Sample 2V+1 ii.d. samples {Ni(f;)}lgiSQN+l from N(0, 7).

(3) (2)
Bl

 Foreachi=1,...,2N*! compute WZ(‘;) = Ni(’:;-) —
Sample n") ii.d. values {Bél)}lgkgnm from N (o, 02) and n™) ii.d. values {Nél)}lgkgnm

(1)
from N(0,T). Foreach k = 1,...,n("), compute W,El) = N,il) — Be ="' Compute 0f =

T, 1 -t
o2 08 '

Samples for random log term: For each & = 1,...,n(")
w® g
» Compute pg = 0(22 (; ’;2 + ZT% . Sample n(?) i.i.d. values {Bj(‘?k?}lgjg’n@)

from V' (ug,03). Foreachj =1,... ,n2

— Sample 2V*+1 ii.d. samples {Bi(?j)’k}lgiggNJrl from N (o, 03).

— Sample 2V ii.d. samples {Ni(7:;?k}1§iS2N+l from A/ (0, 7).
) _ NG _ BHLBA
j :

- N+1 3 _
— Foreachi=1,...,2 , compute W, = ik ~

repeat
« Compute £ (8) by Algorithm[5|and the above samples.

» Update 8 = 6 — o, Vo L (0), where the gradient is computed by back propagation; update
kE=k+1
until 8 = (0, k)T converges to 6* = (6%, k*)T.
Return X = hg-(Wrp, B).
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Table 3: Policy evaluation for different sample sizes of B.

) n =102 n =10° n=10"
0.01 3.7642 + 0.0399 3.7663 + 0.0124 3.7654 4+ 0.0040
0.05 3.6951 4+ 0.0413 3.6971 + 0.0130 3.6964 4 0.0040
0.10 3.6425 + 0.0421 3.6449 4+ 0.0135 3.6446 4+ 0.0041
However, in order to use the IMLMC estimator for Qprpc, we still need to draw {by,ba,...,b,}

from the distribution of 1 and generate unbiased estimator of
by b; b;
E"" [u(Xr)] = EY" [u(X7)] = B [u(he-(Wr, B))].

Thus, it is better to design a loss function for each b; rather than choose a uniformly” best Q¥ for
the loss function.

Suppose the multipliers of the alternative optimization algorithm converge finally, then we get real-
izations of V(azo) in the worst case. Since the optimal value function of the distributionally robust
problem is just plugging the worst case probability p* into the original form of the solution (Theo-
rem , thus we can solve the optimization problem infy £(8) to derive p* if we parametrize the
density by a neural network:

£0) = B | [V (ao) - Vi, )]

where 6 represents the parameter of the neural network fg for the approximation of p,- and

x e” 11—«
Vizg,p) = o) ( Jo (F ) @T(z)dz) for a fixed distribution 4 € P(R). To

simplify the trackabrhty issue, we may parametrize pu~ as exponential family or Gaussian mixtures
(Goodfellow et al.,[2016)). Finally, to get the DRBC optimal control with real observations of stock
prices, we plug in Theorem 28] with the learned worst-case probability and the observations.

H ADDITIONAL EXPERIMENTS

H.1 RATE OF CONVERGENCE FOR POLICY EVALUATION

In this section, we investigate the convergence rate in the KL case established by Theorem|[I3](specif-
ically, Theorem [40) for values of ¢ equal to 0.01, 0.05, and 0.1. For each fixed §, we sample and
compare three different numbers of independent and identically distributed copies of B: n = 102,

103, and 10%, Tablelpresents the means and standard deviations of the estimator with a fixed policy
m, computed from 100 independent experiments. The numerical results demonstrate that the estima-

tor QDRBCKL(W) converges, and both the scaling rates of the standard deviation and the difference

QpreekL(T) — QDRBCKL(ﬂ')‘ are consistent with the O,, (n~'/?) rate predicted by theory.

To make sure the validity of our comparison, we first run the policy learning step to get the 7 initial-
ization. We run policy learning step with prior values [0.01,0.46, 0.30, 0.21, 0.27] and probability
mass function of prior random variable B [0.05,0.35, 0.35,0.15, 0.1]. We equally divide [0, 7] into
1000 intervals, and initialize A = 100. When calculating the gradient of V, we set h = 10~% and
learning rate oy = 10> a same number across all loops k. We set the convergence condition to be
the sum of squared errors of g, — qi_1 less than 107°. After we get the converged q*, we get 7
from Equation (T3)), as in Algorithm 4]

Then we run Algorlthm [T} We set ny = 3 and a;, = 0.01. Other hyperparameters are the same as
Section |I.1.2|and prior is the same as above. Here we set the convergence condition to be -2 FxérL <

0.35. For using inner samples to estimate £’ [u(X7T)], we simulate Equation (40) with B = b 100
times to get X and then get the average. Finally we use the converged \* to calculate & with
different sizes of n 100 times to get the results in Table[3] We document that using 4 Intel Skylake
6148, 20-core, 2.4GHz, 150W processors, the whole process including all three n takes about 40
hours.
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Table 4: Setting 1: comparison of average Sharpe ratios and expected utilities for Bayesian with
correct prior (BCP), Bayesian with incorrect prior (BIP), and DRBC (§ = 1073/1072).

METHOD SHARPE RATIO EXPECTED UTILITY
BIP 0.68057 3.41674
BCP 1.05472 4.37966
DRBC (107%) 0.93987 3.89788
DRBC (1072) 0.93989 3.89793

Table 5: Setting 2: comparison of average Sharpe ratios and expected utilities for Bayesian with
correct degenerate prior (BCPD); DRC and DRBC (§ = 1073/1072).

METHOD SHARPE RATIO EXPECTED UTILITY
BCPD 2.44595 6.07575
DRC(107%) 1.04900 3.46948
DRC(1072) 0.91977 3.38634
DRBC (107%) 1.48139 4.43138
DRBC (1072) 1.48136 4.43145

H.2 THE FINITE PRIOR CASE WITH KL UNCERTAINTY SET

In this section, we use Sharpe ratio and value function (expected utility) for Problem (3) as evaluation
metrics to compare DRBC method with different baselines in different settings. In Setting 1, market
paths are generated from Equation (I)) multiple times with a groundtruth distribution of drift. We
choose an incorrect prior for both Bayesian and DRBC methods. We compare the performance of
the Bayesian approach with the incorrect prior (BIP), the correct prior (BCP) (using grondtruth) to
DRBC method and report the results in Table[d The results indicate the effectiveness of DRBC over
prior misspecification.

Setting 2 gives comparisons between DRBC and DRC methods under another market setting where
drift B in Equation (I)) degenerates to a single point. Again, we choose an incorrect prior for both
DRBC and DRC to compute the optimal policies, and report evaluation metrics of them together
with the BCP in this case (BCPD) in Table [5] The results clearly show that DRBC reduces the
overpessimism and is relatively stable in terms of 4 compared with DRC.

H.3 HIGH DIMENSIONAL SYNTHETIC EXPERIMENTS WITH KL UNCERTAINTY SET

In this section, we scale the dimension of SDE up from one to one hundred to show the performance
of our method with Sharpe Ratio and also show the necessity practicality of our method since it is
designed beyond low dimensional cases. We apply Theorem [27] and modify algorithm [4]to high di-
mensional formulas to get optimal fractions. The results confirm DRBC can reduce over-pessimism,
and certify our method in high dimensional settings. Details of implementation of DRBC and DRC
are in section

Table 6: Comparison of average Sharpe ratios for Bayesian with correct degenerate prior (BCPD);
DRC and DRBC for 100 assets.

METHOD  SHARPE RATIO

BCPD 0.954
DRC 0.397
DRBC 0.591
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I EXPERIMENT DETAILS

1.1 DETAILS OF EXPERIMENTS IN SECTIONI[6.]]
1.1.1 CHOICE OF PERFORMANCE MEASURES

From Guan et al.| (2022)), if

O(x) = 5 20 here v € (0,1) is a fixed constant
z) = EE T where v ,1) is a fixed constant,

then the optimal terminal wealth has the closed-form

1 B —by\?2 B
X} =exp ((I(;; (WT+ - O) +q<WT+ - 0>+C>>, (46)

where
e+ o = ol + ol i
P 2(08 +1) ’
a(l—p
T E)4)(1 —)vp) v

2
v—21 T
C= |}O§§(£O) + TT+ (1/2 — (1_O¢p)> 5

From Guan et al.| (2022), for a fixed b € R (more precisely in the support of the prior)

1 pT qT T
EQ (X = ———exp v — vy + +c
WX = S (2(1—1?) " ol-p 2(1-p)

1 T b — by)? T b—b 2r
= exp<2(p ( 0) + d 0+ 9 )+c>.

a1 —p 1—-p) o2 1-p o 2(1—p

Following the discussion in Appendix in the alternate optimization steps for the DRBC algo-
rithm, the essential property is how accurate that this optimal terminal wealth can be used to compute
E@u [u(Xr)] for a fixed by € R, thus we choose it to compare with the closed form solution. The
performance measures that we taken into considerations are their equivalence properties are used in
the alternative optimization procedures.

1.1.2 IMPLEMENTATION DETAILS

We start with the hyperparameter settings for the synthetic data, then introduce our neural network
settings. The network is trained on 1 Nvidia A100 GPU for about one GPU hours.

Sample size is set to be 2000. Second level sample size for IMLMC method to be 100, and geo-
metric distribution parameter R = 0.65. To make the synthetic data close to real financial market
observations, we let 0 = 0.4, 09 = 2,7 = 0.05/0.1, b9 = 0.1, T = 1, o = 0.1, b = 0.1/0.3,
and o = 1. For the function ®’, to get numerical stability, we use a truncation to approximate at
0.01 and 2, when x is smaller than 0.001, ®’ gives a constant; when x is larger than 2, ®' is x_%;
between 0.001 and 2, & is the linear interpolation of above two functions.

We use a modified multi-layer perceptron (MLP) hg to estimate X7.. The MLP has four layers in
total, first layer takes 2-dim input (W, B) and maps to 128 hidden nodes; second layer maps 128
nodes to 256 hidden nodes; third layer maps 256 nodes to 256 nodes, and final layer maps 256 nodes
to one output. We use LeakyReLU (Maas et al.,[2013)) as activation function with parameter 0.01.
Since our parameter settings mimic real financial data, we need to modify the output of the MLP to
satisfy non-negative constraint and match the real terminal wealth distribution easier. We impose a
partial linear structure on top of the MLP with constant 1 and learnable parameter b. The constant
is from financial practices that under optimal portfolio strategy, investor earns excess return. b is set
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here for an easier learning process and better gradient flow. We also set  a learnable parameter and
use gradient descent alternatively for MLP parameters, b and « in the training pipeline.

For learning rate schedule, we adopt a Warmup-Stable-Decay (Wen et al.,|2024) learning rate sched-
ule which achieves great success in large language models. We use 1000 epochs in total, with 10
epochs to linearly warmup the learning rate to 0.001, then steadily train 400 epochs, and finally
decay to 0.0003 for the rest 590 epochs. For b, learning rate is fixed at 10~*. For &, learning rate
linearly decays from 0.01 to 10~%, then stays until training is done. We use Adam (Kingma & Bal,
20135)) as the optimizer and saved models can be found at our repository. Training losses for different
b and r values are shown in Figure(l] In all three hyperparameter settings, our network shows stable
loss curves and achieve good performances comparing to theory results, as stated in Section [6.1]

—— b=0.1, r=0.05 1.2 b=0.3, r=0.05
1.0 1.0
1.0

0.8 0.8

0.8

Loss
Loss
Loss

0.6 0.6 0.6

0.4 0.4 0.4

0.2 0.2

0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
Iteration Iteration Iteration

0.2

Figure 1: Training losses for different b and r values

We denote the trained optimal parameter as §*. We evaluate the model by randomly generating new

input pairs (W, B) of 2000 samples with different seeds to get EQ [u(hg- (W, B))]. And we run
such experiment 100 times to get the mean and standard deviations shown in Table[I]

1.2 DETAILS OF EXPERIMENTS IN SECTION[6.2]

The daily S&P 500 constituents data from 2015-01-01 to 2024-12-31 is from Wharton Research
Data Services. For the ease of data cleaning and to avoid stock inclusion and exclusion to the index,
we only keep stocks that are S&P 500 constituents in the whole time window, resulting in 326
stocks left. Interest rate data is from Federal Reserve Bank of St.Louis. We use a rolling window
of 1 year for getting the interest rate  and o, and use them in DRBC and baseline methods for the
following month’s investment allocation.

We remark the choice of § is more a managerial decision rather than a scientific choice, and too
large 0 will not give meaningful solutions. Here we follow |Si et al.| (2023) to use the existing
data to estimate the distributional shift, which implies a choice of §. Over the 326 stocks, the
mean of § ~ 0.15, thus we choose it for the experiments. For the prior, we choose two fixed
finite priors with supports inspired by [Wang & Zhou! (2020). Prior 1 is [-0.08,0.16,-0.02,0.04,0.10],
with probability [0.35,0.08,0.25,0.22,0.10]. Prior 2 is [-0.05,0.15,0.00,0.05,0.10], with probability
[0.45,0.05,0.25,0.15,0.1]. The histograms of sharpe ratios for two priors are shown in ﬁgure@} We
documented that using a single Intel Skylake 6148, 20-core, 2.4GHz, 150W processor, looping over
all stocks for a single prior takes about 30 hours.

1.3 DETAILS OF EXPERIMENTS IN SECTION[H.2]
1.3.1 DETAILS OF SETTING 1

For experiments in Section we run full DRBC Algorithm 3]to get 7precki. Most hyperparam-
eters are the same as in previous settings. One change here is the initialization of A. Due to the hard-
ness of convergence of Algorithm [3] we need finer pre-condition of X. Based on[Faury et al.| (2020),

which proves A\ = (’)(%), we make our \ = %. Another change here is we shift the prior distri-
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(a) Prior 1 (b) Prior 2

Figure 2: Histogram of Sharpe Ratios under different priors.

bution, which is also noted as incorrect prior in TableElto [0.5,0.05,0.2,0.15,0.1], with support of
the prior random variable B unchanged. The correct prior distribution is [0.05,0.5,0.1,0.15,0.2].
The convergence condition is set to be [\, — A\,_1]| < 1075,

We regard the full DRBC process in Algorithm [3]as the pre-training phase to get the optimal policy.
Then we run the evaluation process as follows: First, we generate market data { St}te[O,T] 200 times
by Equation (1) to get 200 paths. Then use Equation (13) to transform {S}};c(0,77 to {Y? }eejo,77-
Thirdly, calculate optimal fractions 7 for BIP, BCP and DRBC cases using Theorem 28] with trans-
formed Y;. Fourthly, simulate Equation (2) or equivalently Equation #0) with 7gip, mgcp and mprgc
with the same Brownian terms W, as the first step to get the wealth paths X;. Finally, we use two
metrics to evaluate the performances of BIP, BCP and DRBC. Since DRBC only focuses on termi-
nal wealth, to remove other randomness, we choose the Sharpe ratio definition as in[Wang & Zhou
(2020). Another metric is expected terminal utility, as defined in Equation (3), which is also the
value function. We collect terminal utility from all 200 paths to get the mean and we report them
in TableF_ll We document that using 2 Intel Skylake 6148, 20-core, 2.4GHz, 150W processors, the
whole process takes about half an hour.

1.3.2 DETAILS OF SETTING 2

Recall that when B degenerates to a constant, then the Bayesian problem (3)) becomes the Merton’s
problem. By applying the dynamic programming principle, it suffices to consider the terminal value
problem with V(T') = 1 and

C?t/—&-aVsup{;UQwQ (a—l)—i—(B—r)?T—l-r} =0.

An verification argument shows that it suffices to solve the supremum problem in the ordinary dif-
ferential equation and the optimal fraction invested in the stock is a constant over time. Based on
the theory from|Hansen & Sargent| (2001)), the Hamilton-Jacobi-Bellman-Isaacs (HIBI) equation for
the distributionally robust control (DRC) is

av 1
— inf < ~o’n” (a— 1)+ (E,[B] — =
o +OéVSlTlrpV1€nM6{20' (e —1) + (E,[B] 7“)7r+r} 0,

where we denote the distribution of B as p, the uncertainty setis Us = {v : DxL(v || 1) < d}, and
the notation E, [B] denotes the mean of random variable B if its distribution is v. Similarly as the
non-robust Merton’s problem, it suffices to solve the sup-inf problem and get the optimal fraction
invested in the stock.

For the inner infimum problem, we formulate it as below. Distributions v and p share same finite
support {b; }¢_,. We denote the probability mass of two distributions {g; }&, and {p;}?_, respec-
tively.
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d
minimize ) ¢;b;,
i=1
d
subjectto " ¢;In (%’j) <4, 47)
i=1 ¢
d
i=1

After solving the infimum problem, we can directly get the optimal mprc as in Merton problem,
which is a constant across time. For the degenerate prior cases, we can get mgcpp as above.

The experiment here is similar to Section In experiment, we choose the prior with d = 5.
We choose the same incorrect prior. First and second steps are the same, except for the prior now
is a point mass at 0.46. Then we follow the third step to get mprpc. Finally, we run the final step
with mpre, epp and 7prae to get performance metrics. Using the same hardware as setting 1, we
document similar time for the whole process.

1.4 DETAILS OF HIGH DIMENSIONAL EXPERIMENT RESULTS

We first randomly generate high dimensional SDE, then for DRBC, we use theorem [27/|to calculate
the empirical centers of B with formula in Appendix B by optimizing V' (x). For DRC, we slightly
modify the one dimensional implementation in section with below.

d
Given: P = (p1,...,pm), 21,-..,2m €RY, B(z) = sz, 4> 0.
k=1
. o pi e B
Define the tilted distribution: ¢;(a) = ST aBe)
Zj:l bje ’
S pizi et B

Then: pg(a) = gi(a)z = m aB(z;)
i; > i pe B

Diu(Q() [ P) = aEqu[B(Z)] - 10g<zpje“3(zﬂ')>.

Find o* such that Dy, (Q(a™) || P) = 6.
Get: o, por = pola™).

Using Merton Style Formula to get Optimal Fraction: 7* = ﬁE’l (ng — 1)

In both DRBC and DRC case, we choose 6 = 0.4. All other settings are the same as section [[.3.2]
Remark 45. Wang et al.[(2023b) discusses the distributionally robust control (choose the worst case
in every step) formulation in the discrete state space case, and derive conditions to apply the dynamic
programming approaches similar to [Hansen & Sargent (2001). We remark that these conditions are
assumed in |Hansen & Sargent| (2001) rather than derived. A takeaway of this is that we may also
do the similar theoretical foundation as in [Wang et al.| (2023b)) and then do the similar steps as in
Hansen & Sargent|(2001): derive the HIB equation for the Bayesian problem and then get the HIBI
equation for the DRBC formulation, which will have super complicated form and will be hard to
solve. This is why we say the DRBC formulation looses the dynamic programming principle and
another efficient method is needed to get the optimal policy.

J USAGE OF LLM

LLM is used to polish some of the writings of this paper.
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