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ABSTRACT

Recent studies have pointed out that fine-tuning a subset of layers from the model
can match or even outperform the performance of full fine-tuning, known as
surgical fine-tuning (Lee et al., 2022). This method effectively helps reduce the
risks of overfitting and accelerates the fine-tuning process. However, swiftly and
accurately identifying the "right" layers is not straightforward. Existing approaches
naively train each layer until convergence and find the best candidates, which is
not scalable, especially given the rapid growth in model sizes. In this paper, we
propose ZEST: Zeroshot Sparse fine-Tuning. We first study and compare the
zero-shot metrics acquired from a single forward and backward pass. We observe
that the metrics are inconsistent for different model and dataset combinations, thus
we train a universal ZEST predictor to generalize this method. We use the zero-shot
ZEST predictor to rank layers by the estimated importance and fine-tune only
the important parameters. By doing so, we can decrease the number of trainable
parameters by up to 99%, being on par or outperforming full fine-tuning in terms of
model performance. We thoroughly evaluate the effectiveness of ZEST on various
tasks and modalities. We train a universal predictor for ResNet50, MobilenetV2,
and EfficientNet on 8 different datasets. We also scale this method up to BERT
and LLAMA. Our results demonstrate that fine-tuning just five layers can closely
match or even outperform the performance achieved through full fine-tuning on
LLaMA-7B. Specifically, fine-tuning only the 5 fully connected layers on LLaMA
chosen by ZEST can result in improvements of up to 5% over full fine-tuning

1 INTRODUCTION

Deep learning has revolutionized the field of artificial intelligence, achieving remarkable break-
throughs in various domains. These models are often pre-trained on large annotated data and then
fine-tuned on a relatively small dataset. This approach allows the models to better adapt to real-world
applications while retaining the knowledge gained during pre-training. Collecting and fine-tuning
small labeled datasets can improve downstream performance in a cost-effective manner while sub-
stantially outperforming domain generalization and unsupervised adaptation methods (Rosenfeld
et al., 2022; Kirichenko et al., 2023). This paradigm has been widely adopted in various tasks (Ren
et al., 2015; Kirillov et al., 2023).

Recently, researchers have shown that fine-tuning a small contiguous subset of the entire model can
outperform fine-tuning the entire model (Lee et al., 2022). By fine-tuning only a few layers, not only
can the number of parameters to be fine-tuned be reduced, but also the overall throughput of the
model’s forward process can be increased. However, identifying the "important" parameters that are
worth fine-tuning is not a trivial task. Existing studies either rely on efficiency priors, such as the
bias terms (Houlsby et al., 2019; Cai et al., 2020), or aggressively freeze the front layers. Surgical
fine-tuning (Lee et al., 2022) and sparse update (Lin et al., 2022) empirically analyzing the importance
of each layer. However, these approaches either suffer from performance degradation or require
expensive computational resources. For example, Lin et al. (2022) iterate all layers li ∈ {l1 . . . ln} in
the neural network, freeze all other layer ({l1 . . . ln}\{li, classification}) , and then train the selected
layers. Though the validation accuracy can reveal the layers’ contribution, the process requires to
repeat n times: once for each layer and each dataset. Therefore, the method is only feasible for small
models on small datasets.

To tackle the challenges, we propose a method called ZEST: Zero-shot Sparse fine-Tuning. With
ZEST, we initially perform a contribution analysis of each layer and gather zero-shot metrics during
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Figure 1. The overview of sparse fine-tuning. In transfer learning, it is sometimes more effective to only
fine-tune a few blocks of parameters and freeze the remaining parameters, rather than performing full fine-tuning.

training. By analyzing these contribution scores and zero-shot metrics, we discover that while the
zero-shot metrics offer some indication of the effectiveness of each layer, they are not applicable
across different models and datasets. Consequently, we utilize these zero-shot scores to train the
ZEST predictor that can rank the layers on previously unseen datasets and models. We thoroughly
evaluate ZEST’s effectiveness on both vision and language tasks and show that ZEST can efficiently
and accurately find important layers for a new incoming dataset. Our results demonstrate that sifting
layers by ZEST can not only improve the final performance but also speed up fine-tuning by 2.0x and
reduce memory footprint 2.7x.

In this paper, our contributions are as follows:

• We propose ZEST, a method to automatically find “important parameters” for fine-tuning
new datasets. Notably, our ZEST only requires a single round of forward and backward to
estimate which is 1000× more efficient than previous methods.

• With ZEST selected layers, fine-tuning only a small percentage of the full parameters (0.3%
for LLMs, and 5% to 10% of parameters for CNNs) the accuracy can closely match, or
even outperform the full fine-tuning baselines while accelerating the fine-tuning process by
back-propagating less layers (1.9x speedup and 2.0 memory saving for MobilenetV2, 2.3x
speedup and 2.7x memory saving on LLaMA).

• ZEST does not modify the model architecture nor does it increase the input such as prompt
length, thus is orthogonal to existing methods such as LoRA and prefix-tuning. They can be
further combined together to further boost performance or further reduction in storage and
memory.

We show that ZEST is effective on various models and tasks, and has a large practical utility in
fine-tuning models in memory- and compute-constrained environments.

2 RELATED WORK

2.1 TRANSFER LEARNING

Transfer learning harnesses pre-trained features to enhance a model’s performance on tasks and
domains that are related but distinct (Oquab et al., 2014; Yosinski et al., 2014; Sharif Razavian et al.,
2014). This strategy proves particularly valuable when obtaining labeled data for the target task is
constrained or costly. It has gained widespread adoption in various domains, including computer
vision tasks such as classification, detection, and segmentation, as well as language-related tasks like
translation, summarization, and question answering. Numerous transfer learning methods introduce
techniques to regulate the fine-tuning process, with the aim of preserving acquired knowledge and
enhancing fine-tuning performance. These methods include works by (Zhang et al., 2020; Xuhong
et al., 2018; Lee et al., 2019a; Jiang et al., 2020; Li et al., 2020; Aghajanyan et al., 2020; Gouk et al.,
2021; Shen et al., 2021; Karani et al., 2021). In particular, the concept of Module Criticality involves
an examination of the loss surface for each layer (Zhang et al., 2019; Chatterji et al., 2019; Neyshabur
et al., 2020). Additionally, Surgical Fine-tuning, as proposed by (Lee et al., 2022), recommends
strategies such as freezing later layers or employing surgical fine-tuning on earlier layers to potentially
achieve superior results in specific scenarios. Drawing inspiration from these insights, our focus lies
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in the efficient identification of the optimal subset of layers for fine-tuning, thereby enhancing the
fine-tuning process.

2.2 PARAMETER FREEZING AND EFFICIENT FINE-TUNING

Parameter freezing is a widely adopted technique in the fine-tuning process, employed in various
contexts such as domain adaptation (Sener et al., 2016), early stopping (Mahsereci et al., 2017),
generative models (Mo et al., 2020), and gradient-based meta-learning (Zintgraf et al., 2019;
Raghu et al., 2019; Triantafillou et al., 2021). Many studies have demonstrated that freezing specific
parameters within a pre-trained model can effectively mitigate overfitting during the fine-tuning
process (Kirkpatrick et al., 2017; Lee et al., 2019b; Guo et al., 2019; Ramasesh et al., 2020; Liu
et al., 2021; Royer & Lampert, 2020; Eastwood et al., 2021; Evci et al., 2022; Eastwood et al., 2022;
Cohen et al., 2022; Touvron et al., 2022).

In the age of large foundational models, a series of parameter-efficient fine-tuning (PEFT) techniques
have emerged in both vision (Cai et al., 2020; Lin et al., 2020) and language domains (Zaken et al.,
2021; Li & Liang, 2021; Hu et al., 2021; Houlsby et al., 2019; Liu et al., 2022). These approaches
often advocate for fine-tuning only a subset of the model’s parameters, introducing new layers instead
of updating existing weights, or optimizing input word embeddings. These modifications aim to
preserve the majority of pre-trained parameters, leaving them frozen and unchanged during the
fine-tuning process. These practices can be seen as specific instances of sparse fine-tuning, and our
experiments underscore the significance of fine-tuning these pivotal parameters.

2.3 ZERO-SHOT METRICS AND ESTIMATIONS

Zero-shot metrics refer to the data extracted from a neural network after a single forward and
backward pass. For instance, (Han et al., 2015) and other researchers have employed static saliency
measurements such as weight magnitude as a criterion, while (Lee et al., 2022) have utilized
backward information as a saliency measurement, such as gradient values. Furthermore, other
studies (Lee et al., 2018; Wang et al., 2019; Abdelfattah et al., 2021) have enhanced this approach
by extracting information from a single forward and backward pass to compute predefined saliency
metrics, subsequently used to gauge the significance of parameters within the neural network.

While these prior works may have explored various aspects, such as layer-wise or parameter-wise
granularity, our research focuses exclusively on a layer-wise perspective. Our present study builds
upon these previous endeavors to identify crucial parameters. We employ analogous saliency metrics
and combine them to rank each layer, followed by fine-tuning. This ensemble approach enables our
method to leverage the relationships and insights among these metrics, resulting in a more consistent
and accurate ranking of the network’s layers.

3 METHOD

Consider a pre-trained model FΘ (·) with a set of parameters Θ = {W1,W2, . . . ,Wn}. Here,
Wi refers to the parameters in the i-th layer among a total of n layers. This pre-trained model can
be adapted to downstream tasks and each downstream task is represented by a training dataset of
context-target pairs, denoted by Z = {(xi, yi)}i=1,..,N , where both xi and yi are training data and
label. In vision tasks, xi represents the image and yi represents its corresponding label. In language
tasks, xi represents the input tokens and yi represents the reference results.

Vanilla Full Fine-Tuning During full fine-tuning, the model is initialized with pre-trained weights
Θ0 and updated to Θ0 +∆Θ by repeatedly following the gradient to optimize the following objective.

min
Θ

∑
(x,y)∈Z

L (y, FΘ(x, y)) (1)

Where ∆Θ = ∇FΘ (X), and X ∈ Z and Z is the training dataset. Vanilla fine-tuning has the
greatest number of learnable parameters ∥∆Θ∥ = ∥Θ∥, as well as the largest training cost

Sparse Fine-Tuning. For sparse fine-tuning, only a smaller number of parameters is trained and
the set of learnable parameters is frozen during the fine-tuning process.
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min
Φ(Θ)

∑
(x,y)∈Z

L (y, FΘ0(x, y)) (2)

where Φ(Θ) is a sparse subset of Θ and ∥∆Φ(Θ)∥ << ∥Θ∥. Studies (Zaken et al., 2021; Cai et al.,
2020; Lee et al., 2022) have shown that such a paradigm can achieve similar and even sometimes
outperform full fine-tuning. Our ZEST aims to highlight the value of carefully choosing the subset of
learnable parameters and proposes a solution to efficiently find such a scheme.

3.1 ZERO-SHOT METRICS AND CONTRIBUTION SCORES

Many studies have attempted to assess the significance of layers for a particular fine-tuning task
and have suggested that not all layers contribute equally to the fine-tuning process. Based on this
observation, an intuitive idea is that this "importance" can be correlated with certain model metrics.
In this work, we concentrate on Zero-shot Metrics, which are easier to obtain and can be computed at
a low cost. Specifically, we evaluate metrics within the following three categories.

Zero-Shot Static Metrics. Before executing the model, the weight itself already contains plenty of
information. Previous explorations have shown that pruning weights with smaller magnitudes can
reduce storage and even improve generalization (Han et al., 2015), while removing weights with
larger variance can significantly impair model performance (Bau et al., 2020). Therefore, in this
study, we include the mean and variance of weights and analyze their relationship with fine-tuning
accuracy.

Wt.Avg = ||Θ||, Wt.Std = Θ̂

Zero-Shot Forward Metrics. The forward pass is directly associated with the model accuracy.
The activation values of each layer have a numerical impact on the final prediction. Following Lee
et al. (2022), we also include the activations of each layer as a metric and study their connection with
the final fine-tuning performance.

Act.Avg = X̄, Act.Std = X̂, |Act|.Avg = ¯|X|, |Act|.Std = ˆ|X|

Zero-Shot Backward Metrics. During the fine-tuning process, we not only perform the forward
pass but also the backward pass to compute gradients and update parameters. When working with a
new dataset that changes rapidly, it is reasonable to assume that a layer with large gradient magnitudes
in each iteration is more influential for accuracy. Therefore, we include several metrics related to the
backward pass. The first two metrics are the mean and variance of gradients. Additionally, we use the
dot product of the weight and its corresponding gradient as a simple estimation, referred to as "plain.”

Grad.Avg = Ḡ, Grad.Std = Ĝ, |Grad.|Avg. = ¯|G|, |Grad.|Std = ˆ|G|, plain = G ·Θ
Besides simple statistical metrics, we further include more measurements from recent work:

• snip: Lee et al. (2018) estimates the saliency of each layer in the network by evaluating the
importance of weights based on their sensitivity to the loss with respect to network inputs.

• grasp: Wang et al. (2020) estimates the importance of each layer based on the sensitivity
to the |grad| (as opposed to loss in snip) with respect to the network inputs.

• synflow: Tanaka et al. (2020) introduce this refined variation of the concept of synaptic
saliency scores. Unlike methods like snip or grasp, which rely on a minibatch of training
data and cross-entropy loss, the synflow technique calculates a loss function derived straight-
forwardly from the product of all the network parameters. Consequently, there is no need
for training data to compute this loss or the synflow metric itself.

• fisher: Theis et al. (2018) measure channel saliency by removing activation channels (and
their corresponding parameters) that are estimated to have the least effect on the loss. The
metric is computed by taking the norm of the activation multiplied by the gradient.

snip = | ∂L
∂Θ

⊙Θ|, grasp = −(H
∂L
∂Θ

)⊙Θ, synflow =
∂L
∂Θ

⊙Θ, fisher = (X ⊙G)
2

L is the corresponding loss function of the network of the neural network, Θ is the weights, G is the
gradient, X is the activation, and ⊙ is the Hadamard product.
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Figure 2. The overview of our proposed ZEST. Left: We first collect zero-shot forward, backward, and static
metrics from the model. Then, we iterate each layer and record the one-layer fine-tuning accuracy as the ground
truth score. Right: During method training, each iteration, we sample two layers and feed the pre-collected
zero-shot metrics into the predictor. After finishing training, when a new dataset comes in, ZEST only requires
one single minibatch and then can accurately estimate the layers’ importance based on their score.

Contribution Score. We next seek metrics to quantitatively evaluate the zero-shot metric perfor-
mance. Inspired by Lin et al. (2022); Lee et al. (2022), we adapt the one layer/block fine-tuning
accuracy as the contribution score. For each layer, we freeze all other parameters except the last
classification layer and fine-tune them until convergence. The final fine-tuning performance reveals
how much each layer contributes to the accuracy of the specific downstream task.

The contribution score has shown to be able to find the most important top-k layers to speed up
fine-tuning Lin et al. (2022), but this method can be costly and unscalable for modern models. Taking
LLaMA as an example, the model contains 32 blocks where each block contains 7 learnable layers,
excluding the layer norm. The 7 learnable layers are as follows, the 3 q, k, and v linear layers of the
attention module, and the 4 out, gate, up, and down projection linear layers of the MLP (q_proj,
k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj). It results in a total of 224 layers which
means we need to fine-tune LLaMA 224 times to obtain the full contribution score on one dataset.
With 7 different datasets, we fine-tuned LLaMA for a total of 1568 times.

3.2 ZEST: ZEROSHOT SPARSE FINE-TUNING

Recognizing that a single, static set of zero-shot metrics may not provide a comprehensive assessment
of layer contribution within a neural network(gone into finer detail in section 4.2), we introduce
ZEST, which leverages all available metrics to automatically identify significant layers. Shown in
Figure. 2, the process consists of three distinct phases: (i) the training phase of the ZEST predictor,
(ii) the inference phase of the ZEST predictor, and (iii) the sparse fine-tuning phase. These phases
collectively allow us to harness the full range of metrics and effectively pinpoint the layers that carry
the most significance in the context of the contribution to the whole neural network’s performance.

Training of the ZEST Predictor We initiate the process by gathering expensive layer-wise contri-
bution analyses for all possible combinations of datasets and models, establishing this as our reference
or ground truth. Once the dataset collection is complete, we perform inference on each permutation,
utilizing only a single mini-batch, in order to derive the aforementioned cheap zero-shot metrics.

Subsequently, with the zero-shot metrics serving as our input and the contribution analysis serving as
the reference or ground truth, we proceed to train a predictor. During the training phase, each pair of
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examples originates from the same model-dataset combination. However, it’s important to note that
pairs within a batch may come from various model-dataset combinations.

Furthermore, it’s worth mentioning that the pairs sourced from the testing model-dataset remain
uncontaminated throughout this process. This setup creates a transferable scenario in which the
predictor learns to generalize across different model-dataset combinations.

Inference of ZEST Predictor When dealing with new and previously unseen test model-dataset
pairs, our approach involves conducting a single forward and backward pass using a single mini-batch.
This process allows us to obtain cost-effective zero-shot metrics for each layer within the model. Once
we’ve acquired these inexpensive metrics, we employ our ZEST predictor for each layer separately.
This predictor provides us with the corresponding ZEST score for each layer.

Sparse Fine-Tuning Subsequently, we proceed to rank each layer within the given model-dataset
combination based on the ZEST score it receives. In the fine-tuning phase that follows, we select
the top n layers that have the highest ZEST scores. These selected layers are considered the most
important ones for fine-tuning, as they are expected to have the greatest impact on the overall
performance of the model in the context of the specific model-dataset combination.

4 EXPERIMENTS

In this section, we start by presenting the details of our experimental setup and then evaluate
the reliability of individual zero-shot metrics. We assess the effectiveness of ZEST and analyze
its performance in real-world fine-tuning scenarios, providing a comprehensive evaluation of its
capabilities.

4.1 SETUP

To assess the effectiveness of the ZEST, we conduct comprehensive experiments encompassing both
vision and language tasks. To maintain fairness in our evaluation, we take care to ensure that the
datasets employed in training the ZEST predictor are distinct from those used for accuracy assessment.
This separation of data sources ensures an unbiased evaluation of the ZEST’s performance.

For vision tasks, we choose three widely-adapted architectures: MobilenetV2 (Sandler et al., 2018),
EfficientNet (Tan & Le, 2019), and ResNet-50 (He et al., 2016). We evaluate these architectures on
eight different downstream transfer learning datasets: Aircraft, Cars, CIFAR10, CIFAR100, CUB ,
Flowers, Food, and Pets (Bossard et al., 2014; Maji et al., 2013; Krause et al., 2013; Krizhevsky
et al., 2009; Wah et al., 2011; Nilsback & Zisserman, 2008; Parkhi et al., 2012). We use {CIFAR-10,
Aircraft, Cars, Flowers, Food, and Pets} datasets to construct the ZEST predictor and evaluate the
effectiveness of the remaining CIFAR-100 and CUB. We use a learning rate of 3e−4 and 6e−4 for
CIFAR100 and CUB respectively with decay 5e−4. The model is trained for 30 epochs.

In our evaluation of natural language tasks, we utilize GLUE dataset (Wang et al., 2018) for BERT
(Devlin et al., 2019). For LLaMA (Touvron et al., 2023), we choose the Arc-C, Arc-E, Hellaswag,
OpenbookQA, PIQA, and Sciq (Bisk et al., 2020; Clark et al., 2018; Mihaylov et al., 2018; Welbl
et al., 2017; Zellers et al., 2019) datasets. We report the performance of BERT on SST2 and MRPC,
and the performance of LLaMA on Arc-E and HellaSwag. The remaining datasets within GLUE and
LLaMA are used for training the ZEST predictor. These results are obtained from training for three
epochs. The learning rate is set to 2e−5 for LLaMA and 5e−5 for BERT. Additionally, a weight decay
of 1e−2 is applied during training. This configuration ensures a consistent evaluation and comparison
across the various datasets and models in our natural language tasks.

We conduct all experiments on Nvidia A100 SXM 80G GPUs with PyTorch 2.0, Torchvision 0.15.
For language-related experiments, we use Huggingface Transformers 4.30 and PEFT v0.4.0. We will
release our codebase when less anonymous.

4.2 ROBUSTNESS OF SINGLE ZERO-SHOT METRICS

It is important to evaluate the reliability of zero-shot metrics. Our goal is to analyze the relationship
between zero-shot metrics and contribution scores, which are considered as the ground truth. In
Table. 1, we compare the performance and report the Kendall Tau correlation (Kendall, 1938), which
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Table 1. The zero-shot metric scores of MobilenetV2 (Sandler et al., 2018), EfficientNet (Tan & Le, 2019) and
ResNet-50 (He et al., 2016). We report the Kendall Tau(↑) correlation between each metric and the ground truth
where ‘cf100’ and ‘cub’ are the abbreviations of CIFAR-100 and CUB200 datasets. The best-performing 3
zero-shot metrics are highlighted in red, blue, and green.

Model LLAMA BERT MblnetV2 EfficientNet ResNet50
Dataset arc-e hellaswag sst2 mrpc cf100 cub cf100 cub cf100 cub

|Grad| 0.04 0.17 0.64 0.68 -0.42 0.84 0.66 0.83 -0.32 0.66
Snip 0.37 0.23 0.49 0.41 -0.41 -0.38 -0.21 -0.21 -0.49 -0.46
Grasp -0.02 0.05 0.20 -0.03 -0.30 -0.39 -0.27 0.04 -0.49 -0.38
Fisher -0.15 0.04 -0.26 0.20 -0.23 -0.12 -0.14 -0.07 -0.44 -0.22
Plain 0.13 -0.02 -0.17 0.02 0.21 0.07 -0.23 0.04 -0.08 -0.18

Backward

Synflow -0.04 -0.06 -0.46 -0.01 -0.41 -0.24 -0.16 -0.10 -0.08 -0.32

Avg. Act -0.04 -0.05 -0.38 -0.27 -0.15 -0.09 -0.14 -0.07 0.21 -0.06
Std. Act -0.02 -0.07 -0.13 0.18 0.33 0.06 0.25 0.07 -0.38 -0.38
Avg. |Act| -0.02 -0.07 0.07 0.41 0.27 -0.01 0.20 0.03 -0.38 -0.35Forward

Std. |Act| -0.04 -0.05 0.05 -0.03 0.38 0.12 0.19 0.03 -0.37 -0.36
Avg. Wt -0.21 -0.49 -0.38 -0.30 -0.28 -0.19 0.09 0.11 0.05 0.19
Std. Wt -0.24 -0.50 -0.25 -0.05 -0.57 -0.51 -0.30 -0.34 -0.43 -0.55
Avg. Grad -0.11 -0.06 0.05 -0.07 0.22 0.09 0.09 -0.06 0.31 0.12Static

Std. Grad -0.04 -0.05 0.51 0.09 -0.47 -0.51 -0.21 -0.25 -0.49 -0.58

Table 2. The comparison of Kendall Tau correlation of the best zero-shot metric, and ZEST, where ‘Cf100’ and
‘StfC’ denote for CIFAR-100 and Stanford-Cars datasets, respectively. ‘Best ZS’ indicates the best zero-shot
metric for each dataset and ‘ZEST’ denotes the single and universal predictor for all datasets. The higher the
Kendall Tau is, the more accurate the predicted ranking is. We find that our trained ZEST predictor significantly
outperforms the single zero-shot metrics.

LLaMA BERT MobilenetV2 EfficientNet ResNet50
arc-c hellaswag sst2 mrpc cf100 cub cf100 cub cf100 cub

Best ZS 0.37 0.23 0.64 0.68 0.38 0.68 0.66 0.40 0.31 0.25
ZEST 0.74 0.82 0.70 0.83 0.88 0.81 0.78 0.78 0.71 0.82

measures the similarity of the ordering. For each column, we first train each layer individually until
convergence and obtain the contribution score as the ground truth. Then, we compute the Kendall Tau
correlation between two orders: one ranked by contribution score and another ranked by zero-shot
metrics. We study the correlation between them. Our observations are as follows:

Different Models Prefers Different Zero-shot Metrics. As demonstrated in Table 1 for CIFAR-
100 results, we can see that smaller models like MobilenetV2 and EfficientNet tend to favor backward
zero-shot metrics. However, larger models like ResNet-50 indicate that static zero-shot metrics offer
a more accurate representation of layer importance.

Different Datasets Prefers Different Zero-shot Metrics. When examining two sub-columns for
each dataset, we highlight the top three related metrics using the colors red, blue, and green. We
discovered that even for the same model and weights, the best related zero-shot metrics can vary
depending on different input distributions. For instance, MobilenetV2 favors Zero-Shot Forward
Metrics for CIFAR-100 because this dataset is similar to its pre-training set (ImageNet). However,
for downstream tasks with different distributions (CUB), the Zero-shot Backward metrics exhibit a
much higher correlation, highlighting the importance of updating weights.

Zero-shot metrics demonstrate a strong correlation with contribution scores, indicating that these
metrics inherently contain information about a layer’s importance. However, the best metrics can
vary significantly for different models and downstream tasks. Therefore, we propose using ZEST to
combine them.

4.3 ZEST ACCURATELY ESTIMATES THE LAYERS’ IMPORTANCE

Our model accurately estimates the importance of each layer during fine-tuning. Table. 2 presents
the Kendall Tau (higher is better) of ZEST’s predictions and the best zero-shot metrics for each
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{dataset, model} combination. By analyzing various zero-shot metrics, ZEST effectively estimates
the importance and significantly outperforms previous single zero-shot metric results.

Furthermore, the ZEST assessment consistently demonstrates a strong correlation with ground truth
contribution scores across different models and datasets, indicating its general and universal capability.
By identifying the layers that have a significant impact on fine-tuning accuracy, models can prioritize
optimizing those specific layers when encountering a new dataset. This leads to improved model
performance (Section. 4.4) and enhanced training throughput (Section. 4.6).
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Figure 3. The end-to-end validation curve of our ZEST. Each training curve is averaged from 3 runs, and we
denote the number of selected layers in the legend. We observe that ZST results closely match the Full-FT
results (black line) and consistently outperform the random baselines (dashed lines).

4.4 ZEST END-TO-END PERFORMANCE COMPARISON

We present the end-to-end fine-tuning results via only updating layers chosen by ZEST. To show the
generalization and universal ability of our ZEST, we conduct experiments on both vision datasets
(MobilenetV2, EfficientNet, ResNet-50) and language tasks (BERT and Llama).

For vision models, we plot the validation curve of fine-tuning in Figure. 3. We thoughtfully compare
the cases when picking {3, 5, 10} layers from the model and fine-tune until converge. Suprisely,
we find that learning 5 to 10 layers can perform on par or outperform full fine-tuning (FT-Full),
suggesting the vast redundancy in conventional fine-tuning baselines. Further, results yield by ZEST
not only shows higher performance, but also faster convergence than random baselines. This provides
a strong evidence of the effectiveness of ZEST.

For language models such as BERT and LLaMA, updating 3 to 5 layers of BERT (84 layers) or
Llama (224 layers) can closely match, or even outperform full fine-tuning results (Table. 3), where
3 layers are only 0.013% of the whole model parameters. Further, we notice when compared with
fine-tuning using ground-truth contribution scores (expensive but most accurate), ZEST chosen layers
consistently match the performance and offer valuable guidance in dissecting and finding each layer’s
contribution to the overall prediction. In contrast, previous methods such as RGN fails to capture the
most important layers.

4.5 ZEST COMPARISON & COMBINATION WITH PEFT

It is worth highlighting that our ZEST approach is orthogonal to many Parameter-Efficient Fine-tuning
(PEFT) methods. This means that ZEST can be seamlessly combined with PEFT methods like LoRA,
resulting in a hybrid update scheme. In this hybrid approach, ZEST first identifies layers with higher
importance values for fine-tuning, and then LoRA is employed to introduce low-rank adaptation
branches that facilitate the fine-tuning process.

In the experimental results presented in the last section, specifically in Table 3, you can observe
the performance of this combined approach. In this table, “LoRA (rank=8)” can be considered as
“LoRA + ZEST@all layers”. It is worth noting that When comparing models with similar learnable
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Table 3. Performance comparison of LLAMA-7B (Touvron et al., 2023) on QA, and BERT (Devlin et al., 2018)
on GLUE benchmarks. The best and second-best results are highlighted with color. We can see that ZEST
achieves comparable performance with full fine-tuning, and ZEST @10 performs consistently better than full
fine-tuning. Since ZEST is orthogonal to LoRA, we also do a combination of the two.

Model LLaMA BERT
Dataset arc-e hellaswag #Params sst2 mrpc #Params

Zero-shot 67.3 56.4 \ 50.9 70.6 \
FT-Full 77.4 59.4 7B 91.1 84.5 86M

Contribution@3 80.0 61.3 90M 91.0 78.9 1.2M
Contribution@5 82.0 63.8 165M 91.4 82.7 2.4M
ZEST@3 79.9 61.3 90M 90.9 78.9 1.2M
ZEST@5 82.4 63.5 165M 91.4 82.7 2.4M
ZEST@10 82.8 64.2 338M 91.6 85.0 4.8M

LoRA (rank=8) 74.5 59.8 8M 91.3 81.4 0.3M
LoRA+ZEST@3 74.3 59.9 0.8M 85.6 76.3 0.018M
LoRA+ZEST@5 74.6 59.9 1.3M 87.7 77.3 0.03M
LoRA+ZEST@10 74.7 60.1 2.6M 89.9 82.3 0.06M

parameters, such as “ZEST@3” and “LoRA (rank=8)”, it is evident that ZEST, when applied to
selected layers, outperforms the universal LoRA results. Additionally, the combination of ZEST and
LoRA achieves fine-tuning performance that closely matches that of LoRA, despite having fewer
learnable parameters. This demonstrates the effectiveness of ZEST in guiding the fine-tuning process
and optimizing the use of parameters. These results highlight the independence of ZEST and its
ability to enhance the performance of fine-tuning methods like LoRA while reducing the required
number of parameters.

Table 4. The efficiency comparison of ZEST and other baselines. For vision models, we set the input resolution
to 224 and the batch size to 32. For language models, we set the batch size to 1 and the sequence length to 512.
ZEST effectively finds valuable layers, leading to the loss of fine-tuning memory and latency as well as the
comparable final model quality.

LLaMA BERT MobileNetV2 ResNet50
lat mem lat mem lat mem lat mem

Full FT 179ms 79G 25.2ms 3.8G 18.2ms 3.9G 27.3ms 4.3G

ZEST @5 75ms 29G 17.8ms 2.9G 9.2ms 1.9G 16.9ms 2.1G

4.6 ZEST END-TO-END EFFICIENCY COMPARISON

One advantage of accurate estimation of important layers is the fine-tuning efficiency improvement.
By updating fewer layers during fine-tuning, the model no longer needs to back-propagate to the very
first layers. Therefore, with ZEST chosen layers, we observe training cost reductions. Specifically in
Table 4. We can see that ZEST can efficiently decrease the latency and the memory consumption
during the training phase. In particular. For vision models, the memory consumption and latency
are decreased by roughly 50% for ResNet50, and 40% for MobileNetV2. For language models, the
latency and memory are both roughly decreased by 40% for BERT, and 60% for LLaMA.

5 CONCLUSION

In summary, we have introduced a novel method, referred to as ZEST, for the rapid identification of
important layers within a neural network. Importantly, ZEST operates without altering the model’s
architecture or input data, making it applicable across various tasks and modalities. By employing
ZEST, we leverage the advantages of sparse fine-tuning, leading to improved task performance
compared to full fine-tuning, while concurrently achieving reductions in memory usage and latency
by up to 2.4x and 2.7x, respectively.
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A APPENDIX

You may include other additional sections here.
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