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Abstract— Tactile sensing is crucial for robots aiming to
achieve human-level dexterity. In dexterous manipulation, it
plays a critical role in monitoring contact modes and esti-
mating an object’s 6DoF pose, both of which are necessary
for precise control in multi-fingered hands. In this work, we
present NormalFlow, a fast, robust, and real-time tactile-based
algorithm that jointly tracks object 6DoF pose and monitors
contact. Leveraging the precise surface normal estimation of
vision-based tactile sensors, NormalFlow determines object
movements by minimizing discrepancies between the tactile-
derived surface normals. Our results show that NormalFlow
consistently outperforms competitive baselines and can track
low-texture objects like flat table surfaces and ping pong
balls. Additionally, we present state-of-the-art tactile-based
3D reconstruction results, showcasing the high accuracy of
NormalFlow. We believe NormalFlow unlocks new possibilities
for high-precision perception and manipulation tasks that
involve interacting with objects and tools using hands. The
video demo, code, and dataset are available on our website:
https://joehjhuang.github.io/normalflow.

I. INTRODUCTION

The skill to interact with and manipulate objects is fun-
damental for diverse robotics applications. As robots take
on more dexterous tasks, accurate in-hand object tracking
and contact monitoring becomes critical. These capabilities
enable fine-grained control, which is essential for a variety of
tasks, including in-hand reorientation and precise tool use,
such as handwriting or manipulating chopsticks. Although
vision-based systems are widely used for object tracking,
they often suffer from occlusion during manipulation. Ope-
nAI’s dexterous manipulation system [1] highlights this
challenge, as it uses 19 cameras from every angle just to
track a block’s rotation in hand. Fortunately, vision-based
tactile sensors like GelSight [2] offers a way to accurately
track objects and monitor contacts without occlusion issues.

In this work, we aim to accurately track objects during
contact using vision-based tactile sensors without needing
object 3D models. While this capability is the cornerstone
of many downstream tasks such as manipulation, dexterous
manipulation, and tactile-based 3D reconstruction, the field
has not adequately addressed it. Prior works [3], [4], [5],
[6] handle object tracking by converting tactile images
into point clouds and applying registration methods like
ICP [7], but these often perform poorly due to the noise
and distortion in tactile-derived point clouds. In this work,
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Fig. 1: NormalFlow performs fast, accurate, and robust 6DoF
object tracking based on only touch sensing. (a) Accurate
tracking of a wide variety of objects, including a wrench, a
rock, and even low-texture object like an egg. (b) Applying
NormalFlow to tactile-based 3D reconstruction of a 12mm
wide bead highlights NormalFlow’s high accuracy.

we introduce NormalFlow, a state-of-the-art tactile tracking
algorithm that outperforms point cloud registration meth-
ods in both accuracy and speed. By directly minimizing
discrepancies between surface normal maps—rather than
relying on point clouds—NormalFlow achieves fast, robust,
and accurate 6DoF pose estimation without object models,
even on low-texture surfaces like flat table surfaces and
ping pong balls. It achieves a mean translation error of
0.29mm (over a total movement of 3.4mm), rotation error of
1.9◦ (over a total movement of 37.4◦), running at 70Hz on
CPU. We also demonstrate its application in tactile-based 3D
reconstruction, producing high-quality geometry. We believe
NormalFlow opens new avenues for higher precision tactile-
dependent perception and control, with broad applications
including dexterous manipulation.

II. METHOD

NormalFlow tracks object motion by directly minimizing
differences between surface normal maps extracted from
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Fig. 2: Given two tactile images before and after object
movement, we derive the surface normal maps. NormalFlow
determines the object transformations by minimizing discrep-
ancies between the surface normal maps.

tactile images. We adapt the approach from [8] to esti-
mate these maps. Let I and I′ denote the surface normal
maps of a reference and a target sensor frame, respectively,
where each map is a function R2 7→ R3 from pixel
coordinates to surface normals (Fig. 2). Our goal is to
estimate the 6DoF transformation from the reference frame
to the target frame (Rθ, tθ) ∈ SE(3), parameterized as
θ = (x, y, z, θx, θy, θz) ∈ R6. The NormalFlow algorithm
minimizes the difference between two surface maps: the
transformed reference map I when applying the 3D trans-
formation to the object, and the target map I′. This 3D
transformation affects the reference map I by rotating the
normal directions and re-mapping the pixels. Therefore, the
minimization objective of NormalFlow is:∑

(u,v)∈C

[I′(W(u, v;θ))−RθI(u, v)]
2 (1)

where (u, v) is the pixel coordinates and C is the shared
contact region. The re-mapping function W(u, v;θ) maps
pixel coordinates from the reference frame to the target frame
by transforming the 3D surface coordinate of the pixels and
projects it to 2D:

W(u, v;θ) = P
(
Rθ · q(u, v) + tθ

)
(2)

where q(u, v) =
[
u v z(u, v)

]⊺
is the 3D surface coor-

dinate corresponding to the pixel at (u, v) in the reference
frame and P = ( 1 0 0

0 1 0 ) is the projection matrix. Inspired by
the Lucas-Kanade optical flow method [9] [10], NormalFlow
employs the Gauss-Newton optimization to minimize Eq. (1)
iteratively. Linearizing Eq. (1) at the current estimate of θ
results in:

∑
(u,v)∈C

[(
I′(W)−RθI

)
+
(
∇I′ ∂W

∂θ
− ∂(RθI)

∂θ

)
∆θ

]2
(3)

We reformulate Eq. (3) as a linear least squares problem:
∥A∆θ − b∥2, which can be solved in closed-form. The
parameters are updated as θ ← θ+∆θ, and this procedure
is repeated until convergence. To improve efficiency, we also
adopt the inverse compositional method [10].

Fig. 3: Initial contact locations (manually labeled) for the
seven trials per object in the tracking experiment.

NormalFlow offers advantages over ICP by leveraging
surface normals for pose estimation. Consider determining
the tilt of a flat surface. The rotations of surface normals
directly reveal the tilt, whereas estimating tilt using distorted
point clouds can be noisy. For a textured ball, pose estimation
should rely on the textures. Unfortunately, ICP will focus on
registering the global ball shape since the textures minimally
affect point locations. In contrast, NormalFlow will estimate
pose from textures by matching the diverse normal directions
in the textured region.

III. EXPERIMENTS AND RESULTS

In this section, we perform experiments to evaluate the
accuracy and speed of the NormalFlow for tracking the
motion of 10 different objects. Experiments are conducted
on the GelSight Mini tactile sensor [11] with a resized
resolution of 320 × 240. This sensor has a 20mm × 15mm
sensing area and operates at 25 Hz. We collect seven tracking
trials for each object, with contact initiated at different poses
shown in Fig. 3. Trials average 10.2 seconds in duration,
and ground-truth sensor poses are recorded using a motion
capture (MoCap) system.

A. Baseline Methods

We compare NormalFlow with three common point cloud
registration methods:
Point-to-Plane ICP [7]: Referred to as ICP in this paper,
Point-to-plane ICP is a local registration approach and is
commonly used for tactile-based tracking [8] [5] [4]. We
utilize the implementation from the Open3D Library [12].
FilterReg [13]: FilterReg is a probabilistic local point cloud
registration approach. It is more robust than ICP and has
been applied in [14] for tactile registration. We utilize the
implementation from the ProbReg Library [15].
FPFH + RANSAC + ICP: Abbreviated as FPFH+RI in this
paper, it combines Fast Point Feature Histograms (FPFH)
[16] and RANSAC to extract features and register point
clouds globally. It then applies ICP to refine the alignment.
The approach is applied in [6] for tactile registration. We
utilize the implementation from the Open3D Library [12].

B. Tracking Results

For all methods, we estimate and evaluate the 6DoF
sensor pose mean absolute error (MAE) for each frame



Fig. 4: Tracking results for the 10 objects. For each object: [left] the object (scale not shown for common objects) and a
sample tactile image (Seed’s image slightly blurred to avoid visualization discomfort); [right] the 6DoF tracking MAE: left
y-axis shows absolute error, right y-axis shows percentage error relative to object movement range.

Fig. 5: Example trials on two objects. RGB axes show
NormalFlow estimated poses. Transparent RGB axes show
true poses, nearly overlapping with NormalFlow poses.

relative to the first frame. The tracking result is shown
in Fig. 4 and Table I. Two example tracking trials using
NormalFlow are shown in Fig. 5. NormalFlow outperforms
baselines on all objects, particularly objects with less tex-
tures. We find that FPFH+RI often falls into local minima,
explaining the challenges of extracting features from tactile
point clouds. Meanwhile, ICP consistently performs worse
than NormalFlow and FilterReg. While NormalFlow only
slightly exceeds FilterReg’s performance on highly textured
objects (like Avocado and Seed), it significantly outperforms
FilterReg on less textured objects (like Wrench and Hammer)
by maintaining robust tracking where FilterReg often fails.
To the extreme, NormalFlow can robustly track objects like
Table, which is considered textureless by human standards.

Method x(mm) y(mm) z(mm) θx(◦) θy(◦) θz(◦)

NormalFlow 0.17 0.18 0.15 1.13 1.42 0.64
FilterReg 0.85 1.05 0.20 1.96 2.59 15.4

ICP 1.22 3.44 0.85 2.27 3.30 15.9
FPFH+RI 2.38 1.69 1.26 2.93 36.8 27.8

TABLE I: 6DoF tracking MAE

Fig. 6: The runtime histogram. The average runtimes are:
NormalFlow (13.9 ms), ICP (13.6 ms), FilterReg (145 ms),
and FPFH+RI (127 ms).

C. Runtime Analysis

We measure the runtime of all algorithms on a laptop
equipped with an AMD Ryzen 7 PRO 7840U CPU without
GPU acceleration. The runtime histograms are shown in Fig.
6. The average runtime of NormalFlow is 13.9 ms, closely
comparable to ICP at 13.6 ms, and significantly faster than
FilterReg at 145 ms and FPFH+RI at 127 ms.

D. Long-horizon Tracking Results

We demonstrate the long-horizon tracking performance
of our approach using three objects with varying tracking
difficulty: Bead (easy), Wrench (medium), and Table (hard).



Fig. 7: Long-horizon tracking results. For each column:
[top] sensor trajectories with poses as RGB coordinate axes;
[bottom] true 6DoF sensor movements tracked by MoCap
(solid lines) and NormalFlow estimation error (shaded area),
which is often too small to be seen.

For each object, we conduct a trial where the sensor travels
a significant distance from its initial pose. The NormalFlow
tracking results (Fig. 7) indicate minimal tracking error even
after extensive movement. After rolling the Bead 360 degrees
along the y-axis and twisting it 540 degrees along the z-axis,
the tracking errors in the y-axis and z-axis remain 2.5 and 1.8
degrees, respectively. Note that determining rolling angles
along the y-axis has been previously considered challenging
[3].

IV. APPLICATION: TACTILE-BASED 3D
RECONSTRUCTION

We demonstrate the power of NormalFlow by applying
it to the task of tactile-based 3D reconstruction. In our
experiment, the target object is manually rolled across the
GelSight Mini, revealing small surface patches in each tactile
frame. NormalFlow tracks the 6DoF pose over time, and
when a loop closure is detected, it estimates the relative pose
between the two endpoints. These poses are optimized in
real time using pose graph optimization. As shown in Fig.
8, our approach produces highly detailed reconstructions of
the object surface—details that are often difficult to capture
with visual methods. Compared to prior approaches such
as [3], our approach delivers significantly improved 3D
reconstruction quality. Its success highlights the precision
of NormalFlow, where even small errors can cause severe
artifacts in the final mesh.

V. CONCLUSION

In this work, we present NormalFlow, a fast, robust,
and accurate 6DoF pose tracking algorithm for vision-based
tactile sensors. Because our method tracks objects directly
through contact, it also reveals fine-grained contact modes
such as sliding and rolling. By directly minimizing dis-
crepancies between surface normal maps instead of point
clouds, our approach outperforms baseline methods and

Fig. 8: Tactile-based 3D reconstruction results enabled by
NormalFlow tracking.

tracks well even with low-texture objects. We demonstrate
the effectiveness of NormalFlow in tactile-based 3D recon-
struction. We believe NormalFlow can be broadly applied,
enabling new advancements in high-precision perception and
control, particularly in dexterous manipulation tasks such as
handwriting, soldering, and tool use.
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