
SLM as an Adaptive Cache Layer for LLMs

Anonymous ACL submission

Abstract

Large Language Models (LLMs) are powerful001
but computationally expensive, making them002
impractical for latency-sensitive or resource-003
constrained applications. This paper presents004
SLMCache, an adaptive caching framework005
that uses Small Language Models (SLMs) as se-006
mantic caches to reduce the frequency and cost007
of LLM invocations. Queries are first matched008
against a local vector store; if a semantically009
similar query is found, an SLM generates the010
response. Otherwise, the query is forwarded011
to the LLM, and its output is logged for fu-012
ture caching. The cache uses LRU and LFU013
eviction policies, and the SLM is periodically014
retrained using logged queries to expand its015
response coverage. Evaluated on the Bitext016
customer support dataset, SLMCache achieves017
up to 2.8× speedup and 10× lower GPU mem-018
ory usage compared to LLM-only baselines,019
while maintaining high semantic fidelity. The020
framework is practical for edge deployment021
and significantly reduces the operational cost022
of LLM-based systems.023

1 Introduction024

Large Language Models (LLMs) like GPT-4 can025

be used to create chatbot conversations, write arti-026

cles, and even answer questions in a more human-027

like manner, enabling applications in customer sup-028

port(Pandya and Holia, 2023), content generation,029

education(Hsain and Housni, 2024), and research030

(Gottweis et al., 2025). However, they come with031

high computational costs and latency, making them032

less practical for real-time applications or resource-033

constrained environments(Hadi et al., 2023).034

To address these challenges, this paper proposes035

a novel framework that comprises a Small Lan-036

guage Model (SLM) at the edge and a cloud-hosted037

LLM. The SLM acts as an Adaptive Cache Layer, a038

lightweight solution to handle frequent or straight-039

forward queries locally, significantly reducing re-040

sponse latency while maintaining high-quality in-041

teractions. The system minimizes cloud depen- 042

dency by hosting a localized knowledge base along- 043

side the SLM. 044

A commonly raised consideration in the de- 045

sign of conversational agents is whether a vector 046

database alone can suffice for effective query re- 047

trieval. While vector databases are adept at stor- 048

ing dense representations (embeddings) of prior 049

queries and retrieving semantically similar entries 050

via similarity metrics such as cosine similarity, they 051

fundamentally lack generative capabilities. These 052

systems are inherently static and cannot condition 053

responses on evolving dialogue history or fine- 054

grained query-specific context. Consequently, their 055

applicability is limited in dynamic, multi-turn di- 056

alogue settings where contextual coherence and 057

adaptability are critical. 058

Rule-based systems, driven by handcrafted logic, 059

guarantee determinism but lack flexibility. Their 060

dependence on predefined rules prevents adapta- 061

tion to novel inputs without manual updates, and 062

scaling to broader conversational domains incurs 063

substantial engineering overhead. This rigidity lim- 064

its their applicability in real-world scenarios that 065

demand conversational diversity and adaptability. 066

Furthermore, many real-world applications 067

demand domain-specific knowledge integration 068

(Yang et al., 2023). For instance, customer support 069

systems deployed by financial institutions predomi- 070

nantly handle inquiries related to financial services, 071

such as account management, transaction issues, 072

and regulatory compliance. In such contexts, de- 073

ploying a full-scale large language model (LLM) 074

with broad but largely generic knowledge can be 075

computationally expensive. Instead, a domain- 076

specialized small language model (SLM), fine- 077

tuned on financial domain data, can deliver more 078

precise and contextually appropriate responses. 079

Several methods exist for creating more 080

lightweight and efficient Large Language Models 081

(LLMs) by reducing their size, memory consump- 082

1

tion, and computational requirements while main-083

taining their performance. A few of the well-known084

approaches include:085

• Knowledge Distillation: This technique in-086

volves training a minor “student” model to087

replicate the behavior of a more prominent088

“teacher” model, significantly reducing com-089

putational requirements while retaining most090

of the original model’s performance (Hinton,091

2015).092

• Model Quantization: By reducing the pre-093

cision of model weights and activations (e.g.,094

from 32-bit floating-point to 8-bit integers),095

quantization decreases memory usage and in-096

ference latency (Jacob et al., 2018).097

• Pruning: This involves identifying and re-098

moving redundant weights or neurons in the099

model. Techniques like structured and un-100

structured pruning help reduce the size of the101

model (Ma et al., 2023).102

• Low-Rank Factorization: Weight matrices103

in the model are approximated using low-rank104

decomposition methods like Singular Value105

Decomposition (SVD), significantly reduc-106

ing parameters and computational cost (Saha107

et al., 2024b).108

Beyond model compression, caching and edge109

computing enhance efficiency. Adaptive caching re-110

duces redundant computations by storing frequent111

query-response pairs (Wang and Friderikos, 2020),112

while lightweight models and local databases at113

the edge minimize reliance on cloud infrastructure114

(Satyanarayanan, 2017).115

While these methods address specific aspects116

of the challenges, they often face limitations in117

adaptability and efficiency. For instance, caching118

mechanisms may struggle with query diversity, and119

edge computing frameworks often trade accuracy120

for speed.121

Early adoption across research and industry fa-122

vored Key-Value (KV) cache architectures, which123

map queries to embedding vectors for approximate124

retrieval. A cached response is returned if a match125

exists; otherwise, the LLM generates a new re-126

sponse (Li et al., 2024a).127

There have been efforts such as (Stogiannidis128

et al., 2023), (Zhu et al., 2023), (Bang, 2023) using129

cache systems for LLM chat services to mitigate130

these challenges. These cache systems store dia- 131

logues, including user queries and LLM responses. 132

Whether operating their own LLMs or utilizing 133

public ones, LLM chat services benefit from cache 134

hits through reduced processing needs. A key met- 135

ric for LLM chat services is the number of tokens 136

processed. In this context, a token represents a unit 137

of text within a query, indicating computational 138

workload. This metric, connected to GPU usage 139

or the expenses of forwarding queries to public 140

LLMs, is important to the financial sustainability 141

of LLM-based automated chat services. 142

2 Literature Survey 143

Small Language models (SLMs), typically those 144

with up to 8 billion parameters, have received com- 145

paratively less attention in academia than large 146

language models (LLMs). They are particularly 147

suited for deployment on edge devices such as 148

smartphones, laptops, and microprocessors. 149

Recent research explores collaborative edge 150

computing, where LLM inference is facilitated by 151

partitioning the model across distributed devices 152

to optimize latency and throughput (Zhang et al., 153

2024). 154

Google’s BERT (Devlin et al., 2019) has been 155

fine-tuned and optimized for deployment on mo- 156

bile devices, showcasing the feasibility of using 157

SLMs for natural language processing tasks. These 158

models are specifically designed to operate effi- 159

ciently on resource-constrained devices that enable 160

real-time user interaction without relying on cloud- 161

based processing. 162

Several studies have proposed hybrid approaches 163

that combine the strengths of Small Language Mod- 164

els (SLMs) and Large Language Models (LLMs). 165

For instance, (Bergner et al., 2024) introduced a 166

method where a pre-trained, frozen LLM encodes 167

all prompt tokens in parallel, generating represen- 168

tations that subsequently condition and guide an 169

SLM. Another example involves dynamically se- 170

lecting between SLM and LLM based on reward 171

token modeling, as demonstrated by (MS et al., 172

2024). 173

In the context of hardware innovations, Deeploy 174

has demonstrated a high-efficiency, end-to-end de- 175

ployment of SLMs on microcontroller-class chips 176

without external memory access (Scherer et al., 177

2024). By leveraging a multicore RISC-V (RV32) 178

MCU augmented with machine learning instruction 179

extensions and a neural processing unit (NPU), the 180

2

Deeploy compiler generates highly optimized C181

code for efficient execution. This method achieves182

leading-edge energy and throughput efficiency of183

490µJ per token, processing up to 340 tokens184

per second for an SLM trained on the TinySto-185

ries dataset(Eldan and Li, 2023). Deeploy high-186

lights the feasibility of deploying SLMs in resource-187

constrained environments.188

The integration of SLMs into edge computing189

environments not only enhances performance but190

also addresses critical concerns regarding security191

and privacy (Saha et al., 2024a). Operating SLMs192

on the edge minimizes the transfer of sensitive in-193

formation to cloud servers, which is particularly194

beneficial in regulated industries such as healthcare195

and finance.196

Advancements in hardware, such as developing197

specialized Neural Processing Units (NPUs) like198

Arm’s Ethos-U85, have further facilitated the de-199

ployment of SLMs on edge devices. These NPUs200

are designed to efficiently handle AI workloads that201

enable real-time processing and reduce reliance on202

cloud-based infrastructure. (Ltd., 2025)203

3 Architecture204

3.1 Problem Setup and High-Level Summary205

The proposed architecture employs Small Lan-206

guage Models (SLMs) as efficient intermediaries to207

cache and serve responses, which helps in reducing208

reliance on Large Language Models (LLMs). The209

workflow follows these stages:210

• Query Reception and Similarity Check: When211

a user query is received, it is first embedded and212

compared against entries in a vector database213

located at the edge. This database contains em-214

beddings of previously seen queries.215

• Threshold-Based Routing: If a semantically216

similar query is found—i.e., the similarity score217

exceeds a predefined threshold—the system in-218

fers that the small language model (SLM) is ca-219

pable of handling the query. The query is then220

routed to the SLM for response generation.221

• LLM Fallback and Logging: If no sufficiently222

similar query is found (i.e., a cache miss), the223

query is forwarded to a large language model224

(LLM) hosted in the cloud. The LLM generates225

a response, which is returned to the user and226

concurrently stored—along with the query em-227

bedding—in the cloud-based vector database.228

• SLM Adaptation: Periodically, the system eval-229

uates whether the volume and diversity of LLM-230

handled queries warrant retraining the SLM. If 231

so, the SLM is incrementally updated using this 232

data to improve its performance and coverage 233

over time. 234

3.2 Knowledge Base Management 235

Vector Database Selection. We employ Chro- 236

maDB as the underlying vector database (Balushi 237

et al., 2025), chosen for its ease of integration, scal- 238

ability, and efficient support for approximate near- 239

est neighbor (ANN) search in high-dimensional 240

spaces. ChromaDB provides optimized indexing 241

and retrieval mechanisms suitable for a real-time 242

conversational system. 243

Embedding Model. For embedding generation, 244

we adopt all-MiniLM-L6-v2 (Wang et al., 2020), 245

a lightweight yet semantically robust model from 246

the Sentence Transformers library. This model is 247

capable of producing high-quality, dense vector 248

representations while maintaining a minimal com- 249

putational footprint, making it well-suited for edge 250

deployments. The resulting embeddings are stored 251

in the chromadb index and used to support rapid se- 252

mantic similarity checks during query processing. 253

3.3 Cache Eviction Policies 254

To maintain the performance and scalability of the 255

system, cache eviction policies are implemented 256

within the LLM’s vector database: 257

Least Recently Used (LRU): The system tracks 258

the last access time of each entry. The least re- 259

cently accessed entries are evicted when the cache 260

exceeds its storage limit. This policy prioritizes 261

retaining frequently accessed queries. 262

Least Frequently Used (LFU): The system 263

tracks the frequency of access for each entry. En- 264

tries with the lowest access counts are evicted when 265

the cache reaches capacity. This approach ensures 266

that popular queries remain in the cache. 267

3.4 Size and Scaling 268

SLMs operate with significantly fewer parameters 269

than LLMs. The effectiveness of language models 270

in various tasks is often guided by scaling laws, 271

which describe the relationship between model 272

performance, dataset size, and computational re- 273

sources. 274

Kaplan et al. (Kaplan et al., 2020) empirically 275

demonstrated that the performance of autoregres- 276

sive language models follows a power-law relation- 277

ship with respect to three key factors: model size 278

3

Figure 1: (a) The workflow of the proposed framework. (b) Example showing different responses for queries with
high cosine similarity.

(N), dataset size (D), and compute budget (C).279

This relationship is given by:280

L(N,D,C) = AN−α +BD−β + CC−γ (1)281

where L(N,D,C) is the model loss (e.g., cross-282

entropy loss), N is the number of model param-283

eters, D is the dataset size (in tokens), and C is284

the compute budget (in FLOPs). The coefficients285

A,B,C are empirically determined, and α, β, γ286

are the scaling exponents that quantify how loss287

improves with increased resources.288

This equation suggests that reducing parameters,289

data, or compute leads to performance degradation.290

However, by optimizing architectures, leveraging291

knowledge distillation, and training on domain-292

specific data, SLMs can sustain strong performance293

at a fraction of the cost of LLMs.294

Kaplan’s scaling law emphasizes that model295

performance depends not only on parameter count296

but also on data efficiency and computational op-297

timization. Instead of merely reducing model298

size, strategies such as fine-tuning on domain-299

specific datasets, distillation from larger mod-300

els, and caching frequently used responses enable301

SLMs to achieve high efficiency while maintaining302

accuracy.303

4 Observations and Results304

4.1 Dataset305

For evaluating the effectiveness of our caching306

strategies and LLM query routing approaches, we307

primarily utilized an open-source dataset made308

available under the Community Data License309

Agreement – Sharing – Version 1.0 (CDLA- 310

Sharing-1.0) Bitext Customer Support Dataset 311

(Bitext, n.d.a) 1. Our use complies with the license 312

terms and is strictly for academic research pur- 313

poses. This dataset is tailored for customer service 314

scenarios and comprises 26,872 query-response 315

pairs distributed across 27 distinct intents and 10 316

broader categories. Each intent includes an average 317

of 1,000 samples, annotated with 30 unique entity 318

types and 12 language generation tags to simulate 319

diverse linguistic structures and user behaviors. It 320

served as the principal benchmark for assessing 321

various caching policies, including LRU and LFU, 322

as well as various model performances. 323

Additionally, we used an open-source dataset 324

made available under the Community Data Li- 325

cense Agreement – Sharing – Version 1.0 (CDLA- 326

Sharing-1.0) Bitext Insurance LLM Chatbot 327

Training Dataset (Bitext, n.d.b) 2. Our use com- 328

plies with the license terms and is strictly for aca- 329

demic research purposes. This dataset is domain- 330

specific to the insurance sector, for further evalu- 331

ation. This dataset enabled us to test the gener- 332

alizability of our caching mechanisms and model 333

selection strategies in a specialized subdomain of 334

customer support. 335

Instead of solely relying on manually curated 336

training data, we augment the existing dataset with 337

synthetic data to ensure that the Small Language 338

Model (SLM) provides detailed and consistent re- 339

1https://huggingface.co/datasets/bitext/Bitex
t-customer-support-llm-chatbot-training-dataset

2https://huggingface.co/datasets/bitext/Bitex
t-insurance-llm-chatbot-training-dataset

4

https://huggingface.co/datasets/bitext/Bitext-customer-support-llm-chatbot-training-dataset
https://huggingface.co/datasets/bitext/Bitext-customer-support-llm-chatbot-training-dataset
https://huggingface.co/datasets/bitext/Bitext-insurance-llm-chatbot-training-dataset
https://huggingface.co/datasets/bitext/Bitext-insurance-llm-chatbot-training-dataset

Figure 2: Cache Hit Rate over time

sponses while maintaining efficiency. Queries and340

responses are synthetically generated using a Large341

Language Model (LLM), which helps to standard-342

ize response formats and align SLM behavior with343

LLM outputs. We leverage two key augmentation344

strategies, LLM-based augmentation and Algorith-345

mic Augmentation.346

4.1.1 LLM-Based Augmentation347

• Synonym Replacement – Replaces words348

with synonyms while maintaining medical349

context (Cegin et al., 2024).350

• Paraphrasing – Rewrites the text (Sharma351

et al., 2022).352

• NER Replacement – Substitutes named enti-353

ties with similar terms.354

• Spelling & Grammar Errors – Introduces355

minor typos to improve model robustness.356

• Contrastive Question Generation – Creates357

challenging variations of existing questions.358

• Embedding-Based Sentence Augmentation359

– Generates similar sentences while preserving360

meaning(Li et al., 2024b).361

• Synthetic Q&A Generation – Produces high-362

quality question-answer pairs for better train-363

ing(Dhruva et al., 2024).364

4.1.2 Algorithmic Augmentation365

• Random Deletion – Removes words proba-366

bilistically to create sentence variations.367

• Random Insertion – Inserts random words368

from the sentence at new positions.369

• Random Swap – Swaps positions of two370

words to change sentence structure.371

• Sentence Shuffling – Randomizes the order372

of sentences in a paragraph.373

• Noise Injection – Introduces character-level374

distortions to simulate real-world errors375

(Shorten et al., 2021).376

4.2 Results 377

To evaluate the effectiveness of the Small Language 378

Model (SLM) in generating high-quality responses, 379

we employ three key metrics: BLEU-2, ROUGE-L, 380

and BERTScore F1. BLEU-2 (Bilingual Evaluation 381

Understudy with 2-grams) measures the precision 382

of generated text by comparing it to reference out- 383

puts using n-gram overlap (Wieting et al., 2019). 384

Specifically, BLEU-2 focuses on bigrams, ensuring 385

the model captures local coherence and phrase- 386

level accuracy. The BLEU score is computed using 387

the geometric mean of n-gram precisions with a 388

brevity penalty to penalize excessively short out- 389

puts. The formula for BLEU-N is given as: 390

BLEUN = BP × exp

(
N∑

n=1

wn log pn

)
(2) 391

where BP is the brevity penalty, pn is the preci- 392

sion of n-grams, and wn is the weighting factor. 393

ROUGE-L (Recall-Oriented Understudy for 394

Gisting Evaluation - Longest Common Subse- 395

quence) (Rehman et al., 2025) measures the recall 396

of generated responses by identifying the longest 397

common subsequence (LCS) between the gener- 398

ated text and reference responses. This metric is 399

particularly useful for evaluating fluency and rele- 400

vance . It is computed as: 401

ROUGE-L =
LCS(X,Y)

|Y |
(3) 402

where LCS(X,Y) is the length of the longest 403

common subsequence between the generated text 404

X and the reference Y , and |Y | is the length of the 405

reference text. 406

BERTScore F1 (Zhang et al., 2019) leverages 407

contextual embeddings from pre-trained BERT 408

models to compute token-level similarity, capturing 409

semantic accuracy beyond surface-level matching. 410

It computes precision, recall, and F1-score based 411

on cosine similarity between token embeddings, 412

making it robust against paraphrasing and lexical 413

variation. 414

Metrics like BLEU and ROUGE rely on exact 415

token matches, which may be affected if the tok- 416

enizer splits or joins tokens differently than stan- 417

dard tokenizers. BERTScore, being embedding- 418

based, is generally more robust to these differences. 419

The evaluation scores obtained for our SLM Cache 420

model are consistent with the nature of templated 421

question-answer generation. The BLEU-2 scores, 422

5

Policy Final Hit Rate Cache Size Total Queries
LRU 0.1133 1000 26872
LFU 0.6548 1000 26872

Table 1: Cache performance comparison between LRU and LFU policies

ranging from 0.0488 to 0.1273, appear lower due to423

the structured nature of responses, where placehold-424

ers such as Order Number disrupt exact bigram425

matching. Similarly, ROUGE-L scores (0.2066426

to 0.4024) reflect moderate recall, as variations427

in phrasing or tokenization can lead to slight mis-428

matches despite conveying the intended meaning.429

However, the high BERTScore F1 scores (0.8493430

to 0.9036) indicate strong semantic alignment, con-431

firming that the generated responses effectively cap-432

ture the meaning of the reference answers.433

We trained multiple SLM models with varying434

vocabulary sizes, embedding dimensions, number435

of layers, and attention heads to systematically ana-436

lyze their impact on performance metrics and iden-437

tify the optimal configuration 3. Overall, these438

scores justify the model’s ability to maintain coher-439

ence and intent despite minor syntactic variations.440

Our dataset consists of approximately 100 MB441

of text, translating to nearly 108 bytes. Using stan-442

dard byte-pair encoding (BPE) or WordPiece tok-443

enization, an average of 4 bytes per token suggests444

a total token count of approximately 25 million.445

However, given the domain-specific nature of our446

corpus, which exhibits high redundancy, we can op-447

timize tokenization to achieve an estimated 3 bytes448

per token, yielding a more efficient representation449

(Song et al., 2020).450

For general-purpose models, vocabulary sizes451

typically range between 30k to 100k tokens. How-452

ever, given our domain-specific focus, we optimize453

our tokenizer to reduce vocabulary to V = 5, 000454

to 10, 000 tokens. A smaller vocabulary directly455

reduces the embedding matrix size, which scales456

linearly with V , thus lowering memory and com-457

putational requirements (Vaswani et al., 2017).458

In a decoder-only Transformer model, the em-459

bedding parameters are given by:460

Embeddings = V × dmodel, (4)461

where dmodel is the hidden size of the transformer462

layers. If input and output embeddings are tied,463

the parameter count remains V × dmodel, whereas464

untied embeddings would double this count. åThe465

core transformer consists of L layers, each con-466

taining a multi-head self-attention mechanism and 467

a feed-forward network. Ignoring biases and nor- 468

malization layers, the parameter count per layer is 469

approximately: 470

params(layer) ≈ 4 · d2model +2 · dmodel · dff , (5) 471

where dff is the intermediate size of the feed- 472

forward network, often set as dff = 4 × dmodel. 473

Thus, for L layers, the total parameter count is: 474

P ≈ V ×dmodel+L×
(
4d2model + 8d2model

)
. (6) 475

To maintain efficiency, we prioritize the use of a 476

domain-specific tokenizer to optimize token count, 477

ensuring a compact and practical vocabulary. We 478

recommend selecting a moderate number of layers 479

(4 ≤ L ≤ 8) to strike a balance between model per- 480

formance and computational efficiency. Addition- 481

ally, applying 8-bit or 16-bit quantization helps re- 482

duce storage and computational requirements with- 483

out significantly impacting performance. Keeping 484

the model dimension (dmodel) within the range of 485

256 to 512 allows sufficient expressiveness while 486

controlling parameter growth. Detailed calcula- 487

tions supporting these recommendations are pro- 488

vided in Appenix. Given that our corpus exhibits 489

redundancy and compressibility, a model within 490

the range of 10–30 million parameters, quantized 491

to 8-bit, should be sufficient for capturing domain- 492

specific patterns while avoiding excessive memory 493

overhead. 494

All results reported are averaged over 3 runs 495

with different random seeds. Standard deviations 496

were found to be negligible and are omitted for 497

brevity. 498

We ran the model on an Intel i5 12th gen pro- 499

cessor with RTX 2050 4GB GPU. We found an ap- 500

proximate 2.8x improvement in execution time and 501

a 10x reduction in average GPU Memory compared 502

to utilizing only the llama3.1 8B model (Touvron 503

et al., 2024). We tested the model on the Bitext Cus- 504

tomer Support Dataset, containing 26872 queries. 505

Our architecture could answer all the queries in 506

261061.48 seconds or 3.02 days, whereas llama3.1 507

8B took 731178.4 seconds or 8.46 days. 508

6

Dataset BLEU-2 ROUGE-L BERTScore F1
Bitext Customer 0.1273 0.4024 0.9036
Bitext Insurance 0.3530 0.5619 0.9134

Table 2: Evaluation metrics for Bitext Customer and Insurance datasets

Model Vocab Embed Dim Layers Heads BLEU-2 ROUGE-L BERTScore

1 5000 384 3 3 0.1043 0.3621 0.8872
2 5000 512 6 8 0.1273 0.4024 0.9036
3 8000 256 4 4 0.1146 0.3766 0.8966
4 10000 768 8 12 0.0924 0.3491 0.8850
5 12000 1024 12 16 0.0488 0.2066 0.8493

Table 3: Performance evaluation of different SLM configurations.

4.2.1 Cache Policy Evaluation509

To assess the impact of caching on model inference510

efficiency, we implemented and evaluated two clas-511

sical cache replacement strategies: Least Recently512

Used (LRU) and Least Frequently Used (LFU). Us-513

ing a fixed cache size of 100 entries over a sequence514

of 10,000 queries, we observed notable differences515

in final hit rates. As shown in Table 1, the LFU pol-516

icy significantly outperformed LRU, achieving a517

final hit rate of 0.6548 compared to 0.1133 for LRU.518

This improvement highlights LFU’s advantage in519

scenarios with repetitive query patterns, as it pref-520

erentially retains frequently accessed items in the521

cache. In contrast, LRU, which evicts items based522

solely on recency, struggled to capture long-term523

frequency trends in the query stream. These results524

suggest that frequency-aware caching mechanisms525

can play a vital role in optimizing LLM-backed526

customer service systems by reducing redundant527

model invocations and improving overall latency.528

5 Applications529

The proposed caching mechanism improves re-530

sponse times for chatbots, customer support, and531

virtual assistants by offloading frequent queries to532

small language models (SLMs). This reduces re-533

liance on expensive LLMs, making it suitable for534

both resource-constrained and large-scale deploy-535

ments. Its integration with a structured knowledge536

base also supports applications like documentation,537

education, and adaptive learning systems (Wang538

et al., 2024).539

6 Discussion 540

From an information-theoretic perspective, if a 541

100 MB text corpus can be heavily compressed 542

(e.g., to 20 MB) due to redundancy, then the Kol- 543

mogorov complexity, or the genuinely irreducible 544

information content, might be less than 20 MB. 545

A model with approximately 10–20 MB of pa- 546

rameters could encapsulate this knowledge if it 547

effectively exploits the repeated patterns within 548

the dataset and represents them compactly. This 549

aligns with previous estimates, particularly when 550

considering half-precision storage or further quan- 551

tization techniques. However, it is crucial to rec- 552

ognize that a model’s parameters do not function 553

as a one-to-one “bits = bits” memory. Unlike a 554

lossless compression algorithm, such as a ZIP file, 555

neural networks store and organize information in 556

a distributed manner, introducing overhead in how 557

weights must be structured to generate accurate 558

next-token probabilities. Nevertheless, in practi- 559

cal settings, a domain-specific model containing 560

approximately 5–50 million parameters (stored in 561

8-bit or 16-bit format) can achieve an overall size 562

in the tens of megabytes or lower. This is often 563

sufficient to encapsulate the domain-specific text, 564

mainly if a significant portion exhibits repetition. 565

Reducing the model size introduces fundamental 566

trade-offs. A smaller number of parameters reduces 567

the model footprint but also constrains its ability to 568

recall obscure or rare details. If a domain contains 569

unique or one-off sentences, the model faces two 570

options: either memorizing them explicitly, which 571

increases parameter requirements, or discarding 572

them, potentially losing fine-grained knowledge. 573

By strategically reducing the vocabulary size and 574

7

selecting a relatively shallow architecture with a575

moderate embedding dimension, the model’s foot-576

print can be constrained to the single- to low-tens-577

of-megabyte range. This remains feasible even578

when trained on a dataset exceeding 100 MB, par-579

ticularly if the dataset exhibits redundancy or high580

compressibility. Despite this reduction, the model581

can still capture a substantial fraction of the do-582

main’s linguistic structure, albeit at the potential583

cost of fine-grained or domain-specific nuances.584

If such a trade-off is deemed acceptable, this ap-585

proach mitigates the risk of excessive parameter586

growth into the hundreds of megabytes.587

LoRA (Low-Rank Adaptation) enables fine-588

tuning of large language models (LLMs) by adapt-589

ing them for specific tasks while preserving the590

core structure of the original model (Chavan et al.,591

2023). While this technique enhances performance592

for particular applications, a Lora-finetuned LLM593

retains much of the redundancy present in the base594

model. As a result, it remains parameter-heavy,595

making real-time inference on edge devices chal-596

lenging. In contrast, by leveraging model com-597

pression techniques and strategically minimizing598

the vocabulary size, an efficient small language599

model (SLM) can be designed to function within600

constrained computational environments while pre-601

serving core linguistic capabilities.602

Recent advancements in hybrid language mod-603

els, like the Uncertainty-aware Hybrid Language604

Model (U-HLM)(Oh et al., 2024), offer new ways605

to optimize SLM-based caching. U-HLM helps the606

SLM decide when it is confident enough to skip607

using the larger LLM, reducing unnecessary pro-608

cessing while maintaining accuracy. Integrating a609

similar uncertainty-based approach into the SLM610

Cache could further improve efficiency and token611

processing speed.612

However, applying this method to 12MB SLMs613

is challenging. The original U-HLM was designed614

for a much larger 1.1 billion-parameter model, and615

shrinking it significantly leads to a loss of knowl-616

edge and generalization. Large models store more617

patterns and details, whereas extreme compression618

can result in errors and a weaker understanding of619

language. The key challenge is ensuring a much620

smaller model retains enough accuracy and context621

without introducing mistakes.622

7 Conclusion 623

This paper presents SLMCache, a system that uses 624

small language models (SLMs) as an intelligent 625

caching layer to reduce the need for expensive large 626

language models (LLMs). By matching incoming 627

queries to previously seen ones and responding 628

locally when possible, SLMCache speeds up re- 629

sponses and lowers memory usage without sacri- 630

ficing accuracy. It achieved up to 2.8× faster pro- 631

cessing and used 10× less GPU memory compared 632

to using LLMs alone. The approach works espe- 633

cially well in real-time systems like chatbots or 634

customer support, where many queries are repeti- 635

tive. While the system still faces challenges like 636

retraining overhead and limited ability to handle 637

long conversations, it offers a practical, low-cost so- 638

lution for many applications. Future improvements 639

could include better decision-making about when 640

to use the SLM or LLM, more secure on-device 641

processing, and ways to make it work even better 642

on edge devices. 643

8 Limitations 644

While the proposed architecture offers significant 645

improvements in response latency, several limita- 646

tions remain: 647

• Low Cache Efficiency in Sparse Workloads: 648

For deployments with low query volume or 649

highly diverse input distributions, the cache hit 650

rate may remain consistently low. In such cases, 651

the benefits of the SLM cache are diminished, 652

and the system frequently defaults to the more 653

expensive LLM path. 654

• Retraining Overhead: The periodic retrain- 655

ing of the SLM on newly logged LLM-handled 656

queries introduces both computational and en- 657

gineering overhead. Ensuring the quality, con- 658

sistency, and timeliness of this retraining loop 659

is non-trivial, particularly in large-scale or dis- 660

tributed deployments. 661

• Limited Conversational Depth: The cache 662

mechanism and static nature of the SLM limit 663

its ability to handle complex, multi-turn conver- 664

sations or adapt to rapidly evolving user context. 665

As a result, conversational coherence and person- 666

alization may degrade in long or dynamic inter- 667

actions. 668

• Memory Constraints at the Edge: Although 669

SLMs are computationally lightweight, the stor- 670

age and indexing of millions of embeddings 671

(e.g., 25M tokens ≈ 20–25M entries) using chro- 672

8

madb at the edge still incurs a nontrivial memory673

footprint. This can be prohibitive for memory-674

constrained devices such on embedded systems.675

A significant risk in this work arises from the pos-676

sibility of hallucinated responses generated by677

both the Small Language Model (SLM) and the678

fallback Large Language Model (LLM). Since679

the caching mechanism relies on semantic simi-680

larity to reroute queries to the SLM, there is a risk681

that semantically similar but contextually distinct682

queries may receive inaccurate or misleading an-683

swers. Furthermore, LLMs are also known to684

produce factually incorrect or fabricated content,685

especially in low-resource or domain-specific sce-686

narios.687

Such hallucinations can be particularly problem-688

atic in sensitive applications like customer sup-689

port, healthcare, or finance, where erroneous out-690

puts may mislead users or erode trust. Without691

rigorous verification or grounding mechanisms,692

these issues may propagate through the caching693

layer, giving an illusion of correctness due to694

fast response times. Future work must incorpo-695

rate uncertainty estimation, output verification, or696

grounding in trusted knowledge bases to mitigate697

these risks.698

In summary, while the proposed architecture ef-699

fectively reduces response latency and computa-700

tional load, its performance is bounded by prac-701

tical constraints. Sparse workloads, retraining702

overhead, limited conversational depth, and mem-703

ory constraints at the edge highlight trade-offs704

between efficiency and scalability. Addressing705

these limitations is crucial for broader applica-706

bility, particularly in dynamic, large-scale, or707

resource-constrained environments.708

9 Ethical Considerations709

This work does not involve any human subjects710

or private data. We used two publicly available711

datasets: the Bitext customer support dataset and712

the Bitext insurance dataset, both distributed under713

the Community Data License Agreement – Sharing714

– Version 1.0 (CDLA-Sharing-1.0). These datasets715

consist of synthetic, English-language dialogues716

related to customer service and insurance support,717

respectively. They do not contain any personally718

identifiable information or offensive content, and719

are intended for research purposes only. All prepro-720

cessing scripts and usage instructions are included721

in our code repository, and all artifacts are released722

under the MIT License. Our objective is to enhance 723

the efficiency of AI systems by leveraging smaller 724

models as intelligent caches to reduce the energy 725

and cost associated with large language models. 726

We acknowledge that cached responses may be- 727

come outdated over time, and recommend regular 728

updates and robust safety checks, particularly for 729

deployments in sensitive domains like healthcare 730

or finance. 731

AI tools such as ChatGPT and GitHub Copilot 732

were used in a limited capacity during this project. 733

Their usage was restricted to occasional code de- 734

bugging, clarifying API usage, and assisting with 735

internet-style technical searches. Additionally, mi- 736

nor language suggestions were taken during the 737

editing of the paper. All core ideas, experimen- 738

tal design, implementation, and writing were con- 739

ducted independently by the authors without re- 740

liance on generative AI for substantive contribu- 741

tions. 742

References 743

Ahmed-Al Balushi, AS Al-Bemani, Saleh Al Araimi, 744
G Balaji, Uma Suresh, Asiya Najeeb, et al. 2025. Ai- 745
driven multi-modal information synthesis: Integrat- 746
ing pdf querying, speech summarization, and cross- 747
language text summarization. Procedia Computer 748
Science, 258:2996–3018. 749

Fu Bang. 2023. GPTCache: An open-source semantic 750
cache for LLM applications enabling faster answers 751
and cost savings. In Proceedings of the 3rd Workshop 752
for Natural Language Processing Open Source Soft- 753
ware (NLP-OSS 2023), pages 212–218, Singapore. 754
Association for Computational Linguistics. 755

Benjamin Bergner, Andrii Skliar, Amelie Royer, Tij- 756
men Blankevoort, Yuki Asano, and Babak Ehteshami 757
Bejnordi. 2024. Think big, generate quick: Llm-to- 758
slm for fast autoregressive decoding. arXiv preprint 759
arXiv:2402.16844. 760

Bitext. n.d.a. Bitext customer support llm chatbot train- 761
ing dataset. https://registry.opendata.aws/ 762
bitext-customer-support-chatbot/. Accessed: 763
2025-05-19. 764

Bitext. n.d.b. Bitext insurance llm chatbot training 765
dataset. https://registry.opendata.aws/bi 766
text-insurance-chatbot/. Accessed: 2025-05- 767
19. 768

Jan Cegin, Jakub Simko, and Peter Brusilovsky. 2024. 769
Llms vs established text augmentation techniques for 770
classification: When do the benefits outweight the 771
costs? arXiv preprint arXiv:2408.16502. 772

9

https://doi.org/10.18653/v1/2023.nlposs-1.24
https://doi.org/10.18653/v1/2023.nlposs-1.24
https://doi.org/10.18653/v1/2023.nlposs-1.24
https://doi.org/10.18653/v1/2023.nlposs-1.24
https://doi.org/10.18653/v1/2023.nlposs-1.24
https://registry.opendata.aws/bitext-customer-support-chatbot/
https://registry.opendata.aws/bitext-customer-support-chatbot/
https://registry.opendata.aws/bitext-customer-support-chatbot/
https://registry.opendata.aws/bitext-insurance-chatbot/
https://registry.opendata.aws/bitext-insurance-chatbot/
https://registry.opendata.aws/bitext-insurance-chatbot/

Arnav Chavan, Zhuang Liu, Deepak Gupta, Eric Xing,773
and Zhiqiang Shen. 2023. One-for-all: General-774
ized lora for parameter-efficient fine-tuning. arXiv775
preprint arXiv:2306.07967.776

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and777
Kristina Toutanova. 2019. BERT: Pre-training of778
deep bidirectional transformers for language under-779
standing. In Proceedings of the 2019 Conference of780
the North American Chapter of the Association for781
Computational Linguistics: Human Language Tech-782
nologies, Volume 1 (Long and Short Papers), pages783
4171–4186, Minneapolis, Minnesota. Association for784
Computational Linguistics.785

G Dhruva, Ishani Bhat, Sanika M Rangayyan, and786
P Preethi. 2024. Synthetic data augmentation us-787
ing large language models (llm): A case-study of the788
kamyr digester. In 2024 Third International Con-789
ference on Electrical, Electronics, Information and790
Communication Technologies (ICEEICT), pages 1–7.791
IEEE.792

Ronen Eldan and Yuanzhi Li. 2023. Tinystories: How793
small can language models be and still speak coherent794
english? arXiv preprint arXiv:2305.07759.795

Juraj Gottweis, Wei-Hung Weng, Alexander Daryin,796
Tao Tu, Anil Palepu, Petar Sirkovic, Artiom797
Myaskovsky, Felix Weissenberger, Keran Rong, Ryu-798
taro Tanno, et al. 2025. Towards an ai co-scientist.799
arXiv preprint arXiv:2502.18864.800

Muhammad Usman Hadi, Rizwan Qureshi, Abbas Shah,801
Muhammad Irfan, Anas Zafar, Muhammad Bilal802
Shaikh, Naveed Akhtar, Jia Wu, Seyedali Mirjalili,803
et al. 2023. A survey on large language models:804
Applications, challenges, limitations, and practical805
usage. Authorea Preprints.806

Geoffrey Hinton. 2015. Distilling the knowledge in a807
neural network. arXiv preprint arXiv:1503.02531.808

Achraf Hsain and Hamza El Housni. 2024. Large lan-809
guage model-powered chatbots for internationalizing810
student support in higher education.811

Benoit Jacob, Skirmantas Kligys, Bo Chen, Meng-812
long Zhu, Matthew Tang, Andrew Howard, Hartwig813
Adam, and Dmitry Kalenichenko. 2018. Quanti-814
zation and training of neural networks for efficient815
integer-arithmetic-only inference. In Proceedings of816
the IEEE conference on computer vision and pattern817
recognition, pages 2704–2713.818

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B819
Brown, Benjamin Chess, Rewon Child, Scott Gray,820
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.821
Scaling laws for neural language models. arXiv822
preprint arXiv:2001.08361.823

Jiaxing Li, Chi Xu, Feng Wang, Isaac M von Riede-824
mann, Cong Zhang, and Jiangchuan Liu. 2024a.825
Scalm: Towards semantic caching for automated chat826
services with large language models.827

Yichuan Li, Kaize Ding, Jianling Wang, and Kyu- 828
min Lee. 2024b. Empowering large language mod- 829
els for textual data augmentation. arXiv preprint 830
arXiv:2404.17642. 831

Arm Ltd. 2025. Arm ethos-u85: Machine learning 832
processor. https://www.arm.com/products/s 833
ilicon-ip-cpu/ethos/ethos-u85. Accessed: 834
2025-01-22. 835

Xinyin Ma, Gongfan Fang, and Xinchao Wang. 2023. 836
Llm-pruner: On the structural pruning of large lan- 837
guage models. Advances in neural information pro- 838
cessing systems, 36:21702–21720. 839

Adarsh MS, Jithin VG, and Ditto PS. 2024. Efficient 840
hybrid inference for llms: Reward-based token mod- 841
elling with selective cloud assistance. arXiv preprint 842
arXiv:2409.13757. 843

Seungeun Oh, Jinhyuk Kim, Jihong Park, Seung-Woo 844
Ko, Tony QS Quek, and Seong-Lyun Kim. 2024. 845
Uncertainty-aware hybrid inference with on-device 846
small and remote large language models. arXiv 847
preprint arXiv:2412.12687. 848

Keivalya Pandya and Mehfuza Holia. 2023. Automating 849
customer service using langchain: Building custom 850
open-source gpt chatbot for organizations. 851

Tohida Rehman, Soumabha Ghosh, Kuntal Das, Souvik 852
Bhattacharjee, Debarshi Kumar Sanyal, and Sami- 853
ran Chattopadhyay. 2025. Evaluating llms and pre- 854
trained models for text summarization across diverse 855
datasets. arXiv preprint arXiv:2502.19339. 856

Dipayan Saha, Shams Tarek, Katayoon Yahyaei, Su- 857
jan Kumar Saha, Jingbo Zhou, Mark Tehranipoor, 858
and Farimah Farahmandi. 2024a. Llm for soc secu- 859
rity: A paradigm shift. IEEE Access. 860

Rajarshi Saha, Naomi Sagan, Varun Srivastava, Andrea 861
Goldsmith, and Mert Pilanci. 2024b. Compressing 862
large language models using low rank and low preci- 863
sion decomposition. Advances in Neural Information 864
Processing Systems, 37:88981–89018. 865

Mahadev Satyanarayanan. 2017. The emergence of 866
edge computing. Computer, 50(1):30–39. 867

Moritz Scherer, Luka Macan, Victor JB Jung, Philip 868
Wiese, Luca Bompani, Alessio Burrello, Francesco 869
Conti, and Luca Benini. 2024. Deeploy: Enabling 870
energy-efficient deployment of small language mod- 871
els on heterogeneous microcontrollers. IEEE Trans- 872
actions on Computer-Aided Design of Integrated Cir- 873
cuits and Systems, 43(11):4009–4020. 874

Saket Sharma, Aviral Joshi, Namrata Mukhija, Yiyun 875
Zhao, Hanoz Bhathena, Prateek Singh, Sashank San- 876
thanam, and Pritam Biswas. 2022. Systematic re- 877
view of effect of data augmentation using paraphras- 878
ing on named entity recognition. In NeurIPS 2022 879
Workshop on Synthetic Data for Empowering ML 880
Research. 881

10

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
http://arxiv.org/abs/2403.14702
http://arxiv.org/abs/2403.14702
http://arxiv.org/abs/2403.14702
http://arxiv.org/abs/2403.14702
http://arxiv.org/abs/2403.14702
http://arxiv.org/abs/2406.00025
http://arxiv.org/abs/2406.00025
http://arxiv.org/abs/2406.00025
https://www.arm.com/products/silicon-ip-cpu/ethos/ethos-u85
https://www.arm.com/products/silicon-ip-cpu/ethos/ethos-u85
https://www.arm.com/products/silicon-ip-cpu/ethos/ethos-u85
http://arxiv.org/abs/2310.05421
http://arxiv.org/abs/2310.05421
http://arxiv.org/abs/2310.05421
http://arxiv.org/abs/2310.05421
http://arxiv.org/abs/2310.05421

Connor Shorten, Taghi M Khoshgoftaar, and Borko882
Furht. 2021. Text data augmentation for deep learn-883
ing. Journal of big Data, 8(1):101.884

Xinying Song, Alex Salcianu, Yang Song, Dave Dopson,885
and Denny Zhou. 2020. Fast wordpiece tokenization.886
arXiv preprint arXiv:2012.15524.887

Ilias Stogiannidis, Stavros Vassos, Prodromos Malaka-888
siotis, and Ion Androutsopoulos. 2023. Cache me if889
you can: an online cost-aware teacher-student frame-890
work to reduce the calls to large language models.891

Hugo Touvron, Shruti Bhosale, Y-Lan Boureau, Tim892
Dettmers, Alessandro Sordoni, Armand Joulin, et al.893
2024. Llama 3: Open foundation and instruction-894
tuned language models.895

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob896
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz897
Kaiser, and Illia Polosukhin. 2017. Attention is all898
you need. Advances in neural information processing899
systems, 30.900

Fali Wang, Zhiwei Zhang, Xianren Zhang, Zongyu Wu,901
Tzuhao Mo, Qiuhao Lu, Wanjing Wang, Rui Li, Jun-902
jie Xu, Xianfeng Tang, et al. 2024. A comprehensive903
survey of small language models in the era of large904
language models: Techniques, enhancements, appli-905
cations, collaboration with llms, and trustworthiness.906
arXiv preprint arXiv:2411.03350.907

Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan908
Yang, and Ming Zhou. 2020. Minilm: Deep self-909
attention distillation for task-agnostic compression910
of pre-trained transformers. Advances in neural in-911
formation processing systems, 33:5776–5788.912

Yantong Wang and Vasilis Friderikos. 2020. A survey913
of deep learning for data caching in edge network. In914
Informatics, volume 7, page 43. MDPI.915

John Wieting, Taylor Berg-Kirkpatrick, Kevin Gimpel,916
and Graham Neubig. 2019. Beyond bleu: training917
neural machine translation with semantic similarity.918
arXiv preprint arXiv:1909.06694.919

Fangkai Yang, Pu Zhao, Zezhong Wang, Lu Wang,920
Jue Zhang, Mohit Garg, Qingwei Lin, Saravan Ra-921
jmohan, and Dongmei Zhang. 2023. Empower922
large language model to perform better on industrial923
domain-specific question answering. arXiv preprint924
arXiv:2305.11541.925

Mingjin Zhang, Xiaoming Shen, Jiannong Cao, Zeyang926
Cui, and Shan Jiang. 2024. Edgeshard: Efficient llm927
inference via collaborative edge computing. IEEE928
Internet of Things Journal, pages 1–1.929

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q930
Weinberger, and Yoav Artzi. 2019. Bertscore: Eval-931
uating text generation with bert. arXiv preprint932
arXiv:1904.09675.933

Banghua Zhu, Ying Sheng, Lianmin Zheng, Clark Bar-934
rett, Michael I. Jordan, and Jiantao Jiao. 2023. On935
optimal caching and model multiplexing for large936
model inference.937

A Model Configurations and Storage 938

Considerations 939

A.1 Token Count 940

Consider a dataset of 100 MB of text, correspond- 941

ing to approximately 108 bytes. In typical English 942

text, standard byte-pair encoding (BPE) or Word- 943

Piece tokenization results in an average of approxi- 944

mately 4 bytes per token. Consequently, the dataset 945

may contain roughly 25 million tokens: 946

100 MB
4 bytes/token

= 25× 106 tokens. (7) 947

However, domain-specific corpora often exhibit 948

substantial redundancy, such as repeated dis- 949

claimers or standardized methodology sections. By 950

training a specialized tokenizer, the bytes-per-token 951

ratio can be reduced (e.g., 3 bytes/token or even 952

2 bytes/token in highly repetitive datasets). As a 953

result, the token count remains within the range of 954

20–25 million tokens as a reasonable approxima- 955

tion. 956

A.2 Vocabulary Reduction 957

General-purpose English language models (LMs) 958

typically employ vocabulary sizes of V = 30k, 959

50k, or even 100k subword tokens. However, in 960

domain-specific applications—such as modeling 961

text related to Alzheimer’s disease—the diversity 962

of subwords is substantially lower. By training 963

a custom subword tokenizer, the vocabulary can 964

be reduced to approximately V = 5k–10k tokens. 965

This reduction significantly decreases the size of 966

embedding matrices in transformer-based models, 967

as their parameter count scales linearly with vocab- 968

ulary size. 969

B Parameter Estimation for Transformer 970

Language Models 971

A standard decoder-only transformer language 972

model consists of the following primary compo- 973

nents: 974

B.1 Embedding Layer 975

The embedding layer consists of a token embed- 976

ding matrix and, optionally, a separate token output 977

projection. The parameter count varies depending 978

on whether embeddings are shared between input 979

and output: 980

• Untied embeddings: Parameters = V ×dmodel 981

(input) + dmodel × V (output). 982

11

http://arxiv.org/abs/2310.13395
http://arxiv.org/abs/2310.13395
http://arxiv.org/abs/2310.13395
http://arxiv.org/abs/2310.13395
http://arxiv.org/abs/2310.13395
http://arxiv.org/abs/2407.21783
http://arxiv.org/abs/2407.21783
http://arxiv.org/abs/2407.21783
https://doi.org/10.1109/JIOT.2024.3524255
https://doi.org/10.1109/JIOT.2024.3524255
https://doi.org/10.1109/JIOT.2024.3524255
http://arxiv.org/abs/2306.02003
http://arxiv.org/abs/2306.02003
http://arxiv.org/abs/2306.02003
http://arxiv.org/abs/2306.02003
http://arxiv.org/abs/2306.02003

• Tied embeddings: Parameters = V × dmodel983

(shared for both input and output).984

B.2 Transformer Layers985

Each transformer layer consists of two main com-986

ponents:987

1. Multi-head self-attention sublayer.988

2. Feed-forward sublayer, which consists of989

two linear transformations around a non-990

linearity.991

Ignoring biases and layer normalization for brevity,992

the approximate parameter count per layer is:993

Player ≈ 4d2model + 2(dmodel × dff). (8)994

The term 4d2model arises from the self-attention995

mechanism, where each layer employs three pro-996

jection matrices (query, key, value) along with an997

output projection, summing to four times d2model.998

The term 2dmodel × dff results from the two linear999

transformations in the feed-forward sublayer.1000

For a model with L layers, the total parameter1001

count for the transformer layers is approximately:1002

Players ≈ L× [4d2model + 2(dmodel × dff)]. (9)1003

Additionally, the embedding layers contribute:1004

Pembeddings ≈ V × dmodel (10)1005

for the tied-embedding case, or1006

Pembeddings ≈ 2V × dmodel (11)1007

if the embeddings are untied.1008

B.3 Final Parameter Approximation1009

In practical configurations, the feed-forward dimen-1010

sion is commonly set to dff = 4dmodel. Substituting1011

this into the parameter equation:1012

Player ≈ 4d2model + 2(dmodel × 4dmodel)1013

= 4d2model + 8d2model1014

= 12d2model. (12)1015

Thus, the overall model parameter count can be1016

approximated as:1017

P ≈ V × dmodel + L× 12d2model. (13)1018

While dmodel is typically split across multiple atten-1019

tion heads (e.g., if the number of heads is h, each1020

head operates on a subspace of size dmodel/h), this1021

does not affect the total parameter count but merely1022

alters the internal organization of the model.1023

This formulation provides a practical estimate 1024

for designing compact transformer architectures 1025

while maintaining computational efficiency. 1026

Given our computational constraints, we explore 1027

the five possible configurations: 1028

B.4 Configuration A 1029

• Vocabulary size: V = 5, 000 1030

• Layers: L = 3 1031

• Model dimension: dmodel = 384 1032

• Embedding parameters: 5,000×384 = 1.92× 1033

106 1034

• Per-layer parameters: 12×3842 = 1.77×106 1035

• Total parameters: 1.92 × 106 + 3 × 1.77 × 1036

106 = 7.23× 106 1037

• Estimated storage: 1038

– float32: ≈ 28.9 MB 1039

– float16: ≈ 14.5 MB 1040

– int8: ≈ 7.2 MB 1041

• Actual size after training: 30.6 MB 1042

B.5 Configuration B 1043

• Vocabulary size: V = 5, 000 1044

• Layers: L = 6 1045

• Model dimension: dmodel = 512 1046

• Embedding parameters: 5,000×512 = 2.56× 1047

106 1048

• Per-layer parameters: 12×5122 = 3.15×106 1049

• Total parameters: 2.56 × 106 + 6 × 3.15 × 1050

106 = 21.46× 106 1051

• Estimated storage: 1052

– float32: ≈ 85.8 MB 1053

– float16: ≈ 42.9 MB 1054

– int8: ≈ 21.5 MB 1055

• Actual size after training: 88.0 MB 1056

B.6 Configuration C 1057

• Vocabulary size: V = 8, 000 1058

• Layers: L = 4 1059

• Model dimension: dmodel = 256 1060

• Embedding parameters: 8,000×256 = 2.05× 1061

106 1062

• Per-layer parameters: 12×2562 = 0.79×106 1063

• Total parameters: 2.05 × 106 + 4 × 0.79 × 1064

106 = 5.21× 106 1065

• Estimated storage: 1066

– float32: ≈ 20.8 MB 1067

– float16: ≈ 10.4 MB 1068

– int8: ≈ 5.2 MB 1069

• Actual size after training: 21.9 MB 1070

12

Figure 3: Training Loss vs step

B.7 Configuration D1071

• Vocabulary size: V = 10, 0001072

• Layers: L = 81073

• Model dimension: dmodel = 7681074

• Embedding parameters: 10,000 × 768 =1075

7.68× 1061076

• Per-layer parameters: 12×7682 = 7.08×1061077

• Total parameters: 7.68 × 106 + 8 × 7.08 ×1078

106 = 64.32× 1061079

• Estimated storage:1080

– float32: ≈ 257.3 MB1081

– float16: ≈ 128.6 MB1082

– int8: ≈ 64.3 MB1083

• Actual size after training: 260.7 MB1084

B.8 Configuration E1085

• Vocabulary size: V = 12, 0001086

• Layers: L = 121087

• Model dimension: dmodel = 10241088

• Embedding parameters: 12,000 × 1024 =1089

12.29× 1061090

• Per-layer parameters: 12× 10242 = 12.58×1091

1061092

• Total parameters: 12.29×106+12×12.58×1093

106 = 163.25× 1061094

• Estimated storage:1095

– float32: ≈ 653.0 MB1096

– float16: ≈ 326.5 MB1097

– int8: ≈ 163.3 MB1098

• Actual size after training: 658.0 MB1099

From the models we trained we choose the con-1100

figuration B as it gave the best results.1101

C Software Libraries1102

We used standard open-source libraries for model1103

training, inference, and evaluation. For text genera-1104

tion, we employed the Hugging Face transform-1105

ers library with a fine-tuned GPT-2 model and1106

Figure 4: Eval Loss vs step

Figure 5: SLMCache workflow in comparison to LLM-
Cache query handling.

GPT2TokenizerFast. Inference was done using 1107

deterministic decoding (do_sample=False) with pa- 1108

rameters: top_k=50, top_p=0.9, temperature=1.0, 1109

and a max_length of 150 tokens. 1110

For evaluation, we used: 1111

• nltk for computing BLEU-2 scores 1112

(sentence_bleu) with smoothing 1113

(SmoothingFunction().method1) 1114

• rouge_score for ROUGE-L using 1115

RougeScorer with stemming enabled 1116

• bert_score for semantic similarity, using the 1117

roberta-large model with default settings 1118

All evaluations were performed on 100 randomly 1119

sampled instances. Additional libraries used in- 1120

clude torch, tqdm, pandas, numpy, matplotlib, ca- 1121

chetools, chromadb, and datasets. 1122

Unless otherwise stated, default parameters were 1123

used throughout. 1124

13

