SLLM as an Adaptive Cache Layer for LLLMs

Anonymous ACL submission

Abstract

Large Language Models (LLMs) are powerful
but computationally expensive, making them
impractical for latency-sensitive or resource-
constrained applications. This paper presents
SLMCache, an adaptive caching framework
that uses Small Language Models (SLMs) as se-
mantic caches to reduce the frequency and cost
of LLM invocations. Queries are first matched
against a local vector store; if a semantically
similar query is found, an SLM generates the
response. Otherwise, the query is forwarded
to the LLM, and its output is logged for fu-
ture caching. The cache uses LRU and LFU
eviction policies, and the SLM is periodically
retrained using logged queries to expand its
response coverage. Evaluated on the Bitext
customer support dataset, SLMCache achieves
up to 2.8x speedup and 10x lower GPU mem-
ory usage compared to LLM-only baselines,
while maintaining high semantic fidelity. The
framework is practical for edge deployment
and significantly reduces the operational cost
of LLM-based systems.

1 Introduction

Large Language Models (LLMs) like GPT-4 can
be used to create chatbot conversations, write arti-
cles, and even answer questions in a more human-
like manner, enabling applications in customer sup-
port(Pandya and Holia, 2023), content generation,
education(Hsain and Housni, 2024), and research
(Gottweis et al., 2025). However, they come with
high computational costs and latency, making them
less practical for real-time applications or resource-
constrained environments(Hadi et al., 2023).

To address these challenges, this paper proposes
a novel framework that comprises a Small Lan-
guage Model (SLM) at the edge and a cloud-hosted
LLM. The SLM acts as an Adaptive Cache Layer, a
lightweight solution to handle frequent or straight-
forward queries locally, significantly reducing re-
sponse latency while maintaining high-quality in-

teractions. The system minimizes cloud depen-
dency by hosting a localized knowledge base along-
side the SLM.

A commonly raised consideration in the de-
sign of conversational agents is whether a vector
database alone can suffice for effective query re-
trieval. While vector databases are adept at stor-
ing dense representations (embeddings) of prior
queries and retrieving semantically similar entries
via similarity metrics such as cosine similarity, they
fundamentally lack generative capabilities. These
systems are inherently static and cannot condition
responses on evolving dialogue history or fine-
grained query-specific context. Consequently, their
applicability is limited in dynamic, multi-turn di-
alogue settings where contextual coherence and
adaptability are critical.

Rule-based systems, driven by handcrafted logic,
guarantee determinism but lack flexibility. Their
dependence on predefined rules prevents adapta-
tion to novel inputs without manual updates, and
scaling to broader conversational domains incurs
substantial engineering overhead. This rigidity lim-
its their applicability in real-world scenarios that
demand conversational diversity and adaptability.

Furthermore, many real-world applications
demand domain-specific knowledge integration
(Yang et al., 2023). For instance, customer support
systems deployed by financial institutions predomi-
nantly handle inquiries related to financial services,
such as account management, transaction issues,
and regulatory compliance. In such contexts, de-
ploying a full-scale large language model (LLM)
with broad but largely generic knowledge can be
computationally expensive. Instead, a domain-
specialized small language model (SLM), fine-
tuned on financial domain data, can deliver more
precise and contextually appropriate responses.

Several methods exist for creating more
lightweight and efficient Large Language Models
(LLMs) by reducing their size, memory consump-

tion, and computational requirements while main-
taining their performance. A few of the well-known
approaches include:

* Knowledge Distillation: This technique in-
volves training a minor “student” model to
replicate the behavior of a more prominent
“teacher” model, significantly reducing com-
putational requirements while retaining most
of the original model’s performance (Hinton,
2015).

Model Quantization: By reducing the pre-
cision of model weights and activations (e.g.,
from 32-bit floating-point to 8-bit integers),
quantization decreases memory usage and in-
ference latency (Jacob et al., 2018).

Pruning: This involves identifying and re-
moving redundant weights or neurons in the
model. Techniques like structured and un-
structured pruning help reduce the size of the
model (Ma et al., 2023).

* Low-Rank Factorization: Weight matrices
in the model are approximated using low-rank
decomposition methods like Singular Value
Decomposition (SVD), significantly reduc-
ing parameters and computational cost (Saha
et al., 2024b).

Beyond model compression, caching and edge
computing enhance efficiency. Adaptive caching re-
duces redundant computations by storing frequent
query-response pairs (Wang and Friderikos, 2020),
while lightweight models and local databases at
the edge minimize reliance on cloud infrastructure
(Satyanarayanan, 2017).

While these methods address specific aspects
of the challenges, they often face limitations in
adaptability and efficiency. For instance, caching
mechanisms may struggle with query diversity, and
edge computing frameworks often trade accuracy
for speed.

Early adoption across research and industry fa-
vored Key-Value (KV) cache architectures, which
map queries to embedding vectors for approximate
retrieval. A cached response is returned if a match
exists; otherwise, the LLM generates a new re-
sponse (Li et al., 2024a).

There have been efforts such as (Stogiannidis
etal., 2023), (Zhu et al., 2023), (Bang, 2023) using
cache systems for LLM chat services to mitigate

these challenges. These cache systems store dia-
logues, including user queries and LLM responses.
Whether operating their own LLMs or utilizing
public ones, LLLM chat services benefit from cache
hits through reduced processing needs. A key met-
ric for LLM chat services is the number of tokens
processed. In this context, a token represents a unit
of text within a query, indicating computational
workload. This metric, connected to GPU usage
or the expenses of forwarding queries to public
LLMs, is important to the financial sustainability
of LLM-based automated chat services.

2 Literature Survey

Small Language models (SLMs), typically those
with up to 8 billion parameters, have received com-
paratively less attention in academia than large
language models (LLMs). They are particularly
suited for deployment on edge devices such as
smartphones, laptops, and microprocessors.

Recent research explores collaborative edge
computing, where LLM inference is facilitated by
partitioning the model across distributed devices
to optimize latency and throughput (Zhang et al.,
2024).

Google’s BERT (Devlin et al., 2019) has been
fine-tuned and optimized for deployment on mo-
bile devices, showcasing the feasibility of using
SLMs for natural language processing tasks. These
models are specifically designed to operate effi-
ciently on resource-constrained devices that enable
real-time user interaction without relying on cloud-
based processing.

Several studies have proposed hybrid approaches
that combine the strengths of Small Language Mod-
els (SLMs) and Large Language Models (LLMs).
For instance, (Bergner et al., 2024) introduced a
method where a pre-trained, frozen LLM encodes
all prompt tokens in parallel, generating represen-
tations that subsequently condition and guide an
SLM. Another example involves dynamically se-
lecting between SLM and LLM based on reward
token modeling, as demonstrated by (MS et al.,
2024).

In the context of hardware innovations, Deeploy
has demonstrated a high-efficiency, end-to-end de-
ployment of SLMs on microcontroller-class chips
without external memory access (Scherer et al.,
2024). By leveraging a multicore RISC-V (RV32)
MCU augmented with machine learning instruction
extensions and a neural processing unit (NPU), the

Deeploy compiler generates highly optimized C
code for efficient execution. This method achieves
leading-edge energy and throughput efficiency of
490uJ per token, processing up to 340 tokens
per second for an SLM trained on the TinySto-
ries dataset(Eldan and Li, 2023). Deeploy high-
lights the feasibility of deploying SLMs in resource-
constrained environments.

The integration of SLMs into edge computing
environments not only enhances performance but
also addresses critical concerns regarding security
and privacy (Saha et al., 2024a). Operating SLMs
on the edge minimizes the transfer of sensitive in-
formation to cloud servers, which is particularly
beneficial in regulated industries such as healthcare
and finance.

Advancements in hardware, such as developing
specialized Neural Processing Units (NPUs) like
Arm’s Ethos-U85, have further facilitated the de-
ployment of SLMs on edge devices. These NPUs
are designed to efficiently handle Al workloads that
enable real-time processing and reduce reliance on
cloud-based infrastructure. (Ltd., 2025)

3 Architecture

3.1 Problem Setup and High-Level Summary

The proposed architecture employs Small Lan-
guage Models (SLMs) as efficient intermediaries to
cache and serve responses, which helps in reducing
reliance on Large Language Models (LLMs). The
workflow follows these stages:

* Query Reception and Similarity Check: When
a user query is received, it is first embedded and
compared against entries in a vector database
located at the edge. This database contains em-
beddings of previously seen queries.

* Threshold-Based Routing: If a semantically
similar query is found—i.e., the similarity score
exceeds a predefined threshold—the system in-
fers that the small language model (SLM) is ca-
pable of handling the query. The query is then
routed to the SLM for response generation.

* LLM Fallback and Logging: If no sufficiently
similar query is found (i.e., a cache miss), the
query is forwarded to a large language model
(LLM) hosted in the cloud. The LLLM generates
a response, which is returned to the user and
concurrently stored—along with the query em-
bedding—in the cloud-based vector database.

* SLM Adaptation: Periodically, the system eval-
uates whether the volume and diversity of LLM-

handled queries warrant retraining the SLM. If
so, the SLM is incrementally updated using this
data to improve its performance and coverage
over time.

3.2 Knowledge Base Management

Vector Database Selection. We employ Chro-
maDB as the underlying vector database (Balushi
et al., 2025), chosen for its ease of integration, scal-
ability, and efficient support for approximate near-
est neighbor (ANN) search in high-dimensional
spaces. ChromaDB provides optimized indexing
and retrieval mechanisms suitable for a real-time
conversational system.

Embedding Model. For embedding generation,
we adopt all-MinilLM-L6-v2 (Wang et al., 2020),
a lightweight yet semantically robust model from
the Sentence Transformers library. This model is
capable of producing high-quality, dense vector
representations while maintaining a minimal com-
putational footprint, making it well-suited for edge
deployments. The resulting embeddings are stored
in the chromadb index and used to support rapid se-
mantic similarity checks during query processing.

3.3 Cache Eviction Policies

To maintain the performance and scalability of the
system, cache eviction policies are implemented
within the LLM’s vector database:

Least Recently Used (LRU): The system tracks
the last access time of each entry. The least re-
cently accessed entries are evicted when the cache
exceeds its storage limit. This policy prioritizes
retaining frequently accessed queries.

Least Frequently Used (LFU): The system
tracks the frequency of access for each entry. En-
tries with the lowest access counts are evicted when
the cache reaches capacity. This approach ensures
that popular queries remain in the cache.

3.4 Size and Scaling

SLMs operate with significantly fewer parameters
than LLMs. The effectiveness of language models
in various tasks is often guided by scaling laws,
which describe the relationship between model
performance, dataset size, and computational re-
sources.

Kaplan et al. (Kaplan et al., 2020) empirically
demonstrated that the performance of autoregres-
sive language models follows a power-law relation-
ship with respect to three key factors: model size

‘ Question ‘ Input

4% — ‘

After k updates,
update SLM and DB

No
H — }7

Figure 1: (a) The workflow of the proposed framework
high cosine similarity.

Response | Output

(N), dataset size (D), and compute budget (C').
This relationship is given by:

L(N,D,C)=AN"“+BD P +CC™ (1)

where L(N, D, () is the model loss (e.g., cross-
entropy loss), N is the number of model param-
eters, D is the dataset size (in tokens), and C' is
the compute budget (in FLOPs). The coefficients
A, B, C are empirically determined, and «, 3,y
are the scaling exponents that quantify how loss
improves with increased resources.

This equation suggests that reducing parameters,
data, or compute leads to performance degradation.
However, by optimizing architectures, leveraging
knowledge distillation, and training on domain-
specific data, SLMs can sustain strong performance
at a fraction of the cost of LLMs.

Kaplan’s scaling law emphasizes that model
performance depends not only on parameter count
but also on data efficiency and computational op-
timization. Instead of merely reducing model
size, strategies such as fine-tuning on domain-
specific datasets, distillation from larger mod-
els, and caching frequently used responses enable
SLMs to achieve high efficiency while maintaining
accuracy.

4 Observations and Results

4.1 Dataset

For evaluating the effectiveness of our caching
strategies and LLM query routing approaches, we
primarily utilized an open-source dataset made
available under the Community Data License

Example 1:

Query 1: ¥/
Query 2:

Des

is lo

arity scare, Query 1 typically implies that the user
15 Query 2 suggests that the user is logged in.

Example 2:

Query 1: “I ne

Query 2: “I ne

Althoug
fundam

, their meanings are
inancial actions

nt and

. (b) Example showing different responses for queries with

Agreement — Sharing — Version 1.0 (CDLA-
Sharing-1.0) Bitext Customer Support Dataset
(Bitext, n.d.a) . Our use complies with the license
terms and is strictly for academic research pur-
poses. This dataset is tailored for customer service
scenarios and comprises 26,872 query-response
pairs distributed across 27 distinct intents and 10
broader categories. Each intent includes an average
of 1,000 samples, annotated with 30 unique entity
types and 12 language generation tags to simulate
diverse linguistic structures and user behaviors. It
served as the principal benchmark for assessing
various caching policies, including LRU and LFU,
as well as various model performances.

Additionally, we used an open-source dataset
made available under the Community Data Li-
cense Agreement — Sharing — Version 1.0 (CDLA-
Sharing-1.0) Bitext Insurance LLM Chatbot
Training Dataset (Bitext, n.d.b) 2. Our use com-
plies with the license terms and is strictly for aca-
demic research purposes. This dataset is domain-
specific to the insurance sector, for further evalu-
ation. This dataset enabled us to test the gener-
alizability of our caching mechanisms and model
selection strategies in a specialized subdomain of
customer support.

Instead of solely relying on manually curated
training data, we augment the existing dataset with
synthetic data to ensure that the Small Language
Model (SLM) provides detailed and consistent re-

"https://huggingface.co/datasets/bitext/Bitex
t-customer-support-1lm-chatbot-training-dataset

*https://huggingface.co/datasets/bitext/Bitex
t-insurance-1llm-chatbot-training-dataset

https://huggingface.co/datasets/bitext/Bitext-customer-support-llm-chatbot-training-dataset
https://huggingface.co/datasets/bitext/Bitext-customer-support-llm-chatbot-training-dataset
https://huggingface.co/datasets/bitext/Bitext-insurance-llm-chatbot-training-dataset
https://huggingface.co/datasets/bitext/Bitext-insurance-llm-chatbot-training-dataset

—— LRU (Final Hit Rate = 0.65)
LFU (Final Hit Rate = 0.11)

uuuuuuuuuuuuuuuuuuuu

Figure 2: Cache Hit Rate over time

sponses while maintaining efficiency. Queries and
responses are synthetically generated using a Large
Language Model (LLM), which helps to standard-
ize response formats and align SLM behavior with
LLM outputs. We leverage two key augmentation
strategies, LLM-based augmentation and Algorith-
mic Augmentation.

4.1.1 LLM-Based Augmentation

* Synonym Replacement — Replaces words
with synonyms while maintaining medical
context (Cegin et al., 2024).

¢ Paraphrasing — Rewrites the text (Sharma
et al., 2022).

* NER Replacement — Substitutes named enti-
ties with similar terms.

* Spelling & Grammar Errors — Introduces
minor typos to improve model robustness.

¢ Contrastive Question Generation — Creates
challenging variations of existing questions.

* Embedding-Based Sentence Augmentation
— Generates similar sentences while preserving
meaning(Li et al., 2024b).

* Synthetic Q&A Generation — Produces high-
quality question-answer pairs for better train-
ing(Dhruva et al., 2024).

4.1.2 Algorithmic Augmentation

* Random Deletion — Removes words proba-
bilistically to create sentence variations.

* Random Insertion — Inserts random words
from the sentence at new positions.

* Random Swap — Swaps positions of two
words to change sentence structure.

* Sentence Shuffling — Randomizes the order
of sentences in a paragraph.

¢ Noise Injection — Introduces character-level
distortions to simulate real-world errors
(Shorten et al., 2021).

4.2 Results

To evaluate the effectiveness of the Small Language
Model (SLM) in generating high-quality responses,
we employ three key metrics: BLEU-2, ROUGE-L,
and BERTScore F1. BLEU-2 (Bilingual Evaluation
Understudy with 2-grams) measures the precision
of generated text by comparing it to reference out-
puts using n-gram overlap (Wieting et al., 2019).
Specifically, BLEU-2 focuses on bigrams, ensuring
the model captures local coherence and phrase-
level accuracy. The BLEU score is computed using
the geometric mean of n-gram precisions with a
brevity penalty to penalize excessively short out-
puts. The formula for BLEU-N is given as:

N
BLEUy = BP x exp (Z wy, log pn>)

n=1

where B P is the brevity penalty, p, is the preci-
sion of n-grams, and w,, is the weighting factor.

ROUGE-L (Recall-Oriented Understudy for
Gisting Evaluation - Longest Common Subse-
quence) (Rehman et al., 2025) measures the recall
of generated responses by identifying the longest
common subsequence (LCS) between the gener-
ated text and reference responses. This metric is
particularly useful for evaluating fluency and rele-
vance . It is computed as:

LCS(X,Y)
_ 3

where LCS(X,Y) is the length of the longest
common subsequence between the generated text
X and the reference Y, and |Y'| is the length of the
reference text.

BERTScore F1 (Zhang et al., 2019) leverages
contextual embeddings from pre-trained BERT
models to compute token-level similarity, capturing
semantic accuracy beyond surface-level matching.
It computes precision, recall, and F1-score based
on cosine similarity between token embeddings,
making it robust against paraphrasing and lexical
variation.

Metrics like BLEU and ROUGE rely on exact
token matches, which may be affected if the tok-
enizer splits or joins tokens differently than stan-
dard tokenizers. BERTScore, being embedding-
based, is generally more robust to these differences.
The evaluation scores obtained for our SLM Cache
model are consistent with the nature of templated
question-answer generation. The BLEU-2 scores,

ROUGE-L =

Policy | Final Hit Rate | Cache Size | Total Queries
LRU 0.1133 1000 26872
LFU 0.6548 1000 26872

Table 1: Cache performance comparison between LRU and LFU policies

ranging from 0.0488 to 0.1273, appear lower due to
the structured nature of responses, where placehold-
ers such as Order Number disrupt exact bigram
matching. Similarly, ROUGE-L scores (0.2066
to 0.4024) reflect moderate recall, as variations
in phrasing or tokenization can lead to slight mis-
matches despite conveying the intended meaning.
However, the high BERTScore F1 scores (0.8493
to 0.9036) indicate strong semantic alighment, con-
firming that the generated responses effectively cap-
ture the meaning of the reference answers.

We trained multiple SLM models with varying
vocabulary sizes, embedding dimensions, number
of layers, and attention heads to systematically ana-
lyze their impact on performance metrics and iden-
tify the optimal configuration 3. Overall, these
scores justify the model’s ability to maintain coher-
ence and intent despite minor syntactic variations.

Our dataset consists of approximately 100 MB
of text, translating to nearly 10® bytes. Using stan-
dard byte-pair encoding (BPE) or WordPiece tok-
enization, an average of 4 bytes per token suggests
a total token count of approximately 25 million.
However, given the domain-specific nature of our
corpus, which exhibits high redundancy, we can op-
timize tokenization to achieve an estimated 3 bytes
per token, yielding a more efficient representation
(Song et al., 2020).

For general-purpose models, vocabulary sizes
typically range between 30k to 100k tokens. How-
ever, given our domain-specific focus, we optimize
our tokenizer to reduce vocabulary to V' = 5, 000
to 10,000 tokens. A smaller vocabulary directly
reduces the embedding matrix size, which scales
linearly with V, thus lowering memory and com-
putational requirements (Vaswani et al., 2017).

In a decoder-only Transformer model, the em-
bedding parameters are given by:

Embeddings = V' X dp0del, “)

where d,,,04¢1 18 the hidden size of the transformer
layers. If input and output embeddings are tied,
the parameter count remains V' X d,0de1, Whereas
untied embeddings would double this count. aThe
core transformer consists of L layers, each con-

taining a multi-head self-attention mechanism and
a feed-forward network. Ignoring biases and nor-
malization layers, the parameter count per layer is
approximately:

params(layer) = 4 - d2, ;. + 2 - dmoder - dyf, (5)

where df; is the intermediate size of the feed-
forward network, often set as dyy = 4 X dyodel-
Thus, for L layers, the total parameter count is:

P 2V X dmodger + L % (4d2, 0401 + 820401 - (6)

To maintain efficiency, we prioritize the use of a
domain-specific tokenizer to optimize token count,
ensuring a compact and practical vocabulary. We
recommend selecting a moderate number of layers
(4 < L < 8) to strike a balance between model per-
formance and computational efficiency. Addition-
ally, applying 8-bit or 16-bit quantization helps re-
duce storage and computational requirements with-
out significantly impacting performance. Keeping
the model dimension (d,;,4¢;) Within the range of
256 to 512 allows sufficient expressiveness while
controlling parameter growth. Detailed calcula-
tions supporting these recommendations are pro-
vided in Appenix. Given that our corpus exhibits
redundancy and compressibility, a model within
the range of 10-30 million parameters, quantized
to 8-bit, should be sufficient for capturing domain-
specific patterns while avoiding excessive memory
overhead.

All results reported are averaged over 3 runs
with different random seeds. Standard deviations
were found to be negligible and are omitted for
brevity.

We ran the model on an Intel i5 12th gen pro-
cessor with RTX 2050 4GB GPU. We found an ap-
proximate 2.8x improvement in execution time and
a 10x reduction in average GPU Memory compared
to utilizing only the llama3.1 8B model (Touvron
etal., 2024). We tested the model on the Bitext Cus-
tomer Support Dataset, containing 26872 queries.
Our architecture could answer all the queries in
261061.48 seconds or 3.02 days, whereas llama3.1
8B took 731178.4 seconds or 8.46 days.

Dataset BLEU-2 | ROUGE-L | BERTScore F1
Bitext Customer | 0.1273 0.4024 0.9036
Bitext Insurance | 0.3530 0.5619 09134

Table 2: Evaluation metrics for Bitext Customer and Insurance datasets

Model Vocab Embed Dim Layers Heads BLEU-2 ROUGE-L BERTScore

1 5000 384 3
2 5000 512 6
3 8000 256 4
4 10000 768 8
5 12000 1024 12

3 0.1043 0.3621 0.8872
8 0.1273 0.4024 0.9036
4 0.1146 0.3766 0.8966
12 0.0924 0.3491 0.8850
16 0.0488 0.2066 0.8493

Table 3: Performance evaluation of different SLM configurations.

4.2.1 Cache Policy Evaluation

To assess the impact of caching on model inference
efficiency, we implemented and evaluated two clas-
sical cache replacement strategies: Least Recently
Used (LRU) and Least Frequently Used (LFU). Us-
ing a fixed cache size of 100 entries over a sequence
of 10,000 queries, we observed notable differences
in final hit rates. As shown in Table 1, the LFU pol-
icy significantly outperformed LRU, achieving a
final hit rate of 0.6548 compared to 0.1133 for LRU.
This improvement highlights LFU’s advantage in
scenarios with repetitive query patterns, as it pref-
erentially retains frequently accessed items in the
cache. In contrast, LRU, which evicts items based
solely on recency, struggled to capture long-term
frequency trends in the query stream. These results
suggest that frequency-aware caching mechanisms
can play a vital role in optimizing LL.M-backed
customer service systems by reducing redundant
model invocations and improving overall latency.

5 Applications

The proposed caching mechanism improves re-
sponse times for chatbots, customer support, and
virtual assistants by offloading frequent queries to
small language models (SLMs). This reduces re-
liance on expensive LL.Ms, making it suitable for
both resource-constrained and large-scale deploy-
ments. Its integration with a structured knowledge
base also supports applications like documentation,
education, and adaptive learning systems (Wang
et al., 2024).

6 Discussion

From an information-theoretic perspective, if a
100 MB text corpus can be heavily compressed
(e.g., to 20 MB) due to redundancy, then the Kol-
mogorov complexity, or the genuinely irreducible
information content, might be less than 20 MB.
A model with approximately 10-20 MB of pa-
rameters could encapsulate this knowledge if it
effectively exploits the repeated patterns within
the dataset and represents them compactly. This
aligns with previous estimates, particularly when
considering half-precision storage or further quan-
tization techniques. However, it is crucial to rec-
ognize that a model’s parameters do not function
as a one-to-one “bits = bits” memory. Unlike a
lossless compression algorithm, such as a ZIP file,
neural networks store and organize information in
a distributed manner, introducing overhead in how
weights must be structured to generate accurate
next-token probabilities. Nevertheless, in practi-
cal settings, a domain-specific model containing
approximately 5-50 million parameters (stored in
8-bit or 16-bit format) can achieve an overall size
in the tens of megabytes or lower. This is often
sufficient to encapsulate the domain-specific text,
mainly if a significant portion exhibits repetition.
Reducing the model size introduces fundamental
trade-offs. A smaller number of parameters reduces
the model footprint but also constrains its ability to
recall obscure or rare details. If a domain contains
unique or one-off sentences, the model faces two
options: either memorizing them explicitly, which
increases parameter requirements, or discarding
them, potentially losing fine-grained knowledge.
By strategically reducing the vocabulary size and

selecting a relatively shallow architecture with a
moderate embedding dimension, the model’s foot-
print can be constrained to the single- to low-tens-
of-megabyte range. This remains feasible even
when trained on a dataset exceeding 100 MB, par-
ticularly if the dataset exhibits redundancy or high
compressibility. Despite this reduction, the model
can still capture a substantial fraction of the do-
main’s linguistic structure, albeit at the potential
cost of fine-grained or domain-specific nuances.
If such a trade-off is deemed acceptable, this ap-
proach mitigates the risk of excessive parameter
growth into the hundreds of megabytes.

LoRA (Low-Rank Adaptation) enables fine-
tuning of large language models (LLMs) by adapt-
ing them for specific tasks while preserving the
core structure of the original model (Chavan et al.,
2023). While this technique enhances performance
for particular applications, a Lora-finetuned LLM
retains much of the redundancy present in the base
model. As a result, it remains parameter-heavy,
making real-time inference on edge devices chal-
lenging. In contrast, by leveraging model com-
pression techniques and strategically minimizing
the vocabulary size, an efficient small language
model (SLM) can be designed to function within
constrained computational environments while pre-
serving core linguistic capabilities.

Recent advancements in hybrid language mod-
els, like the Uncertainty-aware Hybrid Language
Model (U-HLM)(Oh et al., 2024), offer new ways
to optimize SLM-based caching. U-HLM helps the
SLM decide when it is confident enough to skip
using the larger LLM, reducing unnecessary pro-
cessing while maintaining accuracy. Integrating a
similar uncertainty-based approach into the SLM
Cache could further improve efficiency and token
processing speed.

However, applying this method to 12MB SLMs
is challenging. The original U-HLM was designed
for a much larger 1.1 billion-parameter model, and
shrinking it significantly leads to a loss of knowl-
edge and generalization. Large models store more
patterns and details, whereas extreme compression
can result in errors and a weaker understanding of
language. The key challenge is ensuring a much
smaller model retains enough accuracy and context
without introducing mistakes.

7 Conclusion

This paper presents SLMCache, a system that uses
small language models (SLMs) as an intelligent
caching layer to reduce the need for expensive large
language models (LLMs). By matching incoming
queries to previously seen ones and responding
locally when possible, SLMCache speeds up re-
sponses and lowers memory usage without sacri-
ficing accuracy. It achieved up to 2.8x faster pro-
cessing and used 10x less GPU memory compared
to using LLMs alone. The approach works espe-
cially well in real-time systems like chatbots or
customer support, where many queries are repeti-
tive. While the system still faces challenges like
retraining overhead and limited ability to handle
long conversations, it offers a practical, low-cost so-
lution for many applications. Future improvements
could include better decision-making about when
to use the SLM or LLM, more secure on-device
processing, and ways to make it work even better
on edge devices.

8 Limitations

While the proposed architecture offers significant
improvements in response latency, several limita-
tions remain:

* Low Cache Efficiency in Sparse Workloads:
For deployments with low query volume or
highly diverse input distributions, the cache hit
rate may remain consistently low. In such cases,
the benefits of the SLM cache are diminished,
and the system frequently defaults to the more
expensive LLM path.

* Retraining Overhead: The periodic retrain-
ing of the SLM on newly logged LLM-handled
queries introduces both computational and en-
gineering overhead. Ensuring the quality, con-
sistency, and timeliness of this retraining loop
is non-trivial, particularly in large-scale or dis-
tributed deployments.

* Limited Conversational Depth: The cache
mechanism and static nature of the SLM limit
its ability to handle complex, multi-turn conver-
sations or adapt to rapidly evolving user context.
As aresult, conversational coherence and person-
alization may degrade in long or dynamic inter-
actions.

* Memory Constraints at the Edge: Although
SLMs are computationally lightweight, the stor-
age and indexing of millions of embeddings
(e.g., 25M tokens ~ 20-25M entries) using chro-

madb at the edge still incurs a nontrivial memory
footprint. This can be prohibitive for memory-
constrained devices such on embedded systems.
A significant risk in this work arises from the pos-
sibility of hallucinated responses generated by
both the Small Language Model (SLM) and the
fallback Large Language Model (LLM). Since
the caching mechanism relies on semantic simi-
larity to reroute queries to the SLM, there is a risk
that semantically similar but contextually distinct
queries may receive inaccurate or misleading an-
swers. Furthermore, LLMs are also known to
produce factually incorrect or fabricated content,
especially in low-resource or domain-specific sce-
narios.

Such hallucinations can be particularly problem-
atic in sensitive applications like customer sup-
port, healthcare, or finance, where erroneous out-
puts may mislead users or erode trust. Without
rigorous verification or grounding mechanisms,
these issues may propagate through the caching
layer, giving an illusion of correctness due to
fast response times. Future work must incorpo-
rate uncertainty estimation, output verification, or
grounding in trusted knowledge bases to mitigate
these risks.

In summary, while the proposed architecture ef-
fectively reduces response latency and computa-
tional load, its performance is bounded by prac-
tical constraints. Sparse workloads, retraining
overhead, limited conversational depth, and mem-
ory constraints at the edge highlight trade-offs
between efficiency and scalability. Addressing
these limitations is crucial for broader applica-
bility, particularly in dynamic, large-scale, or
resource-constrained environments.

9 Ethical Considerations

This work does not involve any human subjects
or private data. We used two publicly available
datasets: the Bitext customer support dataset and
the Bitext insurance dataset, both distributed under
the Community Data License Agreement — Sharing
— Version 1.0 (CDLA-Sharing-1.0). These datasets
consist of synthetic, English-language dialogues
related to customer service and insurance support,
respectively. They do not contain any personally
identifiable information or offensive content, and
are intended for research purposes only. All prepro-
cessing scripts and usage instructions are included
in our code repository, and all artifacts are released

under the MIT License. Our objective is to enhance
the efficiency of Al systems by leveraging smaller
models as intelligent caches to reduce the energy
and cost associated with large language models.
We acknowledge that cached responses may be-
come outdated over time, and recommend regular
updates and robust safety checks, particularly for
deployments in sensitive domains like healthcare
or finance.

Al tools such as ChatGPT and GitHub Copilot
were used in a limited capacity during this project.
Their usage was restricted to occasional code de-
bugging, clarifying API usage, and assisting with
internet-style technical searches. Additionally, mi-
nor language suggestions were taken during the
editing of the paper. All core ideas, experimen-
tal design, implementation, and writing were con-
ducted independently by the authors without re-
liance on generative Al for substantive contribu-
tions.

References

Ahmed-Al Balushi, AS Al-Bemani, Saleh Al Araimi,
G Balaji, Uma Suresh, Asiya Najeeb, et al. 2025. Ai-
driven multi-modal information synthesis: Integrat-
ing pdf querying, speech summarization, and cross-

language text summarization. Procedia Computer
Science, 258:2996-3018.

Fu Bang. 2023. GPTCache: An open-source semantic
cache for LLM applications enabling faster answers
and cost savings. In Proceedings of the 3rd Workshop
for Natural Language Processing Open Source Soft-
ware (NLP-OSS 2023), pages 212218, Singapore.
Association for Computational Linguistics.

Benjamin Bergner, Andrii Skliar, Amelie Royer, Tij-
men Blankevoort, Yuki Asano, and Babak Ehteshami
Bejnordi. 2024. Think big, generate quick: Llm-to-
slm for fast autoregressive decoding. arXiv preprint
arXiv:2402.16844.

Bitext. n.d.a. Bitext customer support 1lm chatbot train-
ing dataset. https://registry.opendata.aws/
bitext-customer-support-chatbot/. Accessed:
2025-05-19.

Bitext. n.d.b. Bitext insurance llm chatbot training
dataset. https://registry.opendata.aws/bi
text-insurance-chatbot/. Accessed: 2025-05-
19.

Jan Cegin, Jakub Simko, and Peter Brusilovsky. 2024.
Llms vs established text augmentation techniques for
classification: When do the benefits outweight the
costs? arXiv preprint arXiv:2408.16502.

https://doi.org/10.18653/v1/2023.nlposs-1.24
https://doi.org/10.18653/v1/2023.nlposs-1.24
https://doi.org/10.18653/v1/2023.nlposs-1.24
https://doi.org/10.18653/v1/2023.nlposs-1.24
https://doi.org/10.18653/v1/2023.nlposs-1.24
https://registry.opendata.aws/bitext-customer-support-chatbot/
https://registry.opendata.aws/bitext-customer-support-chatbot/
https://registry.opendata.aws/bitext-customer-support-chatbot/
https://registry.opendata.aws/bitext-insurance-chatbot/
https://registry.opendata.aws/bitext-insurance-chatbot/
https://registry.opendata.aws/bitext-insurance-chatbot/

Arnav Chavan, Zhuang Liu, Deepak Gupta, Eric Xing,
and Zhigiang Shen. 2023. One-for-all: General-
ized lora for parameter-efficient fine-tuning. arXiv
preprint arXiv:2306.07967.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171-4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

G Dhruva, Ishani Bhat, Sanika M Rangayyan, and
P Preethi. 2024. Synthetic data augmentation us-
ing large language models (Ilm): A case-study of the
kamyr digester. In 2024 Third International Con-
ference on Electrical, Electronics, Information and
Communication Technologies (ICEEICT), pages 1-7.
IEEE.

Ronen Eldan and Yuanzhi Li. 2023. Tinystories: How
small can language models be and still speak coherent
english? arXiv preprint arXiv:2305.07759.

Juraj Gottweis, Wei-Hung Weng, Alexander Daryin,
Tao Tu, Anil Palepu, Petar Sirkovic, Artiom
Myaskovsky, Felix Weissenberger, Keran Rong, Ryu-
taro Tanno, et al. 2025. Towards an ai co-scientist.
arXiv preprint arXiv:2502.18864.

Muhammad Usman Hadi, Rizwan Qureshi, Abbas Shah,
Muhammad Irfan, Anas Zafar, Muhammad Bilal
Shaikh, Naveed Akhtar, Jia Wu, Seyedali Mirjalili,
et al. 2023. A survey on large language models:
Applications, challenges, limitations, and practical
usage. Authorea Preprints.

Geoffrey Hinton. 2015. Distilling the knowledge in a
neural network. arXiv preprint arXiv:1503.02531.

Achraf Hsain and Hamza El Housni. 2024. Large lan-
guage model-powered chatbots for internationalizing
student support in higher education.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Meng-
long Zhu, Matthew Tang, Andrew Howard, Hartwig
Adam, and Dmitry Kalenichenko. 2018. Quanti-
zation and training of neural networks for efficient
integer-arithmetic-only inference. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 2704-2713.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. arXiv
preprint arXiv:2001.08361.

Jiaxing Li, Chi Xu, Feng Wang, Isaac M von Riede-
mann, Cong Zhang, and Jiangchuan Liu. 2024a.
Scalm: Towards semantic caching for automated chat
services with large language models.

10

Yichuan Li, Kaize Ding, Jianling Wang, and Kyu-
min Lee. 2024b. Empowering large language mod-
els for textual data augmentation. arXiv preprint
arXiv:2404.17642.

Arm Ltd. 2025. Arm ethos-u85: Machine learning
processor. https://www.arm.com/products/s
ilicon-ip-cpu/ethos/ethos-u85. Accessed:
2025-01-22.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. 2023.
Llm-pruner: On the structural pruning of large lan-
guage models. Advances in neural information pro-
cessing systems, 36:21702-21720.

Adarsh MS, Jithin VG, and Ditto PS. 2024. Efficient
hybrid inference for llms: Reward-based token mod-
elling with selective cloud assistance. arXiv preprint
arXiv:2409.13757.

Seungeun Oh, Jinhyuk Kim, Jihong Park, Seung-Woo
Ko, Tony QS Quek, and Seong-Lyun Kim. 2024.
Uncertainty-aware hybrid inference with on-device
small and remote large language models. arXiv
preprint arXiv:2412.12687.

Keivalya Pandya and Mehfuza Holia. 2023. Automating
customer service using langchain: Building custom
open-source gpt chatbot for organizations.

Tohida Rehman, Soumabha Ghosh, Kuntal Das, Souvik
Bhattacharjee, Debarshi Kumar Sanyal, and Sami-
ran Chattopadhyay. 2025. Evaluating llms and pre-
trained models for text summarization across diverse
datasets. arXiv preprint arXiv:2502.19339.

Dipayan Saha, Shams Tarek, Katayoon Yahyaei, Su-
jan Kumar Saha, Jingbo Zhou, Mark Tehranipoor,
and Farimah Farahmandi. 2024a. Llm for soc secu-
rity: A paradigm shift. IEEE Access.

Rajarshi Saha, Naomi Sagan, Varun Srivastava, Andrea
Goldsmith, and Mert Pilanci. 2024b. Compressing
large language models using low rank and low preci-
sion decomposition. Advances in Neural Information
Processing Systems, 37:88981-89018.

Mahadev Satyanarayanan. 2017. The emergence of
edge computing. Computer, 5S0(1):30-39.

Moritz Scherer, Luka Macan, Victor JB Jung, Philip
Wiese, Luca Bompani, Alessio Burrello, Francesco
Conti, and Luca Benini. 2024. Deeploy: Enabling
energy-efficient deployment of small language mod-
els on heterogeneous microcontrollers. IEEE Trans-
actions on Computer-Aided Design of Integrated Cir-
cuits and Systems, 43(11):4009-4020.

Saket Sharma, Aviral Joshi, Namrata Mukhija, Yiyun
Zhao, Hanoz Bhathena, Prateek Singh, Sashank San-
thanam, and Pritam Biswas. 2022. Systematic re-
view of effect of data augmentation using paraphras-
ing on named entity recognition. In NeurIPS 2022
Workshop on Synthetic Data for Empowering ML
Research.

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
http://arxiv.org/abs/2403.14702
http://arxiv.org/abs/2403.14702
http://arxiv.org/abs/2403.14702
http://arxiv.org/abs/2403.14702
http://arxiv.org/abs/2403.14702
http://arxiv.org/abs/2406.00025
http://arxiv.org/abs/2406.00025
http://arxiv.org/abs/2406.00025
https://www.arm.com/products/silicon-ip-cpu/ethos/ethos-u85
https://www.arm.com/products/silicon-ip-cpu/ethos/ethos-u85
https://www.arm.com/products/silicon-ip-cpu/ethos/ethos-u85
http://arxiv.org/abs/2310.05421
http://arxiv.org/abs/2310.05421
http://arxiv.org/abs/2310.05421
http://arxiv.org/abs/2310.05421
http://arxiv.org/abs/2310.05421

Connor Shorten, Taghi M Khoshgoftaar, and Borko
Furht. 2021. Text data augmentation for deep learn-
ing. Journal of big Data, 8(1):101.

Xinying Song, Alex Salcianu, Yang Song, Dave Dopson,
and Denny Zhou. 2020. Fast wordpiece tokenization.
arXiv preprint arXiv:2012.15524.

Ilias Stogiannidis, Stavros Vassos, Prodromos Malaka-
siotis, and Ion Androutsopoulos. 2023. Cache me if
you can: an online cost-aware teacher-student frame-
work to reduce the calls to large language models.

Hugo Touvron, Shruti Bhosale, Y-Lan Boureau, Tim
Dettmers, Alessandro Sordoni, Armand Joulin, et al.
2024. Llama 3: Open foundation and instruction-
tuned language models.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Fali Wang, Zhiwei Zhang, Xianren Zhang, Zongyu Wu,
Tzuhao Mo, Qiuhao Lu, Wanjing Wang, Rui Li, Jun-
jie Xu, Xianfeng Tang, et al. 2024. A comprehensive
survey of small language models in the era of large
language models: Techniques, enhancements, appli-
cations, collaboration with llms, and trustworthiness.
arXiv preprint arXiv:2411.03350.

Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan
Yang, and Ming Zhou. 2020. Minilm: Deep self-
attention distillation for task-agnostic compression
of pre-trained transformers. Advances in neural in-
formation processing systems, 33:5776-5788.

Yantong Wang and Vasilis Friderikos. 2020. A survey
of deep learning for data caching in edge network. In
Informatics, volume 7, page 43. MDPL

John Wieting, Taylor Berg-Kirkpatrick, Kevin Gimpel,
and Graham Neubig. 2019. Beyond bleu: training
neural machine translation with semantic similarity.
arXiv preprint arXiv:1909.06694.

Fangkai Yang, Pu Zhao, Zezhong Wang, Lu Wang,
Jue Zhang, Mohit Garg, Qingwei Lin, Saravan Ra-
jmohan, and Dongmei Zhang. 2023. Empower
large language model to perform better on industrial
domain-specific question answering. arXiv preprint
arXiv:2305.11541.

Mingjin Zhang, Xiaoming Shen, Jiannong Cao, Zeyang
Cui, and Shan Jiang. 2024. Edgeshard: Efficient llm
inference via collaborative edge computing. /[EEE
Internet of Things Journal, pages 1-1.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q
Weinberger, and Yoav Artzi. 2019. Bertscore: Eval-
uating text generation with bert. arXiv preprint
arXiv:1904.09675.

Banghua Zhu, Ying Sheng, Lianmin Zheng, Clark Bar-
rett, Michael I. Jordan, and Jiantao Jiao. 2023. On
optimal caching and model multiplexing for large
model inference.

11

A Model Configurations and Storage
Considerations

A.1 Token Count

Consider a dataset of 100 MB of text, correspond-
ing to approximately 10® bytes. In typical English
text, standard byte-pair encoding (BPE) or Word-
Piece tokenization results in an average of approxi-
mately 4 bytes per token. Consequently, the dataset
may contain roughly 25 million tokens:

100 MB

— =25 x 10° tokens.
4 bytes/token s oxens

(N
However, domain-specific corpora often exhibit
substantial redundancy, such as repeated dis-
claimers or standardized methodology sections. By
training a specialized tokenizer, the bytes-per-token
ratio can be reduced (e.g., 3 bytes/token or even
2 bytes/token in highly repetitive datasets). As a
result, the token count remains within the range of
20-25 million tokens as a reasonable approxima-
tion.

A.2 Vocabulary Reduction

General-purpose English language models (LMs)
typically employ vocabulary sizes of V' = 30k,
50k, or even 100k subword tokens. However, in
domain-specific applications—such as modeling
text related to Alzheimer’s disease—the diversity
of subwords is substantially lower. By training
a custom subword tokenizer, the vocabulary can
be reduced to approximately V' = 5k—10k tokens.
This reduction significantly decreases the size of
embedding matrices in transformer-based models,
as their parameter count scales linearly with vocab-
ulary size.

B Parameter Estimation for Transformer
Language Models

A standard decoder-only transformer language
model consists of the following primary compo-
nents:

B.1 Embedding Layer

The embedding layer consists of a token embed-
ding matrix and, optionally, a separate token output
projection. The parameter count varies depending
on whether embeddings are shared between input
and output:
* Untied embeddings: Parameters = V' X dpodel
(input) + dmoder X V' (output).

http://arxiv.org/abs/2310.13395
http://arxiv.org/abs/2310.13395
http://arxiv.org/abs/2310.13395
http://arxiv.org/abs/2310.13395
http://arxiv.org/abs/2310.13395
http://arxiv.org/abs/2407.21783
http://arxiv.org/abs/2407.21783
http://arxiv.org/abs/2407.21783
https://doi.org/10.1109/JIOT.2024.3524255
https://doi.org/10.1109/JIOT.2024.3524255
https://doi.org/10.1109/JIOT.2024.3524255
http://arxiv.org/abs/2306.02003
http://arxiv.org/abs/2306.02003
http://arxiv.org/abs/2306.02003
http://arxiv.org/abs/2306.02003
http://arxiv.org/abs/2306.02003

¢ Tied embeddings: Parameters = V' X dpodel
(shared for both input and output).

B.2 Transformer Layers

Each transformer layer consists of two main com-
ponents:

1. Multi-head self-attention sublayer.

2. Feed-forward sublayer, which consists of
two linear transformations around a non-
linearity.

Ignoring biases and layer normalization for brevity,
the approximate parameter count per layer is:

Player & 4dpoger + 2(dmodel X dif). (8)

The term 4(1lr2mdel arises from the self-attention
mechanism, where each layer employs three pro-
jection matrices (query, key, value) along with an
output projection, summing to four times d?nodel.
The term 2dmodel X dgr results from the two linear
transformations in the feed-forward sublayer.

For a model with L layers, the total parameter

count for the transformer layers is approximately:

Prayers & L % [4d2 0401 + 2(dmodel X dir)]. (9)
Additionally, the embedding layers contribute:
Pembeddings = V' X dmodel (10)
for the tied-embedding case, or
Pembeddings ~ 2V X dmodel (1)

if the embeddings are untied.

B.3 Final Parameter Approximation

In practical configurations, the feed-forward dimen-
sion is commonly set to dgg = 4dmodel. Substituting
this into the parameter equation:

Prager = 4d2 0401 + 2(dmodel X 4dmodel)
= 4drznodel + 8d12n0del
= 124>

'model*

(12)

Thus, the overall model parameter count can be
approximated as:

P~V X dpogel + L x 12d2

model

(13)

While dpodel 18 typically split across multiple atten-
tion heads (e.g., if the number of heads is &, each
head operates on a subspace of size dmode1/ 1), this
does not affect the total parameter count but merely
alters the internal organization of the model.

12

This formulation provides a practical estimate
for designing compact transformer architectures
while maintaining computational efficiency.

Given our computational constraints, we explore
the five possible configurations:

B.4 Configuration A

* Vocabulary size: V = 5,000
* Layers: L =3
e Model dimension: dmedel = 384
* Embedding parameters: 5,000x384 = 1.92x
109
* Per-layer parameters: 12 x 3842 = 1.77 x 106
» Total parameters: 1.92 x 10 + 3 x 1.77 x
108 = 7.23 x 106
» Estimated storage:
— float32: =~ 28.9 MB
— floatl6: =~ 14.5 MB
— int8: =~ 7.2 MB
* Actual size after training: 30.6 MB

B.5 Configuration B

* Vocabulary size: V' = 5,000
* Layers: L =6
e Model dimension: dpoqe] = 512
* Embedding parameters: 5,000x512 = 2.56x
106
* Per-layer parameters: 12 x 5122 = 3.15 x 106
» Total parameters: 2.56 x 10° + 6 x 3.15 x
105 = 21.46 x 10°
» Estimated storage:
- float32: ~ 85.8 MB
— floatl6: ~ 42.9 MB
- int8: ~ 21.5 MB
* Actual size after training: 88.0 MB

B.6 Configuration C

* Vocabulary size: V = 8,000
* Layers: L =4
e Model dimension: dpyodel = 256
* Embedding parameters: 8,000x256 = 2.05x
106
* Per-layer parameters: 12 x 2562 = 0.79 x 106
» Total parameters: 2.05 x 10% + 4 x 0.79 x
10% = 5.21 x 106
» Estimated storage:
— float32: =~ 20.8 MB
— floatl6: =~ 10.4 MB
— int8: =~ 5.2 MB
* Actual size after training: 21.9 MB

train/loss

20k 40k 60k 80k 100k

Figure 3: Training Loss vs step

B.7 Configuration D

* Vocabulary size: V' = 10,000
e Layers: L =8
¢ Model dimension: dpode] = 768
* Embedding parameters: 10,000 x 768 =
7.68 x 10°
* Per-layer parameters: 12 x 7682 = 7.08 x 106
» Total parameters: 7.68 x 10 4 8 x 7.08 x
109 = 64.32 x 10°
» Estimated storage:
— float32: =~ 257.3 MB
— floatl6: ~ 128.6 MB
- int8: =~ 64.3 MB
 Actual size after training: 260.7 MB

B.8 Configuration E

* Vocabulary size: V' = 12,000
e Layers: L =12
¢ Model dimension: dpge1 = 1024
* Embedding parameters: 12,000 x 1024 =
12.29 x 10°
* Per-layer parameters: 12 x 10242 = 12.58 x
10°
» Total parameters: 12.29 x 10 412 x 12.58 x
10 = 163.25 x 10°
» Estimated storage:
— float32: =~ 653.0 MB
— floatl6: = 326.5 MB
— int8: ~ 163.3 MB
* Actual size after training: 658.0 MB
From the models we trained we choose the con-
figuration B as it gave the best results.

C Software Libraries

We used standard open-source libraries for model
training, inference, and evaluation. For text genera-
tion, we employed the Hugging Face transform-
ers library with a fine-tuned GPT-2 model and

13

eval/loss

Figure 4: Eval Loss vs step

Normal Query Handling SLM Cache Query Handling
LLM LLM
1 Newﬁuew
Query SLM Cache
Query Similar Query
User User I E—

Figure 5: SLMCache workflow in comparison to LLM-
Cache query handling.

GPT2TokenizerFast. Inference was done using
deterministic decoding (do_sample=False) with pa-
rameters: top_k=50, top_p=0.9, temperature=1.0,
and a max_length of 150 tokens.

For evaluation, we used:

* nltk for computing BLEU-2 scores
(sentence_bleu) with smoothing
(SmoothingFunction().method1)

* rouge_score for ROUGE-L using
RougeScorer with stemming enabled

* bert_score for semantic similarity, using the
roberta-large model with default settings

All evaluations were performed on 100 randomly

sampled instances. Additional libraries used in-
clude torch, tqdm, pandas, numpy, matplotlib, ca-
chetools, chromadb, and datasets.

Unless otherwise stated, default parameters were

used throughout.

