
Boundary Decomposition for
Nadir Objective Vector Estimation

Ruihao Zheng Zhenkun Wang∗

School of System Design and Intelligent Manufacturing,
Southern University of Science and Technology

12132686@mail.sustech.edu.cn, wangzhenkun90@gmail.com

Abstract

The nadir objective vector plays a key role in solving multi-objective optimization
problems (MOPs), where it is often used to normalize the objective space and
guide the search. The current methods for estimating the nadir objective vector
perform effectively only on specific MOPs. This paper reveals the limitations of
these methods: exact methods can only work on discrete MOPs, while heuristic
methods cannot deal with the MOP with a complicated feasible objective region.
To fill this gap, we propose a general and rigorous method, namely boundary
decomposition for nadir objective vector estimation (BDNE). BDNE scalarizes
the MOP into a set of boundary subproblems. By utilizing bilevel optimization,
boundary subproblems are optimized and adjusted alternately, thereby refining
their optimal solutions to align with the nadir objective vector. We prove that the
bilevel optimization identifies the nadir objective vector under mild conditions. We
compare BDNE with existing methods on various black-box MOPs. The results
conform to the theoretical analysis and show the significant potential of BDNE for
real-world application.

1 Introduction

The multi-objective optimization problem (MOP) can be written as

min. f(x) = (f1(x), . . . , fm(x))⊺,

s.t. x ∈ Ω,
(1)

where x = (x1, . . . , xn)
⊺ is the decision vector (also called solution), and Ω ⊂ Rn denotes the

feasible region. f : Rn → Rm is composed of m objective functions, and f(x) is the objective vector
corresponding to x.
Definition 1. Given two vectors u,v ∈ Rm, u is said to dominate v (denoted as u ≺ v), if and only
if ui ≤ vi for every i ∈ {1, . . . ,m} and uj < vj for at least one j ∈ {1, . . . ,m}.
Definition 2. A decision vector x∗ and the corresponding objective vector f(x∗) are Pareto-optimal,
if there is no x ∈ Ω such that f(x) dominates f(x∗) according to Definition 1.
Definition 3. A decision vector x∗ ∈ Ω and the corresponding objective vector f(x∗) are weakly
Pareto-optimal, if there does not exist another decision vector x ∈ Ω such that fi(x) < fi(x

∗) for
all i = 1, . . . ,m.
Definition 4. The set of all Pareto-optimal solutions is called the Pareto set (denoted as PS), and
the set of all Pareto-optimal objective vectors is called the Pareto front (denoted as PF ).
Definition 5. The relative complement of the PF in the set of all weakly Pareto-optimal objective
vectors is called the weakly Pareto-optimal boundary (denoted as WPB).
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Definition 6. The ideal objective vector zide is composed of the lower bounds of the PF , i.e.,
zidei = minx∈PS fi(x) for i = 1, . . . ,m. The nadir objective vector znad consists of the upper
bounds of the PF , i.e., znadi = maxx∈PS fi(x) for i = 1, . . . ,m.

Definition 7. For the i-th objective function fi with i ∈ {1, . . . ,m}, an objective vector z(i)
c

is called the critical point of fi if it is Pareto-optimal and has the worst fi value, i.e., z(i)
c ∈

{f(x)|x = argmaxx∈PS fi(x)}. The nadir objective vector is often determined by obtaining the
critical point on each objective, since znadi = z

(i)c

i for each i ∈ {1, . . . ,m}.

The nadir objective vector is a fundamental concept of multi-objective optimization and has been
widely applied to real-world problems [1, 2, 3]. Specifically, numerous optimization methods’
operations involve the nadir objective vector. Firstly, the nadir objective vector is often used to guide
the search in various tasks, including both continuous MOPs [4, 5] and discrete MOPs [6, 7]. An
inaccurate estimation of the nadir objective vector degrades the performance of exact algorithms [8],
evolutionary algorithms [9], and multi-objective learning [10]. Secondly, the nadir objective vector
offers a comprehensive view of the PF for decision-makers, which can facilitate the application
of preference-based algorithms [11, 12, 2]. For example, an accurate nadir objective vector is the
assumption of many interactive algorithms. A poor approximation may cause biased decisions. In
addition, the nadir objective vector and the ideal objective vector are widely used to normalize the
objective space [13]. Normalization with an inappropriately estimated nadir objective vector can
cause performance deterioration of the optimization algorithm [14, 15].

The ideal objective vector can be acquired by minimizing each objective separately. Unfortunately,
obtaining the nadir objective vector is much more complicated [16, 17]. Existing exact methods are
developed for discrete MOPs, posing significant challenges for their extension to other MOPs. The
remaining methods are heuristic, showing satisfactory performance on simple MOPs. For example,
DTLZ1 has an equilateral-triangle-shaped PF , and its nadir objective vector can be easily estimated
using several heuristic methods [9]. However, when the MOP possesses a complicated feasible
objective region (e.g., an irregular PF and the WPB), all heuristic methods fail to approximate the
nadir objective vector accurately.

In this paper, we first demonstrate the shortcomings of existing methods in detail. After that, we
propose a general method with theoretical guarantees called boundary decomposition for nadir
objective vector estimation (BDNE). We implement BDNE for black-box MOPs and use 28 black-
box problems to validate its performance. The results indicate that BDNE remarkably outperforms
the existing methods. The major contributions of BDNE are summarized as follows:

• Scalarization method for boundary decomposition. We define the boundary subproblem that
converts an objective vector into a scalar via boundary weight vectors. We prove that the
critical point of each objective can be found by optimizing a particular boundary subproblem
under mild conditions (i.e., the critical point satisfies proper Pareto optimality). We also
prove that the optimal solution to any boundary subproblem is Pareto-optimal, thereby
facilitating the search of the particular boundary subproblems.

• Bilevel optimization based on boundary decomposition. We formulate a bilevel optimization
problem for each objective, aiming to identify the particular boundary subproblem by com-
paring the optimal solutions of boundary subproblems. The upper-level optimization seeks
each objective’s boundary weight vector that maximizes the objective function value; the
lower-level optimization searches for the optimal solutions of given boundary subproblems.
Besides, the trade-off of decision-makers can be involved in finding a satisfactory nadir
objective vector.

2 Related Works

Existing nadir objective vector estimation methods can be divided into two categories: 1) exact
methods and 2) heuristic methods.

Exact Method. Exact methods are all designed for discrete MOPs and cannot be applied to other
problems. For example, the methods in [18, 19] assume that the objective function values are integers,
limiting their applicability to continuous problems. Moreover, some exact methods are exclusively
designed for multi-objective integer linear programming [20]. m bilevel optimization problems are
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formulated in [21] and guarantee that their optimal solutions construct the nadir objective vector. The
bilevel optimization is implemented solely for the discrete search space where an exhaustive search
is available. However, the exact solver is often unavailable for many problems such as non-linear
continuous ones, leading to uncertain optimality gaps. As a result, the pay-off table, which this
method relies heavily on, may be tough to obtain. In addition, its lower-level optimization, including
two stages, may exhibit significant unreliability and high computational costs. Another significant
limitation of exact methods is their inability to solve beyond small-scale problems within reasonable
runtimes, thus posing substantial challenges to their real-world applicability.

Heuristic Method. Heuristic methods readily apply to diverse MOPs yet lack theoretical guarantees.
Generally, the heuristic method estimates the nadir objective vector as follows

ẑnadi = max
x∈S

fi(x) for i = 1, . . . ,m, (2)

where S is an iteratively improved solution set. S can be specified as the population of the multi-
objective evolutionary algorithm (MOEA) [22] (denoted as SF1). When the population is the PS,
Eq. (2) becomes the definition of the nadir objective vector. That is, SF1 can achieve the nadir
objective vector under the ideal situation where the population is the PS. However, this is almost
impossible because retaining inferior solutions, such as weakly Pareto-optimal or dominance-resistant
ones, in the population is often inevitable [23]. In case the population contains these inferior solutions,
the SF1-based algorithm may be severely misled and fail to estimate the nadir objective vector, as
shown in Figure 2b and Figure 2f (see Section 4). Several methods are proposed to mitigate the
impact of inferior solutions by selecting a subset from the population [24, 25, 26]. Additionally, S
can be obtained by identifying extreme points in the population. In [27, 28, 29], the extreme points
are determined by finding the objective vector with minimum values on each objective function. This
method is also known as the pay-off table method, which can overestimate or underestimate the nadir
objective vector [30, 20]. Some methods identify the objective vectors that are closest to axis vectors
as extreme points. The distance between the objective vector and the axis vector can be measured by
the Minkowski distance (e.g., L2 [31] and L∞ [32]), the perpendicular distance [33], and the cosine
similarity [9]. In [34], each objective is associated with a single-objective optimization subproblem
to determine m extreme points. In Appendix A, we use an example to illustrate the deficiencies of
heuristic methods in estimating the nadir objective vector. We can observe from Figure 4 and Table 4
that all methods incorrectly estimate the critical points as well as the nadir objective vector.

3 Methodology

To address the limited applicability of exact methods and the unreliability of heuristic methods, we
propose a method with general applicability to any MOP and theoretical guarantees in this section.
Specifically, our method does not necessitate the objective function value to be an integer as opposed
to [18, 19] and involves simpler optimization tasks compared to [21]. Our method also enables
finding the nadir objective vector, unlike heuristic methods. Furthermore, our method supports using
a user-defined trade-off. In the following, we begin by introducing boundary decomposition and
establishing its theoretical foundations. After that, we develop a bilevel optimization method based
on boundary decomposition to achieve alignment with the nadir objective vector. This method is then
implemented for the black-box MOP, and its effectiveness is evaluated in the subsequent section.

3.1 Boundary Subproblem

We define a boundary subproblem for the i-th objective as

gbdi (x|wi, zr, α) = max
1≤j≤m

{
wi

j

(
(1− α)fj(x) +

α

m

m∑
k=1

fk(x)− zrj

)}
, (3)

where wi is called the boundary weight vector of the i-th objective, zr is a reference point, and
0 < α < 1. wi satisfies three conditions: 1) wi

i = 0; 2) ∀j ∈ {1, . . . ,m}, wi
j ≥ 0; 3) ∃ j ∈

{1, . . . ,m}, wi
j > 0. The definition of the boundary subproblem is inspired by the modified weighted

Tchebycheff metric [35]. The contour surface of the boundary subproblem is illustrated in Figure 1.
Additionally, several examples are presented to demonstrate the optimal objective vector of the
boundary subproblem. In the following, we provide the theoretical foundations. Claims are followed
by corresponding explanations. All proofs are presented in Appendix F.
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(a) w3 = (0.5, 0.5, 0)⊺ (b) w3 = (0.5, 0.5, 0)⊺ (c) w3 = (0.7, 0.3, 0)⊺ (d) w3 = (0.7, 0.3, 0)⊺

Figure 1: The contour surfaces of boundary subproblems.

Definition 8 (From [36]). Let z̃ be the image of an objective vector z, where

z̃i = (1− α)zi +
α

m

m∑
j=1

zj for i = 1, . . . ,m (0 < α < 1). (4)

Given a value of α and two objective vectors u and v, u is said to cone-dominate v (denoted as
u ≺c v) if and only if ũ ≺ ṽ.

Definition 9. Given a value of α, an objective vector is cone-optimal if no objective vector can
cone-dominate it.

Theorem 1. The optimal objective vector to the boundary subproblem with wi (denoted as z∗) must
be Pareto-optimal, if and only if ∃j ∈ {1, . . . ,m} \ {i} such that zrj ≤ z̃∗j .

Theorem 2. Let zrj ≤ z̃
(i)c

j for every j ∈ {1, . . . ,m} \ {i}. z(i)
c

uniquely solves the boundary
subproblem with

wi
j =


0, j = i,

β

z̃
(i)c

j − zrj
, j ̸= i, (5)

if and only if z(i)
c

is cone-optimal.

Corollary 1. To ensure the validity of Theorem 2 without further information, it is necessary to
satisfy the condition zrj ≤ z̃

(i)c

j for every j ∈ {1, . . . ,m} \ {i}.

Firstly, we reveal the connection between the boundary subproblem and the nadir objective vector.
The boundary subproblem involves two steps: transforming the given objective vector and scalarizing
the transformed objective vector with the boundary weight vector. The transformation implies cone
domination, which defines a strict partial order (see Appendix F.1 for details) and belongs to the
family of generalized Pareto domination [37]. We assume that the critical points are cone-optimal
and a set of objective vectors is obtained by optimizing infinitely sampling boundary subproblems.
According to Theorems 1 and 2, this set is a subset of the PF and the critical points are included in it.
Finally, the nadir objective vector can be identified by Eq. (2) where S is specified as the obtained set.

Definition 10 (From [38]). A decision vector x∗ and the corresponding objective vector f(x∗) are
properly Pareto-optimal if they are Pareto-optimal and if there exists a finite number M > 0 such
that, for each i and any x ∈ Ω, we have

fi(x
∗)− fi(x)

fj(x)− fj(x∗)
≤M, (6)

where j satisfies fj(x∗) < fj(x).

Theorem 3. An objective vector is cone-optimal, if and only if the objective vector is Pareto-optimal
and the value of α satisfies

α ≤ m

(m− 1)M +m
. (7)

Corollary 2. A cone-optimal objective vector is also properly Pareto-optimal.
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The following question arises: under what conditions can a solution be considered cone-optimal?
Let u = (0, 1, 1)⊺ and v = (0.2, 0.5, 0.5)⊺ be a critical point and Pareto-optimal objective vector,
respectively. If α = 0.5, then v ≺c u (since ũ = (1, 2, 2)⊺ and ṽ = (0.8, 1.1, 1.1)⊺); If α = 0.1,
then u ⊀c v and v ⊀c u (since ũ = (0.2, 1.2, 1.2)⊺ and ṽ = (0.32, 0.62, 0.62)⊺). The critical point
is cone-dominated if an excessive α value is used. We should know how to set an appropriate α
to preserve the specific Pareto-optimal objective vectors. We find that cone domination is related
to proper Pareto optimality. The idea of proper Pareto optimality is to divide the PS into proper
and improper ones. The definition of proper Pareto optimality is shown in Definition 10. That is,
a solution can be considered properly Pareto-optimal when at least one pair of objectives satisfies:
a finite decrement in one objective requires a reasonable increment in the other objective. We also
can infer that different proper Pareto-optimal solutions may necessitate distinct minimum values
of M . Then we derive that α is bounded by M as shown in Theorem 3. Corollary 2 is established
accordingly. We can let α be a sufficiently small value such that the critical points are cone-optimal.

Theorem 4. Let z∗ be an objective vector satisfying zrj ≤ z̃∗j for every j ∈ {1, . . . ,m} \ {i}. If an
objective vector z′ does not cone-dominate z∗ and z∗i ≥ z′i, then z∗ has a lower function value than
z′ with respect to some boundary subproblem of the i-th objective.

Corollary 3. Let ze consist of the optimal values of m BLOPs and {z|z ≺ ze} be the promising
region. Any Pareto-optimal objective vector outside the promising region fails to address the trade-off
of decision-makers, namely, M > µ.

The remaining issue is that M is not known in advance, making it difficult to set α according to M .
We introduce a user-defined parameter µ (µ > 0) and let α = m

(m−1)µ+m . µ represents the upper
bound of the trade-off between the k-th and l-th objectives, where k = argmax1≤j≤m fj(x

∗)−fj(x)
and l = argmax1≤j≤m fj(x)− fj(x

∗). In other words, µ is the amount of increment in the value
of one objective function that the decision-maker is willing to tolerate in exchange for a one-unit
decrement in another objective function. If the preference of decision-makers about µ is available, we
have the guarantee shown in Corollary 3 derived from Theorems 3 and 4. Corollary 3 can guarantee
to obtain a satisfactory nadir objective vector. When the preference is not provided, µ can take a
sufficiently large value. On the one hand, if a finite trade-off M exists for the critical point, then
µ can take an appropriate value from [M,∞) to obtain the nadir objective vector. On the other
hand, M → ∞ results in α → 0, which means the corresponding objective vector is not properly
Pareto-optimal. In practical terms, a Pareto-optimal solution with a very large value of M does not
essentially differ from an inferior solution for decision-makers. If the critical points are improper,
using a generally agreeable value of µ is reasonable.

Theorem 5. The optimal objective vector to the boundary subproblem with wi (denoted as z∗) must
be cone-optimal (or properly Pareto-optimal), if ∃j ∈ {1, . . . ,m} \ {i} such that zrj < z̃∗j .

Theorem 6. Let zrj < z̃∗j for every j ∈ {1, . . . ,m} \ {i}. If an objective vector z∗ is optimal for the
boundary subproblem with wi, z∗ must be an optimal objective vector to the boundary subproblem
with

w∗
j =


0, j = i,

β

z̃∗j − zrj
, j ̸= i.

(8)

Moreover, we can make minor modifications to Theorem 1, resulting in Theorem 5. Theorem 6 can
be deduced using Theorem 5. Theorem 6 reveals the relationship between the boundary subproblem’s
optimal solution and the boundary weight vector, which is useful for designing the algorithm in
Section 3.3.

3.2 Nadir Objective Vector Estimation via Bilevel Optimization

Practically, we cannot have infinite boundary subproblems. In this subsection, an optimization
problem is defined to obtain the nadir objective vector. Its two goals are: 1) converging to Pareto-
optimal objective vectors and 2) identifying critical points from Pareto-optimal ones. In the 2-objective
case, both goals can be achieved through a single optimization procedure. Specifically, the critical
points can be obtained by optimizing boundary subproblems using (1, 0)⊺ and (0, 1)⊺ as the weight
vectors. This is because solving the boundary subproblem with wi is equivalent to solving that
with βwi where β > 0 is a constant. Unfortunately, the critical points cannot be obtained by a
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fixed boundary subproblem when the MOP involves three or more objectives. That is, both goals
cannot be achieved simultaneously. This motivates the formulation of a bilevel optimization problem
(BLOP) for each objective to achieve the two goals: the lower-level optimization problem (LLOP)
corresponds to the first goal while the upper-level optimization problem (ULOP) is for the second
goal. The BLOP is formulated below, based on the boundary subproblem.

Firstly, M is affected by different value ranges of objective functions, which might lead to algorithm
performance deterioration [39]. The objective space should be normalized properly. We let zrj = 0 for
j = 1, . . . ,m in Eq. (3) and introduce two reference points zr1 and zr2 (zr2j > zr1j for j = 1, . . . ,m)
for normalization. Then, the boundary subproblem with normalization can be written as

gbdni (x|wi, zr1, zr2, α) = max
1≤j≤m

{
wi

j

(
(1− α)f ′

j(x) +
α

m

m∑
k=1

f ′
k(x)

)}
, (9)

where f ′
k(x) = (fk(x) − zr1k )/

(
zr2k − zr1k

)
for k = 1, . . . ,m. In this formulation, zr1 should be

set according to Theorem 1 and Corollary 1. For example, it is reasonable to set zr1 to zide since
zidej ≤ fj(x) for j = 1, . . . ,m such that (1 − α)f ′

j(x) +
α
m

∑m
k=1 f

′
k(x) ≥ 0. Furthermore, zr2

should be set according to [40]. Secondly, several boundary subproblems might have the same optimal
solution. On the one hand, solving the boundary subproblem with wi is equivalent to solving that
with βwi where β > 0 is a constant. We can let

∑m
j=1∧j ̸=i w

i
j = 1. On the other hand, Theorem 6

indicates that the optimal objective vectors to some boundary subproblems may not align with the
corresponding boundary weight vectors. For example, this scenario is common on discrete MOPs. We
can penalize the flat landscape of the ULOP according to the distance between the boundary weight
vector and its optimal objective vector. Let x∗ be the optimal solution of the boundary subproblem

with wi. In this paper, we calculate the distance as d(wi,x∗) =
√∑m

j=1∧j ̸=i

(
wi

j − uj/
∑m

k=1 uk

)2
where

uj =

0, j = i,
1

(1− α)f ′
j(x) +

α
m

∑m
k=1 f

′
k(x)

, j ̸= i.
(10)

Let ϵ be a sufficiently small constant, l ∈ {1, . . . ,m} \ {i}, and I = {1, . . . ,m} \ {i, l}. Finally, the
BLOP with respect to the i-th objective for i = 1, . . . ,m has the ULOP formulated as

max. fu
i (w

i) = fi(x
∗)− ϵd(wi,x∗),

s.t. wi
i = 0, wi

l = 1−
∑
j∈I

wi
j ,

∑
j∈I

wi
j ≤ 1,

0 ≤ wi
j ≤ 1 for every j ∈ I,

(11)

where x∗ is the optimal decision vector to the LLOP of the following form

min. f l
i (x) = gbdni (x|wi, zr1, zr2, α),

s.t. x ∈ Ω.
(12)

The search is performed on the original decision space in the LLOP, while the search space of the
ULOP can be viewed as Rm−2 (i.e., (m− 2)-dimensional Euclidean space). For the i-th objective,
the ULOP uses a boundary weight vector wi as a solution and requires maximizing the i-th penalized
objective function value of the Pareto-optimal solution obtained by the LLOP. In other words, a
feasible solution of the ULOP requires an optimal solution of the LLOP. We propose an algorithm
framework called BDNE for estimating the nadir objective vector on the MOP with more than two
objectives. Specifically, BDNE aims to solve these m BLOPs. The steps of BDNE are given in
Algorithm 1, where µ is the user-defined upper bound of the trade-off (see Section 3.1 for details).
Three following issues should be specified: determine the reference points zr1 and zr2, choose
suitable single-objective optimizers, and set the stopping criteria.

3.3 Algorihm for Black-Box Multi-Objective Optimization Problems

To evaluate the viability of BDNE, we implement it for black-box MOPs. We adopt evolutionary
algorithms as the solvers in BDNE. Each ULOP uses CMA-ES [41] to search the eligible boundary
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Algorithm 1 BDNE
Input: An MOP, stopping criteria of m BLOPs, µ
Output: ẑnad

1: Initialization: α← m
(m−1)µ+m ; determine zr1 and zr2; configure solvers.

2: while stopping criteria of m ULOPs are not all satisfied do
3: Generate boundary weight vectors by the solvers of unstopped ULOPs.
4: Minimize LLOPs with the generated boundary weight vectors by the corresponding solvers.
5: Update parameters: zr1 and zr2 (optional); parameters in the solvers of unstopped ULOPs.
6: end while

weight vector(s). We utilize CMA-ES to optimize the ULOP for two reasons. First, CMA-ES is a
state-of-the-art algorithm for single-objective black-box optimization. Second, optimal solutions to
the LLOPs are not always available; instead, approximate solutions are often obtained. Consequently,
the function values of the approximate solutions may exhibit noise. CMA-ES is suitable for this
task as it demonstrates strong robustness in optimizing noisy functions [41]. In each iteration, m
ULOPs generate the pending LLOPs simultaneously. Then all LLOPs are solved collaboratively by
the MOEA instead of optimizing each LLOP separately. This is because the superiority of MOEAs
is demonstrated empirically and theoretically in solving multi-objective black-box optimization
problems [42, 43].

Table 1: Notation used in Section 3.3.
Symbol Description

τu(τl) Maximum number of iterations for each CMA-ES procedure (the MOEA solving LLOPs).
N N

m
∈ Z; number of generated LLOPs in each iteration of m ULOPs.

P |P | = N ; population of the MOEA for solving N LLOPs.
A |A| = N ; elite archive preserved the current best solutions for N LLOPs.

wi,j The j-th boundary weight vector of the i-th objective.

Stopping Criteria and Reference Points. The maximal number of iterations is employed as the
stopping criterion for the ULOP as well as the LLOP. We use τu and τl to denote the maximum
number of iterations for the ULOP and the LLOP respectively. zr1 is set to the current best objective
function values. zr2 is constructed by the current best objective function values of m ULOPs. Initially,
EC-NSGA-II [22] runs for τl iterations. The minimum and maximum objective function values of its
final population determine the settings of zr1 and zr2. Then zr1 is updated once a new solution is
generated. zr2 is only renewed when the parameters of CMA-ES update. During the optimization
process, zr1 and zr2 iteratively approximate zide and znad respectively.

Upper-Level Optimization. m ULOPs represents m CMA-ES procedures. Let ι = N
m − 1. The

population size of each CMA-ES procedure is ι. That is, (N −m) boundary weight vectors are used
to align with the eligible ones and evenly assigned to m objectives. Let {wi,j , j = 1, . . . , ι} denote
the set of adjustable boundary weight vectors for the i-th objective. Initially, most of them are sampled
from the initial distribution of the CMA-ES procedure. The sampled points may need to be repaired
to satisfy the constraints in the ULOP. For each objective, one boundary weight vector is initialized
to the vector with (m − 1) elements being 1

m−1 (e.g.,
(
0, 1

2 ,
1
2

)⊺
). The remaining m ones, which

are m different unit vectors, are fixed throughout the optimization of m BLOPs. The LLOPs with
these m boundary weight vectors can motivate the search of zide. Besides, they enhance population
diversity when the adjustable boundary subproblems become similar. When LLOPs are stopped, the
parameters of each CMA-ES procedure are updated first according to the ι boundary weight vectors.
Let xi,j ∈ A be the best solution so far for the subproblem with wi,j , and then the fitness of wi,j is
defined as

(
fi
(
xi,j
)
− ϵd

(
wi,j ,xi,j

))
. Note that some boundary weight vectors, such as repaired

ones, might not be directly generated from the current distribution of the CMA-ES procedure. These
injected solutions should obey the injection rule [44, 45]. Subsequently, the boundary weight vectors
of the i-th objective are updated as follows:

Step 1 W ← {wi,j , j = 1, . . . , ι} and then delete ⌊ ι2⌋ the worst boundary weight vector in W .

Step 2 Transform the best one in W according to Eq. (10).
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Step 3 Create ⌊ ι2⌋ new ones via the i-th CMA-ES procedure and integrate them into W .

The updated zr2 may substantially alter the normalized space in Eq. (9), potentially changing the
optimal solution to the LLOP. As Theorem 6 reports, Step 2 can effectively preserve the best solution
for the LLOP, irrespective of changes in the normalized space. Particularly, in the last iteration of the
ULOP (i.e., the τu-th iteration), wi,1, . . . ,wi,ι are all changed to the boundary weight vector with
the best fitness for i = 1, . . . ,m. More computational resources are allocated to the i-th objective’s
current best LLOP in the final iteration. It helps to obtain a better approximation for these m LLOPs.

Lower-Level Optimization. N LLOPs are optimized by an MOEA with population size N . An
evolutionary algorithm executes solution reproduction and environmental selection iteratively. The
reproduction procedure of the proposed MOEA includes two steps:

Step 1 Use binary tournament selection based on π to obtain the mating pool from P .
Step 2 Apply reproduction operators to create an offspring set of size N (denoted as O).

π is a utility vector including utility values of solutions in P . A solution with a lower utility value is
more likely to enter the mating pool. The selection procedure is performed as follows:

Step 1 Calculate r =
(
r1, . . . , r|P∪O|

)⊺
for P ∪O.

Step 2 Select the smallest N elements of r and their corresponding solutions for the new π and
the new generation of P , respectively.

Step 3 Identify the best solutions for the N subproblems from P ∪O for the new generation of A.

Given a decision vector xk ∈ P ∪O, we let Rk
i,j be the ascending rank of gbdni (xk|wi,j , zr1, zr2, α)

within
{
gbdni (x|wi,j , zr1, zr2, α) | x ∈ P ∪O

}
. rk is formulated as rk = min(i,j)∈I{Rk

i,j} where
I = {(i, j)|i = 1 . . . ,m, j = 1, . . . , ι}. xk with a smaller rk implies a higher quality.

4 Experimental Studies

4.1 Experimental Setup

Instances. We proposed 4 scalable test problems denoted as TN1-TN4. The feasible objective regions
of TN1 and TN2 are shown in Figure 2a and Figure 2e. The PF of TN1 is a (m− 1)-dimensional
simplex. TN2 has a concave PF constructed by two (m− 1)-dimensional simplices. TN3 and TN4
are the modified versions of TN1 and TN2 respectively. Their objective functions have different
value ranges. Details of TN1-TN4 are available in Appendix B. Moreover, we select problems with
different shapes of feasible objective regions, including 6 existing test problems [46, 47, 48, 49]
(DTLZ3, mDTLZ3, MaF2, DTLZ5, IMOP4, and IMOP6) and 4 real-world problems [50, 51, 52]
(MP-DMP, ML-DMP, RE3-4-7, and RE5-3-1). We consider test problems with 3, 5, and 8 objectives,
which accordingly have 8, 12, and 16 variables. The PF s of RE3-4-7 and RE5-3-1 are unknown and
represented by their current best solution sets.

Table 2: General algorithm settings.

m N FEmax Operator

3 60 180,000
SBX+PM

[53]
5 100 300,000
8 160 480,000

Comparison Algorithms2. BDNE is compared with 2 rep-
resentative heuristic algorithms for black-box MOPs: ECR-
NSGA-II [54] (based on SF1) and DNPE [34] (based on EP6).
ECR-NSGA-II is parameter-free. DNPE is configured accord-
ing to the corresponding reference (i.e., λ = 100). For BDNE,
we set µ = 100 and τl = 200. Then τu = 14 according to
the setting of τl and FEmax. The general algorithm settings
are summarized in Table 2, where FEmax means maximum
number of function evaluations. Each algorithm is executed 30 times on each instance. Additionally,
the computer resources and algorithm runtimes can be found in Appendix C.

Performance Metric. The estimated nadir objective vector is extracted by Eq. (2) where S is the
final population. Let ẑnadi be the estimated nadir objective vector. The error metric value is computed

by E =

√∑m
i=1

(
(znadi − ẑnadi )/(znadi − zidei )

)2
. The result table records the mean metric value

2The source code is available at https://github.com/EricZheng1024/BDNE.
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Table 3: Comparisons of error metric values among ECR-NSGA-II, DNPE, and BDNE.
Problem m ECR-NSGA-II ∆ DNPE ∆ BDNE

TN1
3 2.23±1.36(3)- -2.23 0.203±1.58e-07(2)- -0.203 3.14e-16±6.65e-16(1)
5 5.28±2.11(3)- -5.28 0.171±1.12e-06(2)- -0.171 0.000273±0.000741(1)
8 12.7±1.05(3)- -12.7 0.168±4.15e-06(2)- -0.146 0.0221±0.0331(1)

TN2
3 1.46±0.949(3)- -1.46 0.223±3.54e-07(2)- -0.223 0.000172±0.000535(1)
5 4.77±1.91(3)- -4.77 0.333±4.86e-10(2)- -0.325 0.00803±0.0233(1)
8 12.2±0.843(3)- -12.2 0.333±3.96e-10(2)- -0.315 0.0185±0.0204(1)

TN3
3 2.15±1.43(3)- -2.15 0.263±4.02e-08(2)- -0.263 2.39e-16±2.32e-16(1)
5 4.7±1.77(3)- -4.69 0.263±1.85e-08(2)- -0.262 0.000669±0.00203(1)
8 12.7±0.718(3)- -12.7 0.263±1.2e-08(2)- -0.243 0.0195±0.0263(1)

TN4
3 1.35±0.88(3)- -1.35 0.337±4.04e-08(2)- -0.337 4.92e-05±5.59e-05(1)
5 5.34±2.17(3)- -5.34 0.337±1.9e-08(2)- -0.335 0.00208±0.00422(1)
8 12.3±0.951(3)- -12.3 0.337±1.42e-08(2)- -0.31 0.0268±0.031(1)

DTLZ2
3 0.00268±0.00277(3)- -0.00268 4.29e-10±3.33e-10(2)- -2.48e-10 1.81e-10±2.82e-10(1)
5 0.0269±0.0171(3)- -0.0269 6.04e-10±5.2e-10(2)- -4.36e-10 1.68e-10±1.86e-10(1)
8 0.233±0.167(3)- -0.233 5.91e-10±3.86e-10(2)- -2.04e-10 3.87e-10±5.31e-10(1)

mDTLZ2
3 0.171±0.0995(3)- -0.164 0.0209±6.14e-06(2)- -0.0143 0.00658±0.00105(1)
5 0.581±0.116(3)- -0.576 0.0112±9.19e-06(2)- -0.00648 0.0047±0.000487(1)
8 0.826±0.00972(3)- -0.823 0.00859±1.25e-05(2)- -0.005 0.00358±0.00499(1)

MaF2 3 0.0243±0.018(3)- -0.0154 0.00888±2.9e-11(2)- -2.1e-06 0.00888±1.15e-05(1)
DTLZ5 3 0.005±0.00704(3)- -0.005 5.81e-10±4.6e-10(2)- -5.81e-10 1.43e-13±6.6e-13(1)
IMOP4 3 7.69e-05±0.00023(2)- -7.69e-05 0.748±0.0832(3)- -0.748 4.16e-17±1.09e-16(1)
IMOP6 3 0.0139±0.0115(3)- -0.0139 0.00125±2.31e-08(2)- -0.00125 3.2e-15±8.49e-15(1)

MP-DMP
3 0.369±0.168(3)- -0.361 0.23±8.03e-06(2)- -0.222 0.00777±2.85e-05(1)
5 0.357±0.0871(2)- -0.344 0.767±2.17e-06(3)- -0.754 0.0127±4.88e-05(1)

ML-DMP
3 80.8±0.0603(3)- -80.7 0.00699±2.82e-05(1)+ 0.00917 0.0162±8.56e-05(2)
5 85.1±7.01(3)- -85.1 0.561±5.76e-06(2)- -0.521 0.0397±0.072(1)

RE3-4-7 3 0.133±0.00299(2)- -0.0538 0.545±2.61e-06(3)- -0.466 0.0787±0.00862(1)
CRE5-3-1 5 24.8±61.9(3)= -24.6 0.191±7.18e-08(1)+ 8.58e-08 0.191±9.99e-09(2)†

Total +/=/- 0/1/27 2/0/26 \
Average rank 2.8929(3) 2.0357(2) 1.0714(1)
† The approximate PF may be the reason for the large error on CRE5-3-1 since the results of DNPE and

BDNE are similar.

and the standard deviation across all runs for each instance. The performance rank on each instance
is inside parentheses. “+”, “=” or “-” denotes that the performance of the corresponding algorithm is
statistically better than, similar to, or worse than that of BDNE based on Wilcoxon’s rank sum test at
0.05 significant level. “∆” indicates the gap between the mean metric value of the corresponding
algorithm and that of BDNE. The best mean metric values are also emphasized.

4.2 Results

Table 3 shows the statistical results on 28 instances. Across most instances, BDNE outperforms the
other algorithms and has mean metric values below 5%. In Figure 2, we can see that BDNE accurately
approximates at least one critical point for each objective, consistent with our theoretical analysis.
DNPE ranks second. DNPE has competitive results on MaF2, DTLZ5, DTLZ2, mDTLZ2, IMOP6,
3-objective ML-DMP, and CRE5-3-1. We can infer that the extreme points determined by DNPE are
very close to the critical points of these MOPs. Nevertheless, the performance of DNPE deteriorates
on other instances. Besides, comparing the results between TN1 and TN3, value ranges of objective
functions significantly impact DNPE but hardly affect BDNE. ECR-NSGA-II achieves the worst
overall performance. Moreover, it has large standard deviations on many instances, which indicates
its highly unstable performance. This is because ECR-NSGA-II suffers from dominance-resistant
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(a) TN1 (b) TN1 (c) TN1 (d) TN1

(e) TN2 (f) TN2 (g) TN2 (h) TN2

Figure 2: Plots of the final solution sets with median error metric values.

solutions. For example, ECR-NSGA-II retains solutions close to the WPB in Figure 2b and Figure 2f.
Each of these solutions has at least one inferior objective function value.

In general, the two algorithms have huge performance gaps compared with BDNE. The effectiveness
and superiority of BDNE are demonstrated. More experiments are presented in Appendix E.

5 Conclusion, Limitation, and Future Work

Conclusion. In this paper, we have revealed the deficiency of existing methods in estimating the nadir
objective vector. Specifically, exact methods suffer from limited applicability and high computational
costs, while the irregular PF and the WPB can cause significant challenges for heuristic methods.
We have proposed a new scalarization method, which can define specific boundary subproblems
to find the nadir objective vector under mild conditions. We have formulated m BLOPs using
boundary subproblems and designed a corresponding algorithm framework called BDNE. We have
also conducted experimental studies to validate the effectiveness of BDNE. In experiments, BDNE
adopts evolutionary algorithms and effectively approximates the nadir objective vectors of various
black-box MOPs.

Limitation and Future Work. The estimated nadir objective vector can be obtained beforehand or
improved with the optimization process. In the paper, we present BDNE as an independent algorithm
(i.e., estimate the nadir objective vector beforehand). In the future, we will investigate how to integrate
BDNE into the iteration of an algorithm to enhance its overall performance (see Appendix E.4 for
some pilot studies). Furthermore, BDNE has been implemented in a general manner. We plan to
refine BDNE for specific applications, including multi-objective discrete optimization problems.
Potential societal impacts can be found in Appendix D.
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This is an appendix for “Boundary Decomposition for Nadir Objective Vector Estimation”. Specifi-
cally, we provide:

• Detailed analyses of heuristic methods (Appendix A);
• Mathematical models of the proposed benchmark problems, i.e., TN1-TN4 (Appendix B);
• The computational environment, algorithm runtimes, and the complexity analysis of BDNE

(Appendix C);
• The potential societal impact of this work (Appendix D);
• More experimental results and analyses including ablation studies, the impact of µ, and the

comparison with other heuristic methods (Appendix E);
• Properties of the cone domination and proofs of theorems and corollaries (Appendix F).

A Deficiencies of Heuristic Methods

Existing heuristic methods for the nadir objective vector estimation can be divided into two cate-
gories [15]: 1) straightforward methods and 2) extreme-point-based methods. We use an example PF
to illustrate the drawbacks of heuristic methods in estimating the nadir objective vector. As shown in
Figure 3, the PF consists of two triangles and is concave. We uniformly sample 225 points along
the PF in order to include sufficient critical points. We use these sampled points as each method’s
population and test its performance in estimating the nadir objective vector.

The experimental results are summarized in Table 4 and plotted in Figure 4. We can observe from
Table 4 that all methods incorrectly estimate the nadir objective vector. Specifically, Figure 4 show
that all methods except for SF4 acquire the critical points of f1 and f2 but miss that of f3. As shown
in Figure 3, the critical point of f3 is distant from every axis and thereby difficult to obtain by these
methods.

(a) Detailed information (b) Another perspective

Figure 3: Illustrations of an example PF . The critical points of f1 are convex combinations of
(1, 0, 1)⊺ and (1, 1, 0)⊺. The critical points of f2 are convex combinations of (0, 1, 1)⊺ and (1, 1, 0)⊺.
The critical point of f3 is (0.9, 0.7, 1.5)⊺. The nadir objective vector is (1, 1, 1.5)⊺.
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Table 4: Estimated nadir objective vectors of existing heuristic methods. The nadir objective vector
is (1, 1, 1.5)⊺. “SFx” denotes the straightforward method; “EPx” denotes the extreme-point-based
method. Parameters settings: the minimum number of selected points is set to 10 for SF3 and SF4; λ
in EP6 is set to 100.

Method Result

SF2 [24] (1, 1, 1.14)⊺

SF3 [25] (1, 1, 1)⊺

SF4 [26] (0.88, 0.96, 1.2)⊺

EP1 [29] (1, 1, 1)⊺

EP2 [28] (1, 1, 1)⊺

EP3 (L2) [31]
(L∞) [32]

(1, 1, 1.18)⊺

(1, 1, 1.39)⊺

EP4 [33] (1, 1, 1.18)⊺

EP5 [9] (1, 1, 1.39)⊺

EP6 [34] (1, 1, 1.18)⊺

(a) Sampled points (b) SF2 (c) SF3

(d) SF4 (e) EP1 or EP2 (f) EP3 (L2)

(g) EP3 (L∞) or EP5 (h) EP4 (i) EP6

Figure 4: Illustrations of selected points obtained by existing heuristic methods.
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B Test Problem with Adjustable Critical Points

B.1 Test Problem Generator

The existing test problems [55] can not have various critical points. Many test problems share similar
(or even identical) nadir objective vector configurations. For example, most problems of DTLZ [46]
and WFG [56] are constructed from the unit simplex (i.e., equilateral triangle). The critical points of
the unit simplex are its vertices. We design two problem generators that have controllable critical
points.

Each objective function of the proposed test problem generators takes the following form

fi(x) = sihi(xI)(1 + gi(xII)), (13)

where si is a constant such that different objectives can have different ranges of values; x ∈
Ω = [0, 1]n ⊂ Rn, and xI = (x1, . . . , xm)⊺ and xII = (xm+1, . . . , xn)

⊺ are subvectors of x.
gi(xII) ≥ 0 is called the distance function, which specifies as

gi(xII) = 10 ·
∑
j∈Ji

(xj − 0.3)2,

Ji =

{
m+ i, 2m+ i, . . . ,

⌊
n− i

m

⌋
m+ i

}
.

(14)

hi(xI) is termed as the position function, which determines the shape of the PF .

B.1.1 Generator 1

The PF is a simplex. Firstly, we define y(xI) : [0, 1]m → [0, 1]m as a base. It returns an m-
dimensional vector (y1, . . . , ym)⊺ as follows

yi =
xi

m∑
j=1

xj

for i = 1, . . . ,m. (15)

{y(xI)|xI ∈ [0, 1]m} is an (m − 1)-dimensional unit simplex. Then the position function value
vector is calculated by

h(xI) = V y(xI), (16)
where V = [v1, . . . ,vm] determines vertices of the PF . When s = (1, . . . , 1)⊺, vi is a vertex of the
PF . Any vi should be non-dominated. V is the particular parameter to be specified. The critical
points depend on the settings of V .

B.1.2 Generator 2

The PF is two adjacent simplices. We modify the base of Generator 1 to

yi =



xi

2xm+
m−1∑
j=1

xj

, i = 1, . . . ,m− 1 ∧ xm ≤ 0.5,

xi

2(1−xm)+
m−1∑
j=1

xj

, i=1, . . . ,m−1 ∧ xm>0.5,

2xi

2xm+
m−1∑
j=1

xj

, i = m ∧ xm ≤ 0.5,

2(1−xi)

2(1−xm)+
m−1∑
j=1

xj

, i = m ∧ xm > 0.5.

(17)

Letting
uj > 1, j = 3,

uj < 1, j ̸= 3,
(18)

and

vij =

{
1, j ̸= i,

0, j = i,
(19)
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the position function value vector is

h(xI) =

{
V y(xI), xm ≤ 0.5,

V ′y(xI), xm > 0.5,
(20)

where
V = [v1,u,v5, . . . ,vm,v2],

V ′ = [v1,u,v5, . . . ,vm,v4].
(21)

The PF of this generator consists of two simplices. Assume that s = (1, . . . , 1)⊺. The vertices of
two simplices are the column vectors of V and V ′ respectively. The difference between V and V ′ is
the last column. That is to say, two simplices share many common edges and they are adjacent. u is
the particular parameter to be specified. The unique critical point of f3 is u. The critical points of
other objectives are the same as the inverted unit simplex whose objective vectors on any edge are
critical points.

(a) Detailed illustration (b) Other perspectives

Figure 5: The feasible objective region of 3-objective TN1.

(a) Detailed illustration (b) Other perspectives

Figure 6: The feasible objective region of 3-objective TN2.

B.2 Proposed Test Problems

We use the proposed test problem generators to obtain 4 scalable MOPs denoted as TN1-TN4. We
first specify 1 matrix and 3 vectors:

•

(V1)ij =


0, if i = j,

1.2, if i = 2 ∧ j = 1,

0.8, if (i = 1 ∨ i = 3) ∧ j = 2,

1, otherwise;

(22)

• s1 = (1, . . . , 1)⊺;

• if m = 3, s2 = (1, 100, 10000)⊺; otherwise, s2 = (1, 100, 10000, 1, . . . , 1)⊺;

• if m = 3, u1 = (0.9, 0.7, 1.5)⊺; otherwise, u1 = (0.9, 0.7, 1.5, 0.9, . . . , 0.9)⊺.
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Then the test problems are summarized in Table 5. We can find that V1 is obtained by modifying
such matrix: an m ×m square matrix with zeros on the main diagonal and ones elsewhere. This
matrix implies that the PF is an inverted unit simplex whose objective vectors on any edge are
critical points (e.g., mDTLZ1 [48]). The modified vertices are the first and the second ones and the
modification performs across f1 to f3. Consequently, the critical points of f1, f2, and f3 are some
vertices only. For example, we show the feasible objective region of the 3-objective TN1 in Figure 5.
Vertices (0, 1.2, 1)⊺ and (1, 1, 0)⊺ are the only critical points. TN2 is the specification of the studied
case in Section 2. More specifically, as illustrated in Figure 6, we can find that the critical point
of f3 is unsupported (i.e., there exists convex combinations of objective vectors that dominate the
critical point [57]), making the PF exhibit a concave shape. Besides, the critical point of f3 is distant
from all axes and not optimal for any objective. TN3 and TN4 are extended from TN1 and TN2
respectively. They have huge magnitude differences between some objective functions.

Table 5: Parameter settings of TN1-TN4.
Problem Generator Parameters Nadir objective vector

TN1 1 s = s1, V = V1 (1, 1.2, 1, . . . , 1)⊺

TN3 2 s = s1,u = u1 (1, 1, 1.5, 1, . . . , 1)⊺

TN3 1 s = s2, V = V1 (1, 120, 10000, 1, . . . , 1)⊺

TN4 2 s = s2,u = u1 (1, 100, 15000, 1, . . . , 1)⊺

Figure 5 and Figure 6 also indicate these 4 problems process the WPB. The WPB has evident
dominance resistance [23]. That is, the objective vectors of the WPB are usually non-dominated in
the population, especially in many objective cases. The reason is that each of them can only improve
k (1 ≤ k ≤ m− 1) objectives to obtain an objective vector dominating it. Thus, they are difficult
to distinguish from the population. The WPB causes the population to suffer poor convergence
and diversity such that the nadir objective vector is hard to estimate. As found in [48], the objective
vectors with k = 1 on the WPB exhibit severe dominance resistance, even when presenting in
3-objective cases. Unfortunately, how to cope with the WPB is still an open question [58].
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C Runtime

In experiments, our codes rely on the MATLAB-based platform called PlatEMO [59], which is
freely available for research purposes (see https://github.com/BIMK/PlatEMO). Experiments
are executed on a computer equipped with two 3.00-GHz Intel Xeon Gold 6248R CPUs (48 cores in
total), an NVIDIA T400 GPU, and 128GB of RAM. We report the runtime for each algorithm on
each instance in Table 6. DNPE exhibits the shortest runtime, followed by ECR-NSGA-II. BDNE
has a longer runtime than these two representative algorithms.

We want to emphasize the runtime for BDNE strongly depends on the implementation (e.g., the
chosen solvers). We adopt an effective selection procedure stated in [60], which can facilitate the
application of BDNE to various problems. The main loop of our BDNE implementation has a time
complexity of O

(
N2 log(N)

)
where N is the population size. The specific analysis is provided as

follows. The reproduction procedure has a time complexity of O(N). The calculation of r governs
the complexity of the selection procedure, which has O

(
N2 log(N)

)
. The adjustment of boundary

weight vectors with O
(
N log

(
N
m

))
is executed periodically. Therefore, The selection procedure

governs the overall complexity, and the main loop has the complexity O
(
N2 log(N)

)
. We can

significantly reduce the complexity by using a simple selection procedure or choosing an alternative
solver, which deserves further investigation.

Table 6: Comparisons of runtimes among ECR-NSGA-II, DNPE, and BDNE.
Problem m ECR-NSGA-II ∆ DNPE ∆ BDNE

TN1
3 10.6±0.335(2)+ 11 7.17±0.46(1)+ 14.5 21.6±0.401(3)
5 15.6±0.512(2)+ 23.4 11.1±0.515(1)+ 27.9 39±0.613(3)
8 31.2±0.641(2)+ 45.5 21.1±0.876(1)+ 55.6 76.7±0.998(3)

TN2
3 9.5±0.259(2)+ 12 7.26±0.342(1)+ 14.2 21.5±0.415(3)
5 16.4±0.44(2)+ 23.4 11.5±0.366(1)+ 28.4 39.9±0.552(3)
8 32.1±0.622(2)+ 45.9 21.7±0.67(1)+ 56.3 77.9±0.836(3)

TN3
3 11.8±0.795(2)+ 14.2 6.31±0.261(1)+ 19.7 26±0.641(3)
5 17.8±1.3(2)+ 26.2 10.8±0.383(1)+ 33.2 43.9±1.02(3)
8 35.1±2.09(2)+ 49.7 20.3±0.531(1)+ 64.4 84.7±1.77(3)

TN4
3 11±0.748(2)+ 13.2 7.02±0.344(1)+ 17.2 24.2±0.564(3)
5 18.6±1.23(2)+ 25.5 11.5±0.408(1)+ 32.7 44.1±0.733(3)
8 35.9±2.28(2)+ 35 21.2±0.678(1)+ 49.7 70.9±0.738(3)

DTLZ2
3 7.29±0.171(2)+ 12.8 4.05±0.235(1)+ 16.1 20.1±0.474(3)
5 10.8±0.168(2)+ 25.8 5.43±0.23(1)+ 31.2 36.7±0.551(3)
8 16.9±0.318(2)+ 53.4 8.62±0.3(1)+ 61.7 70.3±1(3)

mDTLZ2
3 9.8±0.204(2)+ 13.2 6.26±0.259(1)+ 16.7 23±0.476(3)
5 17.9±0.286(2)+ 25.2 11±0.409(1)+ 32.1 43.1±0.735(3)
8 35±0.482(2)+ 49.6 21.1±0.712(1)+ 63.4 84.5±1.14(3)

MaF2 3 9.22±0.493(2)+ 12.6 4.35±0.193(1)+ 17.5 21.8±0.453(3)
DTLZ5 3 7.75±0.29(2)+ 13.6 4.21±0.269(1)+ 17.1 21.3±0.354(3)
IMOP4 3 7.73±0.293(2)+ 13.5 4.18±0.218(1)+ 17.1 21.3±1.66(3)
IMOP6 3 7.88±0.315(2)+ 13.8 4.22±0.205(1)+ 17.4 21.7±1.95(3)

MP-DMP
3 7.29±0.173(2)+ 14.2 4.31±0.233(1)+ 17.2 21.5±1.87(3)
5 10.7±0.203(2)+ 25.9 5.01±0.258(1)+ 31.6 36.7±2.96(3)

ML-DMP
3 7.3±0.191(2)+ 14.7 4.54±0.287(1)+ 17.5 22±1.95(3)
5 12.2±0.493(2)+ 28.3 7.75±0.449(1)+ 32.8 40.5±3.28(3)

RE3-4-7 3 11.4±0.412(2)+ 13.6 7.28±0.326(1)+ 17.7 25±2.14(3)
CRE5-3-1 5 17.2±1.59(2)+ 30.7 14.7±0.64(1)+ 33.2 47.9±4.01(3)

Total +/=/- 28/0/0 28/0/0 \
Average rank 2(2) 1(1) 3(3)
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D Potential societal impact

Many real-world problems, such as logistics dispatch, printed-circuit board assembly, efficient
chemical reaction, and Internet of Things service, require simultaneous optimization of multiple
conflicting objectives. The nadir objective vector mainly has two strengths in multi-objective
optimization: 1) it can normalize the objective space together with the ideal objective vector and 2) it
provides a range for decision-makers or algorithms to more easily explore different trade-offs. Our
proposed BDNE is good for better nadir objective vector estimation in terms of theoretical guarantee
and wide applicability. BDNE can be applied to various problems by employing appropriate solvers.
Furthermore, the parameter µ, which indicates the tolerance of decision-makers for trade-offs, could
also be an important component in developing a more user-friendly multi-criteria decision system.

On the downside, relying solely on the nadir objective vector for decision-making can be risky.
Decision-makers should use additional information for a more informed and comprehensive decision.
Moreover, the leakage of the nadir objective vector might inadvertently expose problem information
and user preferences. This is particularly troublesome in certain applications where the confidentiality
of such information is paramount, indicating a need for caution to avoid these situations. In addition,
there is no guarantee that the evolutionary algorithm version can approximate the nadir objective
vector within a desired timeframe. This might delay decision-making processes or lead to decisions
based on incomplete or inadequate information.
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E More Experiments

We conduct a more comprehensive empirical study in this section. We omit comparisons with existing
exact methods, as they are implemented exclusively on the discrete MOP (where the exact solver
is available) and are nearly impossible to apply to other types of MOPs. Nevertheless, we will
propose the implementation of BDNE for the discrete MOP. Audiences can follow our work at
https://github.com/EricZheng1024/BDNE.

E.1 Ablation Studies

We investigate 3 schemes in BDNE. “CFF” denotes the coping strategy for flat fitness (see Section 3.2).
“TBW” denotes the transformation of the best boundary weight vector (see Step 2 of the upper-level
optimization in Section 3.3). “BSU” denotes the boundary subproblems using unit vectors as their
weight vectors (see the upper-level optimization in Section 3.3).

Table 7 presents the experimental results. Removing CFF or TBW merely does not evidently affect
the performance of BDNE. However, the performance deteriorates when both schemes are absent.
Particularly, BDNE without CFF and TBW is less effective on MOPs with complicated feasible
regions, i.e., TN2 and TN4. BDNE outperforms BDNE without BSU across most instances, indicating
that boundary subproblems using unit vectors are important. Overall, the effectiveness of the two
strategies is validated.

Table 7: Comparisons of error metric values among variants of BDNE.
Problem m w/o CFF w/o TBW w/o CFF & TBW w/o BSU BDNE

TN1

3 2.5e-16±2.92e-16(2)= 1.8e-16±1.77e-16(1)= 2.55e-16±2.17e-16(3)= 0.000119±0.00065(5)- 3.14e-16±6.65e-16(4)
5 5.5e-05±0.000113(1)= 0.00277±0.00965(4)= 0.00164±0.00528(3)= 0.0132±0.0374(5)- 0.000273±0.000741(2)
8 0.0208±0.0557(3)= 0.0192±0.0369(2)= 0.0141±0.0184(1)= 0.0398±0.0403(5)- 0.0221±0.0331(4)

TN2

3 0.00016±0.000351(1)= 0.000783±0.00195(4)= 0.000494±0.000865(3)- 0.00548±0.0137(5)= 0.000172±0.000535(2)
5 0.0106±0.0375(5)= 0.00624±0.00912(1)= 0.0103±0.0157(4)- 0.00776±0.0124(2)+ 0.00803±0.0233(3)
8 0.0351±0.0377(5)= 0.0308±0.0283(4)= 0.0259±0.0284(2)= 0.0287±0.0406(3)= 0.0185±0.0204(1)

TN3

3 3.28e-16±3.52e-16(4)= 2.37e-16±1.77e-16(1)= 2.97e-16±4.53e-16(3)= 0.00217±0.00995(5)- 2.39e-16±2.32e-16(2)
5 0.000616±0.00235(2)= 0.000568±0.00271(1)= 0.000735±0.00228(4)= 0.0108±0.0178(5)- 0.000669±0.00203(3)
8 0.0192±0.0401(3)= 0.0175±0.0211(2)= 0.0168±0.0375(1)= 0.0381±0.0186(5)- 0.0195±0.0263(4)

TN4

3 0.00011±0.000245(2)= 0.000464±0.00106(4)= 0.00017±0.000181(3)- 0.00796±0.0225(5)= 4.92e-05±5.59e-05(1)
5 0.00288±0.0054(2)= 0.00724±0.0134(4)- 0.00696±0.0119(3)- 0.0158±0.0416(5)- 0.00208±0.00422(1)
8 0.0253±0.0335(3)= 0.0227±0.0248(1)= 0.047±0.0667(5)= 0.0237±0.023(2)= 0.0268±0.031(4)

DTLZ2

3 1.07e-10±1.23e-10(3)= 2.49e-10±2.36e-10(5)= 8.82e-11±9.94e-11(2)+ 2.2e-12±5.39e-13(1)+ 1.81e-10±2.82e-10(4)
5 1.49e-10±1.94e-10(3)= 1.03e-10±1.84e-10(1)= 1.26e-10±1.4e-10(2)= 0.000572±0.00166(5)- 1.68e-10±1.86e-10(4)
8 5.38e-10±5.58e-10(3)= 4.39e-10±3.99e-10(2)= 0.0667±0.254(5)= 0.000282±0.00139(4)= 3.87e-10±5.31e-10(1)

mDTLZ2

3 0.0059±0.000825(1)+ 0.00641±0.000891(3)= 0.00622±0.000821(2)= 0.00983±0.00271(5)- 0.00658±0.00105(4)
5 0.00461±0.000966(2)= 0.00479±0.000575(4)= 0.00458±0.000553(1)= 0.0182±0.0125(5)- 0.0047±0.000487(3)
8 0.00281±0.00326(1)= 0.00578±0.00696(4)= 0.00363±0.00375(3)= 0.0282±0.0228(5)- 0.00358±0.00499(2)

MaF2 3 0.00888±1.68e-16(4)= 0.00887±8.8e-05(1)= 0.00888±1.22e-16(3)- 0.0089±0.000103(5)= 0.00888±1.15e-05(2)
DTLZ5 3 2.78e-15±7.93e-15(1)+ 2.38e-13±7.53e-13(4)= 4.6e-14±2.41e-13(2)+ 4.43e-13±1.83e-12(5)= 1.43e-13±6.6e-13(3)
IMOP4 3 1.66e-17±6.3e-17(1)= 1.94e-17±7.46e-17(2)= 8.12e-17±2.97e-16(4)= 0.000167±0.000917(5)= 4.16e-17±1.09e-16(3)
IMOP6 3 3.66e-13±1.69e-12(2)- 1.09e-12±5.21e-12(3)= 2.16e-07±1.18e-06(4)- 1.72e-05±8.13e-05(5)- 3.2e-15±8.49e-15(1)

MP-DMP
3 0.00778±5.07e-05(2)= 0.00779±7.8e-05(3)= 0.0078±0.000217(4)= 0.051±0.221(5)= 0.00777±2.85e-05(1)
5 0.0128±0.000129(4)= 0.0127±0.000116(3)= 0.0127±0.000135(2)= 0.0387±0.082(5)= 0.0127±4.88e-05(1)

ML-DMP
3 0.0162±7.43e-05(3)= 0.0161±3.15e-05(1)= 0.0162±0.000139(5)= 0.0162±4.45e-05(2)= 0.0162±8.56e-05(4)
5 0.0452±0.0563(3)= 0.0358±0.09(1)+ 0.0577±0.116(4)- 0.0822±0.171(5)= 0.0397±0.072(2)

RE3-4-7 3 0.0803±0.00633(4)= 0.0798±0.00868(3)= 0.0775±0.01(1)= 0.0815±0.014(5)= 0.0787±0.00862(2)
CRE5-3-1 5 0.191±2.15e-08(2)= 0.191±1.12e-08(4)= 0.191±3.92e-08(1)= 0.191±0.000559(5)- 0.191±9.99e-09(3)

Total +/=/- 2/25/1 1/26/1 2/19/7 2/13/13 \
Average rank 2.5714(2) 2.6071(3) 2.8571(4) 4.4286(5) 2.5357(1)

E.2 Impact of µ and τu

We investigate the impact of parameters in BDNE. Recall that µ is the user-defined upper bound of the
trade-off, and τu denotes the maximum number of iterations involved in the upper-level optimization.

The Pareto-optimal objective vector, situated on the boundary of a convex PF , usually has a
substantially higher value of M (see Definition 10) than that in the central region. We test BDNE with
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different settings of µ on mDTLZ2, since this problem has a convex PF and thus effectively discloses
the impact of µ. We consider 6 values for µ: 1, 20, 40, 60, 80, and 100. We find that the estimated
nadir objective vector is dominated by the exact one on every instance. We introduce another metric,
representing the distance between the estimated nadir objective vector and the ideal objective vector.

This metric is defined as E′ =

√∑m
i=1

(
(ẑnadi − zidei )/(znadi − zidei )

)2
. Figure 7 further illustrate

this observation, plotting the means of E and E′. Consistently, the obtained nadir objective vector
deviates from the exact nadir objective vector and moves closer to the ideal objective vector, as
the value of µ decreases. A smaller µ implies that decision-makers have a stricter requirement for
preferred solutions, resulting in a smaller set of preferred solutions. Accordingly, the promising
region becomes more refined and the estimated nadir objective vector is getting farther away from the
exact one.
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Figure 7: Results of different µ settings on mDTLZ2.

Different MOPs have different difficulties in estimating the nadir objective vector. To clearly show
the effects of τu, we employ TN4, which possesses a complicated feasible objective region. Figure 8
plots the results. The value for τu begins at 2, increases by 2, and ends at 18, while τl remains 200.
The runtime is getting shorter as the value of τu decreases, which is straightforward. Besides, the
relationship between the runtime and τu is linear. The curve of E versus τu exhibits a declining trend
with intermittent fluctuations. Generally, the error is getting smaller (or the accuracy is getting higher)
as the value of τu increases. The fluctuations occur because the lower-level optimization algorithm
is stochastic (i.e., it does not guarantee the attainment of a Pareto-optimal solution within a finite
number of iterations).
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Figure 8: Results of different τu settings on TN4.
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E.3 Comparison with Other Heuristic Methods

In previous sections, we employ theoretical analysis, illustrative examples, and experimental com-
parisons with two representative baseline methods to demonstrate the advantage of BDNE over the
existing heuristic ones. To more comprehensively validate the effectiveness of BDNE, we present
the experimental results comparing our method with the remaining heuristic methods in Table 8.
The majority of heuristic methods cannot surpass our method on any instance, while our method
significantly outperforms them on most instances. Table 9 shows the detailed results of the methods
having better performance than BDNE on some instances. Although EP1 achieves lower errors on
9 instances, the gaps are relatively small (∆ < 0.03). In contrast, BDNE has remarkably better
performance than EP1 on many instances. For example, ∆ < −0.3 on TN4 and TN4; ∆ < −1.5
on 5- and 8-objective DTLZ2; ∆ < −12 on 5-objective ML-DMP. For EP4, the better result only
appears on 3-objective ML-DMP, and the gap is very small (∆ < 10−4). EP4 shows poor results on
the rest of the instances. We can conclude that our method still outperforms other heuristic methods.

Table 8: Overall comparisons of error metric values between other heuristic methods and BDNE.
SF2 SF3 SF4 EP1 EP2 EP3 EP4 EP5 BDNE

Total +/=/- 0/0/28 0/0/28 0/0/28 9/3/16 0/0/28 0/2/26 1/2/25 0/1/27 \
Average rank 6.1786(6) 6.4286(7) 4.4286(3) 2.7143(2) 7.9286(9) 4.6429(5) 4.4643(4) 6.75(8) 1.4643(1)

Table 9: Comparisons of error metric values among EP1, EP4, and BDNE.
Problem m EP1 ∆ EP4 ∆ BDNE

TN1
3 1.71e-15±3.33e-15(2)= -1.39e-15 0.373±0.39(6)- -0.373 3.14e-16±6.65e-16(1)
5 4.32e-17±2.04e-16(1)+ 0.000273 0.263±0.152(5)- -0.263 0.000273±0.000741(2)
8 4.44e-17±2.05e-16(1)+ 0.0221 0.227±0.106(3)- -0.205 0.0221±0.0331(2)

TN2
3 0.333±0(4)- -0.333 0.437±0.246(6)- -0.437 0.000172±0.000535(1)
5 0.333±0(3)- -0.325 0.454±0.169(6)- -0.446 0.00803±0.0233(1)
8 0.336±0.0151(2)- -0.318 0.36±0.0728(4)- -0.341 0.0185±0.0204(1)

TN3
3 6.39e-16±9.85e-16(2)= -4e-16 0.274±0.23(6)- -0.274 2.39e-16±2.32e-16(1)
5 5.28e-17±1.73e-16(1)+ 0.000669 0.221±0.115(4)- -0.22 0.000669±0.00203(2)
8 4.44e-17±1.69e-16(1)+ 0.0195 0.258±0.175(3)- -0.238 0.0195±0.0263(2)

TN4
3 0.333±0(4)- -0.333 0.409±0.14(6)- -0.409 4.92e-05±5.59e-05(1)
5 0.333±0(3)- -0.331 0.467±0.281(6)- -0.465 0.00208±0.00422(1)
8 0.333±6.39e-16(2)- -0.306 0.382±0.097(4)- -0.356 0.0268±0.031(1)

DTLZ2
3 4.55e-12±1.06e-11(1)+ 1.77e-10 2.33e-06±1.16e-05(4)- -2.33e-06 1.81e-10±2.82e-10(2)
5 1.67±0.138(7)- -1.67 0.00127±0.00241(3)= -0.00127 1.68e-10±1.86e-10(1)
8 2.38±0.101(7)- -2.38 0.0242±0.0147(3)- -0.0242 3.87e-10±5.31e-10(1)

mDTLZ2
3 0.000623±0.00198(1)+ 0.00596 0.0405±0.0439(5)- -0.0339 0.00658±0.00105(2)
5 0.00155±0.00409(1)+ 0.00314 0.044±0.0261(4)- -0.0393 0.0047±0.000487(2)
8 0.00279±0.0105(1)+ 0.000798 0.0387±0.0295(3)- -0.0352 0.00358±0.00499(2)

MaF2 3 0.643±0.215(6)- -0.635 0.0147±0.0105(2)= -0.00577 0.00888±1.15e-05(1)
DTLZ5 3 3.23e-10±2.71e-10(2)- -3.23e-10 0.582±0.556(4)- -0.582 1.43e-13±6.6e-13(1)
IMOP4 3 8.74e-12±2.19e-11(2)- -8.74e-12 0.949±0.00159(6)- -0.949 4.16e-17±1.09e-16(1)
IMOP6 3 5.77e-07±3.16e-06(2)- -5.77e-07 0.13±0.337(5)- -0.13 3.2e-15±8.49e-15(1)

MP-DMP
3 0.00776±8.4e-06(1)= 1.13e-05 0.219±0.0119(7)- -0.211 0.00777±2.85e-05(2)
5 0.0167±0.0218(2)- -0.00405 0.849±0.0715(6)- -0.836 0.0127±4.88e-05(1)

ML-DMP
3 1.21±1.04(7)- -1.19 0.0161±3.28e-05(1)+ 3.9e-05 0.0162±8.56e-05(4)
5 12.9±11(7)- -12.8 0.547±0.0867(2)- -0.507 0.0397±0.072(1)

RE3-4-7 3 0.148±3.47e-06(2)- -0.0692 0.616±0.0117(6)- -0.537 0.0787±0.00862(1)
CRE5-3-1 5 0.19±0.00396(1)+ 0.000722 1.25±0.0455(5)- -1.06 0.191±9.99e-09(2)

Total +/=/- 9/3/16 1/2/25 \
Average rank 2.7143(2) 4.4643(4) 1.4643(1)
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E.4 Pilot Studies on Integrating BDNE in Algorithm Iteration

We present BDNE as an independent algorithm in this paper. This subsection provides initial
investigations about integrating BDNE into the iteration of an algorithm. We select the MOEA to
conduct experimental studies and propose two simple implementations. First, we replace the nadir
objective vector estimation method of an MOEA with ours and denote the variant as “V1”. We define
the promising region as the dominating region of the estimated nadir objective vector. Then V1 is
further improved by focusing the search within the promising region. Specifically, in the environment
selection of each iteration, the objective vector outside the promising region is considered to have a
worse fitness value than the one inside. The improved version of V1 is termed “V2”. We consider
two famous MOEAs: MOEA/D [42] and NSGA-III [32]. The population size of the BDNE is set
to 12, whereas the population size of the MOEA is set to 91. The number of function evaluations
is consistent with the original settings, i.e., 180,000. The MOEA and its improved versions use the
same function evaluation budget. V1 or V2 consumes 12 additional function evaluations for nadir
objective vector estimation in each iteration, and as a result, it uses about 230 fewer iterations than
the original MOEA.

The statistical results of the hypervolume metric [61] are reported in Table 10. The results of
Wilcoxon’s rank sum test are shown by two symbols in {+,=, -} in the cell. The first and second
symbols are the comparison results with V1 and V2, respectively. We begin by analyzing the
comparative results of the MOEA and V1. Both MOEA/D-V1 and NSGA-III-V1 significantly
outperform their original versions, respectively. Besides, MOEA/D-V1 exhibits clearly smaller
standard deviations compared with its original versions (e.g., 0.0106 versus 0.00289), indicating
more stable performance. Analogously, NSGA-III-V1 yields stable performance. These results also
emphasize that inaccurate nadir objective vector estimation can have a significant impact on algorithm
performance. According to the remaining results, V2 of the MOEA has a better performance than V1,
indicating the promising region determined by BDNE is useful for guiding the search. Furthermore,
we find that V2, on average, retains more solutions within the promising region compared with V1.
For MOEA/D, 73 versus 83 on TN1, 46 versus 53 on TN2, 70 versus 84 on TN3, and 48 versus 53
on TN4. For NSGA-III, 30 versus 89 on TN1, 25 versus 67 on TN2, 32 versus 88 on TN3, and 25
versus 66 on TN4. This explains the performance improvement and demonstrates the effectiveness of
the scheme.

In conclusion, our method shows great potential to improve the performance of an algorithm.

Table 10: Comparisons of hypervolume metric values between the MOEA and its improved variants.
Problem MOEA/D V1 V2 NSGA-III V1 V2

TN1 0.387±0.0106(3)- - 0.398±0.00289(2)\- 0.404±0.00369(1)+\ 0.333±0.0209(3)- - 0.377±0.00331(2)\- 0.406±0.00243(1)+\
TN2 0.213±0.0154(3)- - 0.227±0.00234(1)\+ 0.226±0.0217(2)-\ 0.206±0.0166(3)=- 0.207±0.00261(2)\- 0.23±0.00169(1)+\
TN3 0.384±0.0135(3)- - 0.397±0.00475(2)\- 0.404±0.00313(1)+\ 0.34±0.0271(3)- - 0.378±0.00355(2)\- 0.405±0.00176(1)+\
TN4 0.209±0.022(3)- - 0.227±0.00234(2)\- 0.229±0.00145(1)+\ 0.148±0.0298(3)- - 0.209±0.00308(2)\- 0.229±0.00212(1)+\

Total +/=/-
0/0/4 \ 3/0/1 0/1/3 \ 4/0/0
0/0/4 1/0/3 \ 0/0/4 0/0/4 \

Average rank 3(3) 1.75(2) 1.25(1) 3(3) 2(2) 1(1)

E.5 Results on All Problems in the Used Test Suites

In previous experiments, we select the problems with different kinds of feasible objective regions
from several test suites to comprehensively compare the algorithms and avoid showing similar results.
Specifically, we employ 4 new and 6 existing test problems (28 instances in total), including instances
with many objectives (e.g., 5 and 8 objectives cases), weakly Pareto-optimal boundaries (e.g., TN1-
TN4 and mDTLZ3), linear PF s (e.g., TN1 and TN3), convex PF s (e.g., mDTLZ3), concave PF s
(e.g., TN2, TN4, and DTLZ3), irregular PF s (e.g., TN3, TN4, DTLZ5, IMOP4, and IMOP6).

Table 11 summarizes the complete results on all the test problems by showing “Total +/=/-”. DTLZ,
MP-DMP, and ML-DMP are absent in this experiment, as the MaF test suite already covers them.
Besides, IMOP1-IMOP3 are non-scalable 2-objective MOPs, which are also omitted. We can find
that our method outperforms the two representative algorithms on most instances. Table 12 records
the detailed results indicating either of the two algorithms statistically outperforms BDNE, and the
positive gaps in the table are marked. Most of the positive gaps are lower than 0.02, while the absolute
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values of negative gaps can be very large. Besides, BDNE always ranks second on these instances,
exhibiting competitive performance. In short, BDNE still shows its superiority on the three test suites.

Table 11: Overall comparisons of error metric values among ECR-NSGA-II, DNPE, and BDNE on
MaF, mDTLZ, and IMOP test suites.

Problem # instances EC-NSGA-II DNPE BDNE

MaF1-MaF7 21 1/0/20 5/2/14 \
MaF8-MaF9 6 0/0/6 1/0/5 \

MaF10-MaF13 12 5/0/7 0/1/11 \
mDTLZ1-mDTLZ4 12 0/0/12 1/2/9 \

IMOP4-IMOP8 5 0/0/5 0/1/4 \

Average rank 2.5893(3) 2.125(2) 1.2857(1)

Table 12: Comparisons of error metric values among ECR-NSGA-II, DNPE, and BDNE on the three
test suites’ instances where either of the two algorithms outperform BDNE.

Problem m ECR-NSGA-II ∆ DNPE ∆ BDNE

MaF1 8 0.2±0.067(3)- -0.2 2.84e-06±6.48e-09(1)+ 0.000149 0.000151±0.000292(2)
MaF2 8 0.275±0.00607(3)- -0.0805 1.69e-06±3.75e-11(1)+ 0.195 0.195±0.0551(2)
MaF4 3 0.00569±0.0168(1)+ 0.000713 0.0127±0.000421(3)- -0.00627 0.0064±0.000955(2)
MaF4 5 0.133±0.369(3)- -0.129 0.00255±0.000427(1)+ 0.000828 0.00337±0.000761(2)
MaF4 8 0.365±0.342(3)- -0.364 0.000355±0.000114(1)+ 0.00126 0.00161±0.000769(2)
MaF7 3 0.166±0.252(3)- -0.0043 0.0269±0.129(1)+ 0.135 0.162±0.334(2)

MaF10 3 0.00669±7.58e-08(1)+ 0.00674 0.14±6.38e-07(3)- -0.127 0.0134±0.000161(2)
MaF10 5 0.0148±8.51e-08(1)+ 0.0154 0.352±1.35e-06(3)- -0.322 0.0302±0.00333(2)
MaF10 8 0.0298±6.23e-08(1)+ 0.0156 0.694±0.0838(3)- -0.648 0.0454±0.011(2)
MaF11 5 0.0165±0.0175(1)+ 0.0103 0.847±0.00287(3)- -0.82 0.0268±0.00371(2)
MaF11 8 0.0256±0.000378(1)+ 0.051 1.64±0.00821(3)- -1.56 0.0766±0.0145(2)

mDTLZ1 8 711±6.65(3)- -711 9.36e-05±0.000104(1)+ 0.0363 0.0364±0.197(2)
ML-DMP 3 80.8±0.0603(3)- -80.7 0.00699±2.82e-05(1)+ 0.00917 0.0162±8.56e-05(2)
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F Proofs

F.1 Properties of Cone Domination

Property 1 (Reflexivity). ∀u, u ⊀c u.

Proof. Since ũi = ũi for i = 1, . . . ,m, we have u ⊀c u.

Property 2 (Anti-symmetry). If u ≺c v, then v ⊀c u.

Proof. Since u ≺c v, we have ũ ≺ ṽ. Thus, v ⊀c u according to Definition 8.

Property 3 (Transitivity). If t ≺c u and u ≺c v, then t≺cv.

Proof. Since t ≺c u and u ≺c v, we have t̃ ≺ ũ and ũ ≺ ṽ. According to the transitivity of Pareto
domination, t̃ ≺ ṽ. Therefore, t ≺c v.

The three properties imply that cone domination defines a strict partial order.

F.2 Proof of Theorem 1

Proof. Without loss of generality, we let zrj = 0 for j = 1, . . . ,m.

(Sufficiency) Let z∗j ≥ zrj = 0 for at least one j ∈ {1, . . . ,m} \ {i}. We consider an objective vector
z satisfying z∗ ≺ z. We have

∑m
k=1 zk >

∑m
k=1 z

∗
k and then

(1− α)zj +
α

m

m∑
k=1

zk > (1− α)z∗j +
α

m

m∑
k=1

z∗k for every j ∈ {1, . . . ,m}. (23)

Consequently,
wi

j · z̃j = wi
j · z̃∗j = 0, if wi

j = 0,

wi
j · z̃j > wi

j · z̃∗j , if wi
j > 0.

(24)

Since ∃j ∈ {1, . . . ,m} \ {i} such that z̃∗j ≥ 0, we can deduce

max
1≤j≤m

{
wi

j · z̃j
}
> max

1≤j≤m

{
wi

j · z̃∗j
}
≥ 0. (25)

The dominated objective vector can not be optimal for the boundary subproblem. Therefore, the
optimal solution of the boundary subproblem must be Pareto-optimal.

(Necessity) Let z∗ be Pareto-optimal. We suppose that zrj > z̃∗j for each j ∈ {1, . . . ,m} \ {i}.
We consider zj = z∗j + ϵj for j = 1, . . . ,m where ϵj ≥ 0 is a sufficiently small value such that
z̃∗j < z̃j < zrj = 0. Then the following equation holds

max
1≤j≤m

{
wi

j · z̃∗j
}
= max

1≤j≤m

{
wi

j · z̃j
}
= 0, (26)

which indicates that z dominated by z∗ can also be optimal for the boundary subproblem. But this is
a contradiction.

F.3 Proof of Theorem 2

Proof. Without loss of generality, we let zrj = 0 for j = 1, . . . ,m. Since z̃
(i)c

j ≥ zrj for every
j ∈ {1, . . . ,m} \ {i}, we have

max
1≤j≤m

{
wi

j · z̃
(i)c

j

}
= wi

j · z̃
(i)c

j (j ̸= i) ≥ 0. (27)

(Sufficiency) Let z(i)
c

be cone-optimal. We assume that z, rather than z(i)
c

, is the optimal objective
vector to this boundary subproblem. That is,

max
1≤j≤m

{
wi

j · z̃j
}
< max

1≤j≤m

{
wi

j · z̃
(i)c

j

}
. (28)
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Since z ⊀c z(i)
c

and wi
i · z̃

(i)c

i = 0, Eq. (28) implies that z̃(i)
c

i < z̃i and z̃
(i)c

j > z̃j for all
j ∈ {1, . . . ,m} \ {i}. Theorem 1 signifies z is Pareto-optimal, and thus the corresponding objective
function value is larger than that of the critical point (i.e., z(i)

c

i ≥ zi). Based on z̃
(i)c

i < z̃i and
z
(i)c

i ≥ zi, we have
m∑
j=1

z
(i)c

j <

m∑
j=1

zj . (29)

There exists an index l ̸= i such that z(i)
c

l < zl. Therefore,

z
(i)c

l +
α

m

m∑
j=1

z
(i)c

l < zl +
α

m

m∑
j=1

zl, (30)

which means
max

1≤j≤m

{
wi

j · z̃j
}
> wi

l · z̃
(i)c

l = max
1≤j≤m

{
wi

j · z̃
(i)c

j

}
. (31)

This conclusion conflicts with the assumption. z(i)
c

is optimal for this boundary subproblem. Since z
can be arbitrary, z(i)

c

is also the unique optimal objective vector.

(Necessity) Let z(i)
c

uniquely solve the boundary subproblem with

wi
j =


0, j = i,

β

z̃
(i)c

j − zrj
, j ̸= i. (32)

We assume that z cone-dominates z(i)
c

. Then

wi
j · z̃j = wi

j · z̃
(i)c

j = 0, if wi
j = 0,

wi
j · z̃j ≤ wi

j · z̃
(i)c

j , if wi
j > 0.

(33)

Consequently,

max
1≤j≤m

{
wi

j · z̃j
}
≤ max

1≤j≤m

{
wi

j · z̃
(i)c

j

}
, (34)

indicating that z(i)
c

is not uniquely optimal for the boundary subproblem. But this is a contradiction.

F.4 Proof of Corollary 1

Proof. Since the index l in Inequality (30) is not arbitrary, z(i)
c

j should be larger than zrj for j =
1, . . . ,m.

F.5 Proof of Theorem 3

Proof. We first prove that a cone-optimal objective vector is Pareto-optimal. Letting z∗ be a cone-
optimal objective vector and z ∈ {f(x)|x ∈ Ω}, we have

∃k, (1− α)(z∗k − zk) +
α

m

 m∑
j=1

z∗j −
m∑
j=1

zj

 < 0. (35)

Since

min
1≤j≤m

(z∗j − zj) <
1

m

m∑
j=1

(
z∗j − zj

)
, (36)

then ∃k, z∗k − zk < 0.
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We now prove that α ≤ m
(m−1)M+m holds for a cone-optimal objective vector. Given a Pareto-optimal

objective vector z∗ and an objective vector z ∈ {f(x)|x ∈ Ω}, to make sure that z̃∗ is Pareto-optimal
for each z̃, the following inequality should hold

min
1≤j≤m

z̃∗j − z̃j

=(1− α) min
1≤j≤m

(z∗j − zj) +
α

m

 m∑
j=1

z∗j −
m∑
j=1

zj


<0.

(37)

Since ∃j, z∗j − zj < 0, we have
m∑
j=1

(
z∗j − zj

)
< (m− 1) max

1≤j≤m

(
z∗j − zj

)
. (38)

The Definition 10 is equivalent to a properly Pareto-optimal decision vector x∗ ∈ Ω satisfying that
max

1≤j≤m
fj(x

∗)− fj(x)

max
1≤j≤m

fj(x)− fj(x∗)
≤M <∞ (39)

where x ∈ Ω and max1≤j≤m fj(x)− fj(x
∗) > 0. According to Inequalities (38) and (39), we have

α

m

 m∑
j=1

z∗j −
m∑
j=1

zj

 <
(m− 1)α

m
max

1≤j≤m

(
z∗j − zj

)
≤ (m− 1)αM

m
max

1≤j≤m

(
zj − z∗j

)
. (40)

Then

(1− α) min
1≤j≤m

(z∗j − zj) +
α

m

 m∑
j=1

z∗j −
m∑
j=1

zj


<− (1− α) max

1≤j≤m
(zj − z∗j ) +

(m− 1)αM

m
max

1≤j≤m

(
zj − z∗j

)
≤ 0.

(41)

Since max1≤j≤m(zj − z∗j ) > 0, then

α− 1 +
(m− 1)αM

m
≤ 0,

α ≤ m

(m− 1)M +m
.

(42)

F.6 Proof of Corollary 2

If a cone-optimal objective vector is not properly Pareto-optimal, α ≤ 0 should hold according
to Theorem 3. Therefore, a cone-optimal objective vector has a finite value of M , indicating it is
properly Pareto-optimal. However, α > 0 as shown in Definition 8. The formal proof is as follows.

Proof. Let z∗ be a cone-optimal objective vector. We assume that z∗ is not properly Pareto-optimal.
Then there exists an objective vector z such that

max
1≤j≤m

z∗j − zj

max
1≤j≤m

zj − z∗j
→∞. (43)

Since z∗ is a Pareto-optimal objective vector, we have
m∑
j=1

(
z∗j − zj

)
≥ max

1≤j≤m

(
z∗j − zj

)
− (m− 1) max

1≤j≤m

(
zj − z∗j

)
>0.

(44)
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The inequality can be rewritten as

(1− α) min
1≤j≤m

(
z∗j − zj

)
+

α

m

m∑
j=1

(
z∗j − zj

)
≥ α

m
max

1≤j≤m

(
z∗j − zj

)
−(

α(m− 1)

m
+ 1− α

)
max

1≤j≤m

(
zj − z∗j

)
>0.

(45)

This conclusion conflicts with the optimality of z∗.

Moreover, leveraging Theorem 3 and Corollary 2, we illustrate the relationships among Pareto
optimality, proper Pareto optimality, and cone optimality in Figure 9.

Proper

Pareto optimality

Cone optimality

Pareto optimality

Figure 9: Relationships among Pareto optimality, proper Pareto optimality, and cone optimality.

F.7 Proof of Theorem 4

The proof is analogous to the sufficiency proof of Theorem 2.

Proof. Without loss of generality, we let zrj = 0 for j = 1, . . . ,m. According to Theorem 6, we can
let wi

j = β/z̃∗j for every j ∈ {1, . . . ,m} \ {i}. Then we have

max
1≤j≤m

{
wi

j · z̃∗j
}
= β ≥ 0, (46)

where β is a constant.

Suppose that z′ yields a lower function value than z∗ for the boundary subproblem with wi. That is,
max

1≤j≤m

{
wi

j · z̃′j
}
< β, (47)

and z∗ ⊀ z′ according to Theorem 1. Since z′ ⊀c z∗, Eq. (47) implies that z̃∗i < z̃′i and z̃∗j > z̃′j for
every j ∈ {1, . . . ,m} \ {i}. Based on z̃∗i < z̃′i and z∗i ≥ z′i, we can deduce that

m∑
j=1

z∗j <

m∑
j=1

z′j . (48)

There exists an index l ̸= i such that z∗l < z′l. Therefore,

z∗l +
α

m

m∑
j=1

z∗l < z′l +
α

m

m∑
j=1

z′l, (49)

which means
max

1≤j≤m

{
wi

j · z̃′j
}
≥ wi

l · z̃′l > β. (50)

This conclusion conflicts with the assumption.
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F.8 Proof of Corollary 3

Proof. According to Theorem 3, the Pareto-optimal objective vector deviating from the user-defined
trade-off is cone-dominated by some objective vector. And Theorem 4 reports the cone-optimal
objective vector that maximizes a given objective is optimal for at least one boundary subproblem.

F.9 Proof of Theorem 5

The proof is modified from the sufficiency proof of Theorem 1.

Proof. Without loss of generality, we let zrj = 0 for j = 1, . . . ,m. We consider an objective vector z
satisfying z∗ ≺c z. Then we have

(1− α)zj +
α

m

m∑
k=1

zk ≥ (1− α)z∗j +
α

m

m∑
k=1

z∗k

for every j ∈ {1, . . . ,m}.
(51)

Consequently,
wi

j · z̃j = wi
j · z̃∗j = 0, if wi

j = 0,

wi
j · z̃j ≥ wi

j · z̃∗j , if wi
j > 0.

(52)

Since ∃j ∈ {1, . . . ,m} \ {i} such that z̃∗j > 0, we can deduce

max
1≤j≤m

{
wi

j · z̃j
}
> max

1≤j≤m

{
wi

j · z̃∗j
}
≥ 0. (53)

z can not be optimal for the boundary subproblem. Therefore, the optimal solution to the boundary
subproblem must be cone-optimal. According to Corollary 2, the optimal solution is also properly
Pareto-optimal.

F.10 Proof of Theorem 6

Proof. Let zrj = 0 for j = 1, . . . ,m. Suppose that z, rather than z∗, is optimal for the subproblem
with w∗. Letting w∗

j z̃
∗
j = β for j ∈ {1, . . . ,m} \ {i} where β > 0 is a constant, we have

w∗
j · z̃∗j = w∗

j · z̃j = 0, if w∗
j = 0,

β > w∗
j · z̃j ≥ 0, if w∗

j > 0.
(54)

Since z∗ is properly Pareto-optimal according to Theorem 5, we have w∗
j > 0, j ̸= i. We can deduce

that z̃∗j > z̃j ≥ 0 for j ∈ {1, . . . ,m} \ {i}. For the subproblem with wi we obtain

max
1≤j≤m

{
wi

j · z̃∗j
}
> max

1≤j≤m

{
wi

j · z̃j
}
, (55)

which implies z, rather than z∗, is the optimal objective vector to the boundary subproblem with wi.
This is a contradiction.
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violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: The theoretical results are shown in Section 3.1. All proofs are presented in
Appendix F.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The implementation details of BDNE are shown in Section 3.3. The experi-
mental setup is detailed in Section 4.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Our code is available at https://github.com/EricZheng1024/BDNE.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so“No”is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The full details of experimental settings are available in Section 4.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: See Section 4. In this paper, each algorithm is executed 30 times for every
instance. The results tables include both the mean and the standard deviation. Wilcoxon’s
rank sum test is used to confirm the statistical results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We do not propose any dataset and potential societal impacts can be found in
Appendix D.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: See Appendix D.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: See Appendix C.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

36

paperswithcode.com/datasets


• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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