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Abstract— We present a probabilistic approach for Spatial
Relation Detection for 3D robotic perception. We exploit
the state-of-the-art open set vocabulary object detectors [28]
and rich 3D geometric features to localize objects and their
spatial relations. We carry out experiments and ablation
studies on both real Spatial Sense [25] and synthetic Semantic
abstraction dataset [8] and demonstrate challenges on the
open-set vocabulary setting and effectiveness of our approach
on both synthetic and real data.

I. INTRODUCTION

The task of spatial relationship detection refers to the
ability to localize objects of interest and determine the
spatial relationships between them. Spatial reasoning is a
foundational cognitive ability essential for human percep-
tion and interaction with the environment. Understanding
relations play a crucial role in organizing spatial layouts
and interpreting the physical world. Consequently, for
machines to effectively interact with their surroundings,
they must be equipped with the ability to reason about
the spatial relationships within a scene. This capability
has a wide range of applications across diverse domains,
including robotics [3, 17], scene understanding [10, 19]
as well as in human-robot interaction and task planning
using natural language [17].

With the rapid advancements in Computer Vision [6, 28,
11, 1], Natural Language Processing [5, 20], and Vision and
Language Models (VLMs) [16, 13, 24, 12], a large body of
previously challenging vision and language tasks marked
notable improvements. For these new approaches, rea-
soning about spatial relationships in a zero-shot manner
or by fine-tuning the large vision and language models
continues to be a challenging task [22, 15, 7]. We consider
a setting where given a triplet consisting of an expression
defining target object et , a spatial relation er el , and a
reference object er in the corresponding image, we aim to
accurately locate and identify the target object specified
by the expression < et ,er el ,er >. This task is closely related
to recent formulations demonstrated in previous works [8,
22, 25, 15, 7].

We propose a probabilistic modular approach utilizing
the state-of-the-art open-set vocabulary object detector
[28, 13] and relying on 3D geometric cues to reason about
spatial relations. We can summarize our contributions as
follows:

• We study the effectiveness of an open set object de-
tector [28] and propose different variants for ground-
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Fig. 1: Examples showing inputs and desired outputs.
The input consists of a triplet consisting of a target
object et , spatial relation er el , and reference object er

and corresponding image. The output is the target object
bounding box (boxes colored in green).

ing the target and referred objects in spatial relation
expression.

• We propose a novel geometric Spatial Relation Mod-
ule, that takes as input the pose and dimensions
of the object computed from the 3D point cloud of
the objects masked by Detic [28]. We also conduct
a thorough ablation study on the effectiveness of
different 2D, and 3D geometric features along with
language features.

• We introduce a probabilistic ranking module that
combines the evidence from object grounding and
spatial relationship classification to get the best
triplet.

We demonstrate the performance on both real Spatial
Sense [25] dataset and synthetic Semantic Abstraction
dataset [11]. Later in Section III, we will describe our
approach, and in Section IV, we will go through our
results.

II. RELATED WORK

With the advent of large vision-language models, spatial
reasoning has attracted additional interest in recent years
motivated by the poor zero-shot performance of spatial
relationship recognition. Representative approaches typi-
cally adopt modular approache [4, 27], or proceed with
fine-tuning of large pre-trained Vision-Language Mod-
els [15, 9] of adopt some combinations of the two [22,
17, 23]. Although many works have been proposed in this
area, several major challenges arise when attempting to



Fig. 2: This is an overview of our pipeline. It consists of three main modules: first, the Probabilistic Object Proposal
(POP), which provides a set of boxes as candidates for the target and reference objects; second, the Spatial Relation
Module (SRM), which gives a distribution over possible relationships for each pair; and third, the Probabilistic Ranking
Module (PRM), which provides the best triplet.

adapt these models to real-world robotic tasks and 3D
scenes.

Earlier modular approaches use training splits of the
specially curated datasets [4, 27] and often exhibit lim-
itations when encountering changes in the distribution
of visual or linguistic data. In [14] authors introduce
the Super CLEVR dataset to study various domain shifts
between training and test distribution for VQA task and
demonstrate improved robustness of the modular ap-
proach for several distribution shifts.

Another category tackles the problem of spatial rela-
tionship recognition either in zero-shot setting or by fine-
tuning large vision and language models [12, 16, 24] that
have been pre-trained in a self-supervised manner. The
root of the problems in these cases can be identified to
some extent using explainability methods [22] that often
indicates a lack of grounding of nouns or noun phrases.
Furthermore, fine-tuning these models for downstream
tasks often results in using overly large and complex
models for specific tasks, which may not align well with
robotics purposes. As emphasized in [18], robotics re-
search is motivated to employ modules applicable to
multiple tasks concurrently and beneficial for various
applications. Large pre-trained models [21, 13, 12] have
been also exploited in [8, 17, 23] in a zero-shot setting.
In [8] authors propose an obscured object localization
module using CLIP [21] for computing initial relevancy
maps in RGB-D data and introducing Semantic Abstrac-
tion dataset. The performance of this approach on spatial
relationship recognition was quite low (< 30 %).

Motivated by the robotic application of table top ma-
nipulation authors in [17] propose a probabilistic modular
technique for visual question answering (VQA) using CLIP.
The visual setting of this approach is quite simple, involv-

ing tabletop objects, considering only 2D information. The
effectiveness of 3D features was demonstrated in [7] pre-
sented a 3D geometric-based spatial reasoning approach
considering different 3D features of pairs of objects on
uniform backgrounds.

We propose a fully modular and explainable proba-
bilistic spatial reasoning pipeline, which leverages state-
of-the-art object detectors and language modules [5, 28]
and introduce a novel spatial relation prediction module
using 3D features. The approach is evaluated on synthetic
Semantic Abstraction dataset [8] improving the perfor-
mance of the CLIP based baseline. We further extended
our experiments to real-world data and reconfigured
the Spatial Sense dataset [25] to evaluate our approach,
thereby demonstrating its effectiveness in tackling real-
world challenges.

III. APPROACH

The proposed approach comprises three core compo-
nents: the Probabilistic Object Proposal (POP), discussed
in Section III-B, which utilizes an open-vocabulary object
detector to for target and reference objects; the Spacial
Relationship Module (SRM) (Section III-C) that predicts
spatial relationships between pairs of objects in the scene;
and the Probabilistic Ranking Module (PRM) (Section III-
D) for final target object ranking. In the following sections,
we will elaborate on the problem definition. The approach
is visualized in Figure 2.

A. Problem Definition.

An example in our training set consists of an expres-
sion e and its corresponding image I . The expression
e in natural language consists of three components: a
reference object er and target object et and their spatial
relation er el . The model output is the precise location of



the referred object described in the spatial expression in
the image. An example from Semantic Abstraction dataset
along with its inputs and desired outputs, is shown in
Figure 1.

B. Probabilistic Object Proposals

To ground a referred and target objects we use open
set vocabulary object detector fd , in our case DETIC [28].
Applying fd on the image I results in N boxes {box}N

1 ,
each associated with class names {cl ass(boxi )}N

1 and
confidence scores {P (boxi )}N

1 . We calculate the probability
of each box being the target object, denoted as P (boxi |et ).
To compute these probabilities, we explore three strategies
described below.

First, we use the LVIS vocabulary along with DETIC.
Using the target object et , we verify whether it exists
among the detected box classes {cl ass(boxi )}N

1 . In this
baseline, all boxes with the same name as the target object
are considered as candidates for the target object. The
same process is applied to the reference object. We refer
to this baseline as DETIC. Results are shown in Table III.
This limitations of this approach include failures when the
exact name of target object class is absent from the LVIS
vocabulary or when the object detector fails to detect the
object.

To address the issue of missing classes, we select the
most similar bounding box based on their predicted
classes with the target object et . To accomplish this,
semantic similarity between detected classes names and
text embeddings can be computed. For each box boxi , the
predicted class name cl ass(boxi ) we compute its and the
target object et representations using text encoders fL [5,
2], followed by cosine similarity computation between the
two:

P (cl ass(boxi )|et ) = fL(cl ass(boxi )) · fL(et )∣∣ fL(cl ass(boxi ))
∣∣ · ∣∣ fL(et )

∣∣ . (1)

A third approach uses only the target and reference
object classes names as the object detector vocabulary
and is termed as DETIC with the target object. For all
the approaches, we sort the predictions based on the
computed P (cl ass(boxi )|et ). The top K boxes with the
highest probabilities will be considered as the target object
candidates for the subsequent experiments, as shown in
Figure 2. This baseline is referred to as DETIC with a
language model and the results are reported in Section
IV-E, Table V.

C. Spacial Relation Module

For spatial relationship classification, we train a
multi-layer perceptron MLP to estimate probabilities of
different spatial relationships. In the section III-D, we
will use this model to rank the pairs and choose the
best matching pair with the expression e. For the pair
of boxes one as target and the other as reference object,
we first compute 3D geometric features from each box,
we refer to this as φ(boxi ). Then, we train our Multilayer

Fig. 3: The Spatial Relation Module. In this part, the
cropped target and reference objects are used from both
the image and depth data to compute the 3D point cloud.
Using PCA, a box is fitted to the point cloud. The center of
the box, its dimensions, and the translation and rotation
are concatenated together for both objects as inputs to the
MLP. The model outputs a distribution over the possible
spatial relation classes.

Perceptron (MLP), using these 3D geometric features. To
compute these 3D geometric representations, we utilize
each box’s segmentation mask, depth map, and camera
intrinsic parameters to reconstruct the 3D point cloud of
the object. By employing PCA, a 3D box is fitted into the
point cloud. The estimated rotation, translation, box axis
sizes, and box center are then concatenated to form the
3D input feature.

We have also conducted additional experiments to incor-
porate language priors. The fast-text encoding of candi-
date box classes was concatenated as a separate input into
the MLP. These pieces of information were subsequently
be fused together in the architecture to enhance the
model’s performance.

D. Probabilistic Ranking Module

So far, we have outlined a method to obtain the top K
boxes, each with defined p(cl ass(boxi )|et ). Additionally,
we can compute the relation distribution between each
pair of boxes using the MLP and obtain the probability
P (φ(boxi ),φ(box j )|er el ). To rank the best pairs of boxes
as target and reference objects, we compute the following
probability:

P (boxi ,box j |e) ∝ P (boxi )P (cl ass(boxi )|et )
P (box j )P (cl ass(box j )|er )
P (φ(boxi ),φ(box j )|er el )

(2)

Where boxi is a candidate for the target object and obx j

is a candidate for the reference object. The probabilities
P (boxi ) and P (box j ) are derived from the Detic confi-
dence scores.



Fig. 4: Sample data from Semantic Abstraction. The
dataset showcases challenges arising from small object
sizes, occlusions, and clutter. Each data sample from
Semantic Abstraction includes semantic segmentation,
depth images, and ground truth labels for the target
and reference objects, along with expressions provided in
triplets.

IV. EXPERIMENTS

A. Datasets

To investigate the problem of spatial reasoning, we pro-
posed using a synthetic dataset provided by Semantic Ab-
straction [8]. This dataset comprises a total of 6085 views
spread across 100 scenes. The evaluation was conducted
on three main subsets: novel visuals, novel synonyms,
and novel classes, consisting of 1244, 940, and 597 views,
respectively, distributed across 20 test scenes. This dataset
is particularly valuable due to the available supervision
for both target and reference boxes, in addition to depth
information and camera parameters. Furthermore, using
the mentioned splits, we can demonstrate the effective-
ness of the proposed approach when exposed to domain
gaps, both visual and textual. The dataset features six
common spatial prepositions: behind, left of, right of, in
front, on top of, and inside. Samples of this dataset have
been provided in Figure 4.

Moreover, to assess the effectiveness of our pipeline in
a real-world setting, we used the SpatialSense [25] dataset.
Originally designed for spatial relation recognition, we
restructured this dataset to fit for the task of spacial
relation detection. The demonstration of real-world data

provides insight into the challenges in real-world. The spa-
tial relations available in the dataset are: above, behind,
in, in front of, next to, on, to the left of, to the right of, and
under. Like Semantic Abstraction, this dataset provides
target and reference boxes as supervision. However, depth
images and ground truth segmentation masks are not
available for the entire dataset. To address this issue,
we employed state-of-the-art depth estimation models
[26] and Detic for object masks. This dataset provides
expressions in the form of triplets similar to Semantic
Abstraction. In total, the dataset contains 11569 images,
half of which are negative samples that are not useful for
our purposes.

B. Evaluation Metric

For the entire pipeline, similar to grounding papers, we
propose evaluating our approach based on the accuracy of
targeted box predictions with an Intersection over Union
(IOU) of more than 0.5 with the ground-truth bounding
box. We have also reported the average IOU. Regarding
the Spatial Relation Module described in Section III-C,
we reported performance based on the accuracy of spatial
relation predictions.

C. Training

We utilized Detic with the LVIS vocabulary in a zero-
shot setting. In our study, we set the threshold of proposal
scores to 0.2 for optimal performance in Probabilistic
Object Proposal experiments. For the Spatial Relation
Module (SRM), we trained a three-layer MLP with cross-
entropy loss and a batch size of 10. The learning rate
was set to 0.001 with the ADAM optimizer, and a learning
decay of 0.5 after every 3 epochs was applied for a total
of 10 epochs on both datasets.

In the last experiment, given that Detic operates in
a zero-shot manner, we set the Detic threshold to 0.02.
We chose the top 3 boxes based on the Probabilistic
Object Proposal. We have reported our results using the
3D geometric Spatial Relation Module (SRM).

D. Spatial Relation Module

In Section III-C, we introduced a classification model
designed to categorize relations between every pair of
objects. This module was trained using all samples in the
training dataset, incorporating language features, 2D geo-
metric features, and 3D geometric features. Specifically,
the language-only approach considers FastText embed-
ding of the class of the boxes. The 2D geometric [22]
approach only considers the center and box dimensions.
For Spatial Sense data, the 2.5D approach incorporates
the depth value of the center of the box along with the
2D features. Lastly, the 3D approach considers the 3D
box rotation, and translation, along with the center and
dimensions of the box, inspiring from [7, 3]. The results
of our experiments are presented in Table I.

Our findings indicate a clear advantage of using 3D
geometric features over 2D geometric features, especially



Supervision Approach
Top1 % ↑ Top2 % ↑

Visual Synonyms Class Visual Synonyms Class

– Language 35.41 35.42 40.70 60.27 59.99 63.13

2D
Geometric 28.44 28.71 26.12 50.08 45.93 50.09

Geometric + Language 36.54 35.59 41.26 60.14 60.14 63.47

3D
Geometric 70.33 69.62 71.40 84.31 83.88 86.39

Geometric + Language 76.16 75.83 78.01 89.72 89.76 91.93

TABLE I: The results for ISRM on Semantic Abstraction Data. The results demonstrate how effectively we can classify
the relation between pairs of objects.

Supervision Approach Top1 % ↑ Top2 % ↑ Top3 % ↑
– Language 30.62 40.03 50.41

2D
Geometric 40.42 55.11 66.04

Geometric + Language 42.35 56.27 66.81

2.5D
Geometric 43.24 57.15 68.19

Geometric + Language 45.00 57.75 67.15

3D
Geometric 38.19 52.94 63.03

Geometric + Language 44.62 57.76 68.07

TABLE II: In this table, we have presented the results of
the ISRM on real-world data. The results demonstrate how
effectively we can classify the relation between pairs of
objects in the SpatialSense dataset.

when ground truth depth and camera intrinsics are avail-
able. Additionally, we explored the impact of including
language features in our classification module, which
revealed their potential to enhance performance.

Moreover, our results highlight the robustness of the
designed MLP model, even in the presence of visual or
textual gaps in the data. This robustness can be attributed
to the way the input features are designed, which enables
the model to be robust to domain gaps.

Additionally, we conducted the same experiment on the
real-world dataset, SpatialSense, table II. Our results reveal
that incorporating 3D geometric cues leads to better per-
formance compared to using only 2D cues. However, due
to inaccuracies in depth estimation when ground truth
camera intrinsics are unavailable (using depth estimation
from DepthAnything), the 2.5D approach outperforms the
3D approach. In the 2.5D approach, we calculate the
average depth value of points inside the object box and
consider it as the depth of the center of the object.

Furthermore, our results indicate that, due to the in-
herent complexities of real-world data, the classification
model generally performs lower accuracy.

E. Probabilistic Object Proposal

In this section, we evaluate Detic as a grounding mod-
ule, as described in Section III-B. We present three main
baselines: Detic with no language model, Detic with a
language model, and Detic with the target object class
as the vocabulary set. The results are presented in Table
III.

An ablation study was conducted on possible language
encoders. As shown in the table, we experimented with
FastText, BERT using the [CLS] token (BERT+CLS), and
BERT with the average of output tokens (BERT+AVG) as
the word encoder. We selected the top-ranked box as
the targeted box and report the results on the Semantic
Abstraction dataset in Table III. The results indicate that
the grounding module performs best when the target
object is used as the Detic class.

We also applied the two best-performing approaches
on SpatialSense and report the results in table V. Based
on our experiments, the gap in real data between the two
approaches is higher. This is due to the fact that there are
more unique classes in the SpatialSense dataset.

Additionally, these results indicate that almost 40% of
the grounding process does not require any information
about the reference object or relation.

F. Probabilistic Ranking Module

We have demonstrated the performance of the entire
pipeline on the Semantic Abstraction dataset in Table IV.
Here, we present the top two performing approaches: one
utilizing the best-matched box using only Detic (Detic
with Top1 and POP), and the other employing the entire
pipeline. The results show the robustness and effective-
ness of the proposed ranking modules.

Our results are most comparable with the Semantic
Abstraction results, presented in Table IV. Although the
semantic abstraction results are mean IOU in 3D voxel
representations, replicating the results for 2D IOU is non-
trivial. However, given the considerable gap, our model
performs better.

V. CONCLUSIONS

In conclusion, our paper introduces a probabilistic
approach to improve object grounding in Spatial Rea-
soning (SR). Through extensive experiments on real and
synthetic datasets, we demonstrate the effectiveness of
integrating 3D geometric cues and novel ranking methods
for accurate object localization. Our modular framework
addresses challenges like domain shifts and diverse envi-
ronments, offering a robust solution applicable to robotics
and vision-language models.



Approach Language Model
ACC % ↑ Mean IOU ↑

Visual Synonyms Class Visual Synonyms Class

Detic

– 24.97 25.31 22.26 0.23 0.24 0.20
Fast_Text 35.83 35.11 30.43 0.33 0.33 0.28
Bert+cls 37.92 38.44 30.95 0.35 0.36 0.29
Bert+avg 38.43 38.51 32.83 0.36 0.36 0.30

Target Object 45.76 45.46 36.27 0.42 0.41 0.33

TABLE III: This table demonstrates the results of the POP module on Semantic Abstraction data, showcasing the
effectiveness of our baseline. The results are shown for three different testing subsets proposed by the dataset. We have
reported both the accuracy and the mean IOU to understand the effectiveness of the approach.

Top K Approach Language Model
ACC % ↑ Mean IOU ↑

Visual Synonyms Class Visual Synonyms Class

Target Object
POP Top 1 53.67 53.86 46.49 0.49 0.49 42.54

POP+SRM+PRM Top 3 55.14 55.46 47.53 0.51 0.51 0.43
Semantic Abstraction – – – – – 0.19 0.23 0.20

TABLE IV: We have demonstrated the performance of the entire pipeline here. We reported the two best-performing
models.

Approach Classes Language Model ACC % ↑ Mean IOU ↑

Detic
Target Object – 45.50 0.42

Lvis Bert+avg 35.06 0.33

TABLE V: This table demonstrates the results of the
POP module on real-world data, Which demonstrates the
effectiveness of our baseline.
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