Under review as submission to TMLR

Uncertainty-Aware Transformers: Conformal Prediction for
Language Models

Anonymous authors
Paper under double-blind review

Abstract

Transformers have had a profound impact on the field of artificial intelligence, especially
on large language models and their variants. Unfortunately, as was the case historically
with neural networks, the black-box nature of transformer architectures presents signifi-
cant challenges to interpretability and trustworthiness. These challenges generally emerge
in high-stakes domains, such as healthcare, robotics, and finance, where incorrect predic-
tions can have significant negative consequences, such as misdiagnosis or failed investments.
For models to be genuinely useful and trustworthy in critical applications, they must pro-
vide more than just predictions: they must supply users with a clear understanding of the
reasoning that underpins their decisions. This paper presents an uncertainty quantifica-
tion framework for transformer-based language models. This framework, called CONFIDE
(CONformal prediction for FIne-tuned DEep language models), applies conformal prediction
to the internal embeddings of encoder-only architectures, like BERT and RoBERTa, based
on hyperparameters, such as distance metrics and principal component analysis. CONFIDE
uses either [CLS] token embeddings or flattened hidden states to construct class-conditional
nonconformity scores, enabling statistically valid prediction sets with instance-level expla-
nations. Empirically, CONFIDE improves test accuracy by up to 4.09% on BERT-tiny and
achieves greater correct efficiency (i.e., the expected size of the prediction set conditioned on
it containing the true label) compared to prior methods, including NM2 and VanillaNN. We
show that early and intermediate transformer layers often yield better-calibrated and more
semantically meaningful representations for conformal prediction. In resource-constrained
models and high-stakes tasks with ambiguous labels, CONFIDE offers robustness and in-
terpretability where softmax-based uncertainty fails.

1 Introduction

Transformer architectures, first introduced in (Vaswani et al., [2017)), revolutionized natural language pro-
cessing (NLP) by introducing the self-attention mechanism, enabling models to capture complex contextual
relationships. The introduction of BERT (Bidirectional Encoder Representations from Transformers) fur-
ther enabled transformer progress by showcasing the effectiveness of encoder-only architectures across diverse
linguistic tasks, from sentiment analysis to named entity recognition (Devlin et al., [2019)).

Following BERT’s success, a range of encoder-based transformer variants emerged, each optimizing different
aspects like training efficiency, representational stability, and task-specific performance, including RoBERTa
(Liu et al., |2019). In parallel, compact variants like BERT-tiny and DistilBERT enabled the deployment of
transformer architectures in computationally-constrained environments. These lightweight models preserve
much of the semantic power of their larger counterparts while offering faster inference and lower memory
footprints (Devlin et al, |2019). Crucially, the open-source nature of many of these models has democratized
access to cutting-edge NLP capabilities.

Conformal prediction (CP) has emerged as a rigorous, distribution-free approach for quantifying uncertainty
and improving interpretability in machine learning models. Unlike traditional uncertainty estimation tech-
niques that rely heavily on model-specific internals, CP provides a straightforward yet powerful guarantee: it
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constructs prediction sets that contain the true output with a predefined probability, such as 95%, indepen-
dent of the model or the underlying data distribution (Angelopoulos & Bates, [2021). This property makes
CP especially appealing for deep neural networks and transformer architectures as it provides reliable calibra-
tion (Messoudi et al., |2020)). Furthermore, CP can adapt to various learning tasks—classification, regression,
anomaly detection—through careful design of the nonconformity function, which maps a model prediction
and its context to a scalar that reflects uncertainty (Angelopoulos & Bates, |2021). The CONFINE (CONFor-
mal INterpretable Explanation) algorithm (Huang et al., [2025) extends CP to neural networks, preserving
its theoretical rigor while enhancing its interpretability and robustness.

Building upon CONFINE, this paper introduces CONFIDE (CONformal prediction for FIne-tuned DEep
language models), extending conformal prediction techniques to encoder-based transformer architectures.
CONFIDE addresses unique transformer challenges, such as layered attention complexities and sequential
dependencies, thereby enhancing interpretability and reliability in transformer predictions.

The paper makes the following contributions.

e It proposes CONFIDE, a conformal prediction framework tailored to fine-tuned language-based
transformer models, enabling layer-wise uncertainty calibration and interpretable prediction sets.

o It shows that CONFIDE achieves up to 4.09% absolute accuracy improvement and up to 5.40%
higher correct efficiency over softmax-based confidence baselines across GLUE and SuperGLUE
benchmarks.

o It demonstrates that CONFIDE outperforms prior uncertainty quantification and interpretability
methods—such as NM2 and VANILLANN—on tasks where standard predictors suffer from under-
coverage or skewed confidence.

The paper is organized as follows. Section 2 dives further into background and related works on model ar-
chitecture, explainable AI, and conformal prediction, including the CONFINE algorithm. Section 3 presents
datasets, models, and metrics, followed by the paper’s methodology in Section 4. Section 5 presents ex-
perimental results, while Section 6 discusses limitations. Section 7 summarizes CONFIDE’s findings and
use.

2 Background and Related Work

In this section, we provide background material and discuss related work.

2.1 Transformer Architectures and Self-Attention

Unlike previous-generation NLP architectures, including recurrent neural network, long short-term memory
(LSTM), and gated recurrent unit, transformers do not process data sequentially. These prior models had
limitations that posed computational bottlenecks, reducing scalability and limiting performance on complex
linguistic tasks. Instead, transformers handle entire sequences simultaneously, allowing them to effectively
capture long-range contextual dependencies that were historically challenging to compute (Vaswani et al.|
2017)).

Formally, self-attention computes a contextualized representation for each token by employing a scaled dot-
product attention mechanism:

. QKT
Attention(Q, K, V') = softmax v
Vi

where @), K, and V represent the query, key, and value matrices, respectively, and dj denotes the dimen-
sion of the keys. Through this method, each token’s embedding becomes richly contextualized through its
relationships with every other token in the sequence (Vaswani et al., [2017)).
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Figure 1: The complexity of transformer attention layers. Multi-head attention layers aggregate token
interactions via learned weights (), forming opaque internal representations.

BERT first introduced the use of a bidirectional training strategy, which simultaneously conditions each
token’s representation on both preceding and subsequent tokens within a sequence (Bosley et al., 2023} [Sbeil
. BERT had sophisticated internal semantic and contextual representations, resulting in supe-
rior performance across diverse NLP tasks, including text classification, sentiment analysis, and question
answering (Devlin et all 2019)). However, the architectural complexity of BERT, which typically comprises
multiple layers of self-attention blocks and millions of parameters, results in significant interpretability chal-
lenges (Gao et all [2021). In addition, recent research has highlighted the susceptibility of transformers
to exploiting spurious correlations or superficial features within datasets, such as sentence-end markers or
punctuation, instead of deeper semantic relationships (Talebi et al., 2024).

2.1.1 Interpretability and Explainability in Transformers

Interpretability and explainability are interconnected concepts that are essential for ensuring responsible and
trustworthy deployment of transformer-based models. While often used interchangeably, they have slightly
different meanings: interpretability refers to the degree to which a human can understand the cause of a
model’s internal logic or decision-making, while explainability involves providing contextual justifications for
predictions (Leblanc & Germain), [2024]).

Traditionally, simpler models, like decision trees, achieve interpretability through intuitive visualizations,
such as feature importance plots, enabling users to observe the factors that influence each prediction (Quinlan
. However, neural networks and transformers consist of numerous layers with intricate interactions
among thousands or millions of parameters, with nonlinear frameworks that do not naturally lend themselves
to visualization or intuitive interpretation (Lipton) 2017; Gao et al., 2021).

As shown in Fig.[I} the hidden-layer representations, especially due to the entangled dynamics of multi-head
attention, make it nearly impossible to comprehensively trace how inputs map to outputs. Ideally, one would
want to be able to understand how a specific input leads to a specific prediction.

Attempts to use built-in decision metrics, such as softmax scores, have also failed as they do not guarantee
reliability because they are not calibrated to reflect the true likelihood of correctness: they only provide
confidence based on a model’s internal logits (Pearce et al. [2021)). These scores can sometimes be used as a
proxy for confidence, but often cannot be generalized (Ozbulak et al [2018).
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To address the above issue, several interpretability techniques have been proposed. Attention visualization,
for instance, is a technique where attention weights within transformer layers are examined to infer token
importance and relationships (Chefer et al.l 2021). Studies have demonstrated that attention weights may
provide intuitive insights into linguistic structure and the semantic rationale behind predictions (Vig, 2019).
Recent research is mixed on the reliability of attention weights to indicate true token importance, with some
works finding that attention patterns can be redundant or misleading and are not always directly correlated
with prediction outcomes (Jain & Wallace, 2019; [Wiegreffe & Pinter} [2019).

In addition, gradient-based attribution methods, such as integrated gradients (Sundararajan et al., [2017)),
provide explanations by attributing predictions directly back to input tokens or embeddings based on their
gradients. These methods quantify the sensitivity of model predictions to individual input components,
enabling improved interpretation of model behavior. Similarly, layer-wise relevance propagation has been
adapted to transformers, distributing prediction relevance backward through the model’s layers to highlight
critical input tokens and patterns that drive particular predictions (Chefer et all [2021). Most approaches
remain computationally demanding, especially for larger transformer architectures, and may not always yield
easily interpretable, actionable insights.

Other methodologies include Bayesian neural networks, which model parameters as probability distributions
to propagate uncertainty; ensemble methods, which combine predictions from multiple models to estimate
variability; and Monte Carlo Dropout, which approximates Bayesian inference using dropout during infer-
ence (Kwon et al., 2020). Recent innovations, like spectral-normalized neural Gaussian processes, further
integrate neural networks and transformers with Gaussian processes to produce uncertainty estimates (Liu
et al.| [2020)). However, computational costs for all of these methods can be high as they require multiple for-
ward passes. Furthermore, ensuring calibration remains an ongoing difficulty, with poorly calibrated models
often producing overconfident predictions that erode trust in their outputs (Cardenas et all |2023)). This
issue is particularly pronounced when models are confronted with out-of-distribution data, where inputs
diverge significantly from the training distribution.

2.2 Conformal Prediction

One method that has had some success is CP. It is a distribution-free framework for uncertainty quantification
that offers formal statistical guarantees. By constructing prediction sets that contain the true label with a
user-defined probability (e.g., 95%), CP ensures that the model’s uncertainty estimates are valid regardless
of the underlying data distribution or model architecture (Angelopoulos & Bates| 2021). Central to CP is
the use of a nonconformity measure, which quantifies how unusual or “nonconforming” a test example is
relative to a set of calibration examples (Angelopoulos & Bates|, 2021]). Prediction set sizes can be adjusted
based on how “confident” a model is in its predictions.

2.2.1 Nonconformity Measures

The flexibility of CP arises from its ability to incorporate various nonconformity measures, which map model
predictions to scalar values that indicate how atypical a prediction is. Common choices include:

e Distance-based measures, such as cosine or Euclidean distance to same-class vs. different-class
neighbors.

o Softmax-based measures, including margin scores between the top-1 and second-highest proba-
bilities, or scores based on adversarial robustness (Huang et al., [2025]).

o Feature-space metrics, computed from fixed-layer embeddings to reduce noise and cost.

Distance metrics can have vastly different performance and computation results. 1-nearest neighbor (1-NN),
which measures distances between test points and calibration data in the raw input space, is computationally
efficient, but struggles to capture the semantic richness of modern high-dimensional representations. As
a result, it tends to produce overly conservative prediction sets that lack informativeness (Papernot &
McDaniel, 2018). Conversely, deep k-nearest neighbors (DkNN) uses hidden-layer activations to compare
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test points to their closest training counterparts, thus improving semantic alignment (Huang et al.l |2025)).
However, DKNN is computationally intensive, as it often computes nearest neighbors across multiple layers
and stores substantial internal representations. Compare this to softmax-based approaches, which are more
efficient, but can be vulnerable to overconfidence and adversarial inputs (Cardenas et al., 2023)).

2.3 CONFINE: CP for Neural Networks

CONFINE (Huang et al., 2025)) introduces a novel feature-based nonconformity score that compares the test
example to its top-k nearest neighbors in an intermediate representation space (e.g., from a specific network
layer). It compares distances to same- vs. different-class neighbors in the embedding space, enabling p-value
estimation (discussed later) based on semantic similarity. Thus, CONFINE leverages the internal structure of
neural networks — specifically, representations from a fixed intermediate layer — to compute nonconformity
scores that more accurately reflect semantic similarity (Huang et al., |2025).

For each candidate class label y, CONFINE calculates the average distance between the test input’s embed-
ding and its k£ nearest neighbors in a calibration set B. This yields the following nonconformity score:

min {% Zle CosDist(f(z), f(x;)) | yi = y}
min { £ 25, CosDist(f(2), f(z:)) | yi # v}

Ak(B,x,y) = (1)

where f(z) denotes the embedding from a selected layer of the neural network, (z;,y;) € B, and
CosDist(a,b) =1 — m is the cosine distance.

By using embeddings from a single pre-defined layer (chosen via hyperparameter grid search), CONFINE
avoids the high memory and computational costs associated with DkNN approaches that rely on multi-
ple layers. This simplification enables real-time applicability while retaining a meaningful structure for
interpretability. In addition, CONFINE supports class-conditional p-value computation, offering improved
coverage and label-wise reliability in settings with imbalanced data (Huang et al., [2025).

CONFIDE builds on the strengths of CONFINE while adapting its framework to better suit transformer
language architectures.

2.4 Conformal Prediction for Transformers

Most current CP approaches for transformers suffer from one or more of the following issues.

First, they predominantly rely on embeddings derived exclusively from the transformer’s final layer. While
final-layer representations encapsulate a condensed semantic summary, neglecting intermediate layers dis-
cards the hierarchical and nuanced linguistic information inherently captured throughout the model’s archi-
tecture (Huang et al., 2025).

Second, existing CP implementations are limited to large-scale transformer models, such as full-scale BERT
or RoBERTa variants. Little research has been conducted on using CP on resource-limited models.

Third, simplistic nonconformity measures, usually direct softmax probabilities, dominate the current land-
scape. Such simplistic metrics may not always capture the complexity and semantic nuance within trans-
former embedding spaces, reducing the interpretability and efficacy of prediction sets (Sikar et al.l |2025]).

Several recent studies have started to address some of these issues. Giovannotti et al. integrate CP with
transformer architectures for paraphrase detection tasks, using raw transformer output scores instead of
softmax probabilities and introducing variants, such as Mondrian conformal predictors (Giovannotti et al.,
2021). Dey et al. propose inductive conformal prediction methods for text infilling and part-of-speech tagging,
demonstrating finite-sample control of type-1 error with transformer and BiLSTM embeddings (Dey et al.,
2021). Lee et al. use transformer decoders to produce quantile-based conformal intervals for time series
predictions, effectively capturing temporal dependencies (Lee et al., |2024).
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2.4.1 Research Gaps in Conformal Transformers

The above analysis reveals three substantial gaps that future research must explicitly address to advance
conformal prediction for transformers.

Underexplored lightweight transformer models: Lightweight models remain under-investigated in
CP applications. Their computational efficiency makes them especially valuable for edge-device deployment,
yet their capability to support reliable uncertainty quantification through CP remains largely unexplored.

Limited experimentation with diverse nonconformity measures: The effectiveness of conformal
prediction strongly depends on the selected nonconformity measure. Alternative metrics, such as Maha-
lanobis distance (capturing correlations between embedding dimensions), offer potentially improved inter-
pretability, precision, and reliability, yet remain largely ignored.

Lack of evaluation on challenging benchmarks: Current evaluations predominantly occur within
straightforward NLP tasks or specialized domains (e.g., paraphrase detection). Rigorous benchmarks that
demand advanced linguistic reasoning and comprehensive understanding, such as SUPERGLUE, are under-
explored.

2.4.2 Positioning CONFIDE

CONFIDE integrates intermediate-layer representations from transformer models to harness richer semantic
information, thereby enhancing prediction robustness and reliability. By focusing both on lightweight ar-
chitectures, such as BERT-tiny and BERT-small, CONFIDE also evaluates the feasibility and benefits of
conformal prediction in resource-constrained, real-time, and edge-computing applications, a significant step
toward democratizing reliable uncertainty estimation.

CONFIDE also investigates advanced, embedding-sensitive nonconformity measures, such as Mahalanobis
distance, and application of principal component analysis (PCA). This thorough exploration provides deeper
insights into how transformer-specific nonconformity measures can enhance prediction intervals and sets.

Lastly, CONFIDE is rigorously evaluated on challenging and comprehensive NLP benchmarks, notably
three SUPERGLUE datasets, providing robust empirical validation of the method’s capability to handle
sophisticated reasoning and linguistic complexity.

3 Datasets and Models

This section introduces our experimental setup to provide grounding for many of CONFIDE’s design choices.
We discuss datasets used, model choice, and model fine-tuning.

3.1 GLUE and SuperGLUE Benchmarks

To evaluate CONFIDE, we focus on tasks from two of the most widely used natural language understanding
benchmarks: the General Language Understanding Evaluation (GLUE) benchmark (Wang et al., 2019) and
its successor, the SuperGLUE benchmark (Wang et al.l 2020). Together, these benchmarks span a diverse
array of classification tasks, ranging from binary question answering to multi-class entailment detection,
providing a rigorous testing ground for uncertainty quantification methods.

We restrict our evaluation to tasks that are labeled as classification problems. Accordingly, we exclude
tasks involving regression or span-level predictions (e.g., STS-B). Therefore, the chosen tasks are robust and
varied. For example, BoolQ is a binary question-answering task drawn from naturally occurring queries,
often featuring ambiguous phrasing and noisy labels. In contrast, CB (CommitmentBank) is a three-class
natural language inference task with very limited training data, making it a valuable benchmark for assessing
calibration under data scarcity.

A full list of included tasks and their characteristics is provided in Appendix [A]
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3.2 Encoder-Based Transformer Models

We evaluate CONFIDE using encoder-only transformer architectures, focusing specifically on the BERT (De-
vlin et al, [2019) and RoBERTa (Liu et al., 2019) model families. These models are well aligned with our
goals of developing a scalable, interpretable, and reproducible CP framework for several key reasons. We
focus on language transformers, in particular, due to their ubiquity across modern NLP applications, the
abundance of open-source pretrained models, and the broad relevance of text classification tasks in both
academic and industrial domains.

First, encoder-only models are architecturally optimized for classification tasks. Unlike decoder-only or
encoder-decoder architectures (e.g., GPT or T5), which are tailored to generation and sequence-to-sequence
modeling, encoder-based transformers are designed to produce rich, contextualized sentence-level represen-
tations suitable for downstream classification (Raffel et al. [2023; Devlin et al., 2019). This makes them
naturally compatible with CONFIDE’s prediction set formulation and avoids the added complexity of au-
toregressive decoding or encoder-decoder alignment.

Second, encoder architectures expose intermediate hidden states across multiple layers, enabling us to probe
semantic representations at various depths. This is particularly valuable for CP, where the choice of em-
bedding layer directly impacts the quality and stability of nonconformity scores. Layer-level flexibility also
supports CONFIDE’s core principle of reusing internal representations without model retraining.

Third, we use open-source, pretrained models from the HuggingFace Transformers library to ensure trans-
parency and reproducibility. We include BERT-variant models to validate CONFIDE’s generalization beyond
its original scope and to avoid overfitting our method to a single backbone. This diversity strengthens the
validity of our results.

We evaluate four pretrained transformer variants:

e BERT-tiny: 2 transformer layers, ~4M parameters
e BERT-small: 4 transformer layers, ~29M parameters
e RoBERTa-base: 12 transformer layers, ~125M parameters

e RoBERTa-large: 24 transformer layers, ~355M parameters

3.3 Fine-tuning Protocol

To ensure consistency across all datasets and model variants, we apply a standardized fine-tuning protocol
using the HuggingFace Trainer framework, adapted for stability and performance. Each model is fine-tuned
independently per dataset—task pair, with the following procedures:

e« Model initialization: We load pretrained model checkpoint from HuggingFace and replace the
classification head to match the number of target labels.

e Tokenization strategy: We tokenize the inputs using task-aware preprocessing. Sentence-pair
tasks, such as BoolQ, RTE, and CB, use paired input formatting, while datasets like MultiRC are
treated as binary classification problems over each (question, answer) pair.

e Input processing: We pad all inputs and truncate them to a maximum sequence length of 512
tokens.

« Optimization: We use the AdamW optimizer with a learning rate of 5 x 107°, a linear warm-
up over the first 500 steps, and weight decay of 0.01. We train models for up to 10 epochs with
early stopping (usually around 3-5 epochs) based on validation accuracy to reduce overfitting and
unnecessary computation (Howard & Ruder} 2018)).

e Evaluation metrics: We track accuracy, precision, recall, and Fl-score during training. We use
macro-averaging for multi-class tasks (e.g., CB), and binary-averaging for two-class tasks.
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e Model selection: We choose the final model checkpoint based on the highest validation accuracy.
All downstream CONFIDE evaluations use this fixed checkpoint to ensure a consistent prediction
backbone.

This protocol enables a fair comparison across models and tasks while minimizing confounding factors un-
related to the CONFIDE framework.

4 Methodology

This section introduces CONFIDE, built atop the CONFINE framework, for transformer-based language
models. Applying CONFINE directly to transformer models presents several unique challenges, especially
in terms of identifying meaningful embedding layers and maintaining computational efficiency. Our work
tailors CONFINE to language encoder-based transformer models. We begin by outlining the original CON-
FINE algorithm, then describe our transformer-specific modifications, and finally detail the design decisions
underlying CONFIDE.

4.1 The CONFINE Algorithm

The CONFINE algorithm provides prediction sets that are calibrated under the exchangeability assumption
and leverages the internal structure of neural networks to compute semantically meaningful nonconformity
scores.

4.1.1 Key Assumptions and Definitions

o Exchangeability assumption: Let {(z1,91),...,(@n,yn)} C & X Y be a sequence of labeled
examples. The data are assumed to be exchangeable if their joint distribution is invariant under
permutations. That is, for any permutation 7 of {1,...,n},

Pr[(xlv y1)7 BERE) (xnv yn)] = Pr[(xﬂ'(l)a y‘n’(l))a BERE) (xﬂ'(n)v yﬂ'(ﬂ))] (2)

e P-values and prediction sets: For a test input z;41, we compute the p-value of each candidate
label y; as:
C#Hi=1, e > o)+

Plyi) = o , 3)

where «;’s are the nonconformity scores from the calibration set, and a;y1 = A(B,x41,y;). The
conformal prediction set is:

I(z) = {y; € Y | p(y;) > €}. (4)
e Credibility and confidence:

Credibility = max p(y;), Confidence =1 — max p(y;), (5)
Y; €Y yi#Y*

where y* = argmax p(y;). Credibility reflects how well the most probable class conforms; confidence
measures its separation from the rest.

e Marginal coverage guarantee: Conformal prediction guarantees that, under exchangeability,
PrlyeI*(z)] > 1 —e. (6)

This is the standard coverage guarantee: the true label appears in the prediction set with probability
at least 1 — ¢, averaged over the test distribution.

e Class-conditional coverage guarantee: A stronger guarantee holds if the coverage condition is
satisfied within each class:

Prlyi eIy [y =Y 21-¢, VY;€C. (7)
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Figure 2: Overview of the CONFINE algorithm adapted from (Huang et al., [2025). Feature embeddings
are extracted from a fixed layer and class-conditional nearest neighbors are used to compute nonconformity

scores.

4.1.2

This ensures that every class is covered fairly, not just on average. This guarantee is achieved by
computing p-values using only calibration points from the same class, yielding coverage control per
class label.

Efficiency and correct efficiency: The average size of the prediction set,
E[IT ()], (8)

measures the method’s efficiency, where smaller sets are more informative. However, this metric can
be manipulated by outputting small sets that frequently omit the correct label. Therefore, we also
consider correct efficiency, the expected size of the prediction set conditioned on it containing the
true label (Huang et al., 2025).

Algorithm Tracing

We implement the process illustrated in Fig. [2]

Given a test input x, CP computes a prediction set I'*(z) C ) such that the true label y lies inside
it with probability at least 1 — e.

The method requires a nonconformity measure A(B, z,y), which quantifies how atypical a candidate
label y is for input x, relative to a calibration set B.

The corresponding p-value for a candidate label y; is computed as:

p(vy) (#lita>am}+1), 9)

1
el +1

where «;’s are the nonconformity scores from the calibration set, and a; 1 = A(B, z,y;) is the score
for the test input.

The prediction set is then defined as:

(z) ={y; € Y | p(y;) > e} (10)

Note that the original CONFINE framework was developed for convolutional neural networks (CNNs) and
multilayer perceptrons, where internal representations are single, global feature vectors (e.g., after spatial
pooling or dense layers). For CONFIDE, we need to take into account some architectural differences in
transformer models, like BERT:

No fixed global representation: Transformers produce one embedding per token.

Layer variability: Unlike CNNs, deeper layers in transformers do not necessarily yield more abstract
or stable representations.

High-dimensional representations: Flattening token-level outputs results in very high-dimensional
vectors.
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4.2 The CONFIDE Algorithm

CONFIDE extends the CONFINE framework to transformer models by introducing two key adaptations:
(1) a representation mode selector to aggregate token-level embeddings and (2) an optional dimensionality
reduction step and distance-metric modifier for handling high-dimensional transformer outputs. The full
pipeline is detailed in Algorithm

From a specified transformer layer ¢, CONFIDE extracts representations using either of two modes: Flat-
tened, which reshapes the entire token matrix into a vector, or Attention, which selects the [CLS] token
embedding. Only correctly predicted training samples are retained for reference, improving the reliability of
k-NN comparisons.

Step 1: Representation Extraction

For each labeled training example (z;,y;), we extract hidden state representations, which are extracted by
flattening the hidden state matrix, from a fixed encoder layer ¢ of the transformer. The method of extraction
depends on the selected mode: Flattened, which reshapes the entire token matrix into a vector, or Attention,
which selects the [CLS] token embedding. Only correctly predicted training samples, those where §; = y;,
are retained for reference.

Note that while this paper shows results for both the flattened and attention-based variation, we emphasize
that CONFIDE-Flattened is significantly more computationally expensive due to the complexity of flat-
tening rich embeddings. Therefore, CONFIDE-Attention is used as the primary approach throughout our
experiments.

Algorithm 1 The CONFIDE Algorithm

Input: Labeled training dataset (X,Y); model M; significance level €; test input z; layer £; number of
neighbors k; representation mode (Flattened or Attention); PCA flag; distance metric
Step 1: Extract Representations from Training Data
foreach training example (z;,y;) do
Run M(z;) to extract H; from layer ¢ if mode == Flattened then

| hi < reshape(H;, [1,seq_len - hidden_ dim]) ; // Flatten full matrix
else if mode == Attention then
| h; « H;[CLS] ; // Use [CLS] token

if §;, = y; then
| Store h; in pool for class y;
Step 2: Apply PCA (Optional)
if PCA enabled then
| Fit PCA on {h;} to retain 95% variance and transform all vectors
Step 3: Fit k-NN Models per Class
foreach class c € Y do
| Fit k-NN on {h; | y; = ¢} using selected distance metric
Step 4: Calibration Nonconformity Scoring
foreach calibration example (x,y) do
‘ Extract h(x) as above; Compute Ay (z,y) =
Step 5: Compute Test Prediction Sets
foreach test input x do
foreach label y € Y do
‘ Compute Ag(z,y) and p-value:  py(x) =
Output prediction set: I'(z) = {y € V | py(x) > €}

avg dist to class y | .
avg dist to other classes’ Store score in o

I+ #{ai> Ak (z,y)}
14ncal

Step 2: Apply PCA (Optional)

To mitigate the curse of dimensionality and improve distance metric robustness, PCA may be optionally
applied. If enabled, PCA reduces the dimensionality of all h; vectors while retaining at least 95% of the
variance. This transformation is also applied to calibration and test embeddings.

10
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Step 3: Fit Class-Conditional k-NN Models

For each class ¢ € Y, we train a K-nearest neighbor model using the representations {h; | y; = c}, based on
the user-specific distance metric.

Step 4: Calibration Nonconformity Scoring

For each calibration point (z,y), a nonconformity score Ag(z,y) is computed using the same embedding
extraction and PCA pipeline. These scores quantify how typical a point z is for its true class y. They are
stored and later used to derive p-values for each candidate class during prediction.

Step 5: Test-time Prediction Set

At test time, for each input z, a p-value is computed for every possible class y € ), as well as a prediction set.
This set guarantees marginal coverage 1 — ¢ under the exchangeability assumption. The size and accuracy
of this set depend on the quality of extracted embeddings and chosen distance metric.

4.2.1 Evaluation Metrics and Baselines

We evaluate CONFIDE variants using three core metrics:

e Accuracy: Standard top-1 classification accuracy.

e Correct efficiency: Expected size of prediction sets conditioned on including the correct la-
bel (Huang et al., 2025).

e Coverage: Fraction of predictions for which the prediction set contains the ground-truth label.

We compare CONFIDE against the following baselines:

o VANILLANN: l-nearest neighbor using raw embeddings and cosine distance (Papadopoulos et al.|
2007)).

e NM1/NM2: Softmax-based nonconformity scoring methods, originally proposed in (Vovk et al.,
2005)).

4.3 Justifying Design Choices

Building on the CONFIDE variants described in Algorithm [I} we detail the key design choices that signifi-
cantly impact performance. Our implementation supports a wide range of configurations and we systemati-
cally evaluate each axis of variation to identify robust, high-performance settings.

Embedding selection. A critical component of CONFIDE is how fixed-dimensional representations are
extracted from transformer models. We considered two primary approaches:

o Flattened: Activations from internal transformer layers (as specified by the user) are intercepted via
forward hooks and flattened into a single vector per input.

o Attention: As a lighter-weight alternative, we extract only the [CLS] token embedding from a
specified layer without registering custom hooks.

In empirical evaluations, both versions produce fairly similar results, although, due to memory and running
time issues, this paper emphasizes the attention method.
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Choice of distance metric. We implement support for both cosine and Mahalanobis distances when
querying the k-nearest neighbor models:

e Cosine distance: For two vectors u and v, cosine distance is defined as:

.

u'v
Disteos(u,v) =1 — 7———
o [Jw] [l

e« Mahalanobis distance: For a feature vector x and a class-specific distribution with covariance
matrix X, the Mahalanobis distance is computed as:

Distatan (@, 1) = /(& — ) T8z — p)

where p is the class mean. This metric captures feature correlations but is sensitive to ill-conditioned
or low-rank ¥ when few training examples are available.

Why Mahalanobis distance? The original CONFINE framework employed cosine distance for comput-
ing similarity in the embedding space due to its scale-invariant properties and robustness in high-dimensional
representations. In CONFIDE, we extend this design by incorporating Mahalanobis distance as an alterna-
tive metric. This choice is motivated by its ability to capture feature correlations, which can be particularly
valuable in transformer embeddings where dimensions are not independent.

Unlike Euclidean or Manhattan distances, Mahalanobis distance considers the data covariance structure.
This allows the k-NN model to account for ellipsoidal structures in the feature space, improving discrimination
in cases where cosine similarity may fail to capture variance along non-principal directions (Moutafis et al.
2017)).

Dimensionality reduction. To mitigate high-dimensionality effects and improve numerical conditioning,
we optionally apply PCA to the training activations before fitting k-NN models. PCA is computed as follows:

7Z = XW, where W retains components explaining > 95% variance

where X is the centered activation matrix and W is the eigenvector matrix of the covariance of X. PCA is
applied post-embedding extraction and before distance computation during inference phases, including before
calibration and testing. We retain 95% of the variance when applying PCA, following common practice in
machine learning to preserve essential data structure while discarding noise (Jolliffe & Cadima, [2016)). This
threshold strikes a balance between dimensionality reduction and performance.

Hyperparameter selection. Three key hyperparameters are tuned for each configuration:

e Layer: the internal or softmax layer selected.
e k: the number of nearest neighbors used in nonconformity scoring.

e T': the temperature scaling factor for logits when softmax-based predictions are required,

We conduct a grid search over appropriate ranges for each hyperparameter within every (model, dataset)
configuration, ensuring that each CONFIDE variant is tuned for both predictive accuracy and valid coverage.
The values for k£ and T follow those used in the original CONFINE framework (Huang et al., [2025)), facilitating
a direct comparison. For the Layer parameter, we select a diverse set of layers spanning the early, middle,
and late stages of the encoder. These layers are chosen to reflect different architectural roles, ranging
from multi-head attention blocks to linear feedforward components, to capture the progression of semantic
abstraction across the model. The full list of layers chosen can be found in Appendix[B:2]

12
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Test sample:

Context: Organ (anatomy) -- Organs are
composed of main tissue, parenchyma, and
“*sporadic" tissues, stroma. The main tissue is
that which is unique for the specific organ, such
as the myocardium, the main tissue of the heart,
while sporadic tissues include the nerves, blood
vessels, and connective tissues.

Question: is there overlap between the different
organ systems in a vertebrate

Different-class nearest neighbors:

CONFIDE

e =0.02

Prediction Set: [0 1]

Confidence: 0.726; Credibility: 0.379

Same-class nearest neighbors:

Test sample:

Test sample:

Test sample:

Test sample:

Context: Grizzly bear -- There are
currently about 55,000 wild grizzly
bears total located throughout
North America, most of which
reside in Alaska. About 1,500
grizzlies are left in the lower 48
states of the US. About 800 live in
Montana, 600 live in Wyoming.

Context: The Woolpack is a
fictional public house on the
popular soap opera Emmerdale.
Its sign is a wool bale, a popular
symbol in sheep-rearing country.
It has played host to many of the
soap storylines and is the focus of
the programme.

Context: Black Mirror -- Black
Mirror is a British science fiction
anthology television series
created by Charlie Brooker.
Episodes are standalone, usually
set in an alternative present or
the near future, often with a dark
and satirical tone.

Context: On June 10, 2016, an
Oregon circuit court ruled that a
resident, Jamie Shupe, could
legally change their gender to
non-binary. The Transgender Law
Center believes this to be “the
first ruling of its kind in the U.S.”

Question: are there grizzly bears

Question: is the woolpack in

Question: is 2 stroke the same as

Question: can you legally change

in the upper peninsula emmerdale a real pub 2 cycle your gender to nonbinary
dist=0.167 dist=0.169 dist=0.163 dist=0.169

Figure 3: Failure case on BoolQ (BERT-tiny). CONFIDE fails to distinguish between same-class and
different-class neighbors, resulting in a high-uncertainty prediction.

Combinatorial design evaluation. To exhaustively evaluate CONFIDE, we explore all combinations of:

o Distance metric (Cosine vs. Mahalanobis).
o Dimensionality reduction (PCA applied vs. not applied).

o Classwise (Classwise calibrated or not).

Select attempts of attention vs. flattening embedding variants are also considered. These design axes are
evaluated across all four transformer models and eleven tasks. Each configuration undergoes comprehensive
hyperparameter tuning to ensure fair and reproducible comparisons. Our results, presented in the following
section, highlight the impact of these design choices on both prediction set coverage and efficiency.

5 Experimental Results

Next, we present the experimental results.

5.1 CONFIDE Provides Interpretability

CONFIDE offers interpretable insights on individual test cases. Figs. [3] and 4] demonstrate how an end-user
can inspect predictions by visualizing the predicted set, associated confidence metrics, and the structure of
nearest neighbors. We note that in contrast to image-based models, where neighbor similarity reflects visual
resemblance, transformer-based language models encode similarity based on shared semantic structures,
syntactic roles, or contextual usage. Thus, nearby neighbors in CONFIDE often reflect questions or passages
with comparable phrasing, topic domains, or logical structure. Sometimes, however, interpretability can be
less intuitive than in vision tasks. While image-based models yield visually similar examples, linguistic
similarity often reflects subtler semantic or syntactic patterns that may be harder for users to recognize
without context.
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Test sample:

Context: The 100 (TV series) -- In March
2017, The CW renewed the series for a
fifth season, which premiered on April 24,
2018. In May 2018, the series was
renewed for a sixth season.

Question: is there a season 5 in the 100

Different-class nearest neighbors:

CONFIDE

e =0.02

Prediction: 1
Confidence: 0.996; Credibility: 0.961

Same-class nearest neighbors:

Test sample:

Test sample:

Test sample:

Test sample:

Context: St. Louis Blues - The
team is named after the famous
W.C. Handy song "*Saint Louis
Blues." The Blues are the oldest
active NHL team never to have
won the Stanley Cup, although
they played in the Stanley Cup
Finals three times.

Peru at the FIFA World Cup --
Peru had its best result in Mexico
1970, finishing in seventh place.
In 1978, they finished first in their
group during the first round of the
tournament, but were eliminated
after losing all their games in the

second round.

Context: The product known as
Kraft Dinner (KD) in Canada,
Kraft Macaroni & Cheese Dinner,
and Macaroni Cheese or
Cheesey Pasta in the United
Kingdom, is a nonperishable,
packaged dry macaroni and
cheese product.

Context: - In addition to the true
folded mountains, the area of
dissected plateau to the north and
west of the mountains is usually
grouped. This includes the
Catskill Mountains of
southeastern New York and the
Poconos in Pennsylvania.

Question: did the st. louis blues

Question: has peru ever won the

Question: do they sell kraft

Question: are the poconos part of

macaroni and cheese in england

dist=7.60

the appalachian mountains

dist=8.15

make the stanley cup playoffs

dist=28.72 dist=28.88

Figure 4: Success case on BoolQ (BERT-tiny). CONFIDE separates neighbors by class, yielding a confident
and credible singleton prediction.

fifa world cup

Fig. [3| presents a failure case on the BoolQ dataset. The model outputs a full prediction set {0, 1}, with
an associated credibility of only 0.379, signaling substantial uncertainty: the model is unable to confidently
distinguish between the two classes. Importantly, the average distances to same-class and different-class
neighbors are nearly identical (0.16-0.17), indicating that the embedding space lacks meaningful class sep-
aration for this example. Fittingly, the test sample is a medically themed question; an end user would see
that the model has low representational certainty and could defer to a domain expert, such as a doctor, for
validation.

In contrast, Fig. [4] shows a successful CONFIDE prediction. The model returns a singleton prediction {1}
with high credibility (0.961) and confidence (0.996). Here, the average distance to same-class neighbors is
significantly smaller (~7.87) than to different-class neighbors (28.80), validating the low nonconformity score
for class 1. This separation suggests the test point lies well within a class-coherent region of the embedding
space.

These examples highlight CONFIDE’s utility as a tool for interpretability and model auditing. By identifying
similar and distant neighbors, users gain visibility into the stability and discriminative structure of a model’s
internal representations.

5.2 Performance on Resource-Constrained Transformer Models

We first evaluate CONFIDE on compact transformer models: BERT-tiny and BERT-small. These models
offer constrained capacity, enabling us to assess CONFIDE'’s calibration in low-resource regimes. Full results
are reported in Tables [IH6] CONFIDE-A targets accuracy and CONFIDE-C targets correct efficiency.

Reliable calibration with modest capacity. Despite their reduced depth and size, both models ben-
efit significantly from CONFIDE’s nonconformity-based calibration. Notably, CONFIDE improves upon
NM1/NM2 baselines, which both rely solely on softmax logits (final layer of the model) for their non-
conformity scores. In contrast, CONFIDE flexibly selects semantically rich internal layers, enabling it to
outperform strong baselines across several benchmarks.
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Table 1: Performance on GLUE benchmarks using BERT-tiny: CoLLA, MNLI, MRPC, and QNLI. Hyperpa-
rameters used can be found in Appendix

Method CoLA MNLI MRPC QNLI
Test Acc Top Test Acc Top Test Acc Top Test Acc Top
Corr Eff Corr Eff Corr Eff Corr Eff
Original NN 0.5858 - 0.6949 - 0.7010 - 0.7895 -
1-Nearest Neighbor  0.5791 0.5762 0.3403 0.3254 0.6103 0.6103 0.5067 0.5050
NM (2) 0.5858 0.5724 0.6949 0.6936 0.7010 0.7010 0.7895 0.7878

CONFIDE-A (ours) 0.6903 0.6903 0.6982 0.6907 0.7304 0.7181 0.8157 0.8104
CONFIDE-C (ours) 0.6903 0.6903 0.6975 0.6932 0.7279 0.7279 0.8131 0.8129

Table 2: Performance on GLUE benchmarks using BERT-tiny: QQP, RTE, SST-2, and WNLI.

Method QQP RTE SST-2 WNLI
Test Acc Top Test Acc Top Test Acc Top Test Acc Top
Corr Eff Corr Eff Corr Eff Corr Eff
Original NN 0.8116 - 0.5668 - 0.8303 - 0.5634 -
1-Nearest Neighbor  0.6423 0.6391 0.4693 0.4549 0.5011 0.4794 0.2394 0.2394
NM (2) 0.8214 0.8073 0.5668 0.5668 0.8303 0.8280 0.5634 0.5634

CONFIDE-A (ours) 0.8566 0.8530 0.5957 0.5848 0.8372 0.8326 0.8360 0.8245
CONFIDE-C (ours) 0.8566 0.8530 0.5884 0.5884 0.8349 0.8349 0.8326 0.8280

For example, on SST-2, CONFIDE-C boosts top-1 correct efficiency to 0.8911 on BERT-small and 0.8349
on BERT-tiny—compared to just 0.8830 and 0.8280, respectively, under NM1/NM2. On QQP, BERT-small
improves from 0.8739 (NM) to 0.8846 (CONFIDE-C), while BERT-tiny improves from 0.8073 to 0.8530.
MRPC shows similar trends: on BERT-small, CONFIDE-C achieves 0.7574 correct efficiency, compared to
0.7034 with a previous NM; BERT-tiny moves from 0.7010 to 0.7279. These results demonstrate that
CONFIDE provides substantial improvements beyond what is achievable with output-layer-only methods.

Layer-level design matters: Intermediate layers outperform softmax. An important trend across
both models is that CONFIDE achieves its strongest performance not from the final softmax layer but
from intermediate transformer layers, typically in the first half of the model. Based on our grid search (see
Appendix [B.2), optimal configurations often use mid-layer embeddings (Appendix [B.I)):

o For BERT-tiny, top-performing runs often used layer 16, corresponding to the first encoder layer
when flattened.

e For BERT-small, strong results are frequently found at layers 27 and 34, again early in or middle
of the stack.

These findings suggest that early-layer representations capture richer, less overconfident features that are
especially amenable to class-conditional distance metrics. Specifically, because these embeddings retain a
nuanced semantic structure without being overly aligned to the model’s final output, they allow CONFIDE
to more effectively compare a test input’s proximity to examples from the same class versus different classes.
However, this advantage comes at a cost: using early hidden states increases compute and memory overhead
during inference due to the need for large flattened vectors and distance comparisons. We discuss this
tradeoff in greater detail in Section [6] and Appendix

A strong model matters: BERT-small > BERT-tiny. Across nearly every task, BERT-small consis-
tently outperforms BERT-tiny in both test accuracy and correct efficiency. On MRPC, QNLI, and QQP, the
performance gap is clear: BERT-small with CONFIDE-C achieves correct efficiencies of 0.7574, 0.8697,
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Table 3: Performance on SuperGLUE benchmarks using BERT-tiny: BoolQ, CB, and MultiRC.

Method BoolQ CB MultiRC

Test Acc Top Corr Eff Test Acc Top Corr Eff Test Acc Top Corr Eff
Original NN 0.6596 - 0.5357 - 0.6219 -
1-Nearest Neighbor 0.5602 0.5590 0.4286 0.4286 0.5192 0.4792
NM (2) 0.6596 0.6529 0.5357 0.5000 0.6219 0.6209
CONFIDE-A (ours) 0.6636 0.6630 0.7321 0.7143 0.6275 0.5918
CONFIDE-C (ours) 0.6636 0.6630 0.7321 0.7143 0.6244 0.6229

Table 4: Performance on GLUE benchmarks using BERT-small: CoLA, MNLI, MRPC, and QNLI.

Method CoLA MNLI MRPC QNLI
Test Acc Top Test Acc Top Test Acc Top Test Acc Top
Corr Eff Corr Eff Corr Eff Corr Eff
Original NN 0.7421 - 0.7914 0.7805 0.7230 - 0.8691 -
1-Nearest Neighbor 0.5791 0.5762 0.3403 0.3254 0.6103 0.6103 0.5067 0.5050
NM1/NM2 0.7421 0.7392 0.7914 0.7805 0.7230 0.7034 0.8691 0.8671

CONFIDE-A (ours) 0.7546 0.7546 0.7904 0.7865 0.7672 0.7525 0.8704 0.8669
CONFIDE-C (ours) 0.7546 0.7546 0.7904 0.7865 0.7598 0.7574 0.8699 0.8697

and 0.8846 respectively, whereas BERT-tiny peaks at 0.7279, 0.8129, and 0.8530. Even modest increases
in model depth (from 2 layers to 4, although the increase is larger once flattened) enable CONFIDE to form
tighter, more accurate prediction sets.

Difficulties on hard and ambiguous datasets. Despite CONFIDE’s consistent improvements, both
models still struggle on several particularly difficult tasks — especially CB, WNLI, BoolQ, and MultiRC
— where ambiguity, low supervision, or multi-label structure present major challenges. In these cases, even
the best CONFIDE configurations offer only modest gains, as the base model itself often fails to learn a
strong decision boundary.

e On CB, BERT-tiny achieves only 0.5357 test accuracy and BERT-small performs only slightly
better at 0.6250.

e MultiRC presents a unique challenge due to its partial correctness metric and longer input contexts.
With BERT-tiny, CONFIDE-C reaches 0.6229 top-1 correct efficiency, and BERT-small reaches
0.6582.

Overall, the underlying limitations of the models remain the primary constraint. In the most favorable
configurations, CONFIDE improves test accuracy by up to 4.09% for BERT-tiny and 2.69% for BERT-small
over the best baseline methods. These results highlight that while conformal calibration can meaningfully
improve reliability, overall performance remains bottlenecked by base model capacity.

5.3 Performance on Larger Models

We now turn to high-capacity transformer models: RoBERTa-base and RoBERTa-large. Results are sum-
marized in Tables [[HIOl

CONFIDE maintains accuracy while consistently improving calibration. Across both RoOBERTa
variants, CONFIDE consistently improves top-1 correct efficiency relative to softmax-based baselines like
NM1 and NM2, while preserving or slightly improving classification accuracy. For example, on MRPC,
CONFIDE-C lifts correct efficiency from 0.8627 to 0.8848 on RoBERTa-base, and from 0.8578 to 0.8652
on RoBERTa-large (Tables . Similar 1-2 percentage point gains are observed on RTE, SST-2, and
CoLA: on RTE, CONFIDE-A and CONFIDE-C increase top-1 efficiency from 0.7112 (NM2) to 0.7256

16



Under review as submission to TMLR

Table 5: Performance on GLUE benchmarks using BERT-small: QQP, RTE, SST-2, and WNLIL.

Method QQP RTE SST-2 WNLI
Test Acc Top Test Acc Top Test Acc Top Test Acc Top
Corr Eff Corr Eff Corr Eff Corr Eff
Original NN 0.8893 - 0.5884 - 0.8911 - 0.4648 -
1-Nearest Neighbor  0.6423 0.6391 0.4693 0.4549 0.5011 0.4794 0.2394 0.2394
NM1/NM2 0.8893 0.8739 0.5884 0.5884 0.8911 0.8830 0.4648 0.4648

CONFIDE-A (ours) 0.8933 0.8820 0.6245 0.6173 0.8933 0.8647 0.5915 0.5493
CONFIDE-C (ours) 0.8901 0.8846 0.6245 0.6173 0.8899 0.8911 0.5634 0.5634

Table 6: Performance on SuperGLUE benchmarks using BERT-small: BoolQ, CB, and MultiRC.

Method BoolQ CB MultiRC

Test Acc Top Corr Eff Test Acc Top Corr Eff Test Acc Top Corr Eff
Original NN 0.7275 - 0.6250 - 0.6640 -
1-Nearest Neighbor 0.5602 0.5590 0.4286 0.4286 0.5192 0.4792
NM1/NM2 0.7275 0.6269 0.6250 0.6250 0.6640 0.6621
CONFIDE-A (ours)  0.7297 0.6104 0.7143 0.6786 0.6625 0.6557
CONFIDE-C (ours) 0.7272 0.7245 0.7143 0.7143 0.6599 0.6582

and 0.7292, respectively (Table , while CoL A improves from 0.8370 to 0.8495 (Table . Even on high-
performing tasks like MNLI, CONFIDE-C yields a marginal improvement from 0.8497 to 0.8512. Crucially,
these calibration benefits are not achieved at the cost of accuracy. On RTE, CONFIDE-C increases accuracy
from 0.7220 (NM2) to 0.7329, with CONFIDE-A reaching 0.7365 — the highest among all variants

(Table [3).

Larger models enable more confident prediction sets. RoBERTa-large exhibits a consistently nar-
rower gap between test accuracy and correct efficiency, even before applying CONFIDE. However, CONFIDE
still meaningfully refines this calibration. On MNLI and RTE, RoBERTa-large under CONFIDE-A achieves
0.8437 efficiency on CoLLA and 0.7978 on RTE.

Beyond raw accuracy and efficiency, larger models also enable smaller, more compact prediction sets. For
example, on the RTE benchmark, the average prediction set size among correct predictions is 1.84 for
RoBERTa-base, compared to 1.99 for BERT-tiny. This indicates that the higher-capacity model is more
confident in its predictions.

Scalability and resource constraints. Despite these improvements, CONFIDE faces scalability chal-
lenges when applied to large models. On long-context datasets, such as BoolQ and MultiRC, CONFIDE runs
on RoBERTa-large exceeded available GPU memory during distance matrix construction and flattened-layer
extraction. As a result, evaluation on all datasets was not possible. Details of memory usage, training time,
and dataset-specific runtime characteristics are provided in Appendix [A] All successfully completed results
are included in Table [0l

5.4 Classwise and Aggregate Validity of CONFIDE on BERT-tiny

A central goal of conformal prediction is to guarantee that the true label is included in the model’s prediction
set with high probability—typically at least 1 — e, where ¢ is the target error rate. This is known as
marginal validity and is achieved when the average coverage of the model’s prediction sets exceeds this
threshold. However, as emphasized in CONFINE (Huang et al.||2025)), marginal validity alone does not ensure
equitable performance across all classes. In many applications, particularly high-stakes ones like healthcare,
what matters more is class-conditional validity: the guarantee that each individual class receives its own
calibrated coverage. We analyze both marginal and classwise coverage on BERT-tiny using CONFIDE,
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Table 7: Performance on GLUE benchmarks using RoBERTa-base: CoLLA, MNLI, MRPC, and QNLI.

Method CoLA MNLI MRPC QNLI
Test Acc Top Test Acc Top Test Acc Top Test Acc Top
Corr Eff Corr Eff Corr Eff Corr Eff
Original NN 0.8408 - - - 0.8824 - 0.9231 -
1-Nearest Neighbor  0.6069 0.6021 - - 0.5564 0.5490 - -
NM1/NM2 0.8408 0.8370 0.8608 0.8497 0.8824 0.8627 0.9231 0.9098

CONFIDE-A (ours) 0.8495 0.8092 0.8608 0.8497 0.8848 0.8725 0.9235 0.9087
CONFIDE-C (ours) 0.8495 0.8495 0.8588 0.8512 0.8848 0.8848 0.9235 0.9217

Table 8: Performance on GLUE benchmarks using RoBERTa-base: QQP, RTE, SST-2, and WNLI.

Method QQP RTE SST-2 WNLI
Test Acc Top Test Acc Top Test Acc Top Test Acc Top
Corr Eff Corr Eff Corr Eff Corr Eff
Original NN 0.9069 - 0.7220 - 0.9323 - 0.4366 -
1-Nearest Neighbor - - 0.4693 0.4657 0.5092 0.5034 0.1972 0.1831
NM1/NM2 0.9069 0.8961 0.7220 0.7112 0.9323 0.9255 0.4366 0.4366

CONFIDE-A (ours) 0.9075 0.8955 0.7365 0.7256 0.9346 0.9289 - -
CONFIDE-C (ours) 0.9070 0.8961 0.7329 0.7292 0.9323 0.9323 - -

focusing on three representative datasets: CoLA, MNLI, and BoolQ. All models are evaluated using attention
representations, with all other metrics varied.

5.4.1 Comparative Results

CONFIDE’s classwise behavior reveals both strengths and limitations in calibration quality across tasks.
CoLA presents a failure case. As shown in Fig. 5| the aggregate coverage curve slightly underperforms, falling
below the 1 — ¢ diagonal, with correct efficiency peaking briefly before declining. Classwise analysis reveals
the issue: while the “acceptable” class is overcovered, the “unacceptable” class is severely undercovered, with
coverage dropping to zero for all € > 0.25.

In contrast, MNLI demonstrates strong calibration. Both the overall and correct efficiency curves align well
with the ideal diagonal (Fig. @, and all three classes achieve classwise validity. This likely reflects MNLI’s
clear class boundaries and low label noise, enabling even small models to learn well-separated representations
and produce reliable prediction sets.

BoolQ initially appears valid at the aggregate level, but classwise curves tell a different story (Fig. [7]). The
model heavily overpredicts the “true” class, assigning it to 906 of 1,237 “false” examples. As a result, the
“false” class suffers from poor accuracy (26.8%) and low coverage, while “true” examples enjoy inflated
metrics. Confidence and credibility are also skewed, averaging 0.894 vs. 0.865 (confidence) and 0.645 vs.
0.576 (credibility) for “true” and “false,” respectively. This reflects a representational collapse: inputs from
both classes are embedded too similarly, leading to overconfident, incorrect predictions.

These results underscore a critical limitation of marginal coverage: improvements in accuracy and correct
efficiency do not guarantee per-class calibration. When one class dominates model predictions, marginal
metrics may appear strong even as minority classes are systematically misrepresented.

5.4.2 Classwise Conformal Prediction Improves, but Does Not Solve, Failures of Conformal Validity
in BERT-tiny

Classwise adjustment can be valuable when the base model exhibits strong class-specific bias, as it attempts
to re-balance coverage in a targeted manner.
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Table 9: Performance on SuperGLUE benchmarks using RoBERTa-base: BoolQ, CB, and MultiRC.

Method BoolQ CB MultiRC

Test Acc Top Corr Eff Test Acc Top Corr Eff Test Acc Top Corr Eff
Original NN 0.8092 - 0.6786 - 0.7473 -
1-Nearest Neighbor - - 0.4464 0.4286 - -
NM1/NM2 0.8092 0.7654 0.6786 0.6607 0.7473 0.7471
CONFIDE-A (ours) 0.8095 0.5483 0.7500 0.7500 0.4299 0.4292
CONFIDE-C (ours) 0.8089 0.8089 0.7500 0.7500 0.4299 0.4292

Table 10: Performance on GLUE and SuperGLUE benchmarks using RoBERTa-large: CoLA, MRPC, RTE,
and WNLI.

Method CoLA MRPC RTE WNLI
Test Acc Top Test Acc Top Test Acc Top Test Acc Top
Corr Eff Corr Eff Corr Eff Corr Eff
Original NN 0.8418 - 0.8578 - 0.8087 - 0.5634 -
1-Nearest Neighbor  0.6069 0.6021 0.5564 0.5490 0.4693 0.4657 0.1972 0.1831
NM1/NM2 0.8418 0.8293 0.8578 0.8578 0.8087 0.8087 0.5634 0.5493

CONFIDE-A (ours) 0.8466 0.8437 0.8710 0.8578 0.8123 0.7978 0.5634 0.5493
CONFIDE-C (ours) 0.8466 0.8437 0.8652 0.8652 0.8051 0.8051 0.5493 0.5493

In BoolQ, applying classwise calibration substantially improves coverage for the minority “false” class, and
both classes begin to track more closely along the ideal coverage line (Fig. . However, some under-
coverage remains, especially under the ideal line for low e, suggesting residual bias. This suggests that
classwise calibration is a useful but partial solution. We also share CoLA graphs (Fig. E[), which show similar
improvements but lingering asymmetry. Fully resolving these failures may require further adjustments, such
as class reweighting, further temperature scaling, or more expressive representations.

BERT-small: Larger model, same pitfalls. Interestingly, increasing model capacity does not resolve
the violation. Both coverage and classwise coverage curves are similar, exhibiting abrupt drops in perfor-
mance at low €, as shown, for example, in Fig. [[0] The persistent coverage gap reflects that BERT-small,
though better optimized, still inherits inductive biases from the dataset and training protocol. Results graph-
ically are similar for BERT-small model/dataset combinations. Hence, we next move on to larger models
and share additional results in the Appendix.

5.5 Calibration Robustness in RoBERTa Models

We similarly analyze CONFIDE’s performance under both non-classwise and classwise calibration across
CoLA, BoolQ, and CB for the larger models, with additional results shared in Appendix[D] These experiments
reveal that larger models can produce more stable and exchangeable embeddings but that calibration quality
still varies by dataset and class distribution.

RoBERTa-base: Poor baseline calibration, strong classwise gains. On CoLA, RoBERTa-base
again has poor calibration without classwise correction. As shown in Fig. the aggregate coverage curve
is below the 1 — ¢ diagonal, and the correct efficiency is not tight, indicating that most prediction sets are
large and contain incorrect classes. Here, however, enabling classwise calibration on CoLLA yields strong
improvements, even above the diagonal curve. Fig.[I2]shows these trends, with classwise coverage providing
near-uniform performance between classes. This reveals how with RoBERTa-base, when the embeddings are
already well-structured, classwise correction can become a fine-tuning tool. We also note the continued poor
performance of correct efficiency, indicating that CoLA remains a difficult dataset for even the larger models
to correctly predict.
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Figure 5: Classwise and aggregate coverage curves for BERT-tiny on CoLA. The false class severely under-
covers, violating conformal validity.
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Figure 6: Classwise and aggregate coverage curves for BERT-tiny on MNLI. All classes are well calibrated
and closely follow the diagonal, indicating robust conformal validity.

On BoolQ (Fig. , RoBERTa-base demonstrates improved calibration relative to smaller models. The
aggregate coverage curve closely tracks the 1 — ¢ line, and the correct efficiency curve is stable and high
until € =~ 0.6, after which performance drops sharply. Further results for comparative classwise metrics are
presented in Appendix

This behavior likely reflects instability in the nonconformity score distribution for ambiguous examples.
At higher e thresholds, CONFIDE is expected to tolerate more errors by assigning lower nonconformity
scores to uncertain examples. However, in tasks like BoolQ, where many questions may not be easily
distinguishable as “true” or “false” without fine-grained reasoning, the model may have difficulty ranking
examples consistently. This leads to abrupt shifts in which examples are included in the prediction set as ¢
increases, resulting in jagged drops in coverage and efficiency. In addition, these cliffs suggest a breakdown
in the pseudo-exchangeability assumption: for inputs near the decision boundary, nearest neighbors may
be semantically dissimilar, making conformal thresholds unreliable. Despite these drawbacks, performance
remains substantially better than with smaller models, with more symmetric classwise behavior and better.

RoBERTa-large: Improvements with limits. RoBERTa-large similarly can show strong calibration
on structured datasets, but struggles under label ambiguity. On the CB dataset (Fig. , entailment and
contradiction maintain reasonable classwise coverage curves, but the “neutral” class fails, remaining below
0.5 across all €. This is likely due to two factors: the semantic vagueness of the neutral class and its very
low representation in the dataset. Even with high-capacity models, these challenges cannot be resolved
purely by scale. The failure of RoBERTa-large on CB highlights the fact that large model size alone is
insufficient for tackling calibrated uncertainty under semantic ambiguity and class sparsity. More examples
of RoBERTa-large performance are presented in Appendix
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Figure 7: Classwise and aggregate coverage curves for BERT-tiny on BoolQ (non-classwise). The false class
shows massive undercoverage due to biased calibration, despite almost diagonal aggregated statistics.
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Figure 8: Coverage curves on BoolQ using classwise calibration. The classwise method reduces undercoverage
but does not fully resolve it.

5.6 Prior Method Comparisons

We also present marginal coverage graphs on the CoLA and BoolQ datasets using prior methods. Figs. [I5al-
show their classwise coverage behavior across model and method combinations.

On CoLA, NM2 similarly exhibits significant calibration issues across both BERT-tiny and RoBERTa-base
backbones. As can be seen from Fig. [I5] the “unacceptable” class suffers from consistent undercoverage
throughout the e range, with coverage falling far below the 1 — e diagonal. This trend persists in Fig. [I5D]
where even the stronger RoBERTa-base model fails to improve the validity of the “unacceptable” class.
These results mirror the classwise failures of CONFIDE on CoLA and indicate that the inherent ambiguity
of the task and label noise challenge all distance-based methods.

On BoolQ, both NM2 and VanillaNN fail to provide reliable classwise coverage for BERT-tiny. In Fig. [I6a]
NM2’s performance is poor for the “false” class, with coverage dropping steadily below the diagonal. The
“true” class fares slightly better but still fails to meet the theoretical guarantee. VanillaNN, shown in
Fig. demonstrates similarly imbalanced behavior — while both classes begin near full coverage at low ¢,
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Figure 9: Coverage curves on CoLLA using classwise calibration.

21



Under review as submission to TMLR

Classwise Coverage Curve:
k=1, temp=1.00 .

unacceptable
acceptable

1.0 v=——=
0.8
0.6
0.4

0.2

*%0

0.2 0.4 0.6 0.8 1.0

Epsilon

Coverage and Efficiency curve:
k=1, temp=1.00

1.0 ==

0.8
0.6
0.4
0.2

0gs

0.4 0.6
Epsilon

0.2 0.8

1.0

—— Coverage
Correct Efficiency

Figure 10: Coverage curves on CoLA using BERT-small models. Undercoverage and classwise calibration

perform as poorly as BERT-tiny models.
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Figure 11: Coverage curves on CoLA using RoBERTa models. Undercoverage and classwise calibration
perform marginally better than smaller models but still poorly.
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Figure 12: Improvement performances for CoLLA with classwise calibration.
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Figure 13: Improvement performances for BoolQ compared to smaller models
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Figure 14: RoBERTa-large on CB (classwise): neutral class coverage fails entirely for neutral labels despite
overall decent accuracy.

performance rapidly degrades. The “false” class undercovers more severely, likely due to the method’s lack
of calibrated similarity scaling.

Together, these results highlight how both prior conformal methods have similar classwise calibration failures
on tasks with label imbalance or semantic ambiguity. Across methods, the most severe coverage violations oc-
cur for minority or hard-to-learn classes, indicating that the primary bottleneck may not lie in the conformal
framework but in the quality and richness of underlying embeddings.

5.7 Comparing Attention vs. Flattened CONFIDE Variants

In prior sections, all presented results use the attention-based variant of CONFIDE, in which nonconformity
scores are computed solely using the [CLS] token representation. Next, we compare it to the flattened
variant, which instead uses the full hidden state matrix from the selected transformer layer, flattened across
the sequence dimension to create a dense, high-dimensional representation. Results are limited due to the
high computational power required to flatten a layer.

We share brief results comparing top-1 accuracy and correct efficiency across two representative tasks: MNLI
using BERT-tiny and SST-2 using BERT-small in Table [T1]

Almost across the board, the flattened variant of CONFIDE slightly outperforms the attention-based version.
In MNLI, while accuracies are roughly comparable, the flattened variant achieves noticeably more stable and
occasionally higher correct efficiency.

Why does flattened outperform attention. These gains are expected for several reasons:

e Higher information content. Flattened embeddings incorporate features from all tokens in the
input sequence, capturing nuanced syntactic and semantic relationships that are lost when com-
pressing to a single [CLS] vector.

e Better class separability. The larger representation space enables better discrimination between
conforming and non-conforming examples, leading to sharper nonconformity scores.
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Figure 15: Classwise coverage curves for CoLA using the NM2 prior method. Both BERT-tiny and
RoBERTa-base show persistent undercoverage, particularly for the “unacceptable” class.
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Figure 16: Classwise coverage curves for BoolQ using BERT-tiny with two prior methods. Both NM2 and
Vanilla NN fail to maintain valid coverage, especially for the “false” class.

o Reduced overfitting to [CLS]. Attention-based approaches rely on the [CLS] token, which is often
tuned task-specifically. Flattened embeddings, by contrast, preserve broader contextual information
and generalize more.

Overall, when memory constraints permit, flattened CONFIDE emerges as a preferable variant, offering
improvements in both accuracy and reliability of the prediction set construction.

6 Discussions and Limitation

Despite its strengths, CONFIDE suffers from persistent calibration failures in real-world datasets and can
be computationally burdensome. As can be seen from our comprehensive results, CONFIDE often suffers
from significant coverage violations, often falling below the expected (1 —¢€) threshold, especially for minority
classes, such as neutral in MNLI or the false class in BoolQ. However, as previously noted, prior baselines,
such as NM2 or VANILLANN, demonstrate even more erratic or collapsed coverage curves, thus validating
CONFIDE’s superiority. These violations highlight a key limitation of CP in practice: the assumption of
exchangeability is often not met, particularly in datasets with inherent class imbalance or input distribution
drift. This limitation suggests that in safety-critical domains, conformal methods must be combined with
explicit checks on calibration behavior per class or region of the input space. Otherwise, falsely assuming
valid coverage can lead to underrepresented groups being frequently misclassified.

From a computational standpoint, a key limitation of CONFIDE is that its best-performing configurations
often occur not at the final softmax layer but within early or intermediate layers of the transformer. For
instance, in RoOBERTa-base on CoLA (Fig. , the optimal performance arises at k = 60, t = 1.0, and layer
190, which is within the first half of the network. While earlier layers yield richer contextual embeddings for
semantic similarity, this benefit comes at a cost. As shown in Appendix Table shifting from layer 38 to 41
(i.e., deeper into the model) reduces calibration and test time by over 5 and 0.8 seconds, respectively, averaged
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Table 11: Comparison of CONFIDE-A and CONFIDE-C using Attention and Flattened representations for
MNLI (BERT-tiny) and SST-2 (BERT-small). Bolded values highlight the best result for each task and
metric.

Task / Variant Attention Flattened
Acc. Corr. Eff. Acc. Corr. Eff.

MNLI — BERT-TINY

CONFIDE-A 0.6982 0.6907 0.6993 0.6497
CONFIDE-C 0.6975 0.6932 0.6980 0.6971
SST-2 — BERT-SMALL

CONFIDE-A 0.8933 0.8647 0.8968 0.8853
CONFIDE-C 0.8899 0.8911 0.8933 0.8933

across datasets for BERT-tiny. In contrast, using earlier layers (e.g., layers 9 to 16) can increase computation
time, particularly for the calibration phase. This is due to the larger hidden dimensions and more complex
internal representations at earlier stages, which inflate the cost of k-nearest neighbor lookups. In addition,
CONFIDE’s higher test-time cost makes it less suitable for real-time deployment unless additional efficiency
strategies are incorporated.

This trade-off between interpretability and efficiency is magnified in the flattened variant of CONFIDE,
which extracts token-level embeddings across the full sequence length. As demonstrated in Section
flattened representations can outperform attention-based ones. They, however, amplify memory usage and
make pre-processing expensive due to the sequence-level granularity. This is due to the need to store and
compare high-dimensional token-level vectors across long input sequences. Moreover, they frequently run
into GPU memory limits on RoBERTa models and long-context tasks like BoolQ.

These limitations could be addressed by (i) designing memory-efficient approximations for flattened embed-
dings, (ii) exploring hybrid-layer representations that balance cost and informativeness, and (iii) benchmark-
ing early-layer embeddings with realistic latency, memory, and throughput constraints to identify tradeoff-
optimal layers.

7 Conclusions and Future Work

This paper introduced CONFIDE, a CP framework designed to bring principled uncertainty quantification
and interpretable prediction sets to transformer-based language models. Built upon the CONFINE algorithm,
CONFIDE adapts these techniques to the unique architecture and representational structure of transformers,
particularly BERT and RoBERTa variants. CONFIDE enables users to generate prediction sets that are
transparent and explainable through nearest-neighbor retrievals.

Across a suite of GLUE and SuperGLUE tasks, CONFIDE outperforms traditional uncertainty baselines in
both accuracy and correct efficiency. On most models, CONFIDE improves prediction set quality without
sacrificing top-1 accuracy. Our empirical results show that CONFIDE variants with [CLS] embeddings and
class-conditional nonconformity measures outperform NM2 and VanillaNN in both aggregate and classwise
coverage. These gains are especially pronounced on tasks like BoolQ and RTE. Every method suffers from
undercoverage for underrepresented classes.

CONFIDE also exposes failure modes in low-capacity models by demonstrating poor coverage for multiple
domains. Class-conditional analysis reveals that both BERT-tiny and BERT-small frequently overfit dom-
inant classes, producing skewed prediction sets. CONFIDE, however, attempts to make these imbalances
legible through classwise coverage curves and credibility metrics, surfacing issues that remain hidden in
aggregate statistics.

A key insight from our study is that the most effective CONFIDE configurations frequently rely on inter-
mediate or early layers of the model. For instance, optimal configurations for tasks like CoLA and MNLI
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often emerge from layers 9 and 16 in BERT-tiny, well before the final classification/softmax layer. These
internal layers contain more generalized linguistic structure, which enhances nearest-neighbor comparisons.
However, this also introduces computational overhead: compared to softmax-based predictors, CONFIDE
requires significant time for embedding extraction and k-NN distance computation, particularly in high-
dimensional spaces, such as RoBERTa, which had dimensions upwards of 768. Table [I3] in Appendix C
quantifies this tradeoff, showing increased calibration and test time when using richer embeddings.

The broader value of conformal prediction lies in its potential to deliver trustworthy and introspective Al.
In high-stakes domains like healthcare, conformal methods can output reliable differential diagnoses with
guaranteed coverage, enabling practitioners to weigh multiple outcomes without over-reliance on a single
prediction. One example is a model that outputs “pneumonia, bronchitis” with 95% confidence based on a
series of symptoms, better than simply offering just “pneumonia” at 98% probability. CONFIDE enhances
trust by providing these instance-level explanations: potentially the most similar past patients or cases in
the calibration data.

Robotics offers another compelling application area. In real-world systems, such as autonomous vehicles,
safety depends not only on the accuracy of decisions but also on the model’s ability to know when not to act.
CONFIDE enables safety-aware behavior by using prediction set size as a proxy for certainty: if the prediction
set is large or ambiguous, the robot may default to a safer fallback action. This is important for applications
like object classification in unstructured environments or decision-making under partial observability, where
taking the wrong action can have irreversible consequences.

The promise of CP in language models extends even further. Future work can extend CONFIDE'’s ideas to
generative settings (e.g., conformal decoding), multimodal tasks (e.g., image-text retrieval), and structured
outputs (e.g., entity spans or logical forms), thereby expanding the reach of conformal reasoning into the
core of next-generation Al systems.

In sum, CONFIDE takes a significant step toward interpretable, robust, and theoretically grounded NLP
systems. It equips users with prediction sets they can trust and explanations they can audit without needing
to modify the underlying model architecture. While computational costs remain a barrier to real-time
deployment, especially at earlier layers, this tradeoff is often justified in applications where transparency and
reliability are paramount. By bridging deep language models and conformal inference, CONFIDE contributes
a step toward introspective, explainable, and reliable Al.
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Appendix

A Model and Dataset Details

Benchmark selection. We evaluate CONFIDE on a suite of sentence- and passage-level classification
tasks drawn from the GLUE and SuperGLUE benchmarks. These datasets are widely used in NLP research
and present varied challenges in terms of linguistic complexity, dataset size, number of classes, and label
ambiguity. All tasks selected are classification-based, ensuring compatibility with CP methods that require
discrete label spaces. By testing CONFIDE on this diverse set, we validate its robustness, interpretability,
and generalizability across real-world NLP scenarios.

GLUE datasets (Wang et al., [2019)

SST-2 (Stanford Sentiment Treebank v2): Binary sentiment classification of movie reviews.
Contains approximately 67,000 training examples. Well-curated and widely used for benchmarking
sentence-level sentiment classification.

MNLI (Multi-Genre Natural Language Inference): Three-class classification (entailment,
neutral, contradiction) with over 392,000 examples. Features premise-hypothesis pairs from multiple
domains (e.g., fiction, government), testing general NLI capabilities.

CoLA (Corpus of Linguistic Acceptability): Binary acceptability judgment task using expert-
labeled grammatical sentences. Relatively small with roughly 8,500 examples, challenging due to
linguistic nuance.

MRPC (Microsoft Research Paraphrase Corpus): Binary classification of whether sentence
pairs are semantically equivalent. Contains around 3,700 examples and introduces noise due to label
ambiguity.

QQP (Quora Question Pairs): Large-scale binary paraphrase classification with over 400,000
sentence pairs. Includes noisy user-generated data, simulating web-scale text inference tasks.

QNLI (Question Natural Language Inference): Binary classification derived from ques-
tion—answering. Reformulated from SQuAD as sentence-pair entailment. Mid-sized with approxi-
mately 105,000 examples.

RTE (Recognizing Textual Entailment): Binary entailment detection with only 2,500 examples.
Known for being difficult due to label imbalance and low-resource setting.

WNLI (Winograd NLI): Binary coreference reasoning task derived from the Winograd Schema
Challenge. Extremely small (635 samples), difficult to model due to subtle pronoun resolution
required.

SuperGLUE Datasets (Wang et al., [2020)

BoolQ (Boolean Questions): Binary QA task requiring yes/no answers to naturally occurring
queries paired with Wikipedia passages. Over 9,000 training examples, but highly noisy and linguis-
tically ambiguous.

CB (CommitmentBank): Three-class NLI task with only ~250 training examples. Requires fine-
grained reasoning over implicatures in short discourse contexts. Serves as a stress test for uncertainty
calibration in low-data settings.

MultiRC (Multi-Sentence Reading Comprehension): Framed as a binary classification task
on question—answer—context triples. Multi-label format with complex, often contradictory annota-
tions. Approximately 9,000 QA pairs from 300 paragraphs.
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B Hyperparameter Testing Results

B.1 Hyperparameter Search

We performed grid search over the CONFIDE hyperparameters: layer, k, distance metric, PCA, and tem-
perature. For each (model, dataset) pair, we selected the configuration that maximized either top-1 accuracy
(CONFIDE-A) or correct efficiency (CONFIDE-C). Full results are visualized as heatmaps, but first, we share
top-accuracy and top-correct-efficiency configurations across datasets and methods. Table summarizes
the key settings.

Table 12: Best CONFIDE hyperparameters across datasets and models.

Dataset Model Method Hyperparameters
glue_ cola BERT-small CONFIDE-A | =81, k = 10, flattened, cosine, PCA : No
CONFIDE-C [ =381, k=10, flattened, cosine, PCA : No
BERT-tiny CONFIDE-A | =16, k = 50, flattened, mahalanobis, PCA : Yes
CONFIDE-C I =16, k = 50, flattened, mahalanobis, PCA : Yes
RoBERTa-base CONFIDE-A 1 =190, k= 20 ﬂattcncd cosine, PCA No
CONFIDE-C | = softmax, =1.0, k=1, ﬂattened cosine, PCA : Yes
RoBERTa-large CONFIDE-A 1 =340, k = 17 flattened, cosine, PCA : No
CONFIDE-C | =340, k =1, flattened, cosine, PCA : No
glue__mnli BERT-small CONFIDE-A | = softmax, T = 0.01, k = 1, flattened, cosine, PCA : No
CONFIDE-C | = softmax, T = 0.01, k=1, flattened, cosine, PCA : No
BERT-tiny CONFIDE-A | = softmax, = 1.0, k =1, flattened, cosine, PCA : No
CONFIDE-C | = softmax, T =10.0, k = 60 flattened, cosine, PCA : Yes
RoBERTa-base CONFIDE-A | = 225, k = 10, flattened, cosine, PCA : No
CONFIDE-C l =225, k =1, flattened, cosine, PCA : No
glue__mrpc BERT-small CONFIDE-A 1 =52, k=20, flattened, cosine, PCA: No
CONFIDE-C I =70, k =20, flattened, cosine, PCA : No
BERT-tiny CONFIDE-A | =34, k =50, flattened, mahalanobis, PCA : No
CONFIDE-C | =16, k =5, flattened, mahalanobis, PCA : No
RoBERTa-base CONFIDE-A 1 =189, k = 50, flattened, cosine, PCA : No
CONFIDE-C 1 =191, k =5, flattened, mahalanobis, PCA : Yes
RoBERTa-large =~ CONFIDE-A [ = softmax, T = 20.0, k = 1, flattened, cosine, PCA : No
CONFIDE-C | = softmax, T = 40.0, k = 1, flattened, cosine, PCA : No
glue__gnli BERT-small CONFIDE-A | = 85, k = 40, flattened, cosine, PCA : No
CONFIDE-C 1 =82, k=1, flattened, cosine, PCA : No
BERT-tiny CONFIDE-A | =27, k = 40, flattened, cosine, PCA : No
CONFIDE-C 1 =27, k=1, flattened, cosine, PCA : Yes
RoBERTa-base CONFIDE-A 1 =225, k= 5 flattened, cosine, PCA : No
CONFIDE-C | = softmax, T = 0.01, k = 5, flattened, cosine, PCA : No
glue_qqp BERT-small CONFIDE-A =281, k=1, ﬂattcncd, cosinc7 PCA : No
CONFIDE-C [ = oftmax T = 0.01, k = 40, flattened, cosine, PCA : No
BERT-tiny CONFIDE-A =27, k=1, ﬂattened cosine, PCA : No
CONFIDE-C | =27, k=1, flattened, cosine, PCA : No
RoBERTa-base CONFIDE-A | = 225, k = 20, flattened, cosine, PCA : No
CONFIDE-C | =225, k =1, flattened, cosine, PCA : No
glue_ rte BERT-small CONFIDE-A [ =38, k=60, ﬂattened7 mahalanobis7 PCA : Yes
CONFIDE-C | = 38, k =60, flattened, mahalanobis, PCA : Yes
BERT-tiny CONFIDE-A | =27, k =50, flattened, cosine, PCA : Yes
CONFIDE-C | = 38, k =50, flattened, cosine, PCA : Yes
RoBERTa-base CONFIDE-A 1 =190, k =1, flattened, cosine, PCA : No
CONFIDE-C | =189, k = 40, flattened, cosine, PCA : Yes
RoBERTa-large CONFIDE-A | = 340, k = 20, flattened, mahalanobis, PCA : Yes
CONFIDE-C | = 340, k = 5, flattened, mahalanobis, PCA : Yes
glue_ sst2 BERT-small CONFIDE-A | =82, k=1, flattened, cosine, PCA : Yes
CONFIDE-C | = softmax, T = 10.0, k =1, ﬂattened cosine, PCA : Yes
BERT-tiny CONFIDE-A | =27, k=5, flattened, mahalanobls PCA : No
CONFIDE-C | = 34, k =50, flattened, cosine, PCA : Yes
RoBERTa-base CONFIDE-A | = softmax, T = 10.0, kK = 1, flattened, cosine, PCA : No
CONFIDE-C |l = softmax, T'=0.01, k = 1, flattened, cosine, PCA : Yes
glue__wnli BERT-small CONFIDE-A [ =16, k = 60, flattened, cosine, PCA : Yes
CONFIDE-C | =16, k = 50, flattened, cosine, PCA : Yes
BERT-tiny CONFIDE-A | = softmax, T = 0.01, k = 1, flattened, cosine, PCA : No
CONFIDE-C | = softmax, T = 0.01, kK = 1, flattened, cosine, PCA : No
RoBERTa-large = CONFIDE-A [ =45, k =1, flattened, mahalanobis, PCA : Yes
CONFIDE-C l =45, k =1, flattened, cosine, PCA : No
superglue__boolq BERT-small CONFIDE-A | = softmax, T = 10.0, k =1, flattened, cosine, PCA : No
CONFIDE-C | = softmax, T = 0.01, k =5, flattened, cosine, PCA : No
BERT-tiny CONFIDE-A =16, k=05, ﬁattened, mahalanobis, PCA : No
CONFIDE-C 1 =16, k =5, flattened, mahalanobis, PCA : No
RoBERTa-base CONFIDE-A | = softmax, T'= 0.01, k = 1, flattened, cosine, PCA : Yes
CONFIDE-C | = softmax, T = 0.01, k = 1, flattened, cosine, PCA : Yes
superglue__cb BERT-small CONFIDE-A =9, k=25, ﬂattened cosine, PCA : Yes

Continued on next page
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Dataset Model Method Hyperparameters
CONFIDE-C 1 =27, k=1, flattened, cosine, PCA : No
BERT-tiny CONFIDE-A I =16, k =5, flattened, cosine, PCA : Yes
CONFIDE-C | =16, k = 10, flattened, cosine, PCA : Yes
RoBERTa-base CONFIDE-A |l =225, k =1, flattened, mahalanobis, PCA : No
CONFIDE-C I =225, k =1, flattened, mahalanobis, PCA : No
RoBERTa-large =~ CONFIDE-A [ =106, k = 60 ﬂattened cosine, PCA No
CONFIDE-C | =106, k = 60, flattened, cosine, PCA : No
superglue__multirc BERT-small CONFIDE-A | = 85, k =50, flattened, cosine, PCA : No
CONFIDE-C L= softmax T = 0.1, k = 40, flattened, cosine, PCA : No
BERT-tiny CONFIDE-A [ =27, k=25, ﬁattened cosine, PCA : No
CONFIDE-C | =38, k=5, flattened, cosine, PCA : Yes
RoBERTa-base CONFIDE-A | = 45, k = 60, flattened, cosine, PCA : No
CONFIDE-C |l =45, k = 60, flattened, cosine, PCA : No

B.2 Heatmaps

We include in Figs. a subset of experimental plots organized by dataset and model. For each grid
parameter of k and [, we present the best accuracy and best top correct efficiency, found at any combination
of the other hyperparameters, including flattened vs. attention, cosine vs. mahalanobis, or PCA true vs.
false. Similarly, for softmax layers, we do the same for k vs T
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Encoder Layers Softmax (T vs k)
-0.75
0.01 074 074 074 074 074 074 074
-0.74
0.1 074 074 074 074 074 074 074
-0.73
-
E 1.0 0.74 074 074 074 074 074 074 -0.72 -
3 3
g 5
(]
= -0.71 3
£ 10.0 074 074 074 074 074 074 074 ©
(7]
=
-0.70
70 074 0.74 074 074 074 074 0.74
20.0 0.74 074 074 0.74 0.74 074 074
81 075 0.75 0.75 0.75 0.75 075 0.75 - 0.69
82 0.74 0.75 0.75 0.75 0.75 0.75 0.75
40.0 074 074 074 0.74 0.74 074 074 - 0.68
85 074 074 074 074 0.74 074 074
1 5 10 20 40 50 60 1 5 10 20 40 50 60
k k

Figure 17: BERT-small hyperparameter testing on the CoLA dataset - accuracy

C Timing and Computational Cost

C.1 Timing Implications of Layer Choice

Table [L3] analyzes the change in CPU time across CONFIDE’s core stages—train, calib, and test—when
shifting embedding extraction from an earlier transformer layer to a later one. A key hypothesis is that
later layers should exhibit lower computational cost, as their embeddings tend to be more distilled, lower-
variance, and less semantically rich. These properties could reduce both the storage overhead and the cost
of nearest-neighbor distance calculations.

Overall, the data support this trend. The transition from layer 16.0 to 27.0 yields clear speedups across
all stages, with calibration time dropping by over 0.5 seconds. A further shift to layer 34.0 continues this
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Figure 18: BERT-small hyperparameter testing on the MRPC dataset - correct efficiency
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Figure 19: RoBERTa-large hyperparameter testing on the MRPC dataset - accuracy

downward trend. These reductions are consistent with the notion that deeper transformer layers produce
more compact and separable representations, thereby streamlining the conformal prediction pipeline. How-
ever, not all transitions are monotonic. The shift from layer 34.0 to 38.0 causes calibration time to spike by
over b seconds—an anomaly that likely reflects residual attention complexity or an unusually high activation

dimensionality at that depth.
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top_efficiency Heatmap - glue_rte__bert-tiny (bert-tiny)
Top Correct Efficiency - Encoder Layers

Top Correct Efficiency - Softmax (T vs k)

0.01

0.1

1.0

Temperature T

20.0

Figure 20: BERT-tiny hyperparameter testing on the RTE dataset - correct efficiency
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Figure 21: BERT-tiny hyperparameter testing on the SST2 dataset - accuracy

These findings suggest that while the relationship between layer depth and efficiency is not strictly linear,
CONFIDE configurations that operate on later layers, particularly near the output, tend to offer superior
computational efficiency. This trend reinforces the importance of jointly optimizing for both interpretability
and runtime performance when selecting embedding layers for conformal prediction.
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Figure 22: RoBERTa-base hyperparameter testing on the CB dataset - accuracy

Table 13: Change in CPU time (seconds) when using a later layer instead of an earlier one for CONFIDE’s
train, calib, and test stages. Generated using BERT-tiny, averaged across every dataset.

Layer Range Train Calib Test

9.0 — 16.0 0.1724  -0.0008 0.0913
16.0 — 27.0 -0.4169 -0.5246  -0.1123
27.0 — 34.0 -0.1213  -0.0732  0.0128
34.0 — 38.0 0.0779  5.3893  0.7544
38.0 — 41.0 -0.1793  -5.2908 -0.8349

C.2 Computational Complexity Analysis

Our computational complexity analysis is fully based on the original CONFINE framework
. The pre-processing phase requires every instance in the training and calibration sets to undergo a
forward pass through the neural network for feature extraction. Let d denote the dimensionality of the
extracted feature vector, IV; the size of the proper training set, and V. the size of the calibration set. If T
is the time taken for a single forward pass, then the total pre-processing time is given by O((N; + N.)Tf +
N.dN;). This includes both network inference and class-conditional nearest-neighbor index construction.
Once feature vectors are extracted, they are stored in O(dNy) space. During inference, evaluating CONFINE
on a single test point requires one additional forward pass and one nearest-neighbor lookup. This results in
a total runtime of O(Ty 4+ dN;) per test example. Compared to standard neural inference, which only incurs
O(Ty) time, CONFINE adds a cost of O(dN;) to enable interpretability.

D Additional Results

In Figs. [23}{44] we present between 1-3 model configurations, both with and without classwise split, of each
dataset. Graphs are sourced from the best hyperparameter combination, found in Section [B.I] Boolq results
are not repeated as both best parameter combinations are already presented in Section [5}
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Figure 23: BERT-small CoLA classwise-false
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Figure 25: RoBERTa-base CoLA classwise-false
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Figure 24: BERT-small CoLA classwise-true
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Figure 26: RoBERTa-base CoLA classwise-true

We observe a strong match between coverage and correct efficiency across most € values in the QNLI task
using BERT-tiny, especially when classwise calibrated. This suggests that even with a limited model capacity,
the learned representations in QNLI provide sufficient semantic separation between the “entailment” and
“not__entailment” classes. QNLI tends to involve syntactically structured queries with informative lexical
anchors. This consistency likely helps CONFIDE identify meaningful neighborhoods in the embedding space.

Then, despite WNLI being a notoriously noisy dataset with adversarial structure, we see surprisingly effective
calibration here. The slight smoothness and separation in classwise curves imply that the selected layer (and
hyperparameters) successfully isolate decision boundaries in a way that suppresses overfitting to artifacts.
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Figure 27: RoBERTa-large CoLA classwise-false
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Figure 29: RoBERTa-base MNLI classwise-true
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Figure 28: RoBERTa-large CoLA classwise-true
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Figure 30: BERT-small QQP classwise-true

Meanwhile, CONFIDE struggles with MultiRC in generating meaningful classwise separation or maintaining
correct efficiency. Coverage drops off rapidly while correct efficiency remains flat, indicating that the internal

representations fail to capture the task’s complexity.

Ultimately, these examples illustrate that CONFIDE is highly adaptable across datasets and transformer
architectures. However, its success is dependent on internal factors such as the semantic coherence of class
labels, the quality of intermediate layer representations, and dataset-specific noise or adversarial traits.
Careful calibration and model-aware design choices are critical to unlocking CONFIDE'’s full potential.
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Figure 31: BERT-small MRPC classwise-false
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Figure 33: RoBERTa-large MRPC classwise-false
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Figure 32: BERT-small MRPC classwise-true
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Figure 34: RoBERTa-large MRPC classwise-true
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Figure 35: BERT-tiny QNLI classwise-false

Classwise Coverage Curve:

k=40, temp=1.00 —— not_entailment

1.0
\ entailment
0.81 .
.._ \’w‘
0.6 s e
0.4 \
0.2 ST
&
%% 0.2 0.4 0.6 0.8 1.0
Epsilon
Coverage and Efficiency curve: - Coverage

k=40, temp=1.00

1.0
0.8
0.6
0.4
0.2/

%%% 0.2 0.4 0.6 0.8 1.0
Epsilon

Figure 37: RoBERTa-base RTE classwise-false
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Figure 36: BERT-tiny QNLI classwise-true
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Figure 38: RoBERTa-base RTE classwise-true
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Figure 39: BERT-small SST2 classwise-false
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Figure 41: BERT-small WNLI classwise-false

39

Classwise Coverage Curve:
k=10, temp=0.01

—— negative
positive

1.0

0.8
0.6
0.4
0.2

0'%.0 0.2 0.4 0.6 0.8 1.0
Epsilon

Coverage and Efficiency curve:
k=10, temp=0.01

—— Coverage
Correct Efficiency

1.0

0.8
0.6
0.4
0.2

0'%.0 0.2 0.4 0.6 0.8 1.0
Epsilon

Figure 40: BERT-small SST2 classwise-true
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Figure 42: BERT-small WNLI classwise-true
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Figure 43: BERT-tiny MultiRC classwise-false
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Figure 44: BERT-tiny MultiRC classwise-true
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