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ABSTRACT

Despite the prevalence and significance of tabular data across numerous indus-
tries and fields, it has been relatively underexplored in the realm of deep learn-
ing. Even today, neural networks are often overshadowed by techniques such as
gradient-boosted decision trees (GBDT). However, recent models are beginning
to close this gap, outperforming GBDT in various setups and garnering increased
attention in the field. Drawing from this inspiration, in this work we introduce a
novel deep learning model specifically designed for tabular data. The foundation
of this model is a Transformer-based architecture, carefully adapted to cater to
the unique properties of tabular data through strategic architectural modifications,
mainly two forms of stochastic competition. First, we employ the ”Local Winner
Takes All” mechanism as a refined alternative to ReLU-activated layers. Second,
we introduce a novel embedding layer that blends multiple linear embedding lay-
ers through a form of stochastic competition. Model effectiveness is validated on
a variety of widely-used, publicly available datasets. We show that, through in-
corporation of the said stochastic elements, we yield state-of-the-art performance
and mark a significant advancement in applying deep learning to tabular data.

1 INTRODUCTION

Tabular data is a fundamental and arguably one of the most commonly used formats in the fields of
data science and machine learning. It is structured with rows and columns that represent individ-
ual observations and their corresponding features; this creates a simple two-dimensional, table-like
body. Within it, various data types can be included. This format enjoys widespread popularity in
sectors like healthcare, finance, and sciences because of its organizational clarity and its close ties
with relational databases and spreadsheets. Yet, despite its prevalence and seeming simplicity, ef-
fectively modeling tabular data for common tasks like regression or classification continues to pose
significant challenges.

Features in tabular data can take several forms, ranging from simple scalar values to custom data
structures. However, in modeling scenarios, these features predominantly manifest as either con-
tinuous real values or discrete categorical variables, often encoded as positive integers. Formally,
a tabular row of length s can be represented as x ∈ Rsr × Nsn , where s = sr + sn. Here, sr
demarcates the number of continuous features, while sn enumerates the categorical ones. Addition-
ally, the positioning of features in a tabular row holds no intrinsic geometrical meaning. Thus, we
presume no inherent relations between features, in contrast to other popular data forms like images
or language.

Typically, the methodologies favored for these tasks have been Tree-Based models like Random
Forests (Ho, 1995) and Gradient Boosted Decision Trees (GBDTs) (Friedman, 2002), chosen for
their performance. Deep Learning, a paradigm that has substantially revolutionized learning for
other forms of data, has not yet been established as the first line approach for tabular data. However,
this trend is gradually evolving. Recent years have witnessed the emergence of few novel deep learn-
ing models that outperform GBDTs on a range of tabular datasets. While the related publications
are still limited in number, their promising results have the potential to redefine the current approach
to tabular data; this may position deep learning at the forefront of tabular data analysis.

In this paper, we delve further into the field, and propose a novel Deep Learning architecture for
addressing Tabular Data. In particular, we consider the Transformer encoder (Vaswani et al., 2017)
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as our architectural basis. We proceed to substantial modifications of this architecture to address
tabular data, by adding: (i) a parallel fully connected element and (ii) an attention bias term. In ad-
dition, we infuse sophisticated stochastic techniques into the model, namely the powerful stochastic
”Local Winner Takes All” (LWTA) layer, as well as a novel Mixture Embedding layer for the input
features.

The remainder of this paper is organized as follows. The next Section offers an overview of related
work. In Section 3, we introduce the proposed approach, explain its main architectural assumptions
and components, and derive the training and inference algorithms. Section 4 provides a deep ex-
perimental evaluation of our proposed approach, using established benchmarks in the field; this is
combined with a long ablation study. Finally, in Section 5 we conclude this paper drawing some key
insights.

2 RELATED WORK

As previously outlined, the most established methods in Tabular Data Modeling (TDM) currently
belong to the family of tree-based algorithms, especially in the form of Gradient Boosted Decision
Trees (GBDT). These algorithms rely on an ensemble of weak learners, sequentially generated as
corrections to the existing ensembles in a gradient-driven fashion. The most renowned and popu-
lar variants of such algorithms include Catboost(Prokhorenkova et al., 2018), XGBoost(Chen et al.,
2015), NGboostDuan et al. (2020), and LightBoost(Ke et al., 2017). The popularity of these ap-
proaches, especially in industrial and competition environments, stems from their high performance
and ease of use.

Until the close of the previous decade, deep learning methodologies for Tabular Data predominantly
centered around multi-layer perceptrons and similar rudimentary architectures. However, the recent
years have witnessed a surge in sophisticated neural network designs, yielding remarkable results.
These contemporary designs have adopted diverse strategies, including emulating decision trees or
other types of weak learners; often, they draw inspiration from GBDT. Two seminal architectures
embodying this philosophy are NODE(Popov et al., 2019) and GrowNet(Badirli et al., 2020).

While these methodologies have recorded commendable outcomes, the trajectory in recent research
has been the inclination towards Transformer-based architectures. Designs like TabNet(Arik &
Pfister, 2021) harness the computational prowess of the Transformer and the attention mechanism,
giving strong results through an encoder-decoder framework. Conversely, TabTransformer(Huang
et al., 2020) deploys the transformer to process categorical tabular features and subsequently amal-
gamates the resultant representations with a fully connected layer to address the numerical features.
FtTransformer(Gorishniy et al., 2021), meanwhile, employs an encoder-only design to analyze all
features, and post-projects individual categorical features into distinct vector representations using
a simple yet effective linear embedding layer. Finally, SAINT (Somepalli et al., 2021) goes beyond
row-by-row processing through the addition of an inter-row attention layer.

Apart from proposing sophisticated network architectures, a number of studies have investigated the
implications tied to distinct attributes and settings that underpin deep learning practices. Character-
istic studies in this context consider pretraining (Rubachev et al., 2022; Iida et al., 2021), as well
as various embedding approaches that yield strong results even with simple architectures such as
MLP-PLR (Gorishniy et al., 2022). Standout contributions include Kotelnikov et al. (2023), which
employs denoising diffusion probabilistic models, and Gorishniy et al. (2023), which employs re-
trieval augmentation strategies.

3 THE MODEL

3.1 OVERVIEW

In Figure 1, we provide a comprehensive overview of the proposed model, which employs a hybrid
architecture grounded on an encoder-only Transformer. This foundational architecture is augmented
with stochastic elements and additional structural modifications, which we will discuss in greater
detail later in this Section.
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Figure 1: Overview of the proposed approach, exhibiting its core modules.

Our proposed adaptations do not obliterate the necessity for a specific input structure compatible
with the standard Transformer encoder. To achieve compatibility with this structure, our first step is
to adapt the original data format, defined in Rsr × Nsn , to one that fits the Transformer. Through
embedding layers, each feature xi, i ∈ 1, .., s, be it numerical or categorical, is mapped onto a d-
dimensional representation vector, given by hi ∈ Rd. Eventually, a given input x = (x)si=1 is
mapped to a vector h ∈ Rd·s. Alongside this representation, we also add a vector, hspecial ∈ Rd,
that corresponds to an artificial ”special token” with a static input value. The terminal representation
of this token is fed to a penultimate regression or classification head, depending on the modeling task
at hand.

While our architectural design shares similarities with usual Transformers and preceding models
from TDM and other domains, it distinguishes itself through three key innovations that enhance its
predictive capability: i) The adoption of the sophisticated stochastic LWTA layer (Panousis et al.,
2019). The latter has been shown to yield improved results in a wide range of applications; yet, it has
never been employed to networks designed for Tabular Data. ii) The introduction of a novel data-
driven probabilistic selection among alternative (linear) feature embeddings. This enhancement adds
an extra element of stochasticity and promotes richer feature representations. iii) The introduction
of the Hybrid Transformer module, which is specifically designed for TDM. This module merges
the core Transformer encoder with a parallel fully connected aggregation module. Tailored to capi-
talize on the static structure of tabular data, this aggregation module works by projecting the hidden
representations back to scalar values and processing the aggregate result.

In the following subsections, we elaborate on each of the core novel elements that compose our
Transformer-based approach.

3.2 LOCAL WINNER TAKES ALL

The Stochastic ”Local Winner Takes All” (LWTA) layer (Panousis et al., 2019) is a more sophisti-
cated alternative to common deterministic non-linear layers. This approach has garnered significant
success in a range of tasks and setups, including Image Classification (Panousis et al., 2022), Meta-
Learning (Kalais & Chatzis, 2022), Sign Language Translation (Voskou et al., 2021; Gueuwou et al.,
2023), and more (Panousis et al., 2021b;a). An LWTA layer comprises linear units and introduces
non-linear behavior by means of stochastic competition within blocks of layer neurons. Within a
block of competitors, only one neuron, labeled as the ”winner,” is activated; winner selection is
probabilistic. All other neurons remain inactive and pass zero values.

In a more formal notation, let us consider the input and output vectors of a typical linear layer,
denoted by x ∈ RJ and y ∈ RH respectively, with the associated weight matrix denoted as
W ∈ RJ×H . In the LWTA approach, the elements of y are partitioned into K distinct, non-
overlapping blocks, each containing U elements. Concurrently, the weight matrix W is restruc-
tured into K separate submatrices. This gives us yk ∈ RU and Wk ∈ RJ×U for each block
k ∈ {1, 2, . . . ,K}. Within each block, the output values compete against one another and only
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Figure 2: Illustration of the novel modules used in the proposed model: (Left) The embedding
mixture layer. (Right) The hybrid Transformer module.

one, the ”winner”, is retained; the remaining elements are set to 0. The aforementioned competi-
tion is technically implemented as a stochastic sampling process inside each block. In this process,
the winner indicator, a latent one-hot vector, ξk ∈ onehot(U) is sampled from a discrete posterior
D(ξ). The posterior logits are directly proportional to the linear computations of each respective
unit, passed through a softmax. The final layer output yk for the block k is gained by using the
postulated ξk in a simple masking operation as in (1).

yk = ξk ⊙ (Wkx), ξk ∼ D

(
ξk

∣∣∣∣Wkx

)
, ∀k ∈ {1, 2, ..K} (1)

where ⊙ stands for element-wise multiplication. During training, ξk is approximated via a Gumbel-
Softmax differentiable sample (Jang et al., 2016), to ensure effectiveness and stability:

ξk =
exp ((log ηk + gk)/T )∑U
i=1 exp((log ηi + gi)/T )

g = − log(− log z), z ∼ U(0,1)

(2)

where η = Wkx, and T is a positive temperature hyperparameter.

3.3 FEATURE EMBEDDING - EMBEDDING MIXTURE LAYER

Feature embedding serves as a pivotal element in models like the one we propose, acting as the
bedrock upon which later processing stages are built. In our approach, each categorical feature
is separately processed via a standard linear embedding layer. This technique is stable and well-
grounded in the literature, sharing conceptual similarities with word embeddings commonly used in
NLP.

Embedding of continuous values is much underexplored. Earlier work (Gorishniy et al., 2021) has
mostly been limited to simple linear projections, computed independently for each feature. Recently,
non-linear approaches have been explored and proved to be beneficial to the predictive accuracy
(Gorishniy et al., 2022). In this work, we progress one step further, proposing a novel stochastic em-
bedding layer that improves the expressive power of the vanilla approach. In our proposed method,
instead of having a single pair of weight and bias vectors, we use a set of J such pairs, defining J
alternative (linear) embeddings, each indicated by an indicator j. To gain the representation vector
of a continuous input, xi, the model has now to select one of the so-defined alternative linear pro-
jections. It does so in a stochastic manner, where the probability of one alternative embedding being
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selected is driven by the value of xi via (3); this selection rationale is illustrated in Figure 2 (left
side). We have

femb(xi) = xi ·wj + bj , j ∼ P (·|xi,θw,θb) (3)

where the posterior probability distribution over the linear mapping reads

P (j|x,θw,θb) =
etj∑J
j=1 e

tj
, t = x · θw + θb (4)

with θw,θb ∈ RJ denoting the trainable parameters directly involved in the selection process.

This embedding selection scheme can be described as a sort of competition among sub-parts at the
embedding layer level; each competitor aims to dominate a broader range of input values. We posit
that, in this way, the embedding engine can produce representations that are significantly richer than
a single linear mapping. The eventually obtained embedding vector can vary considerably more
than vanilla embeddings, based on the value regions of the input feature; this may allow for the
identification of behavioral changes and shifts in statistical importance related to that feature. Addi-
tionally, the induced probabilistic transitions between different linear embeddings enhance accuracy
in uncertain areas of mapping, and also help reduce the risk of overfitting.

While gating networks could be used to perform selection among alternative embeddings, our pro-
posed method relies on competition, similar to stochastic LWTA layers. This is an effective alter-
native that obviates the need to introduce more trainable parameters for the gating function, and the
associated computational burden. Similarly, we again utilize Gumbel-Softmax to provide a smooth,
low-variance gradient during training.

3.4 HYBRID TRANSFORMER MODULE

Typical Transformer input modalities, like text and videos, frequently display dimensionality that is
subject to change, such as sentence lengths or video duration. Conversely, tabular datasets exhibit
fixed, predefined dimensions. This distinct property offers an avenue for integrating static elements
into the network, which would be unattainable in dynamically changing contexts. Our so-obtained
hybrid Transformer module melds two essential sub-components. The first is a conventional Trans-
former encoder, which is a sequential arrangement of a Self-Attention layer and a Fully-Connected
layer. In our work, we augment attention dot-product with a bias term, which we have empirically
found to be a nuanced but effective adjustment. The second sub-component, which constitutes the
novel aspect of our design, is a parallel module. This module can be technically described as an
LWTA-based global Fully Connected Layer, as illustrated in Figure 2 (Right part).

The module is presented with the d-dimensional embeddings of each of the s input features, repro-
jects them onto scalar values and aggregates them into a single s-dimensional representation vector
through the operation Φ : Rd·s → Rs, with

Φ(h) = (wi · hi + bi)
s
i=1 where wi,hi ∈ Rd, bi ∈ R (5)

The obtained consolidated vector, Φ(h), is presented to a subsequent LWTA layer, followed by a
Linear layer; this yields an output vector z ∈ Rd. The output from this module is incorporated into
the representation of the special token, in an additive (residual) manner.

3.5 TRAINING AND INFERENCE

The training objective of our proposed model is formulated as follows:

L(ϕ) = Eq(·)
[
log p(D|{ϕ})

]
−KL

[
Q({ξ}) || P ({ξ})

]
−KL

[
Q({j}) || P ({j})

]
(6)

where {ξ} the set of the LWTA winner indicators, {j} the embedding selection indicators and {ϕ}
represents all the trainable parameters. It is captured by a composite functional consisting of three
terms. The first term corresponds to the primary model objective. It incorporates the standard
crossentropy loss for classification tasks and the mean squared loss for regression scenario. In
both cases, the latent indicator vectors ξ and j are replaced by a differentiable (reparameterized)
expression obtained through the Gumbel-Softmax trick. The second term encapsulates the Kullback-
Leibler divergences between the posteriors and the priors of the LWTA winner indicators, leveraging
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Table 1: Key statistics and properties of benchmarking datasets.

PART HI AD OT HE JA YE DI HO
Total Entries 98049 48842 61878 65196 83733 515345 53940 22784
Total Features 28 14 93 27 54 90 9 16
Catg Features 0 8 0 0 0 0 3 0
Task C C C C C R R R
Classes 2 2 9 100 4 – – –

a uniform discrete prior distribution U :

KL[Q(ξ)||P (ξ)] =
∑
∀ξ

U∑
i=1

Q(ξi) log (Q(ξi)/Ui) (7)

The third term is similar to the second, but quantifies the KL divergence between the posterior of
embedding selection and a uniform discrete prior.

For model evaluation and inference, predictions are gained via Bayesian averaging. By execut-
ing the model multiple times, we average the resultant outputs from the employed classification or
regression head.

4 EXPERIMENTAL RESULTS

4.1 BENCHMARKING DATASETS

In the experimental section of this study, we employ eight publicly available tabular datasets, in
the same form as previously utilized in analogous research, such as Gorishniy et al. (2021), and
Gorishniy et al. (2023). We use exactly the same train-validation-test split to facilitate fair com-
parison. Specifically, our analysis involves two datasets for binary classification, namely Higgs
Small(HI) and Adult(AD); three datasets designed for multi-class classification, namely Otto Group
Products(OT) with nine classes, Helena(HE) with 100 classes, and Jannis(JA) with four classes;
and three datasets tailored to regression tasks, namely Year Prediction(YE), Dimanond(DI), and
House16H(HO). As reference metrics, we follow a common practice and use Mean Squared Error
for Regression and Accuracy for Classification Tasks.

The bulk of the selected datasets are medium-sized, with row counts ranging from 20,000 to 100,000.
However, to also examine how performance changes when using a significantly larger dataset, we
also use Year Prediction, a particularly popular dataset encompassing around half a million features.
In the context of feature types, the majority of datasets include numerical attributes, with feature di-
mensions ranging between 5 and 93. Exceptions to this pattern are the Adult and Diamond datasets,
which additionally incorporate categorical features. Detailed analysis of data statistics is provided
in Table 1.

4.2 EXPERIMENTAL SETUP

In all experiments, the AdamW (Loshchilov & Hutter, 2017) optimization algorithm was selected,
with a small weight decay rate, wd ≤ 10−4. Training was divided into two sequential phases: a
short initial warm-up featuring a small ascending learning rate, and a subsequent main training part.
In the latter phase, the learning rate commenced at lr = 10−3 and was subject to a 50% reduction
upon reaching a performance plateau. Additional hyperparameters included a fixed LWTA block
size U = 2, as suggested by the majority of related literature (Panousis et al., 2019; Kalais &
Chatzis, 2022) and confirmed in preliminary analyses; an mc-dropout rate of p = 0.1 − 0.25; and
a Gumbel Softmax temperature T = 0.69 for training and T = 0.01 for inference. As usual with
Gumbel-Softmax reparameterization, it suffices that we consider sample size N = 1 for training;
we draw N = 64 samples for inference. Multi-head attention was incorporated with 8 heads. For
input data prepossessing, appropriate normalization/scaling was employed, except for the OT dataset
where original scaling was retained as suggested in Gorishniy et al. (2021). Additionally, we re-scale
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Table 2: Results comparison with related Deep Neural Networks.

Classification ( Acc ↑) Regression ( MSE ↓)
Model HI AD OT HE JA YE DI HO

MLP 71.9% 85.3% 81.6% 38.3% 71.9% 78.37 1.96 9.6845
MLP-PLR 72.9% 87.0% 81.9% – – – 1.796 9.339
Node 72.6% 85.8% – 35.9% 72.7% 76.40 – –
FtTransformer 73.0% 85.9% 81.7% 39.1% 73.2% 78.40 – 10.48
Saint 72.9% 86.0% 81.2% – – – 1.877 10.51
STab 73.3% 86.1% 82.5% 39.5% 73.5% 76.10 1.825 9.550

Table 3: Results comparison with Gradient Boosted Decision Trees and ensemble models.

Classification ( Acc ↑) Regression ( MSE ↓)
Model HI AD OT HE JA YE DI HO

XGBoost 72.6% 87.2% 83.0% 37.5% 72.1% 79.98 1.877 10.09
XGBoostens 72.8% 87.2% 83.2% 38.8% 72.4% 78.49 1.850 10.00
CATBoost 72.6% 87.1% 82.5% 38.5% 72.3% 78.98 1.796 9.720
CATBoostens 72.9% 87.2% 82.7% 37.7% 72.7% 78.11 1.769 9.645
MLP-PLRens 73.5% 87.2% 82.2% – – – 1.769 8.958
Nodeens 72.7% 86.0% – 36.1% 73.0% 76.02 – –
FtTransformerens 73.3% 86.0% 82.4% 39.8% 73.9% 76.51 – 10.17
STabens 73.6% 86.2% 83.2% 40.0% 74.0% 75.60 1.781 9.300

the labels of HO and DI by a factor of 10−4 and 102, respectively for better illustration purposes.
All reported results regarding the proposed method correspond to the average of 4 different trainings
from different random seeds; all ensemble scores are combinations of these 4 runs. All computations
were executed on a single 24GB GPU.

4.3 RESULT DISCUSSION

Table 2 presents a comparative evaluation of our proposed model against leading deep-learning
benchmarks, specifically MLP-PLR, NODE, FtTransformer, and SAINT, as well as a basic MLP.
To maintain a focused examination of architectural differences, we intentionally exclude methods
that rely on transfer learning or data augmentation. For the proposed model (STab), we employ our
recommended hyperparameters, to be detailed later in this section, and perform inference through
Bayesian averaging with a sample size of N = 64. For established benchmarks, we cite results from
existing literature as provided in Gorishniy et al. (2021); Rubachev et al. (2022); Gorishniy et al.
(2023), or Somepalli et al. (2021). This approach not only conserves computational resources but
also ensures impartiality through third-party verification of performance metrics.

Our model demonstrates superior performance, outperforming existing neural network architectures
in 5 out of the 8 evaluated benchmarks. Exceptions occur in the HO, AD and DI datasets, where
our model still performs very well and ranks second, trailing only behind MLP-PLR. In a more
comprehensive analysis, presented in Table 3, we extend the comparison to include ensemble mod-
els as well as two established GBDT paradigms in both single and ensemble configurations. While
our model’s superiority persists in ensemble settings, the margin of lead narrows slightly. Gra-
dient Boosting models in their ensemble form closely align with our results on the OT task, and
CATBoost’ s marginally outperform us on DI. In addition, our model seems to benefit slightly less
from ensembling compared to some older deterministic deep networks, possibly due to its inference
mechanism via Bayesian averaging. Nonetheless, the ensemble version of our model remains the
state-of-the-art solution for the majority of the evaluated tasks.

In Table 4, we list the main hyper-parameters of the proposed model for each dataset, corresponding
to the experimental results presented. These values might not showcase the absolute best perfor-
mance, as we opted against exhaustive optimization. Additionally in situations with marginally
differing results, factors such as model size were also taken into consideration.
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Table 4: Suggested hyperparameters

Model HI AD OT HE JA YE DI HO
Dropout 0.225 0.1 0.25 0.25 0.25 0.25 0.1 0.125
Embedding J 4 16 16 16 64 16 16 16
Embedding Size 176 16 180 96 192 128 96 128
Depth 4 3 5 7 4 6 4 4

Table 5: The effect of mixture embedding parameter J (upper) and LWTA block size U (lower).

HI(↑) HE(↑) DI(↓) HO(↓)
J= 64 73.2% 39.4% 1.84 9.94
J= 16 73.2% 39.5% 1.83 9.55
J= 4 73.3% 39.5% 1.84 9.67
J= 1 73.2% 39.1% 1.87 9.88
U= 4 73.2% 39.2% 1.83 9.51
U= 2 73.3% 39.5% 1.83 9.55

4.4 ABLATION STUDY

4.4.1 EMBEDDING MIXTURE PARAMETER J

To evaluate the influence of the Probabilistic Embedding Mixture on our model’s performance, we
conducted a specific study, the results of which are displayed in the upper section of table 5. This
analysis concentrates on the significance of parameter J . It is important to note that using J = 1, is
equivalent to using a standard linear embedding. Data from tables 5 and 4 indicate that, in many in-
stances, J = 16 appears to be the optimal value. Yet, in most cases, slight adjustments in J , whether
below or above the optimal, don’t lead to significant changes in performance metrics. Despite this,
there is a noticeable improvement over the standard linear numerical feature embedding.

4.4.2 LWTA BLOCK SIZE U

To support our decision to maintain a constant LWTA block size of U = 2, not solely based on prior
literature, we provide a brief analysis on the effects of a higher block size in the lower segment of
table 5. The findings suggest that increasing the block size, such as to U = 4, usually results in
either subpar performance or only a minimal effect. These findings further validate our selection of
U = 2 as an effective default value, lessening the impetus for further investigation.

4.4.3 BAYESIAN AVERAGING AND SAMPLE SIZE

Due to the inherent stochastic nature of our model, we obtain its final prediction through Bayesian
averaging. In Figure 3, we examine the relationship between sample size and prediction quality.
As it was expected, we find that increasing the sample size generally improves and stabilizes the
prediction, which yet starts reaching a plateau for around N = 20.

While our averaging approach may look similar to model ensembling, it’s crucial to point out that
they differ in key aspects. Unlike model ensembling, which requires training multiple (N) distinct
models, our method needs just a single model to be trained. This means no need for extended
training processes neither additional memory and storage space. Additionally, while it is true that
inference time increases linearly with N in either case, this does not hold for single-row inference
or small batches. In these cases, even for very large N, drawing N samples can be performed in
parallel on a single GPU without additional delays. This is particularly advantageous for real-time
applications requiring low latency and rapid response times.
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Figure 3: The effect of Sample size N on model’s performance : (Left) Accuracy Higgs boson
detection, (Rigth) Mean Squared Error on House16H

5 LIMITATIONS

While the proposed model achieved S.O.T.A. results in the majority of the tasks, it does not demon-
strate a global domination, although no model has achieved this until now. Additionally, similar
to most deep networks in current literature, it has a complex structure and requires much more
resources for both training and inference than the popular GBDT.

6 CONCLUSION

In this study, we introduce a novel approach to tabular data modelling by harnessing contempo-
rary deep learning, with a particular emphasis on stochastic competition techniques. We employ a
stochastic Transformer-based model with a modified task-adapted architecture. The model’s compu-
tational prowess is further augmented by the integration of the stochastic LWTA layer. Additionally,
we unveil a distinctive embedding mixture layer for numerical features, seamlessly fusing multiple
linear mappings through a stochastic competition mechanism. As a testament to our approach’s ef-
ficacy, we secured state-of-the-art results on a majority of eight popular benchmarks and achieved
second place among recent deep learning methodologies in the remaining instances. Notably, these
advantages persist even in ensemble model configurations.

In upcoming research endeavors, we recommend a thorough exploration of stochastic competition
methods, with the goal of enhancing model performance for tabular data and setting the stage for a
deep learning framework in this GBDT-dominated area. Another avenue of interest is understand-
ing how these stochastic techniques can leverage sample outcomes to estimate metrics beyond just
expected values; this includes assessing uncertainties and probing into the distributional aspects
of predictions. Also, incorporating advanced strategies, such as smart data augmentation, transfer
learning, and meta-learning, offers a promising perspective for future studies. Historically, these
methodologies have demonstrated their effectiveness by markedly improving model outcomes, sug-
gesting their potential to elevate the efficacy of our proposed architecture.
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Sercan Ö Arik and Tomas Pfister. Tabnet: Attentive interpretable tabular learning. In Proceedings
of the AAAI conference on artificial intelligence, volume 35, pp. 6679–6687, 2021.

Sarkhan Badirli, Xuanqing Liu, Zhengming Xing, Avradeep Bhowmik, Khoa Doan, and Sathiya S
Keerthi. Gradient boosting neural networks: Grownet. arXiv preprint arXiv:2002.07971, 2020.

Tianqi Chen, Tong He, Michael Benesty, Vadim Khotilovich, Yuan Tang, Hyunsu Cho, Kailong
Chen, Rory Mitchell, Ignacio Cano, Tianyi Zhou, et al. Xgboost: extreme gradient boosting. R
package version 0.4-2, 1(4):1–4, 2015.

Tony Duan, Avati Anand, Daisy Yi Ding, Khanh K Thai, Sanjay Basu, Andrew Ng, and Alejan-
dro Schuler. Ngboost: Natural gradient boosting for probabilistic prediction. In International
conference on machine learning, pp. 2690–2700. PMLR, 2020.

9



Under review as a conference paper at ICLR 2024

Jerome H Friedman. Stochastic gradient boosting. Computational statistics & data analysis, 38(4):
367–378, 2002.

Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko. Revisiting deep learning
models for tabular data. Advances in Neural Information Processing Systems, 34:18932–18943,
2021.

Yury Gorishniy, Ivan Rubachev, and Artem Babenko. On embeddings for numerical features in
tabular deep learning. Advances in Neural Information Processing Systems, 35:24991–25004,
2022.

Yury Gorishniy, Ivan Rubachev, Nikolay Kartashev, Daniil Shlenskii, Akim Kotelnikov, and Artem
Babenko. Tabr: Unlocking the power of retrieval-augmented tabular deep learning. arXiv preprint
arXiv:2307.14338, 2023.

Shester Gueuwou, Kate Takyi, Mathias Müller, Marco Stanley Nyarko, Richard Adade, and Rose-
Mary Owusuaa Mensah Gyening. Afrisign: Machine translation for african sign languages. In
4th Workshop on African Natural Language Processing, 2023.

Tin Kam Ho. Random decision forests. In Proceedings of 3rd international conference on document
analysis and recognition, volume 1, pp. 278–282. IEEE, 1995.

Xin Huang, Ashish Khetan, Milan Cvitkovic, and Zohar Karnin. Tabtransformer: Tabular data
modeling using contextual embeddings. arXiv preprint arXiv:2012.06678, 2020.

Hiroshi Iida, Dung Thai, Varun Manjunatha, and Mohit Iyyer. Tabbie: Pretrained representations of
tabular data. arXiv preprint arXiv:2105.02584, 2021.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. arXiv
preprint arXiv:1611.01144, 2016.

Konstantinos Kalais and Sotirios Chatzis. Stochastic deep networks with linear competing units for
model-agnostic meta-learning. In International Conference on Machine Learning, pp. 10586–
10597. PMLR, 2022.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-
Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree. Advances in neural
information processing systems, 30, 2017.

Akim Kotelnikov, Dmitry Baranchuk, Ivan Rubachev, and Artem Babenko. Tabddpm: Modelling
tabular data with diffusion models. In International Conference on Machine Learning, pp. 17564–
17579. PMLR, 2023.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Konstantinos Panousis, Sotirios Chatzis, and Sergios Theodoridis. Nonparametric Bayesian deep
networks with local competition. In Proc. ICML, 2019.

Konstantinos Panousis, Sotirios Chatzis, and Sergios Theodoridis. Stochastic local winner-takes-all
networks enable profound adversarial robustness. In Bayesian Deep Learning NeurIPS workshop,
2021a. URL https://openreview.net/forum?id=CcSPRnm1M5s.

Konstantinos P. Panousis, Sotirios Chatzis, Antonios Alexos, and Sergios Theodoridis. Local com-
petition and stochastictity for adversarial robustness in deep learning. In Proc. AISTATS, 2021b.

Konstantinos P Panousis, Anastasios Antoniadis, and Sotirios Chatzis. Competing mutual infor-
mation constraints with stochastic competition-based activations for learning diversified repre-
sentations. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pp.
7931–7940, 2022.

Sergei Popov, Stanislav Morozov, and Artem Babenko. Neural oblivious decision ensembles for
deep learning on tabular data. arXiv preprint arXiv:1909.06312, 2019.

10

https://openreview.net/forum?id=CcSPRnm1M5s


Under review as a conference paper at ICLR 2024

Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush, and Andrey
Gulin. Catboost: unbiased boosting with categorical features. Advances in neural information
processing systems, 31, 2018.

Ivan Rubachev, Artem Alekberov, Yury Gorishniy, and Artem Babenko. Revisiting pretraining
objectives for tabular deep learning. arXiv preprint arXiv:2207.03208, 2022.

Gowthami Somepalli, Micah Goldblum, Avi Schwarzschild, C Bayan Bruss, and Tom Goldstein.
Saint: Improved neural networks for tabular data via row attention and contrastive pre-training.
arXiv preprint arXiv:2106.01342, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Andreas Voskou, Konstantinos P. Panousis, Dimitrios Kosmopoulos, Dimitris N. Metaxas, and
Sotirios Chatzis. Stochastic transformer networks with linear competing units: Application to
end-to-end sl translation. In Proc. ICCV, 2021.

11


	Introduction
	Related Work
	The model
	Overview
	Local Winner Takes All
	Feature Embedding - Embedding Mixture Layer 
	Hybrid Transformer module
	Training and Inference

	Experimental Results
	Benchmarking datasets
	Experimental setup
	Result Discussion
	Ablation study
	Embedding Mixture parameter J
	LWTA Block size U
	Bayesian Averaging and Sample Size


	Limitations
	Conclusion

