
Adaptive Important Region Selection with Reinforced
Hierarchical Search for Dense Object Detection

Dingrong Wang
Rochester Institute of Technology

Rochester, NY 14623
dw7445@rit.edu

Hitesh Sapkota †

Amazon Inc.
Sunnyvale, CA 94089
sapkoh@amazon.com

Qi Yu∗

Rochester Institute of Technology
Rochester, NY 14623
qi.yu@rit.edu

Abstract

Existing state-of-the-art dense object detection techniques tend to produce a large
number of false positive detections on difficult images with complex scenes be-
cause they focus on ensuring a high recall. To improve the detection accuracy,
we propose an Adaptive Important Region Selection (AIRS) framework guided
by Evidential Q-learning coupled with a uniquely designed reward function. In-
spired by human visual attention, our detection model conducts object search in
a top-down, hierarchical fashion. It starts from the top of the hierarchy with the
coarsest granularity and then identifies the potential patches likely to contain ob-
jects of interest. It then discards non-informative patches and progressively moves
downward on the selected ones for a fine-grained search. The proposed eviden-
tial Q-learning systematically encodes epistemic uncertainty in its evidential-Q
value to encourage the exploration of unknown patches, especially in the early
phase of model training. In this way, the proposed model dynamically balances
exploration-exploitation to cover both highly valuable and informative patches.
Theoretical analysis and extensive experiments on multiple datasets demonstrate
that our proposed framework outperforms the SOTA models.

1 Introduction
Dense object detection enjoys a wide range of applications in diverse domains [21, 40]. Represen-
tative use cases include surveillance video tracking by the police and merchandise recognition for
online shopping [42, 6]. Despite its importance, dense object detection is an inherently challenging
task as it requires predicting the bounding boxes for all objects present in a given image irrespec-
tive of their shape, size, and number. The inborn complexity of images, such as shadow/occlusion,
image size, shape, color, and texture could also pose a significant hindrance in the detection process
resulting in a lower accuracy [15].

Existing efforts have contributed different techniques to address the key challenges in dense object
detection. For instance, two-stage approaches have been popularized where the first stage extracts
candidate objects and the second stage classifies the extracted object while providing the bounding
boxes through a regression network [15]. Representative two-stage detectors include R-CNN [15]
and Faster R-CNN [33]. Two-stage detectors are limited in the number of candidate object found
in first stage through the regional proposal network (RPN) and suffer from a low recall, especially
in dense scenarios. To tackle this, one-stage approaches have been explored that achieve a higher
recall along with faster training and inference [26, 38]. There are mainly two types of one-stage
approaches: Anchor-based (e.g., RetinaNet [26]) and Anchor-free (e.g., FCOS [38]). The former
computes the bounding box of an object by regressing the offsets from a predefined anchor box
whereas the latter directly outputs the position and size of an object. However, existing one-stage

∗Corresponding author, † Work was completed during the PhD study at RIT, which is not related to the
position at Amazon.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

(a) GFocal (b) AIRS (c) GFocal-V2 (d) AIRS

Figure 1: Bounding boxes produced by GFocal [23], GFocal-V2 [22], and AIRS, where GFocal,
GFocal-V2 still tend to generate unnecessary bounding boxes resulting from false positive anchors,
comparing to the proposed AIRS model.

detectors usually exhibit inconsistency in localization quality estimation between training and test-
ing, stemming from the lack of supervision and resulting in many false positive anchors as shown
in [23]. In testing, some negative anchors may generate an unusually high-quality estimation score
and be selected as positive anchors (i.e., false positives) due to lack of supervision. GFocal [23]
alleviates this issue by leveraging the Focal Loss and aligning the localization quality and classifi-
cation branches into a unified representation. While it achieved improved performance compared to
previous one-stage detectors, GFocal still suffers from the problem of generating too many false pos-
itive predictions on small objects in a complex background because of selected low quality positive
anchors, as shown in 1 (a) and (c).

Our analysis reveals that the non-adaptive criterion (which favors a high recall) in existing one-
stage detectors does not capture diverse types of candidate anchors residing on the Feature Pyramid
Network (FPN) [25] and will result into many false positive anchors. This phenomenon becomes
prominent when testing images are difficult with complex/noisy background. To tackle this chal-
lenge, we propose to conduct Adaptive Important Region Selection (AIRS) that is guided by a rein-
forcement learning (RL) agent performing Evidential Q-learning with a uniquely designed reward
function. Similar to human visual attention, AIRS conducts object search in a top-down, hierarchi-
cal fashion. Benefiting from the top-down paradigm, the top layer in the hierarchy with a coarser
granularity helps the model quickly identify most interesting regions that likely contain objects of
interest. Only within those regions, the model performs a fine-grained search to more precisely lo-
cate the objects. Intuitively, the model only searches the patches from lower levels if the RL agent
collects sufficient evidence on higher level supporting the presence of a potentially valuable object
according to the learned evidential Q-value.

Furthermore, in the early phase of RL agent training, AIRS also encourages the agent to explore
highly uncertain patches by leveraging the epistemic uncertainty provided by our evidential Q-value.
Exploration of novel patches is also dynamically balanced with the exploitation of predicted high
quality region. As a result, AIRS ensures that all potential patches have been adequately covered
during the search process while avoiding the attendance of low-quality patches from fine-grained
layers, leading to much improved precision without sacrificing the recall. As can be seen from Fig-
ure 1 (b) and (d), AIRS is able to identify all objects without producing any false positive bounding
boxes. In contrast, GFocal, as shown in Figure 1(a) and (c), produces many false positive patches
by paying too much attention on low-level details to maintain a high recall. To assess the effec-
tiveness of AIRS, we perform extensive experiments on multiple real-world datasets with complex
objects/backgrounds. Furthermore, we conduct a thorough theoretical analysis to show the conver-
gence guarantee of our proposed evidential Q-learning. Our contributions are summarized below:

• an adaptive hierarchical object detection paradigm supported by an RL agent to mimic human
visual attention that performs searching in the top-down fashion,

• novel evidential Q-learning driven by a unique reward function, covering both potentially positive
and highly uncertain patches through dynamically balancing exploitation and exploration,

• theoretical guarantee on the fast convergence of the proposed evidential Q-learning algorithm,
• SOTA object detection performance outperforming strong baselines on challenging datasets.

2 Related Work
Object Detection. In dense object detection [10], both two-stage and one-stage detectors have been
investigated in existing literature. Representative techniques in the former group include R-CNN
[15], Faster R-CNN [33], where the detection involves two stages. Considering the limitation of

2

slow training and inference in two-stage detectors, multiple one-stage detectors have been proposed,
such as FCOS, ATSS and GFocal series [38, 45, 23, 22]. However, these methods still suffer from at-
tending too many false positive anchors (region proposals) resulting from the architecture design and
the training setting. To overcome this, we design an uncertainty-guided RL to perform hierarchical
search that effectively reduces the false positive detections.

Deep Reinforcement Learning for Object Detection. DRL formulates object detection problem
as a Markov-Decision Process (MDP). It tries to find the salient parts of an image that are more
probable to contain a target object, and then further zoom into them [4, 8]. There are generally
two different action settings for this MDP. In the first setting, a hierarchical method is proposed
by [4], where the agent chooses to focus on one of the 5 sub-regions of the image (ie. top-left,
top-right, bottom-left, bottom-right, center) at each time step. In the second setting, a dynamic
method is proposed by [8], where the agent deforms a bounding box using simple transformation
actions (horizontal moves, vertical moves, scale changes, and aspect ratio changes) at each step
to find the specific location of an object in the image. However, the above methods only detect
a fixed number of objects. To overcome this issue, Ba et al. introduce a deep recurrent attention
model (RAM) to recognize multiple objects [3]. Further, Zhou et al. propose ReinforceNet, which
performs region selection and refinement by integrating RL’s action space with CNN based feature
space [47]. Different from all these works, AIRS leverages the advanced Feature Pyramid Network
structure and performs RL-driven hierarchical search guided by epistemic uncertainty with much
improved detection performance.

Uncertainty in Deep Learning. There have been different approaches to quantify uncertainty in
deep learning models. Sensoy et al. [36] propose an Evidential Deep Learning (EDL) network,
which treats the predicted multi-class probability as a multinomial opinion as developed in subjective
logic [18]. Malinin et al. [30] propose Prior Networks (PNs) that consider distributional mismatch
to explicitly quantify the distributional uncertainty. Amini et al. [1] propose an evidential regres-
sion network that quantifies the aleatoric and epistemic uncertainty based on the hyper-parameters.
Different from previous work, we propose novel evidential deep Q-learning through an evidential
regression Q-network to quantify the epistemic uncertainty, which is used to explore regions that the
RL-agent is less familiar with.

3 Methodology
In this section, we first present the overall object detection process. We then go through each of
the key component in our framework. We conduct a theoretical analysis to show how the proposed
AIRS leverages effective exploration and hierarchical search to ensure theoretically guaranteed per-
formance. Finally, we describe the training and inference process and explain how AIRS could be
used for real-world object detection problems.

3.1 The Overall Detection Process
The overall detection process is guided by an RL agent as shown in Figure 2a. Our RL environment
consists of a Feature Pyramid Network (FPN) that projects an input image into different resolutions
organized into a hierarchical structure. As an example, the FPN in Fig. 2a has three layers with
P5 having the lowest resolution and P3 having the highest resolution (these numbers follow the
original FPN [25]). Once a patch is selected by the RL agent, it is passed through the feature
extractor followed by the recurrent neural network (RNN) to generate the state representation. The
state representation then goes through the evidential Q-network, which formulates an evidential
Normal-inverse Gaussain (NIG) distribution and outputs the Q-value estimate for each available
action. Then by combining with the corresponding epistemic uncertainty in the Q-value estimate,
we have the evidential Q-value which balances the estimated Q-value with the (lack of) knowledge
of the RL agent on the chosen action. Thus, in the initial phase of RL training, there are more
uncertain patches and the RL agent is expected to explore more actively. As training progresses, the
agent should try to choose those actions leading to patches (regions) that are most valuable. Based
on the evidential Q-value obtained by balancing epistemic uncertainty and estimated Q-value, the
agent takes action, and then selects the next patch with the goal of maximizing the expected reward.

3.2 Description of Key Components

State Generation. To generate a state, we rely on the patches produced by RL environment
from one of the L + 1 layers in the FPN, where L is the top layer and 0 being the bottom one.

3

RNN

P5
P4

P3

Feature
Extractor

Selected
Patch

Feature
Embedding Current State

Pretrained
FPN

Evidential Q
network

Action
Interaction

Action

Reward
Calculation Reward

Q learning

Replay
Buffer

Training
TupleEvidential

Q-value

(a) Overview of the AIRS framework

Trained RL
Agent

Interaction
Protocol

at

C5

C4

C3

P5

P4

P3

st

RL
positive
anchors

1 1

1 1

0 1
1 0

1 1
1 1

0 1
0 1

1 0
0 1

RL mask

(b) RL Inference to generate the binary RL mask

Figure 2: AIRS training and test pipelines

In the FPN, each patch in the higher layer (low resolution) is mapped to multiple patches in a
lower layer (high resolution). Once a patch from layer l is selected, it is passed through the feature
extractor to get the feature embedding vector et ∈ Rd. Finally, the feature embedding and previous
state representation (st−1) are concatenated and passed through the RNN to generate the next state
representation st = RNN(et, st−1;θr) where s0 = 0 and θr is the parameters associated with the
RNN. In this way, every state st captures the knowledge of previous observations from environment
via st−1.

Evidential Q-Learning. To ensure detection of all positive patches, it is crucial to perform effective
exploration. To achieve this, we design evidential Q-learning that performs exploration in a system-
atic way by leveraging epistemic uncertainty. Let D denote the size of the action space. The Q-value
for dth action qd,t given state st is assumed to draw from a Gaussian distribution with mean µd,t

and variance σ2
d,t. We further place Gaussian and Inverse-Gamma priors on the mean and variance,

respectively [5]:

qd,t ∼ N (·|µd,t, σ
2
d,t), µd,t ∼ N (·|γd,t, σ2

d,tν
−1
d,t), σ

2
d,t ∼ Inv-Gamma(·|αd,t, βd,t) (1)

where Inv-Gamma(αd,t, βd,t) is the Inverse Gamma distribution [1] and (γd,t, νd,t, αd,t, βd,t) are
evidential Q-network outputs that form the evidential distributions as specified above. From these
distributions, we can sample mean µd,t and variance σ2

d,t to generate Q-value estimate qd,t. It should
be noted that, because of the Inv-Gamma term, effective sampling for qd,t through the reparametriza-
tion trick [19] becomes difficult. We instead generate mean and variance with their expectations:

E[µd,t] = γd,t, E[σ2
d,t] =

βd,t

(αd,t − 1)
(2)

Thus, the q-value is sampled as

qd,t ∼ N
(
·|γd,t,

βd,t

(αd,t − 1)

)
(3)

Using this trick, the gradient could be easily traced back to evidential Q-network’s hyper-parameter
outputs (γd,t, νd,t, αd,t, βd,t) for each action ad,t from the corresponding Q-value qd,t in evidential
Q-learning. In addition to the Q-value estimate, it is also essential to integrate uncertainty to facilitate
exploration of unknown patches, leading to the following evidential Q-value

qed,t = qd,t + λVar[µd,t], Var[µd,t] =
E[σ2

d,t]

νd,t
=

βd,t

νd,t(αd,t − 1)
(4)

where Var[µd,t] captures the epistemic uncertainty and λ balances epistemic uncertainty and Q-
value. The evidential decomposition of the total uncertainty allows us to separate uncertainty caused
by the noise in the data (i.e., aleatoric uncertainty or E[σ2

d,t]) and uncertainty caused by lack of
knowledge (i.e., epistemic uncertainty or Var[µd,t]). Since the evidential-Q value only integrates
with the epistemic uncertainty, it ensures that the exploration will focus on improving the knowledge
of the agent while being robust to the noise in the data.

To generate the action vector, we consider both qed,t and the constraints that avoid the agent moving
into an invalid region that includes already visited patches and void space (e.g., downward move-
ments from layer 0, upward movement from layer L). To this end, we define a mask vector. Let

4

md
l,t be the mask value (binary) associated with the dth action in lth layer in tth time step then the

masked evidential Q-value is
q̃e
d,t = qe

d,t ⊗md
l,t (5)

Let j = argmaxd{q̃ed,t}
D−1
d=0 , then the action value for each entry d ∈ {0, 1, .., D − 1} is updated:

ad,t =

{
1, if d = j;
0, otherwise (6)

More detailed information of the constraint mask design can be found in Appendix C.3.

Based on the masked evidential Q-value q̃e
d,t, the RL agent selects the best action at and receives a

reward r(st,at). The agent repeats the selection process until reaching a limit T steps or arriving
at the terminal condition (i.e., upward movement in top-most layer L) is triggered. During each
step, the agent stores the tuple of st,at, rt, st+1 into a replay buffer. After collecting K training
tuples, one batch of training tuples is sampled for off-policy Q-learning. The following loss is used
to update the feature extractor (θf), RNN (θr), and evidential Q-network (θe):

Lθf ,θr,θe = (qd,t(θf ,θr,θe)− q̂d,t)
2
, q̂d,t = r(st,at) + γEst+1∼D max

d
(qd,t+1) (7)

where q̂d,t is evaluated using the Bellman equation.

Action Interaction. The action interaction module translates the action into the location of the next
patch to be selected. It considers a D dimensional action vector, where the first D − 1 actions:
ad,t, d ∈ [0, .., D − 2] are downward movements that direct the agent currently located on layer l
into one of its mapping sub-patches in layer l − 1 with pli,t being the current selected patch from
l layer. The location of the selected sub-patch from l − 1 layer is provided by the index of the
action-value whose entry is set to 1 (e.g., a0,t = 1 means top-left and a1,t = 1 means top-right).
The last action aD−1,t denotes the upward movement to the parent patch in layer l + 1. The action
interaction process is essentially a hierarchical tree search in FPN (with a virtual layer L as the root
node) and we provide illustrative examples in Appendix C.3.

Reward Design. The action space of the RL agent involves two major types of movements in
the hierarchical search, downward and upward. To facilitate each type, we define a unique reward
function. For downward movement actions, we compute the reward based on the ranking of the
patch selected by the movement action compared to all other patches located on the same layer
in terms of the number of the positive anchors they contain. Specifically, we compute the quality
measure estimate of each anchor by investigating a range of metrics: centerness [38], IoU[32],
GIoU[34], and DIoU [46]. It should be worth noting that all these metrics encode the supervised
signal with a threshold to decide whether an anchor is positive or not. We follow the RetinaNet
setting but use DIoU as our positive anchor criterion and conduct an ablation study to verify its
superiority. After getting the positive anchors for each patch, we calculate the quality score g(st,at)
for each patch in terms of the number of positive anchors on it as “ground truth" information. The
details can be seen in Appendix C.1. In addition, we set up a penalty term with the downward
movement in each time step representing the searching cost. Such a cost should be related to both
training progress and the depth of search. For example, searching a bottom layer’s patch in a later
training phase when the model gets enough knowledge of the input should be considered costly.
Given this insight and by combining the above two factors, we design our unique reward

r(st,at) = g(st,at)−
nepcoh

Nepoch
P l
st,at

(8)

where nepcoh, Nepoch are the current and total training epoch, P l
st,at

is the penalty term for each
layer l, and l is the layer index of next selected patch given st,at in time step t. For upward
movement, the reward is simply set to 0, which means when the downward movement’s benefits for
exploration cannot cover the search cost, the model prefers to return back and search other patches
in the same layer. In this way, we achieve the exploitation-exploration balance in the reward design,
besides the evidential Q-learning.

3.3 Theoretical Analysis

We establish the statistical guarantee for AIRS that integrates evidential Deep-Q learning with hier-
archical search. Let Q∗ be the optimal action-value function and Qπk be the action-value function
corresponding to the policy πk.

5

Theorem 3.1. Under the assumption of the smoothness on the Bellman optimality operator, there
exists a constant C such that the following bound holds

∥Q∗ −QπK∥1 ≤ Cϕe,f
γ

1− γ2
|A|τ(η, v) + 4γK+1

1− γ2
Rmax (9)

where A denotes the action space, Rmax upper bounds the uniquely designed reward, and K is the
total number of RL iterations. The term τ(η, v) is associated with the Hölder smoothness criterion
on neural network function f , which is required here to ensure the finite sample guarantee with
η ∈ Z denoting the upper limit of the number of input variables on which the Hölder smooth
function depends. This integer essentially controls the statistical rate for estimating the Hölder
smooth function [39]. Term v is the exponent in the Hölder smooth function with v = 1 leading to
the Lipschitz continuity. Finally, ϕe,f is the upper bound on the cumulative discounted concentration
parameter over K steps. It quantifies the similarity between the sampling distribution obtained
through f and the actual distribution of Kth step Markov Decision Process (MDP) starting from
the initial fixed distribution e on initial state-action pairs (S0,A0). A larger difference leads to a
higher ϕe,f .

Remarks. The complete proof is given in the Appendix B along with a justification to ensure all
the assumptions hold in our setting. First, the upper bound on the r.h.s. consists of two types of
errors: statistical (first term) and algorithmic (second term), where the latter decreases exponentially
because our reward is upper bounded. As a result, the bound is dominated by the former term after
sufficient rounds of iterations. Second, the Hölder smoothness assumption on the Bellman opti-
mality operator implies that the optimal action-value function Q∗ is close to the functional classes
constituting the evidential Q-network and that functional classes are approximately closed under the
Bellman operator. This completeness assumption ensures the finite sample guarantee for the pro-
posed AIRS. In particular, the term τ(η, v) ∝ n−f(η,v) decays quickly with respect to the sample
size n making the bound even tighter. Third, thanks to the specially designed hierarchical search
strategy, the action space in our setting is very small (i.e., D = 5) making the |A| small, leading to a
tighter bound. Finally, the ϕe,f term essentially provides the upper bound on the similarity between
sampling distribution and actual distribution of the state-action space. By performing epistemic un-
certainty guided exploration, our collected state-action samples are likely to be representative of the
actual distribution. This makes ϕe,f small that further tightens the bound.

3.4 Training and Testing Procedures

The detailed training process is presented in Algorithm 1 and illustrated in 5 of Appendix C.2, where
the search always starts from the top-most layer i.e., L. It should be noted that, we create the RL
environment by leveraging the FPN structure of the pre-trained backbones (i.e., ResNet-50). Based
on the masked evidential Q-value estimate, the agent selects the next action, which would be either a
downward or upward movement. Then, the agent moves to the next patch and continues the process
until receiving an upward movement in layer L or reaches the maximum time step i.e., T . After
every K such iterations, training tuples are sampled from the replay buffer for off-policy learning.
For inference, we leverage the same pre-trained FPN as training, and run the trained RL agent on the
test image’s FPN to generate RL mask for its FPN structure, illustrated as Figure 2b. These binary
RL masks are then used for patch selection in the test phase to generate more precise anchors from a
large magnitude of candidate positive anchor pool to facilitate a more calibrated training (see Figure
4 of Appendix C.2). As can be seen, the training is more efficient comparing to other RL based
methods, and the inference speed is also competitive w.r.t. the latest baselines (see Appendix D.6).

4 Experiments
We conduct extensive experimentation to evaluate the effectiveness of AIRS. We first describe three
real-world object detection datasets. For each dataset, we also construct a subset of images with
more complex scenes. These challenging subsets can provide direct evidence of reducing false
positive predictions using AIRS. We then present the experimental setting consisting of evaluation
metrics and experimental setup (such as network backbones used). We show the comparison results
with competitive baselines in terms of object detection performance as well as inference cost in a
quantitative study. Additionally, we conduct a qualitative analysis and ablation study to uncover
deeper insights on performance advantage of AIRS. Finally, in Appendix D.4, we introduce the
detailed training configurations to guarantee the success of our off-policy Q-learning.

6

4.1 Datasets

• MS COCO [27]: It contains 91 categories. Following [38, 26], we use the COCO trainval35k
split containing 115K images for training and minival split containing 5K images for testing.

• PASCAL Visual Object Classes (VOC) 2012 [12]: It contains 20 categories and is partitioned
into three subsets: 5,717 images for training, 5,823 images for validation, and 10,991 images for
testing.

• Google Open Images V4 [20]: It contains 9M (million) image with 600 object categories, where
training set contains 1.74 M images, validation set contains 125K images, and testing contains
41K images. It is worth noting that images in this dataset are very diverse and often contain
complex scenes with several objects i.e., on average 8.4 objects per image.

• Challenging subset: From each dataset, we construct a subset (denoted as ‘CH’) to include most
challenging images using the following criteria: (a) images where the ratio of large and medium
objects (area≥ 322) to small objects (area < 322) ranging from 1 to 1/2 to ensure smaller objects
coexist and embedd within large objects making detection task much more challenging, (b) im-
ages where multiple objects overlap with each other, and (c) images where multiple small objects
are embedded into the bigger one. Appendix D.7 show examples of selected images.

4.2 Experimental Settings
Evaluation Metrics. Following evaluation performed in the benchmark COCO dataset [27], we
assess the performance using Average Precision (AP). Additionally, we separately report the AP
performance for small, medium, and large objects named as APS , APM , APL respectively. For the
challenging subsets, we report the AP score named as APCH . It should be noted that small objects
and constructed subsets correspond to the more challenging detection tasks and therefore we would
expect a more significant performance gap compared with the baselines.

Experimental setup. For the FPN, we follow the same experiment setting as GFocal, which uses
its pre-trained ResNet-50 as backbone, and applies a 3-layer FPN with patch size defined as a quarter
of the area of the layer L − 1 (the top layer L in our case is a virtual layer as the root node in the
tree structure), but instead use DIoU as positive anchor criterion. For the feature extractor, we use
a three-layer Multi-Layer Perceptron (MLP) structure. Through grid based hyper-parameter search
using a validation dataset, we set the total training epochs Nepoch = 12, action space D = 5,
maximum time step T = 60, discount factor γ = 0.9, learning rate = 0.001, and λ = 1. We
gradually shrink λ to balance exploitation and exploration. For the penalty term P l

st,at
set up, we

choose (0.3,0.6,0.9) for layers (P5, P4, P3) after hyper-parameter searching. For other baselines, we
train them until convergence and test in the same data sets for fair comparison.

4.3 Quantitative Study
Comparison baselines. In our quantitative study, we include baselines that are most relevant to
our model, including representative or latest two-stage detectors: Faster R-CNN [33], Cascade R-
CNN [7], Reppoints [41], TridentNet [24], DETR [9], Co-DETR [49], EVA [14], and DINO [44],
as well as most recent one stage detectors: RetinaNet [26], FCOS [38], ATSS [45], SAPD [48],
SpineNet [11] and GFocal [23]. Faster R-CNN and Cascade R-CNN use an ROI pooling layer to
extract candidate ROI regions first then regress from those regions, while Reppoints and TridentNet
apply deformable convolution technique or scale-specific feature maps to handle scale and perspec-
tive variations in images. DETR leverages a set-based global loss that forces unique predictions via
bipartite matching, and a transformer encoder-decoder architecture to effectively remove the need
for Non maximal suppression and anchor generations. Co-DETR further applies a novel collabo-
rative hybrid assignments training scheme on top of it. DINO improves DETR on de-noising the
anchor boxes for end-to-end training. All one-stage methods use FPN, but the difference resides in
the training loss (GFocal), and positive anchor criterion choices (RetinaNet, FCOS, ATSS, SAPD).
Instead, EVA is a vanilla ViT pre-trained to reconstruct the masked out image-text aligned vision
features conditioned on visible image patches for exploring the limits of visual representation at
scale. For fair comparison, all baselines apply the same pre-trained backbone (i.e., ResNet-50) to
extract image features. For YOLO series comparison, since they are different from other one-stage
detectors based on FPN, we separately compare with them in Appendix D.1.

Comparison results. Table 1 shows the performance in terms of AP for multiple datasets compared
to competitive baselines. As shown, our approach has achieved better detection performance in
general. Comparing to those RPN based two-stage frameworks which suffer from a low recall given
limited candidate object predictions, our approach leverages abundant positive anchors provided by

7

Table 1: Detection performance comparison on all three datasets along with their challenging subsets

Category Method MS COCO Pascal VOC 2012 Open Image V4

AP APS APM APL APCH AP APS APM APL APCH AP APS APM APL APCH

Two-stage Faster R-CNN [33] 36.2 18.2 39.0 48.2 19.4 73.8 25.2 75.2 78.4 26.5 37.4 19.6 38.5 42.2 20.5
Cascade R-CNN [7] 42.8 23.7 45.5 55.2 22.5 82.7 29.5 73.6 83.5 28.6 38.6 25.4 40.4 44.8 23.7

RepPoints [41] 41.0 23.6 44.1 51.7 21.2 81.3 29.1 74.4 83.0 27.6 39.1 24.2 39.1 42.5 21.5
TridentNet [24] 42.7 23.9 46.6 56.6 20.5 82.5 29.5 64.3 84.7 28.4 40.5 26.2 41.9 45.8 20.4

DETR [9] 42.0 20.5 45.8 61.1 17.5 80.2 25.1 62.8 84.5 26.3 39.6 23.5 41.5 45.9 17.8
Co-DETR [49] 42.5 20.8 46.2 61.5 17.9 80.5 25.4 63.2 84.9 26.5 39.7 23.9 41.8 46.3 18.3

EVA [14] 46.7 28.5 48.2 61.9 28.8 84.7 31.5 75.4 86.5 28.7 44.1 25.8 46.5 50.8 26.7
DINO-4scale [44] 47.8 30.2 50.1 62.3 29.0 86.9 33.4 77.2 88.5 30.9 46.2 29.8 47.8 52.3 28.1
DINO-5scale [44] 47.9 30.0 50.4 62.5 29.0 87.1 33.3 77.4 88.6 31.2 46.4 29.9 47.7 52.4 28.2

One-stage RetinaNet [26] 39.1 21.8 42.7 50.2 21.6 77.0 27.8 62.9 81.5 27.3 38.5 24.8 40.2 42.4 21.3
FCOS [38] 41.5 24.4 44.8 51.6 23.5 83.3 31.4 64.2 85.8 30.5 40.3 26.1 41.8 45.4 23.2
ATSS [45] 43.6 26.1 47.0 53.6 23.8 84.2 32.6 74.3 86.9 31.3 42.2 26.9 42.5 46.8 24.0
SAPD [48] 43.5 24.9 46.8 54.6 22.4 83.8 31.5 75.3 86.2 29.5 41.1 25.9 41.6 45.8 23.5

SpineNet [11] 41.5 23.3 45.0 58.0 21.2 82.6 29.3 73.5 85.7 27.4 40.2 25.8 41.2 45.3 21.6
GFocal [23] 45.0 27.2 48.8 54.5 25.4 86.5 35.0 78.0 90.5 32.6 45.8 29.5 46.5 51.4 26.3

Ours AIRS 48.3 32.1 48.5 54.3 29.4 88.7 37.3 79.0 91.5 35.6 47.5 31.5 48.1 53.1 29.0

Table 2: Detection performance using different backbone architectures
Category Method MS COCO Pascal VOC 2012 Open Image V4

AP APS APM APL APCH AP APS APM APL APCH AP APS APM APL APCH

M
Two-stage DINO(Swin-T) [28] 48.0 31.5 50.5 55.6 27.6 87.9 34.6 78.0 89.4 32.5 47.4 31.2 48.7 53.5 29.0

DINO(EfficientNet) [37] 47.8 31.1 50.3 55.4 27.3 87.5 34.2 77.8 89.1 32.3 47.1 31.0 48.4 53.1 28.7
DINO(ConvNeXt) [29] 48.1 31.7 50.4 55.5 27.7 88.2 34.7 78.1 89.6 32.8 47.5 31.5 48.7 53.2 29.2

M
One-stage GFocal (Swin-T) 46.0 27.6 49.5 54.8 25.7 87.3 35.8 78.7 91.1 33.2 46.4 30.0 46.9 51.9 26.7

GFocal (EfficientNet) 45.8 27.3 49.1 54.6 25.5 87.0 35.4 78.2 90.7 32.9 46.2 29.6 46.6 51.5 26.5
GFocal (ConvNeXt) 46.2 27.7 49.8 55.0 25.8 87.5 36.0 78.9 91.4 33.5 46.6 30.3 47.1 52.2 27.0

M
Ours AIRS (Swin-T) 48.9 32.8 49.1 54.9 29.8 89.8 38.4 79.8 92.8 36.5 48.5 32.3 49.0 53.9 30.4

AIRS (EfficientNet) 48.7 32.6 48.8 54.5 29.5 89.4 38.1 79.8 92.6 36.1 48.3 32.1 48.6 53.6 30.2
AIRS (ConvNeXt) 49.0 32.9 49.3 55.1 30.2 91.2 38.7 80.1 93.4 36.9 49.0 32.7 49.5 54.4 30.8

the underlying one-stage framework. Additionally, our approach can more effectively avoid false
positive predictions benefiting from the learned RL masks that precisely detect positive anchors.
This is clearly demonstrated through improved performance on small object detection (i.e., APS)
and the challenging subset (i.e., APCH). As can be seen, the performance improvement compared
to its base detector GFocal (without RL augmentation) is as high as around 4% in certain cases. It is
noted that the performance advantage is not as prominent in the medium and large object detection
as these are relatively easy cases and can be adequately handled by commonly used models. Our
proposed technique is designed to focus on difficult images while remaining competitive on easier
detection tasks.

Results on different backbones. We also test our model’s performance on multiple latest back-
bones such as Swin-T [28], Efficientnet-b3 [37] and ConvNeXt [29], and compare with the most
competitive baselines of each category with the same backbone setting as shown in Table 2. The
results show a highly consistent trend as in Table 1.

Inference speed comparison. Finally, we compare the parameter size as well as inference speed
of our model with representative baselines. As the results shown in Table 3, the inference speed of
AIRS does not bring extra detection burden compared to those latest baselines.

Table 3: Inference speed comparison

Category Model Params GFLOPS/FPS

Two-stage Faster-RCNN 40M 194/21
DETR(DC5) 41M 216/25.4

Cascade R-CNN 41M 208/22.8
DINO-4scale 47M 212/24.1

One-stage FCOS 32M 165/19.4
ATSS 32M 168/19.4

SpineNet 35M 176/23.4
GFocal 32M 168/21.8

Ours AIRS 32M 165/20.7

Table 4: RL baseline comparison

Model mAP

PACNet [43] 54.2

Hierarchical-RL [4] 46.1

Caicedo-RL [8] 28.1

Tree-RL [17] 73.1

Multiple-RL [3] 40.7

ReinforceNet [47] 53.4

AIRS 88.7

8

Small Medium Large
Boudning Box Area Size

0

4

8

12

16

Av
er

ag
e
D
et
ec

ti
on

AIRS
GFocal

(a) MS COCO

Small Medium Large
Boudning Box Area Size

0

4

8

12

16

Av
er

ag
e
D
et
ec

ti
on

AIRS
GFocal

(b) OpenImage V4

5 10 15 20 25 30 35 40 45 50
Time step

0

10

20

30

40

50

60

70

Av
er
ag

e
re
tu
rn

Reward
Q
Evi Q
EU
Reward w/o EL
Q w/o EL

(c) Deep Q-learning curves

Figure 3: (a)-(b) Average number of detections per test image based on the bounding box area on
MS COCO and OpenImages V4. (c) Ablative study on epistemic uncertainty to deep Q-evaluation.

Table 5: Ablation study on model design choices
Model Design Choice MS COCO

IoU Centerness GIoU GIoU+Uncertainty DIoU DIoU+Uncertainty AP APS APM APL APCH

! % % % % % 44.6 28.7 45.9 52.1 25.8
% ! % % % % 42.4 26.2 45.8 51.6 23.7
% % ! % % % 44.3 28.5 45.6 51.5 25.4
% % % ! % % 46.7 30.2 47.5 53.4 28.1
% % % % ! % 45.4 29.5 46.8 52.4 26.7

% % % % % ! 47.6 31.0 48.5 54.3 28.9

Results on RL baselines. We also compare AIRS with existing RL based object detectors [47, 4,
3, 8, 43] in Table 4. It is worth to note that these works either focus on active object localization
which can only detect limited objects or leverage CNN and recurrent networks to detect multiple
objects step by step that lacks the flexibility to conduct dense detection from complex background.
In [43], ReinforceNet leverages a hierarchical DRL framework for visual object tracking, which
predicts target object’s movement locations in the next frame given the last frame’s state information.
Since the primary goal is different from ours, their policy network is for mode switch among four
modes (search, stop, update, re-initialization) given the last state. In contrast, our policy network
gives directional movement actions given the current state (i.e., patch location in the feature pyramid
network) to support hierarchical search of objects. We ignore the specific APS , APM , APL metrics
and only report the mAP performance averaged over all categories, which is also the most commonly
used metric on the Pascal VOC dataset. The result demonstrates the superiority of AIRS in dense
scenarios with a large performance gap comparing to existing RL baselines.

4.4 Qualitative Analysis
Accurately selecting positive anchors via the generated RL masks has a strong impact on the final
detection performance. For the more difficult images from the COCO and OpenImage V4 data sets,
GFocal produces many false positive bounding boxes since it focuses on achieving a high recall on
even small objects. In contrast, AIRS has precisely identified the true objects (high recall) while
avoiding the unnecessary small bounding boxes (high precision). This phenomenon is supported
by statistical counts in Figure 3 (a)-(b). This clearly justifies its effectiveness especially in those
challenging images. Appendix D.7 shows more results in the even more challenging subsets.

4.5 Ablation Study
We demonstrate the effectiveness of each proposed component through ablation study on MS COCO
dataset. Specifically, we analyze the impact of different model design choices, such as positive an-
chor criterion choices and the epistemic uncertainty design in evidential Q-learning. As shown in
Table 5, among all positive anchor criterion choices, DIoU is the most effective positive anchor cri-
terion as it considers both overlapping area ratio and the centerness relativity between the prediction
and target. Furthermore, without epistemic uncertainty, there is a significant drop in detection per-
formance. This justifies the importance of exploring the unknown patches by leveraging epistemic
uncertainty in our proposed framework. In particular, for the challenging and small objects, it is
more critical to conduct a deep exploration to identify various types of objects. The deeper reason
justifying the importance of epistemic uncertainty can be explained using Figure 3c, where we use

9

one image’s Q-learning curve in the search process as an example. The figure shows the Q-value
(Q), evidential Q-value (Evi Q), epistemic uncertainty (EU) of the selected patch in each step, and
the corresponding reward (Reward) as a supervision signal. We also include the Q-value and the
corresponding reward in each step if we train the model without epistemic uncertainty, denoted as
Q w/o EL (i.e., evidential learning) and Reward w/o EL. Without epistemic uncertainty, at the early
phase of training, the RL agent tends to select the patches with a high immediate reward and there-
fore abandons patches with a low estimated Q-value (with low immediate reward). As many patches
that require a deep exploration to find objects may be missed, the agent only selects those regions
with a high Q-value (shown in brown color) in the current step. Due to the top-down search strategy,
the RL agent may never search the skipped region again, including all patches in the lower layers.
This results in a significant reward drop (shown in the purple color) in the later steps along with
an early termination (in step 40), resulting into a low cumulative reward in the long run. However,
AIRS chooses regions based on the evidential Q-value (green curve) and therefore patches with even
a low estimated Q-value (black curve) but high epistemic uncertainty (blue curve) may still have a
chance to be selected. In this way, AIRS can explore patches with objects requiring deep exploration
resulting into high cumulative rewards shown in red.

4.6 Discussion
Performance of AIRS on large objects in MS COCO. In this work, we aim to improve the detec-
tion performance by having a good balance between objects of different sizes and the AP metric is
designed to assess the overall effectiveness in terms of detecting objects in all granularities. Com-
pared to competitive baselines, AIRS is superior on all datasets. We observe that by placing more
focus on smaller and more difficult objects, AIRS achieves lower performance on APL and APM in
MS COCO. However, this is an expected behavior as MS COCO has most of the objects being very
large and therefore, the cost of missing smaller objects in the existing two-stage detectors seem to be
low. As such, many two-stage detectors have superior performance (see Table 1). In contrast, as our
technique leverages a one-stage detector to better cover dense objects, it is relatively less effective
to detect very large objects (which is evidenced by the lower performance by all one-stage detectors
in Table 1). It is worth mentioning that in other datasets, AIRS outperforms all baselines even on
the large objects. In the case of Pascal VOC 2012, it is relatively easier and does not contain very
large objects. As such, one-stage detectors perform comparable or even better than the two-stage
detectors. As for Open Image V4, despite being challenging, it contains a good amount of training
samples with larger objects, which provides enough supervision for models to detect these large
objects. As such, all single-detectors including our technique perform comparable or even better
compared to two-stage detectors.

Comparison with two stage detectors like RPN. There are key differences between two stage de-
tectors and AIRS. The former usually relies on a Region Proposal Network (RPN), which is less
effective to capture all targeted objects especially in a dense scenario. This is because, RPN selects
anchors from the candidate anchors provided by the RPN based on the confidence score resulting
into missing many true positive object anchors with a low confidence. In contrast, FPN in AIRS is
based on multi-scale feature representations. Thus, the number of selected anchors in all layers is
far more than the ones proposed by the RPN, which avoids missing important object anchors. To
tackle the many false positive anchors in the FPN based approaches, we propose a novel hierarchical
search mechanism coupled with an effective exploration-exploitation strategy leveraging evidential
Q-learning. As a result, AIRS effectively removes the false positive bounding boxes without remov-
ing the less confident true positive objects. This phenomenon is also demonstrated in Table 1, where
two-stage detectors result in a lower performance compared to AIRS in dense object detection.

5 Conclusion
We propose a novel Adaptive Important Region Selection (referred to as AIRS) framework guided
by evidential Q-learning built upon a uniquely designed reward function. AIRS encourages object
search in a hierarchical, top-down fashion, where the RL agent moves down to a fine-grained level
only when it is likely to contain an object of interest. In addition, to facilitate detection of unknown
patches, evidential Q-learning leverages the epistemic uncertainty to guide the exploration process.
Our proposed technique dynamically balances exploration-exploitation where in the early phase the
priority is given to the highly uncertain patches and in the latter phase priority is dynamically shifted
to the potentially positive patches. Both theoretical analysis and empirical results on challenging
object detection datasets demonstrate the effectiveness of our proposed framework.

10

Acknowledgments
This research was supported in part by an NSF IIS award IIS-1814450. The views and conclusions
contained in this paper are those of the authors and should not be interpreted as representing any
funding agency. We would like to thank the anonymous reviewers for their constructive comments.

References
[1] Alexander Amini, Wilko Schwarting, Ava Soleimany, and Daniela Rus. Deep evidential re-

gression. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances
in Neural Information Processing Systems, volume 33, pages 14927–14937, 2020.

[2] Martin Anthony and Peter L. Bartlett. Neural Network Learning: Theoretical Foundations.
Cambridge University Press, 1999.

[3] Jimmy Ba, Volodymyr Mnih, and Koray Kavukcuoglu. Multiple object recognition with visual
attention. arXiv preprint arXiv:1412.7755, 2014.

[4] Miriam Bellver, Xavier Giro-i Nieto, Ferran Marques, and Jordi Torres. Hierarchical object
detection with deep reinforcement learning. In Deep Reinforcement Learning Workshop, NIPS,
December 2016.

[5] Christopher M Bishop. Pattern recognition and machine learning. Springer, 2006.

[6] Yuanqiang Cai, Longyin Wen, Libo Zhang, Dawei Du, Weiqiang Wang, and Pengfei Zhu.
Rethinking object detection in retail stores. ArXiv, abs/2003.08230, 2021.

[7] Zhaowei Cai and Nuno Vasconcelos. Cascade r-cnn: Delving into high quality object detection.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
6154–6162, 2018.

[8] Juan C. Caicedo and Svetlana Lazebnik. Active object localization with deep reinforcement
learning. CoRR, abs/1511.06015, 2015.

[9] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and
Sergey Zagoruyko. End-to-end object detection with transformers. In European conference on
computer vision, pages 213–229. Springer, 2020.

[10] S. Chen, Z. Li, F. Huang, C. Zhang, and H. Ma. Improving object detection with relation
mining network. In 2020 IEEE International Conference on Data Mining (ICDM), pages 52–
61, Los Alamitos, CA, USA, nov 2020. IEEE Computer Society.

[11] Xianzhi Du, Tsung-Yi Lin, Pengchong Jin, Golnaz Ghiasi, Mingxing Tan, Yin Cui, Quoc V
Le, and Xiaodan Song. Spinenet: Learning scale-permuted backbone for recognition and
localization. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 11592–11601, 2020.

[12] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The
PASCAL Visual Object Classes Challenge 2012 (VOC2012) Results. http://www.pascal-
network.org/challenges/VOC/voc2012/workshop/index.html, 2012.

[13] Jianqing Fan, Zhaoran Wang, Yuchen Xie, and Zhuoran Yang. A theoretical analysis of deep
q-learning. In Learning for Dynamics and Control, pages 486–489. PMLR, 2020.

[14] Yuxin Fang, Wen Wang, Binhui Xie, Quan Sun, Ledell Wu, Xinggang Wang, Tiejun Huang,
Xinlong Wang, and Yue Cao. Eva: Exploring the limits of masked visual representation learn-
ing at scale. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 19358–19369, 2023.

[15] Ross B. Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies
for accurate object detection and semantic segmentation. 2014 IEEE Conference on Computer
Vision and Pattern Recognition, pages 580–587, 2014.

11

[16] Nisim Hurst-Tarrab, Leonardo Chang, Miguel Gonzalez-Mendoza, and Neil Hernandez-Gress.
Robust parking block segmentation from a surveillance camera perspective. Applied Sciences,
10(15):5364, 2020.

[17] Zequn Jie, Xiaodan Liang, Jiashi Feng, Xiaojie Jin, Wen Lu, and Shuicheng Yan. Tree-
structured reinforcement learning for sequential object localization. In D. Lee, M. Sugiyama,
U. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 29. Curran Associates, Inc., 2016.

[18] Audun Jøsang. Subjective logic. Springer, 2016.

[19] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

[20] Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper Uijlings, Ivan Krasin, Jordi Pont-Tuset,
Shahab Kamali, Stefan Popov, Matteo Malloci, Alexander Kolesnikov, et al. The open images
dataset v4. International Journal of Computer Vision, 128(7):1956–1981, 2020.

[21] Sang-gil Lee, Jae Seok Bae, Hyunjae Kim, Jung Hoon Kim, and Sungroh Yoon. Liver lesion
detection from weakly-labeled multi-phase ct volumes with a grouped single shot multibox
detector, 2018.

[22] Xiang Li, Wenhai Wang, Xiaolin Hu, Jun Li, Jinhui Tang, and Jian Yang. Generalized focal loss
v2: Learning reliable localization quality estimation for dense object detection. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages
11632–11641, June 2021.

[23] Xiang Li, Wenhai Wang, Lijun Wu, Shuo Chen, Xiaolin Hu, Jun Li, Jinhui Tang, and Jian
Yang. Generalized focal loss: Learning qualified and distributed bounding boxes for dense
object detection. In NeurIPS, 2020.

[24] Yanghao Li, Yuntao Chen, Naiyan Wang, and Zhaoxiang Zhang. Scale-aware trident networks
for object detection. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 6054–6063, 2019.

[25] Tsung-Yi Lin, Piotr Dollar, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Be-
longie. Feature pyramid networks for object detection. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), July 2017.

[26] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollar. Focal loss for dense
object detection. In Proceedings of the IEEE International Conference on Computer Vision
(ICCV), Oct 2017.

[27] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James Hays,
Pietro Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollár. Microsoft coco: Com-
mon objects in context, 2014.

[28] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining
Guo. Swin transformer: Hierarchical vision transformer using shifted windows. arXiv preprint
arXiv:2103.14030, 2021.

[29] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining
Xie. A convnet for the 2020s. Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2022.

[30] Andrey Malinin and Mark Gales. Predictive uncertainty estimation via prior networks. In
S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, edi-
tors, Advances in Neural Information Processing Systems, volume 31. Curran Associates, Inc.,
2018.

[31] Rémi Munos and Csaba Szepesvári. Finite-time bounds for fitted value iteration. Journal of
Machine Learning Research, 9(27):815–857, 2008.

12

[32] Joseph Redmon and Ali Farhadi. Yolo9000: Better, faster, stronger. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017.

[33] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time ob-
ject detection with region proposal networks. In Proceedings of the 28th International Confer-
ence on Neural Information Processing Systems - Volume 1, NIPS’15, page 91–99, Cambridge,
MA, USA, 2015. MIT Press.

[34] Hamid Rezatofighi, Nathan Tsoi, JunYoung Gwak, Amir Sadeghian, Ian Reid, and Silvio
Savarese. Generalized intersection over union: A metric and a loss for bounding box regres-
sion. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pages 658–666, 2019.

[35] Johannes Schmidt-Hieber. Nonparametric regression using deep neural networks with relu
activation function. Annals of Statistics, Volume 48, Number 4, 1875-1897, 2020, 2020.

[36] Murat Sensoy, Lance Kaplan, and Melih Kandemir. Evidential deep learning to quantify clas-
sification uncertainty. In Advances in Neural Information Processing Systems, volume 31.
Curran Associates, Inc., 2018.

[37] Mingxing Tan and Quoc V Le. Efficientnet: Rethinking model scaling for convolutional neural
networks. arXiv preprint arXiv:1905.11946, 2019.

[38] Zhi Tian, Chunhua Shen, Hao Chen, and Tong He. FCOS: Fully convolutional one-stage object
detection. In Proc. Int. Conf. Computer Vision (ICCV), 2019.

[39] Alexandre B. Tsybakov. Introduction to Nonparametric Estimation. Anonymous, 2008.

[40] Artur Wilkowski, Włodzimierz Kasprzak, and Maciej Stefańczyk. Object detection in the
police surveillance scenario. In 2019 Federated Conference on Computer Science and Infor-
mation Systems (FedCSIS), pages 363–372, 2019.

[41] Ze Yang, Shaohui Liu, Han Hu, Liwei Wang, and Stephen Lin. Reppoints: Point set repre-
sentation for object detection. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 9657–9666, 2019.

[42] Mengyao Zhai, Lei Chen, Jinling Li, Mehran Khodabandeh, and Greg Mori. Object detection
in surveillance video from dense trajectories. In 2015 14th IAPR International Conference on
Machine Vision Applications (MVA), pages 535–538, 2015.

[43] Dawei Zhang, Zhonglong Zheng, Riheng Jia, and Minglu Li. Visual tracking via hierarchical
deep reinforcement learning. Proceedings of the AAAI Conference on Artificial Intelligence,
35(4):3315–3323, May 2021.

[44] Hao Zhang, Feng Li, Shilong Liu, Lei Zhang, Hang Su, Jun Zhu, Lionel M Ni, and Heung-
Yeung Shum. Dino: Detr with improved denoising anchor boxes for end-to-end object detec-
tion. arXiv preprint arXiv:2203.03605, 2022.

[45] Shifeng Zhang, Cheng Chi, Yongqiang Yao, Zhen Lei, and Stan Z. Li. Bridging the gap
between anchor-based and anchor-free detection via adaptive training sample selection. In
CVPR, 2020.

[46] Zhaohui Zheng, Ping Wang, Wei Liu, Jinze Li, Rongguang Ye, and Dongwei Ren. Distance-
iou loss: Faster and better learning for bounding box regression. In Proceedings of the AAAI
conference on artificial intelligence, volume 34, pages 12993–13000, 2020.

[47] Man Zhou, Rujing Wang, Chengjun Xie, Liu Liu, Rui Li, Fangyuan Wang, and Dengshan
Li. Reinforcenet: A reinforcement learning embedded object detection framework with region
selection network. Neurocomputing, 443:369–379, 2021.

[48] Chenchen Zhu, Fangyi Chen, Zhiqiang Shen, and Marios Savvides. Soft anchor-point object
detection. In ECCV, 2020.

[49] Zhuofan Zong, Guanglu Song, and Yu Liu. Detrs with collaborative hybrid assignments train-
ing. In Proceedings of the IEEE/CVF international conference on computer vision, pages
6748–6758, 2023.

13

Supplementary Material

Appendix

Table of Contents
A Summary of Notations 15

B Proof of Theoretical Results 15
B.1 Definitions and Assumptions . 16

Remark about Assumption 1. 17
Remark about Assumption 2. 17

B.2 Proof of Theorem 1 . 17

C Additional Details of AIRS 19
C.1 Reward Design . 19
C.2 Training/Test process . 19
C.3 Action Interaction Details . 20

Examples Demonstrating Action Interaction Process: 21
Case 1: Downward movement. 21
Case 2: Upward movement. 21
Case 3: Search termination. 22

C.4 Clarification on RL masks. 22

D Additional Experiments 23
D.1 Comparison with the Latest YOLO Series . 23
D.2 Balancing Hyper-parameter Search . 23
D.3 Datasets with a Large Amount of Small Objects 24
D.4 RL Agent Training Configurations . 24
D.5 Ablation Study on Base Detectors . 25
D.6 Train efficiency . 25
D.7 Subset Generation Illustration . 26

E Limitation and Broader Impact 26

F Link to Source Code 26

14

Organization of the Appendix:
• In Appendix A, we summarize major notations used throughout the paper.
• In Appendix B, we provide detailed proof of the main theoretical result.
• In Appendix C, we provide more detailed information about our AIRS framework including

reward design and action interaction.
• In Appendix D, we provide details related to experimentation along with additional results.
• In Appendix E, we discuss the limitation of our work and its broader impact.
• In Appendix F, we provide the link to the source code.

A Summary of Notations

The major notations and their descriptions are summarized in Table 6.

Table 6: Symbols with Descriptions

Notation Description

pli,t ith selected region in lth layer at time step t

P l
st,at

The penalty term of the next selected patch on layer l in time step t

(xl
i,t, y

l
i,t) Center of region pli,t

i, L Index of sub-patch and top layer index in FPN
Nepoch, nepoch The number of total epoch and current epoch

T The number of maximum time step
D Dimensionality of action space
st State space representation in time step t
et Feature embedding representation in time step t
ad,t Action of movement signal d at time step t

r(st, at) Reward associated with the state st generated by action ad,t
γ Discounting factor used in the TD computation
P MDP transition matrix
qd,t Q-value estimates over the action space at
q̂d,t Temporal different target associated with the action d in time step t
qed,t Evidential Q-value estimate associated with the action d in time step t
q̃e
d,t Masked evidential Q-value estimate associated with the action d in time step t

md
l,t Mask value (binary) associated with the dth action in lth layer in tth time step

θf Parameters associated with the Feature Extractor
θr Parameters associated with the state encoder (RNN)
θe Parameters associated with Evidential Q-network
Θ All network parameters in our framework
µd,t Mean of the Gaussian distribution
σ2
d,t Variance of the Gaussian distribution

νd,t Hyper-parameter of Evidence network as an output from Evidential Q-network
βd,t Hyper-parameter of Evidence network as an output from Evidential Q-network
γd,t Hyper-parameter of Evidence network as an output from Evidential Q-network
αd,t Hyper-parameter of Evidence network as an output from Evidential Q-network

Inv-Gamma(·) Inverse Gamma function
λ Hyper-parameter balancing the exploration and exploitation

B Proof of Theoretical Results

We aim to obtain an upper bound for ∥QπK −Q∗∥1. We start by providing formal definitions of sev-
eral key components used in our proof, including sparse ReLU network, Hölder smooth functions,

15

their compositions, and functional classes. We then provide two assumptions related to Bellman op-
timality smoothness and concentration coefficient bound. Finally, we provide the proof for Theorem
1. It should be noted that our proof is developed based upon some key results in [35, 2, 13].

B.1 Definitions and Assumptions

Definition B.1 (Sparse ReLU Network). Let L be the number of hidden layers, V be the upper
bound for the neural network outputs, dl be the number of nodes in the lth layer, fl be the output of
the l-th layer, and wmax be the total number of non-zero weights. The sparse ReLU networks can
be formally defined as

F
(
L, {dl}L+1

l=0 , wmax, V
)
=

{
f : max

l∈[L+1]
∥W̃l∥∞ ≤ 1,

L+1∑
l=1

∥W̃l∥0 ≤ wmax, max
l∈[dL+1]

∥fl∥∞ ≤ V

}
(10)

In our case, since Q-values are always bounded and therefore, we can replace V by Vmax = Rmax

1−γ .
To simplify the notations, we can simply omit the V term and use notation F (L, {dl}L+1

l=0 , wmax).
In the above equation, W̃l denotes the weights of the lth layer of the neural network, i.e.,, W̃l =
(Wl, bl) and the final output f of the network is given by

f(x) = WL+1σ(WLσ(WL−1.....σ(W2σ(W1x+ b1) + b2)...bL−1) + bL) (11)

where σ is the ReLU function. In our case, we can have a ReLU activation in each output layer
except for the last layer to make the network sparse, which is required to prove the theorem. In
the later part of our proof given by Equation 31, we show that the number of samples and network
sparsity are directly related (more sparse, less samples) and therefore, to get the given convergence
result, having a sparse network will reduce the number of samples.
Definition B.2 (Hölder Function). Let D be a compact subset of Rr. Then, the set of Hölder
functions on D is defined as

Cr(D, ν,H) =

f : D → R :
∑

α:|α|<ν

∥δαf∥∞ +
∑

α:∥α∥1=ν0

sup
x,y∈D,x̸=y

|δαf(x)− δαf(y)|
∥x− y∥ν−ν0∞

(12)

where ν > 0, H > 0 are function parameters, ν0 is the largest integer no greater than ν, α =
(α1, ..., αr)

⊤, δα = (δα1 , ...δδr), and r is the dimensionality of the state space S.
Definition B.3 (Compositions of Hölder Function). Let q and {pj}j∈[q] be integers and gj be a
function with gjk being a Hölder smooth function that depends on at most ηj components of its
input, i.e.,, gjk ∈ Cηj

(Dj , νj , Hj). With G({pj , ηj , νj , Hj}j∈[q]) being the family of functions that
can be expressed as compositions of {gj}j∈[q] then for any f ∈ G({pj , ηj , νj , Hj}j∈[q]), we can
write the following

f = gq · gq−1 · · g2 · g1 (13)

Definition B.4 (Functional Classes). Let F (L, {dl}L+1
l=1 , wmax) be the family of sparse ReLU net-

works defined on the state space S with d0 = r and dL+1 = 1, then F0 can be defined as

F0 = {f : S ×A → R : f(.,a) ∈ F (L, {dl}L+1
l=0 , wmax); ∀a ∈ A} (14)

In addition, let G({pj , ηj , νj , Hj}j∈[q]) be a set of compositions of the Hölder smooth functions
defined on S ∈ Rr. Similar to F0, we define functional class G0 as

G0 = {f : S ×A → R; f(.,a) ∈ G({pj , ηj , νj , Hj}j∈[q]);∀a ∈ A} (15)

Based on these definitions, we introduce two assumptions about the Hölder smoothness on the Bell-
man optimality and concentration coefficient bound, which are given below.
Assumption B.5 (Bellman Optimality Smoothness). For any sparse ReLU network function f ∈ F
with F being the family of functions, (Tf)(s,a) with T being the Bellman optimality operator can
be written as the composition of the Hölder smooth functions.

(Tf)(s,a) = gq · gq−1.... · g1 · g0 (16)

In the above equation, gj has pj+1 components, where each component gjk is a Hölder smooth
function as defined above.

16

Remark about Assumption 1. It should be noted that Bellman Optimality Smoothness assump-
tion holds whenever the reward function is smooth [13]. As our reward function is based on existing
metrics (e.g., IoU, GIoU), we can easily convert to a smooth variant [34]. This will make the As-
sumption 1 true in our proposed framework.

Assumption B.6 (Concentration Coefficient Bound). Let u1, u2 ∈ P(S,A) be two probability mea-
sures absolutely continuous with respect to the Lebesgue measure on S ×A. Also consider {πt}t≥1

to be a sequence of policies and for any integer m, let us denote the distribution of {St,At}mt=0 by
PπmPπm−1Pπ1u1. Then, the mth concentration coefficient is given as

κ(m;u1, u2) = sup
π1,...,πm

[
Eu2

∣∣∣∣d(PπmPπm−1Pπ1u1)

du2

∣∣∣∣] (17)

We assume that there exists a constant ϕe,f ≤ ∞ that bounds the concentration coefficient, given as

(1− γ2)
∑
m≥1

γm−1mκ(m; e, f) ≤ ϕe,f (18)

where e is the fixed distribution of S ×A and f is the sampling distribution.

Remark about Assumption 2. The Concentration Coefficient Bound assumption is commonly
used in a large class of MDP systems [31]. It requires sampling distribution f to have sufficient
coverage over S × A. In our context, because of the novel exploration strategy coupled with hi-
erarchical searching strategy, our sampling distribution will likely to have a sufficient coverage on
S ×A, implying that this assumption holds.

B.2 Proof of Theorem 1

Based on the above assumptions, we proceed to prove Theorem 1, which is restated as:

∥Q∗ −QπK∥1 ≤ Cϕe,f
γ

1− γ2
|A|τ(η, ν) + 4γK+1

1− γ2
Rmax (19)

Proof. In the proposed AIRS algorithm, πk is the policy with respect to Qπk and let QπK be the
action-value function associated with πK . Since, {Qπk}k∈[K] is constructed by an iterative algo-
rithm, it is helpful to relate ∥Q∗−QπK∥1 to the errors that occur in the previous steps in AIRS, i.e.,
{Qπk − TQπk−1}k∈[K]. Therefore, in the first step, we provide the upper bound for ∥Q∗ −QπK∥1
as a function of error introduced in each step, which is given by the following theorem.

Theorem B.7. The relationship between ∥Q∗ − QπK∥1 and ∥Qπk − TQπk−1∥f with f being the
sampling distribution is

∥Q∗ −QπK∥1 ≤
2ϕe,fγ

1− γ2
max
k∈[K]

∥Qπk − TQπk−1∥f +
4γK+1

(1− γ2)
Rmax (20)

Please refer to Section C.1 of [13] for a detailed proof of the above theorem. It should be noted that
the first term (specifically maxk∈[K] ∥Qπk − Qπk−1∥f) is a statistical error and the second term is
an algorithmic error. In the later part of our proof, we show that the statistical error diminishes as
the sample size n in each iteration grows whereas the algorithmic error decays to zero geometrically
with K. In the above equation, to get the upper bound, we need to bound ∥Qπk − TQπk−1∥f .
In order to do this, we use the nonparametric regression. Specifically, we provide the following
theorem to bound that error.

Theorem B.8. Under the assumption of the Bellman optimality smoothness in Assumption 1, for
any k ∈ [K], we have

∥Qπk+1 − TQπk∥2f ≤ 4[dist∞(F0,G0)]2 +
CR2

max

n(1− γ)2
logNδ +

CRmax

1− γ
δ (21)

For any δ > 0 and C > 0 being a constant.

17

Please refer to the Section C.2 of [13] for a detailed proof for the above theorem. There are two
terms that play a major role in the bound. The first term indicates the bias, which is given as

dist∞(F0,G0) = sup
f ′∈G0,f∈F0

∥f − f ′∥∞ (22)

This term reflects the l∞ error of estimating the function in G0 using the sparse ReLU defined in
F0. It also indicates the bias in estimating the functions in G0. The second term Nδ indicates the
minimum cardinality of the balls required to cover function F0 with respect to the l∞-norm. This
term indicates the variance associated with estimating the action-value function using a sparse ReLU
network. Substituting δ = 1

n , we can rewrite the above equation as

∥Qπk+1 − TQπk∥2f ≤ 4dist2∞(F0,G0) +
CR2

max

n(1− γ2)
logNδ +

CRmax

(1− γ)n

In the Above Equation, in the right hand side, the last term is constant for a given n. Then there
exists absolute constant C ′ > 0 such that following Equation holds

CR2
max

n(1− γ2)
logNδ +

CRmax

(1− γ)n
≤ C ′ R2

max

n(1− γ)2
logNδ

Using this inequality, we have the following

∥Qπk+1 − TQπk∥2f ≤ 4dist2∞(F0,G0) +
C ′R2

max

n(1− γ)2
logNδ, C

′ > 0 (23)

Now, if we establish a bound for dist∞(F0,G0) and logNδ , we will be able to get the bound for the
∥Qπk − TQπk−1∥f as well. So let us find out the bound for each term.

(1) Bound for dist∞(F0,G0): To get the bound for dist∞(F0,G0), we first show that ReLU net-
work f(.,a) can be reformulated as a composition of Hölder functions defined on the hypercube.
Next, we show that using Lemma 6.3 in [35], we can construct the ReLU network to approximate
the hypercube components yielding a function close to f(.,a) in the l∞ norm. Thus, f(.,a) can
be reformulated as a compositions of Hölder functions defined on the hypercube. Considering,
h1 = g1

2H1
, hq(u) = gq(2Hq−1u−Hq−1) and hj(u) =

gj(2Hj−1u−Hj−1)
2Hj

+ 1
2 ;∀j ∈ [2, q − 1], we

can write
f(.,a) = gq · · g1 = hq · · h1 (24)

where we can write hjk ∈ Cηj ([0, 1]
ηj ,W) with W > 0 and given as

W = max

{
max

1≤j≤q−1
(2Hj − 1)νj , Hq(2Hq − 1)νq

}
(25)

Now we can use Lemma 6.3 from [35] to construct a ReLU network to approximate hjk, which can
be combined with Equation 24 to show that a ReLU network can be used to approximate f(.,a) in
the l∞ norm. According to Lemma 6.3 from [35], there exists a ReLU network h̃jk which is Hölder

smooth such that ∥h̃jk − hjk∥∞ ≤ N
−

νj
ηj . When N is large, it can be written as

N =

⌈
max
1≤j≤q

Cn
ηj

2(ν∗
j
+ηj)

⌉
(26)

where ν∗j = νj
∏

l=j+1 min(νl, 1) with ν∗j = 1. For the large N , we can approximate f(.,a) by f̃

belonging to the ReLU class F (L∗, {d∗j}
L∗+1
j=1 , w∗

max). Specifically, we have the following bound
for the approximation.

∥f(.,a)− f̃∥∞ ≤
q∑

j=1

∥h̃j − hj∥λj
∞ (27)

where, λj =
∏q

l=j+1(ηl ∧ 1)∀j ∈ [q − 1] with λq = 1. Now using above inequality along with

definition of N and ∥h̃jk − hjk∥∞ ≤ N
−

νj
ηj , we get the following

[dist∞(F0,G0)]2 ≤ nα∗−1 (28)

18

where α∗ = maxj∈[q]
ηj

2ν∗
j +ηj

and ν∗j = νj
∏

l=j+1 min(νl, 1).

(2) Bound for logNδ: Using classical results on the covering number of neural networks in [2], we
have the following

logNδ ≤ |A|w∗
maxL

∗ max
j∈[L∗]

log(d∗j) (29)

Let us consider that there exists ζ with ζ∗ = 1 + 2ζ such that

max

q∑

j=1

(ηj + νj + 1)3+ηj ,
∑
j∈[q]

log(ηj + νj),max
j∈[q]

pj

 ≤ (log n)ζ (30)

We further assume that

L∗ ≤ (log n)ζ
∗
, r ≤ min

j∈[L∗]
d∗j ≤ max

j∈[L∗]
d∗j ≤ nζ∗

, w∗
max ≈ nα∗

(log n)ζ
∗

(31)

Then we can rewrite Equation 29 as

logNδ ≤ |A|nα∗
(log n)1+2ζ∗

(32)

Now substituting Eq. 32 and 28 into Eq. 23 and replacing it into Eq. 20, we obtain the following

∥Q∗−QπK∥1 ≤
Cϕe,fγ

1− γ2
|A|(log n)1+2ζ∗

n
α∗−1

2 +
4γK+1

(1− γ2)
Rmax =

Cϕe,fγ

1− γ2
|A|τ(ν, η)+ 4γK+1

(1− γ2)
Rmax

(33)
This completes the proof of our theorem.

C Additional Details of AIRS

In this section, first we introduce the reward design in detail. Then we explain the overall detailed
training and test process through the complementary diagram and pseudo code. Next, we explain
different actions defined and their interactions with the RL environment (i.e., FPN tree-structure)
under AIRS framework with some illustrative examples.

C.1 Reward Design

For the reward design, first we need to get positive anchor by using IoU, GIoU, DIoU, etc as selection
criterion, along with the corresponding thresholds following RetinaNet [26], we did an ablation
study for these choices in Table 5. Then we calculate the number of positive anchors for each patch
and rank those patches in the same layer to form L ranking lists. If the action directed next patch in
any list resides on 0-25th percentile, the quality score g is up-scaled to 0.25, or if it resides on 75th
percentile to 100th percentile, the quality score is up-scaled to 1, etc. In this way, the quality score
and the penalty term have an alignment and perform exploitation-exploration balance in the reward
design besides evidential Q-learning.

C.2 Training/Test process

Fig 5 shows the detailed workflow of AIRS. It also captures important steps of the training process
along with the major symbols and parameters used in the actual implementation. For RL training, we
leverage the FPN from the backbone model (e.g., pre-trained GFocal) to set up the RL environment.
Training starts from the initial patch pli,t on the virtual top-most layer L, where state embedding rep-
resentation st is generated after passing through the feature extractor f(·;θf) and the RNN network.
Next, the state is passed into the evidential Q-network to get hyper-parameters governing the eviden-
tial distribution, where Q-value is sampled. After getting the Q-value qd,t and epistemic uncertainty
ud,t generated from the same distribution, we evaluate the evidential Q-value qed,t. Then, by im-
posing environment constraints through masking distribution, the RL agent selects the next action
at based on maximum masked evidential Q-value q̃e

d,t. Finally, the RL agent moves to next step’s
patch pl

∗

i∗,t+1, calculates reward rt, and collects training tuples (st, at, rt, st+1) along this process.

19

class+box
subnets

×4

×4

W×H
×256

W×H
×256

W×H
×256

W×H
×256 W×H

×C

W×H
×4

C5

C4

C3

P5

P4

P3

1 1

1 1

0 1
1 0

1 1
1 1

0 1
0 1

1 0
0 1

RL mask

P5

P4

P3

Figure 4: RL-augmented detection process

It keeps searching in a given image until the upward movement action is selected in the highest L
layer or maximum time step T is reached. After every K such iterations, AIRS samples one batch of
training tuples from the replay buffer D and conducts off-policy Q-learning to train all network pa-
rameters Θ. The overall training process is shown in Algorithm 1, where we use Θ = {θe,θf ,θr}
to denote all network parameters. In test phase, as shown in Fig. 4, those aforementioned binary RL
masks will be used to mask out unnecessary patches across different levels in the FPN structure so
that those low-value false positive anchors (candidate regions) will be filtered out and never passed
to the head blocks for the bounding box prediction.

Algorithm 1 AIRS Training

Require: Hyperparameters: Nepoch, T,K, η, γ, λ, lr
1: Initialize network parameters (Θ), epoch nepoch = 0, stack S = [], current selected patch pli,t =

pL∗,t, action at = 0, count of training tuple k = 0
2: repeat
3: repeat
4: time step t = 0,
5: repeat
6: Generate embedding et ← f(pli,t;θf)
7: Compute state st per st = RNN(et, st−1;θr)
8: Compute evidential Q-value estimate qe

d,t per Eq. (4)
9: Compute masked evidential Q-value per Eq. (5)

10: Update action at per Eq. (6)
11: Select next patch pl

∗

i∗,t+1 from RL environment given current patch and new action
at

12: Add last patch pli,t to the stack S recording visited patches
13: Compute RL reward rt based on Eq. (8)
14: Collect the training tuple st, at, rt, st+1 into replay buffer D
15: t = t+ 1, k = k + 1
16: until t > T or (pli,t == pL∗,t and aD−1,t = 1)
17: if k%K = 0 then
18: Compute total loss LΘ using Eq. (7)
19: Update Θ← Θ− lr × δLΘ

δΘ
20: end if
21: until One Epoch Ended
22: nepoch = nepoch + 1
23: until nepoch > Nepoch

C.3 Action Interaction Details

Given the current selected patch pli,t and an action space with size D, the first D−1 actions ad,t, d ∈
[0, · · · , D − 2] denote the downward movements directing into one of the sub-patches pl−1

d,t+1 when
ad,t = 1; the last action aD−1,t denotes an upward movement into the mother patch from the
immediate upper layer. An upward movement in the initial patch pL∗,t of highest level L indicates

20

RNN

P5

P4

P3

Feature Extractor

Selected Patch
(pi,t

l)

Feature
Embedding (et)

Current hidden
vector (st)

Last hidden
vector (st-1)

RL environment:
FPN

Evidential Q network

Prediction

Gaussian
Policy 1

Uncertainty
Estimate

Gaussian
Policy D

Masked
Evidential
Q-value

Action (at)
Action Interaction &
Reward Calculation

Reward (rt)

Q learning

Replay
Buffer

st, st+1

Training
Tuple (st,
at, rt,st+1)

Figure 5: Detailed Workflow of AIRS

the termination of RL searching for one image input. The Action Interaction module determines the
constraint mask by considering the constraints from RL environment, i.e., we mask the evidential
Q-value of any downward movement, which directs to an already visited sub-patch or void space
(e.g., downward movements on bottom layer 0) to zero. Specifically, we generate a mask ml,t

of length D, where md
l,t is the individual unit contained in the mask. For downward movements

mi
0,t, i ∈ [0, 1, 2, 3] on the bottom layer or directing to visited patches before, we set the mask value

to zero to avoid such illegal actions per above instructions. Then, the masked evidential Q-value is
given by performing element-wise multiplication between qe

d,t and md
l,t.

Examples Demonstrating Action Interaction Process: We follow a depth-first-search (DFS)
rule to conduct the hierarchical search in the FPN tree-structure and further include several case stud-
ies as examples to illustrate the interaction protocol under different selected actions. Let (xl

i,t, y
l
i,t)

be the center (also an alias) of the ith region in the lth layer at time step t. In the beginning (i.e.,
step t = 0), we pass all the regions present in the L-layer to obtain the masked evidential Q-value
q̃e
d,t for each action ad,t using Eq. (5) and then select the next action corresponding to the maximum

masked evidential Q-value estimation. Depending on the action selected, we define the -following
three cases that describe the corresponding behavior of the agent to form the interaction protocol.

Case 1: Downward movement. It happens when
∑D−2

d=0 ad,t = 1. The RL agent will go down to
one of the lower-level regions from the current region. For example, in time step t = 0, assuming
the uppermost virtual layer as the current region (i.e., root of the hierarchy), the above condition
directs the agent to go into one of the sub-patches from the P5 layer. Out of D − 1 regions, which
one to go is determined by Equation 6. For example in time step t = 0 of Figure 6, we have
at=0 = (1, 0, 0, 0, 0)⊤, which means the agent will move to the top-left region (xL−1

0,t=1, y
L−1
0,t=1) in

P5. Next, in time step t = 1, we pass the newly selected region as an input to the network and again
obtain the action value at=1 = (0, 1, 0, 0, 0)⊤, then the RL-agent will visit the top-right child region
(xL−2

1,t=2, y
L−2
1,t=2) in P4 associated with the top-left region (xL−1

0,t=1, y
L−1
0,t=1) from P5. We then pass the

top-right region from P4 as an input in time step t = 2. This process continues until the agent needs
to move upwards or stop the search.

Case 2: Upward movement. It happens when aD−1,t = 1. The RL agent will stop going further
down in the hierarchy as the evidential Q-value indicates that no valuable information is available in
the finer level of granularity to cover the searching cost. Thus, the agent will go back to the parent
region which allows the agent to search other sibling patches. For example, in time step t = 2 of
Figure 6, we have at=2 = (0, 0, 0, 0, 1)⊤ and the agent goes back to the parent region, which is
top-left region in P5. It should be noted that we have used the mask generator to avoid the action
choices directing to already visited and out-of-boundary regions. Next in time step t = 3, the top-
right region in P4 is already visited and therefore, masked evidential Q-value estimate q̃e

d=1,t=3 is

21

made zero. As shown in time step t = 3 of Figure 7, while this region has the highest evidential
Q-value among P4 patches, we select the second best region, which is the top-left one from P4. In
time step t = 4 of Figure 7, the input region becomes the top-left region from P4 associated with
the top-left region from P5 and the search process continues.

Case 3: Search termination. It happens when upward movement aD−1,t = 1 happens in the
uppermost virtual layer which is the root node of the FPN tree-structure or when maximum time
step T = 60 has been reached. In such cases, the RL agent is given the stop signal to terminate
the entire search process, which implies that a sufficient number of high quality regions have been
detected.

P5

Top Left
(x0

5, y0
5)

Top Right
(x1

5, y0
5)

Bottom Left
(x0

5, y1
5)

Bottom Right
(x0

5, y1
5)

Feature Extractor,
RNN, Evidential
Q-network

qt
e = [0.75, 0.25, 0.25, 0.0, 0.0] qt

e
,m = [0.75, 0.25, 0.25, 0.0, 0.0] Initialize at = 0

at [j] = 1,
j = argmax qt

e
,m

at
 = [1, 0, 0, 0, 0]

Time Step t = 0

Feature Extractor,
RNN, Evidential
Q-network

qt
e = [0.0, 0.68, 0.14, 0.0, 0.0] qt

e
,m = [0.0, 0.68, 0.14, 0.0, 0.0] Initialize at = 0

at [j] = 1,
j = argmax qt

e
,m

at
 = [0, 1, 0, 0, 0]

Time Step t = 1

Top Left
(x0

5, y0
5)

P5

Feature Extractor,
RNN, Evidential
Q-network

qt
e = [0.55, 0.49, 0.24,

0.12, 0.78]

mt
e= [1, 1, 1, 1, 1]

Mask
Generator

Visited
Patches

qt
e

,m = [0.55, 0.49, 0.24,
 0.12, 0.78] Initialize at = 0

at [j] = 1,
j = argmax qt

e
,m

at
 = [0, 0, 0, 0, 1]

Time Step t = 2

Top Right
(x1

4, y0
4)

P4

mt
e= [1, 1, 1, 1, 1]

Mask
Generator

Visited
Patches

mt
e= [1, 1, 1, 1, 1]

Mask
Generator

Visited
Patches

Downward
movement

Downward
movement

Upward
movement

Figure 6: Action interaction process: time steps t = 0, 1, 2

Feature Extractor,
RNN, Evidential
Q-network

qt
e = [0.52, 0.64, 0.2, 0.1, 0.05]

mt
e= [1, 0, 1, 1, 1]

qt
e

,m = [0.52, 0.0, 0.2, 0.1, 0.05] Initialize at = 0
at [j] = 1,
j = argmax qt

e
,m

at
 = [1, 0, 0, 0, 0]

Time Step t = 3

Feature Extractor,
RNN, Evidential
Q-network

Mask
Generator

Visited
Patches

qt
e = [0.42, 0.37, 0.56,

 0.26, 0.15]

mt
e= [1, 1, 1, 1, 1]

qt
e

,m = [0.42, 0.37, 0.56,
 0.26, 0.15] Initialize at = 0

at [j] = 1,
j = argmax qt

e
,m

at
 = [0, 0, 1, 0, 0]

Time Step t = 4

Top Left
(x0

4, y0
4)

P4

Top Left
(x0

5, y0
5)

P5

Mask
Generator

Visited
Patches

Downward
movement

Downward
movement

Figure 7: Action interaction process: time steps t = 3, 4

C.4 Clarification on RL masks.

Clarification on use of masks to generate final bounding boxes. We run the trained RL agent
on the test image’s FPN to generate RL masks. Based on the masked evidential Q-value estimate,
the agent selects the next action, which would be either a downward or upward movement. Then,
the agent moves to the next patch and continues the process until receiving an upward movement
in layer L or reaches the maximum time step i.e. T . After the hierarchical searching process, we

22

can have a binary RL mask by recording which patches are visited by RL agent through it actions
(denoted as 1 in RL mask), and which are not visited by the RL agent (denoted as 0 in RL mask).
Given the RL mask, which is a three-level binary mask covering the feature pyramid network (FPN),
each pixel in the FPN will be assigned a confidence score in the quality evaluation branch to decide
if it is a positive anchor or not by (comparing with a threshold). Those pixels covered by the zero RL
masks will have their confidence score reset to 0, and other pixels will maintain the same confidence
score. In that way, RL masks serve as an additional filter to further eliminate the “false positive"
bounding boxes.

How the binary RL mask helps reduce unnecessary bounding boxes in inference step. We are
handling two different types of false positive bounding boxes. The first category involves bounding
boxes that capture only background with no targeted object. To remove those patches, our novel
exploration-exploitation strategy plays a major role. Specifically, during the adaptive hierarchical
search in the top-down fashion, exploration of the higher layer quickly discovers that there is no
object in the lower-level granularity. Specifically, both Q-value as well as epistemic uncertainty (see
Eq. 4) remains low, leading to removing bounding boxes on backgrounds. The second category
involves bounding boxes that cover only a part of a given object and are embedded in the larger
bounding box that covers the whole object. As our approach works in the top-down fashion, once
the RL agent explores the bigger bounding box covering the full object, the model assigns a very
low epistemic uncertainty for partially covering bounding boxes. As such, the model avoids going
downward in a lower level granularity in the action space resulting in removing unnecessary partially
covered bounding boxes.

D Additional Experiments

In this section, we first present the additional comparison results with YOLO series. After that, we
show additional ablation study results that investigate the impact of the underlying base detectors
and balancing hyper-parameters. We also test the transferred performance of the RL masks trained
from the proposed AIRS and apply them to other base detectors. Finally, we show some additional
quantitative and qualitative results on the challenging datasets (aerial park lot [16]) or subsets chosen
from all three data sets, containing difficult images with a large amount of small objects.

D.1 Comparison with the Latest YOLO Series

In this set of experiments, we include the latest YOLO series for comparison. We run the ex-
periments for three times with different random seeds to verify the performance and provide the
strongest YOLO-V7 comparison results with statistical significance in Table 7. Note that we use the
same hyper-parameters reported in the original paper, including the image augmentation, learning
rate, momentum decay, etc. For a fair comparison, we train all the baselines until convergence and
test the models on the same test splits from different datasets, and we align all the weight initializa-
tion to be Xavier initialization. As can be seen, comparing to these SOTA models, for the overall AP,
AIRS is better than any YOLO series below medium parameter size scale and only slightly lower
than yolo V6-L, yolo V7 on MS COCO (but significantly better than them on Open Image V4).
It shows a clear advantage in images with small objects and with difficult dense scenarios, which
is achieved by a good balance of recall and precision thanks to the FPN with RL selected mask
augmentation. The good AP performance from yolo V6, V7 on MS COCO is likely due to the spe-
cial architectural design optimization targeting this dataset, where medium and large objects form
the majority of image labels. These include extended efficient layer aggregation networks, model
scaling for concatenation-based models, and a bunch of trainable bag-of-freebies designs highly op-
timized for the MS COCO dataset. We also provide the comparison results on Open Image V4 to
show that yolo V6-L, V7 cannot beat our model in a more complex dataset which contains more
dense scenario images with small objects and difficult background.

D.2 Balancing Hyper-parameter Search

λ is changed dynamically. In the early stage, it is set to be high (λ = 1) so the focus is on exploring
the unknown patches. As training progresses, it decreases as λ =

(
1− Nc

Nepoch

)
, where Nc is

the current epoch. Exact exploration-exploitation balancing also depends on complexity of dataset.

23

Table 7: SOTA YOLO baseline comparison on MS COCO test-dev and Open Image V4 test set
Method MS COCO Open Image V4

AP APS APM APL APCH AP APS APM APL APCH

yoloV5-L 45.8 26.2 48.5 54.2 26.6 39.7 24.1 43.8 47.3 24.5
yoloX-L 46.9 26.5 49.1 55.4 27.2 40.5 24.6 44.3 48.0 25.1
yoloE-L 47.5 26.9 49.7 55.9 27.4 42.9 25.2 44.9 48.7 25.5

yoloV6-S 40.3 24.5 46.5 53.5 24.3 39.5 22.3 41.9 45.1 21.3
yoloV6-M 43.5 26.8 48.9 55.5 25.5 41.8 24.9 44.2 47.8 23.9
yoloV6-L 49.5 29.1 51.2 57.4 28.6 44.5 27.5 46.5 50.9 26.7
yoloV7 49.8±0.54 29.5±0.58 51.4±0.52 58.2±0.53 28.8±0.56 44.9±0.55 28.2±0.59 47.2±0.57 51.6±0.54 27.4±0.61

AIRS 48.3±0.58 32.1±0.62 48.5±0.55 54.3±0.56 29.4±0.63 47.5±0.60 31.5±0.65 48.1±0.58 53.1±0.58 29.0±0.64

Table 8: Impact of hyper-parameter λ

Hyper-parameter λ COCO AP
1 46.8
0.8 46.7
0.6 46.9
0.4 46.5
0.2 46.1

1→0 (AIRS) 48.3

For instance, for easy dataset, the model may quickly fo-
cus on the exploitation part as epistemic uncertainty may
reduce quickly whereas for difficult dataset, the model
may stay longer to explore the patches. We also con-
duct an additional experiment to test sensitivity of λ. As
shown in the Table 8, the performance is relatively robust
for different λ values. However, the adaptive λ achieves
a better performance.

D.3 Datasets with a Large Amount of Small Objects

We clarify that COCO, Pascal VOC, and Open Images V4 are commonly used benchmark datasets
to evaluate dense object detection models such as GFocal, DINO, FCOS etc. Therefore, we choose
same set of datasets in our evaluation. To explicitly show the effectiveness of our technique, we
further create a challenging subset, where large, medium and small objects are mixed and embedded
with each other. This mixing strategy makes the detection highly challenging because such scenarios
require a good balance of exploitation and exploration in RL training to achieve high precision and
recall for all large, medium and small objects. Second, following the reviewer’s suggestion for
using datasets with more smaller objects, we redefine our criteria to select subsets that contain those
images where the ratio of large and medium objects (area ≥ 322) to small objects (area < 322)
≤ 1/2. We additionally conduct experiments on an aerial park lot dataset with a large amount of
small objects in each image [16]. The quantitative results on the new challenging subset and an
aerial dataset are summarized in Table 9. We also provide detection visualization of these two new
challenge data sets in Figure 8.

Table 9: AP performance of AIRS on the aerial parking lot dataset [16] and newly created MSCOCO
challenging subset, both containing a large number of cluttered small objects in one image, besides
few medium or large objects.

Data Set GFocal AIRS
AP APS APM APL AP APS APM APL

Aerial parking lot 47.8 48.3 31.4 30.8 50.9 51.5 31.5 40.0
New challenging subset 32.5 33.8 30.4 31.9 33.2 34.6 30.3 31.9

D.4 RL Agent Training Configurations

As compared with existing Q-learning models, our model is less computationally expensive to train
due to two reasons: 1) The maximum time step T is around 60 and in most cases the reward is
positive (between 0 and 1), so it does not suffer from reward vanishing. 2) Training samples in
our datasets are sufficient to train the RL agent. Given such potential advantages for RL training
brought by AIRS, a Double-DQN target network is sufficient to stabilize the training. To further
guarantee the training success and avoid early termination, we don’t allow model to move upwards
in Layer L,L− 1 in the first 40 time steps of each RL training episode. Figures 9a, 9b, and 9c show
the Q-learning loss with respect to training epochs, where the loss gradually decreases towards
convergence. Furthermore, Figures 9d, 9e, and 9f show the average cumulative rewards, which
exhibit a non-decreasing trend over all three datasets. This justifies that our approach achieves stable
model training and the minimization in the loss which is also reflected by the cumulative reward.

24

(a) GFocal (b) AIRS (c) FGocal (d) AIRS

Figure 8: Results w/ and w/o AIRS generated masks on an aerial dataset [16] and a new challenging
MSCOCO subset, both of which contain many small objects: (a) and (c) are the GFocal detection re-
sults while (b) and (d) are the results from AIRS after applying the RL masks. As can be seen, those
grey boxes are the false positive bounding boxes, most of which possess irrelevant backgrounds or
partial objects, masked out by the RL agent (i.e., 0 masks), while the red boxes are the remaining
true positive boxes, which are kept the by the RL agent (i.e., 1 masks).

Table 10: Ablation on RL masks trained on Different Detector Backbones

Method MS COCO

AP APS APM APL APCH

RetinaNet [26] 39.1 21.8 42.7 50.2 21.6
RetinaNet-RL 42.5 25.0 41.8 50.2 25.8

RetinaNet-Trans 41.8 24.6 38.8 50.0 23.7

FCOS [38] 41.5 24.4 44.8 51.6 23.5
FCOS-RL 43.8 26.9 43.2 48.3 27.1

FCOS-Trans 43.2 26.4 42.7 47.6 25.8

ATSS [45] 43.6 26.1 47.0 53.6 23.8
ATSS-RL 45.5 29.5 45.7 52.2 27.9

ATSS-Trans 44.8 27.6 45.1 49.5 26.2

D.5 Ablation Study on Base Detectors

To study the impact of base detectors, we select a set of representative one-stage detectors, including
RetinaNet, FCOS and ATSS. For a fair comparison, we use ResNet-50 as the common backbone for
all the methods. We first train our RL agent on the FPN of these pre-trained one-stage detectors.
After training, we run the RL agent of each base detector and predict the binary masks for every test
image. Finally, the RL masks are used to obtain the RL-augmented prediction results by training the
underlying base detector again on the precise RL designated anchors. We apply the ‘RL’ suffix to
these results. Meanwhile, we directly apply the RL masks generated from AIRS to the other detectors
training phase and apply the ‘Trans’ suffix to these results. As Figure 10 shows, the RL masks
independently trained on each base detector further improve the AP,APS , APCH performance
comparing to original baseline without any RL augmentations. Furthermore, we observe that the
transferred RL masks trained from AIRS could also achieve performance improvement. We attribute
such good transfer performance to the similar feature maps in the pre-train FPNs across different
one-stage detectors.

D.6 Train efficiency

Table 11: RL baseline training effi-
ciency comparison

Model Training Time (hours)

Hierarchical-RL 14
Caicedo-RL 16

Tree-RL 23
Multiple-RL 35
ReinforceNet 33.4

AIRS 12

The training time of AIRS is around 12 hours, which
is far less than those one-stage detector’s training time:
23h (RetinaNet), 24h (FCOS), 27h (ATSS), 27h (GFocal)
with one A100 GPU of memory 40G. It is worth to note
that we move the RL training to the pre-computing phase
and apply RL learned masks onto the pre-trained FPN of
GFocal to get the inference detection results. The com-
parison of AIRS training cost with other RL baselines is
provided in Table 11.

25

0 20 40 60 80
Iterations *(20)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Tr
ai
ni
ng

 Q
-L
os

s

Training Q-Loss

(a) COCO

0 20 40 60 80 100
Iterations (*20)

0.0

0.2

0.4

0.6

Tr
ai
ni
ng

 Q
-L
os

s

Training Q-Loss

(b) PASCAL VOC 2012

0 20 40 60 80 100
Iterations (*20)

0.0

0.2

0.4

0.6

Tr
ai
ni
ng

 Q
-L
os

s

Training Q-Loss

(c) Open Images V4

0 20 40 60 80
Iterations *(20)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Cu
m
ul
at
iv
e
Re

wa
rd

Cumulative Reward

(d) COCO

0 20 40 60 80 100
Iterations (*20)

0.4

0.5

0.6

0.7

Cu
m
ul
at
iv
e
Re

wa
rd

Cumulative Reward

(e) PASCAL VOC 2012

0 20 40 60 80 100
Iterations (*20)

0.4

0.5

0.6

Cu
m
ul
at
iv
e
Re

wa
rd

Cumulative Reward

(f) Open Images V4

Figure 9: Q-learning loss (top row) and cumulative reward (bottom row) of the RL agent

D.7 Subset Generation Illustration

Figure 10 provides additional examples to compare the detection results from GFocal v.s. AIRS
on the subsets of three public datasets, respectively. As can be seen, AIRS is highly effective in
reducing false positive detections as compared to one of the most competitive baselines, GFocal.
A close look at the example images reveals that most false positive detections come from small
duplicate bounding boxes that focus on local texture, which is usually unnecessary.

E Limitation and Broader Impact

We identify two additional limitations of the proposed AIRS model. First, the evidential Q-value
integrates the epistemic uncertainty predicted by the model. If the model is poorly calibrated, its
uncertainty quantification becomes less trustworthy that can negatively impacts the exploration ef-
fectiveness of the RL agent. We plan to investigate effective network calibration methods and inte-
grate them into the proposed model. The second limitation is that AIRS relies on the feature pyramid
network (FPN), which leverages ResNet as its backbones. A systematic extension to the transformer
based backbone may have the potential to further improve the detection performance.

AIRS is designed to be integrated and applied on top of one-stage detector’s FPNs for object detec-
tion. For other domains, we believe there is potential for similar technique to be applied on them as
well. For example, video tracking requires accurate object localization, which could be achieved by
defining large-medium-small image patch hierarchy and conducting object detection on each patch
to collect reward. Note that it is different from ours because we conduct a hierarchical patch search
on pre-trained FPN, and then regress bounding boxes for every positive anchor on top of the selected
patches. Leveraging FPN guarantees a high recall, which helps in dense scenarios while not in (sin-
gle) accurate object detection. As for segmentation, it is a pixel-level classification, how to select
foreground pixels (positive anchors) residing in interested object area (patches) could be achieved
by one-stage detector’s FPN with AIRS augmentation.

F Link to Source Code

For the source code, please check https://github.com/ritmininglab/AIRS.

26

https://github.com/ritmininglab/AIRS

(a) GFocal: bar (b) AIRS: bar

(c) GFocal: umbrella (d) AIRS: umbrella

(e) GFocal: people (f) AIRS: people
(g) GFocal: baseball (h) AIRS: baseball

(i) GFocal: food (j) AIRS: food

(k) GFocal: flower (l) AIRS: flower

Figure 10: Qualitative comparisons between GFocal (Left) and AIRS (Right) detection results on
three datasets: COCO 10a-10d, PASCAL VOC 2012 10e-10h and OpenImages V4 10i-10l

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Please check Introduction Section 1 in the main paper for scope and contri-
bution of our work.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We provide the limitation discussion in Appendix E.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We provide the complete proof with a full set of definition and assumption in
Appendix B.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We fully disclose the dataset, metrics, and experiment settings in Section 4 of
main paper.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide data open access with source code anonymous link in Appendix F.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We fully disclose the hyper-parameter settings in Section 4.2 of main paper
and detailed RL training configurations in Appendix D.4 of Appendix.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We include the statistical errors in the latest YOLO series baseline comparison
in Appendix D.1. For other baselines comparison, we ignore the statistical errors given the
evident performance advantage achieved by our model.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

27

Answer: [Yes]

Justification: We provide the computation resource, memory and training efficiency in Ap-
pendix D.6.

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We confirm that we follow the NeurIPS Code of Ethics in the whole paper
range.

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss our broader societal impacts in Appendix E.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Justification: We only use public data and release our models for advancing
the research in dense object detection.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite all the used open-source baselines and public data sets as references
for acknowledgement of these asset works.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [Yes]

Justification: We provide a well documented code asset via an anonymized URL in Ap-
pendix F.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]

Justification: In our experiments, we don’t interact with human subjects and use public data
sets with open access.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

28

https://neurips.cc/public/EthicsGuidelines

Justification: In our experiments, we don’t interact with human subjects and use public data
sets with open access.

29

	Introduction
	Related Work
	Methodology
	The Overall Detection Process
	Description of Key Components
	Theoretical Analysis
	Training and Testing Procedures

	Experiments
	Datasets
	Experimental Settings
	Quantitative Study
	Qualitative Analysis
	Ablation Study
	Discussion

	Conclusion
	Appendix
	 Appendix
	Summary of Notations
	Proof of Theoretical Results
	Definitions and Assumptions
	Proof of Theorem 1

	Additional Details of AIRS
	Reward Design
	Training/Test process
	Action Interaction Details
	Clarification on RL masks.

	Additional Experiments
	Comparison with the Latest YOLO Series
	Balancing Hyper-parameter Search
	Datasets with a Large Amount of Small Objects
	RL Agent Training Configurations
	Ablation Study on Base Detectors
	Train efficiency
	Subset Generation Illustration

	Limitation and Broader Impact
	Link to Source Code

