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Abstract

Large language models have demonstrated var-
ious abilities, i.e. Chain-of-Thought reason-
ing for Math Reasoning datasets. Can models
learn to self-improve these skills? First, we
statistically analyzed the potential of the self-
evaluation ability of language models. Then,
we present a novel self-tuning framework, STC,
that leverages reinforcement learning to en-
hance reasoning capabilities in large language
models. STC encourages the generation of log-
ical explanations by evaluating the greedy de-
coded responses against the diverse sampled
responses. Results highlight the effectiveness
of our framework across various model sizes
(1B-20B). We observe improvements in the
accuracy of up to 5% on four different math
reasoning datasets, simultaneously improving
commonsense ability and retaining language
understanding ability. Additionally, human and
machine evaluation confirms the quality of the
generated responses became more detailed and
logical after training.

1 Introduction

Developing reasoning systems has long been a
fundamental goal in the field of Artificial Intel-
ligence (McCarthy, 1959). Reasoning systems
can determine the solutions to complex problems
through logical justification. With the advent of
large language models and their success in gen-
erating human-like text (Brown et al., 2020), re-
searchers started to exploit language models’ rea-
soning ability to solve logical problems. This in-
cludes but is not limited to Chain-of-thought (CoT)
(Wei et al., 2023; Kojima et al., 2023) or Tree-of-
Thought (Yao et al., 2023), which have shown that
step-wise thinking allows more accurate responses
in reasoning tasks.

Meanwhile, researchers have actively applied
reinforcement learning (RL) on language models
to align their behavior with human preferences
(Ouyang et al., 2022; Ziegler et al., 2020) or Al
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Figure 1: Comparison between self-verification
(Madaan et al., 2023), self-rating (Pang et al., 2023), and
self-preference (proposed method) as self-evaluation
framework of large language models.
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preferences (Bai et al., 2022; Lee et al., 2023).
This approach has led to the development of mod-
els which can follow complex instructions such
as ChatGPT!, Claude?, and Stable Vicuna 3. In
contrast to auto-regressive token-wise objectives,
RL allows the model to be fine-tuned according to
a scalar reward that can be configured according
to a desired direction, which does not require the
existence of the gold answer.

Arithmetic reasoning task datasets typically pro-
vide the question and the target answer but often
lack explicit reasoning chains. This absence of
reasoning paths is due to the numerous possible
ways to arrive at the same final answer, rendering
the question open-ended and allowing for multiple
valid solutions. This characteristic has been high-
lighted in previous studies focusing on prompt en-
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gineering for chain-of-thought reasoning (Fu et al.,
2023c; Wang et al., 2023a). Taking advantage of
the unsupervised setting in RL, we propose a novel
self-guided approach that does not require any ex-
ternal tools or human annotations, Self-Tuning with
Choice (STC). Our working assumption is that in-
tensifying the pre-trained language model’s inher-
ent reasoning ability through a self-guided manner
yields more logical and accurate reasoning.

Our paper addresses two fundamental research
objectives: 1) making chain-of-thought reasoning
in instruction-tuned language models informative
and explanatory; 2) enabling more accurate reason-
ing in arithmetic reasoning tasks with unlabeled
data. And our proposed method, Self-Tuning with
Choice (STC), fine-tunes the instruction-tuned lan-
guage model as an active policy with RL using a
dual reward function consisting of a self-logicality
reward and a QA similarity reward.

We conducted experiments using STC framework
on arithmetic reasoning task where the goal is to
predict the final answer by generating a rationale
given question. We use four different math datasets
with varying difficulty levels and eight models rang-
ing from 1B to 20B. As far as we know, it is the first
trial of applying a self-reinforcement strategy for
arithmetic reasoning tasks with unlabeled data. Our
experimental results demonstrated that this frame-
work improves the accuracy up to around 5% in
both multi-choice (AQUA) and descriptive ques-
tions (SVAMP). Furthermore, STC leads up to a 6%
accuracy improvement in non-arithmetic tasks, like
CommonsenseQA. Moreover, both machines and
humans consistently favoured the response gener-
ated from the model trained with STC, particularly
regarding logical coherence. The summarized con-
tributions of our work are presented as follows:

1. We study the use of language models as a
reward function in self-evaluation frameworks
finding limitations with consistency.

2. We introduce a novel reinforcement learning
approach that enables self-tuning with consis-
tent feedback (STC).

3. We quantitatively and qualitatively validate
that the models fine-tuned with STC make
more explanatory and accurate responses.

2 Related Works

Large Language Model Self-Supervision The
self-supervision capability of large language mod-

els has been studied recently on behalf of previ-
ously introduced works (Huang et al., 2022; Pang
et al., 2023; Madaan et al., 2023; Ye et al., 2023).

As large language models can be used to elicit
zero-shot chain-of-thought reasoning, Huang et al.
(2022) sampled diverse responses from the model
and selected the most probable answer by hard-
voting to supervise itself. Madaan et al. (2023)
improved the accuracy on non-arithmetic reasoning
tasks by querying the models to refine the initial
responses of itself. Ye et al. (2023) expanded this
approach by conducting self-revision in a single
inference stage to improve the response quality.

Pang et al. (2023) applied reinforcement learn-
ing on self-supervision by using a large language
model as a reward model to score the response.
However, it is essential to note that while (Pang
et al., 2023) and (Madaan et al., 2023; Ye et al.,
2023) applied self-improvement methods on large
language models, they reported limitations specifi-
cally in math reasoning datasets.

Chain-of-Thought Reasoning Chain-of-thought
(CoT) reasoning represents a sequence of sentences
with step-wise explanations which contribute to
reaching the final answer (Wei et al., 2023; Kojima
et al., 2023). Wei et al. (2023) made large lan-
guage models generate step-by-step explanations
in a few-shot manner and significantly improved
reasoning tasks. Kojima et al. (2023) showed that
a simple prompt "Let’s think step-by-step."” can en-
able CoT reasoning in a zero-shot setting. After
the emergence of CoT reasoning, there have been
many attempts to increase the accuracy of large
language models by utilizing emergent CoT rea-
soning abilities of large language models (Zhang
et al., 2022; Wang et al., 2023a; Zhou et al., 2023;
Wang et al., 2023b; Du et al., 2023). Zhang et al.
(2022), Wang et al. (2023a) and Zhou et al. (2023)
showed the importance of prompting by demon-
strating that design of prompts in zero-shot and
few-shot settings further improves CoT reasoning
abilities of large language models. Meanwhile, Du
et al. (2023) and Wang et al. (2023b) used the CoT
reasoning responses as part of the bigger pipeline
for achieving more accurate and precise reasoning.
Unlike these previous methods, we aim to propose
a new self-fine-tuning method rather than relying
on prompt engineering.

Reinforcement Learning for Language Models
RL has recently shown significant success in field



of NLP (Wu et al., 2016; Wu and Hu, 2018; Jang
et al., 2022; Ouyang et al., 2022; Rafailov et al.,
2023). Prior to the recent success, there were
approaches to improve the generation quality in
downstream tasks such as machine translation (Wu
et al., 2016) and summarization (Wu and Hu, 2018).
While these works used pre-defined reward func-
tions, (e.g. BLEU (Papineni et al., 2002), ROUGE
(Lin, 2004)), OpenAl trained a new reward model
with human preference data to leverage the human
feedback as the reward signal and fine-tuned large
language models with RL (Ziegler et al., 2020;
Stiennon et al., 2022; Ouyang et al., 2022). Fur-
thermore, Rafailov et al. (2023) merged the reward
model training and the language model fine-tuning
into a single stage by converting it into a classi-
fication task on human preference data. While
RL allowed notable improvements in the general
abilities of language models, fine-grained human-
annotated data are still required for either training
the reward model or directly fine-tuning the policy.

3 Can LLMs Evaluate Themselves?

In this section, we empirically show the capabil-
ities of language models as a consistent logical-
ity checker. Under the criteria of consistency and
preciseness, we test three different self-evaluating
prompts shown in Figure 1. The first two methods
are self-verification and self-rating, which were
proposed by Madaan et al. (2023) and Pang et al.
(2023). Identifying limitations in LLM consis-
tency in these previous works motivates our pro-
posed method, which incorporates self-checking
with multi-choice preference.

Self-Verification We queried models to evaluate
whether their response is correct with the template
shown in Appendix B.1. The models were asked
yes/no questions for the given question and answer
pair. As shown in Table 1, every model tells yes in
the majority of cases, which contradicts the base-
line accuracy shown in Table 1. Miscalculation
problems of language models (Yuan et al., 2023;
Imani et al., 2023) also support the inadequacy of
self-correction as a logicality-checking mechanism.

Self-Rating We assess the consistency of lan-
guage models as scorer, which was proposed by
Pang et al. (2023). We queried models with the tem-
plate shown in Appendix B.2 to rate their responses
in two different scales: 1) from 1 to 5 and 2) from 1
to 10. We apply the Mann-Whitney U Test (Mann

Test Accuracy (%) Self-Accuracy (%)
Alpaca (7B) 4.17 91.96
Vicuna (13B) 11.07 92.65
FLAN-T5-XXL (11B) 17.36 98.18
FLAN-UL2 (20B) 24.71 99.32

Table 1: Comparison between true accuracy on GSM8K
and the self-verification result. *Self-Accuracy’ denotes
the proportion of "yes’ in self-verification results.

and Whitney, 1947) where the null hypothesis is:
The population distribution of the scores from a
scale of 1 to 5 and 1 to 10 are the same.

As the P-value in Table 2 shows, we can con-
clude that none of the tested models consistently
evaluate with interval scale scoring.

Statistics P-Value (o = 0.05)
Alpaca (7B) 382615.5 2.67e-160
Vicuna (13B) 2058.0 6.0394e-19
FLAN-T5-XXL (11B) 1211065.5 1.90e-105
FLAN-UL2 (20B) 999689.0 5.08e-35

Table 2: Mann-Whitney U-Test results for self-rating.

Self-Preference 'We measure the consistency of
preference in multi-choice question setting through
both specific examples and general metrics. For
specific examples, we sample diverse responses
on a single question and query the model to select
the most logical response with the example shown
in Appendix B.3. Four sampled CoT responses
were given as choices. To prevent the order bias in
options, we also queried the model with reversed
orders. Figure 2 shows that the model has a con-
sistent preference for a single, more logical option
regardless of the order of options.
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Figure 2: Example from a single instance showing that
the models are not sensitive to the ordering of options
in multi-choice preference evaluation.

Also, we measured Cohen’s « (Cohen, 1960) of
FLAN-T5-XXL and FLAN-UL2 on GSM8K by
randomizing the order of items in a multi-choice



question setting. With the sampled responses from
the GSMS8K test set, FLAN-T5-XXL and FLAN-
UL2 got 0.443 and 0.498, respectively, indicating
reasonable consistency. Meanwhile, this also high-
lights the limitation in evaluation with LLMs with-
out self consistency evaluation.

Comparison Self-checking mechanisms from
previous works showed either inconsistent or con-
sistent but unreliable results. Even though Madaan
etal. (2023) suggested a consistent and reliable self-
checking mechanism, it required a large size as they
have shown the limitation of their method with Vi-
cuna 13B (Chiang et al., 2023). Also, Rafailov et al.
(2023) fine-tuned the policy to align its preference
to human preference with RL on text generation
tasks, but their method still required fine-grained
human-annotated data. On the other hand, asking
the preference through multi-choice questions al-
lowed both consistent and reliable self-checking
with small instruction-tuned models. In this vein,
we propose a novel framework STC for reasoning
tasks relying on the preference of the instruction-
tuned models in terms of logicality.

4 Methodology

STC employs Reinforcement Learning (RL) to en-
hance the reasoning abilities of the instruction-
tuned language models by searching for more logi-
cal responses than greedy decoding through sam-
pling. This is further explained in Section 4.2.

4.1 Preliminary

The main objective of RL is to train the policy
to maximize the expected return of the rewards,
defined in Equation 1:

" = argmaxE; , ,
™
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where 7 represents the policy initialized from the
parameters of the pre-trained language model, s;
denotes the space of input token sequences, a; rep-
resents the token generated by the language model,
¢ is the reward received by the language model at
time ¢, and y is the discount factor, and 7 represents
the generated sequence length.

We define the active model 7
that will be trained, and the reference model
as the original model that would be compared with
7 during training. 74 and 77/ will get an

Act a5 the model

Ref

input z; = [Q;; p] where Q; denotes each question
and p denotes the fixed zero-shot chain-of-thought
prompts (e.g. Let’s think step-by-step.) (Kojima
et al., 2023). Each model will return the response
Ajact and A_rey respectively.

4.2 Framework

STC operates by first generating zero-shot CoT re-
sponses by appending the prompt p, Answer the
question by reasoning step-by-step. w'¢/ and
nA generates A_rer and A_ace respectively, us-
ing greedy decoding and top-p sampling (Holtz-
man et al., 2020). First, we query 74 to select
the more logical answer and give the reward of 1 if
A ae is selected and O otherwise. In addition, we
give an explanatory reasoning reward by compar-
ing the bi-gram overlap between () and A ac: us-
ing ROUGE (Lin, 2004). Finally, this dual reward
function, comprising the Self-Logicality Reward
and QA Similarity Reward, determines the final re-
ward R(Q, Ayact, A res) for A act. This reward
is then utilized to optimize the policy through the
use of PPO.

4.3 Reward Design

We propose a dual reward function which serves
two different purposes: logicality and informative-
ness of the model’s responses. The full reward
function R(Q, A res, A act) is as follows:

Iy x Sim(Q, Aﬂ-Act) ()

where 17, and Sim(Q, A, ac) refer to self-
logicality and QA similarity reward respectively.

Self-Logicality Reward We rely on the internal
reasoning capabilities of large language models for
rewarding. Self-logicality reward is an indicator
function that can be written as follows:

1
]I:
=t

where Logi( A act, A rey) refers to the choice
of 74 in evaluating the logicality between A_ac:
and A_ res. Self-logicality reward tells which rea-
soning paths should be further explored or pruned.
The detailed dichotomous question prompt tem-
plate and its example are in Appendix C.

if Logi(Ajact, A res) = A act

. . (3)
lf LOgZ(Aﬂ-Act , Aﬂ-Rcf) - Aﬂ-Ref
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Figure 3: The pipeline of self-tuning with joint reward function by comparing sampled and greedy decoded chain-
of-thought reasoning path. We sample the reasoning paths to find the paths which can be potentially more logical
than the greedy decoded path. The dashed line and dotted line refer to greedy decoding and sampling respectively.

QA Similarity Reward QA Similarity Reward
is driven by the nature of arithmetic tasks, where
the necessary information for problem-solving is
present within the question itself. Therefore, QA
Similarity Reward measures how well the answer
incorporates those clues.

Sim(Q, A, act) (4)

We measure the text similarity between the ques-
tion and the response from the active model, which
indicates how well 74 is using the key informa-
tion given in the question. We empirically justi-
fied this in Appendix A, which led us to choose

ROUGE-2 as a QA similarity metric.

5 Experimental Design

In this section, we provide a detailed explanation
of the datasets (5.1) and language models (5.2)
that were utilized for both training and testing pur-
poses. We also provide a concise overview of the
implementation details in Appendix (D) employed
during training and testing our method.

5.1 Datasets

We use GSMSK (Cobbe et al., 2021), AQUA (Ling
et al., 2017) , MultiArith (Roy and Roth, 2015),
and SVAMP (Patel et al., 2021) which consist
of school-level arithmetic problems for our ex-
periments. We train our model on the GSM8K
train dataset and evaluate the trained model on the
test dataset of GSM8K, AQUA, MultiArith, and

SVAMP. As shown in Table 3, GSM8K is the hard-
est dataset among them, so we expected the model
to generalize arithmetic reasoning ability through
GSMBSK training.

Moreover, we use a multitask language under-
standing dataset MMLU (Hendrycks et al., 2021),
which consists of a wide range of problems (e.g.
history, medicine, etc.), to measure the general
ability of the trained model. Following Chia et al.
(2023), we evaluate the model with 5-shot prompt-
ing on 57 different tasks.

5.2 Models

We use four encoder-decoder models and four
decoder-only models, which are instruction-tuned.
For encoder-decoder models, we use FLAN mod-
els, including FLAN-T5-Large, XL, XXL, and
FLAN-UL2 (Tay et al., 2023). For decoder-only
models, we use Vicuna (Chiang et al., 2023), Al-
paca (Taori et al., 2023), and Falcon* (Almazrouei
et al., 2023). Along with model architecture, we
note that encoder-decoder models were specifically
pre-trained on arithmetic reasoning datasets, and
decoder-only models were not.

6 Results

We evaluated our method both quantitatively and
qualitatively. First, we quantified the zero-shot
and few-shot reasoning capabilities of the trained
model on all four datasets in Section 6.1. Then, in

*https://huggingface.co/tiiuae/falcon-40b, the
related publication not provided.
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Specialized Generalized
GSMSK AQUA MultiArith SVAMP MMLU Common
Random Choice 0% 0% 0% 25% 20%
Encoder-Decoder
Baseline 5.91% 22.83% 13.33% 7.00% 41.94 % 82.55%
FLAN-TS-Large 1B sTC 6.90% 23.23% 15.00% 7.00% 41.85% 82.80%
Baseline 11.75% 24.02% 23.33% 16.00% 49.27% 86.07&
FLAN-TS-XL 3B sTC 10.54%  27.17% 2556%  2067% | 49.34% 86.65%
Baseline 17.36 % 28.74% 51.11% 31% 54.54% 84.02 %
FLAN-TS-XXL 1B STC 16.53% 25.59% 53.33% 32.33% 54.52% 84.11%
Baseline 24.71% 21.26% 64.44% 32.33% 55.13% 89.10%
FLAN-UL2 208 STC 26.31% 23.62% 67.22% 33.67 % 55.23% 89.10%
Decoder-Only
Alpaca 7B Baseline 4.17% 20.47% 8.89% 21.67% 40.23% 27.93%
P STC 4.17% 25.98% 8.33% 25.67% 40.24 % 33.08 %
Falcon 7B Baseline 5.31% 20.47% 26.11% 16.67% 25.37% 20.88%
STC 6.98 % 22.44% 22.22% 17.67 % 25.41% 21.04 %
Vicuna 7B Baseline 7.88% 23.62% 26.66 % 33.33% 44.73% 35.87%
STC 9.10% 24.41% 24.44% 35.00% 44.89 % 37.01%
Vicuna 13B Baseline 11.07% 26.38% 43.33% 31.33% 51.26% 43.16%
STC 11.37% 28.35% 44.44% 32.67% 51.33% 43.98 %

Table 3: Accuracy table on four math reasoning datasets, general language understanding (MMLU), and common
sense reasoning (CommonSenseQA). Across eight models, results show consistent improvement across all datasets,
with some anomalies in the MultiArith dataset explained in Section 8.

Section 6.2, we assessed if the general language
understanding abilities were retained after self-
tuning. Furthermore, we qualitatively validate if
our method strengthened the logicality and explana-
tory reasoning of instruction-tuned models through
both human and machine evaluation in Section 6.3.

6.1 Specialized: Arithmetic Reasoning

For the arithmetic reasoning task, we compare the
accuracy of the baseline and self-tuned version of
eight instruction-tuned models shown in Table 3. In
the case of the FLAN series, which are the encoder-
decoder models, GSM8K and AQUA were partially
used for instruction-tuning (Chung et al., 2022).
Every dataset was unseen for the rest of the cases.

Zero-Shot CoT The encoder-decoder models
showed improvements in every case on unseen
datasets, which are MultiArith and SVAMP. The
smallest model, FLAN-T5-Large showed the least
improvement, and the models with the most im-
provement varied. Specifically, FLAN-UL?2 in-
creased by 3.22% on MultiArith, and FLAN-T5-
XL increased by 4.67% on SVAMP. Meanwhile, for
the seen datasets, FLAN-TS-Large and FLAN-UL2
improved in GSMSK, and all the models except for
FLAN-T5-XXL improved in AQUA.

On the other hand, the decoder-only models im-
proved in every case for GSM8K, AQUA, and
SVAMP. For example, Falcon increased the most
on GSMB8K by 1.67%, and Alpaca increased the
most on AQUA and SVAMP by 5.51% and 4%, re-

spectively. While Vicuna 13B was the only model
that improved in MultiArith.

Overall, for FLAN-UL2 and Vicuna 13B, which
are the largest models in the encoder-decoder mod-
els and decoder-only models, the accuracy in-
creased in all four datasets.

Few-Shot CoT To further evaluate the effective-
ness of our method, we assess the few-shot chain
of thought (CoT) reasoning abilities of the trained
models. For this evaluation, we selected four
models, Alpaca, Vicuna-13b, FLAN-T5-XXL, and
FLAN-UL2, and tested on the GSM8K dataset us-
ing few-shot examples from (Fu et al., 2023a). The
results are shown in Table 4.

Few-Shot CoT

Models Baseline STC
Alpaca 7B 5.61% 5.61%
Vicuna 13B 21.99% 25.17%
Flan-T5-XXL 11B 16.76% 16.24%
FLAN-UL2 20B 26.23% 26.61%

Table 4: Accuracy table for Few-Shot Chain-of-Thought
reasoning on GSMS8K dataset.

We observe that both trained models demon-
strated the same pattern in few-shot CoT reasoning
as zero-shot CoT. STC-trained Alpaca performed
the baseline, and few-shot FLAN-T5-XXL de-
creased performance just like Zero-Shot. Howeyver,
it is noteworthy that the accuracy was improved for
all of the models in comparison to zero-shot, which
is expected in a few shot settings.



6.2 Generalized: Language Understanding

MMLU We also report the accuracy shift of the
models on MMLU in Table 3. As Fu et al. (2023b)
analyzed the trade-off in specializing the language
models on certain tasks and generalized ability,
we analyzed the shift in general ability after train-
ing with STC. As shown in Table 3, all the mod-
els were improved in generalization ability in the
decoder-only models, while FLAN-TS5-Large and
XL showed a fraction of a percent decrease in the
encoder-decoder models. Overall, the trained mod-
els retained their general ability.

We attribute this to using PEFT, which updates
the partial parameters during training. Additionally,
the adaptive KL regularization of rewards and the
effect of the clip, which are components of PPO,
contribute to preventing significant deviations of
the active model from the reference models.

Commonsense Reasoning We extended our
method evaluation to include a Commonsense
reasoning dataset to assess its impact on non-
numerical datasets. For this evaluation, we tested
all the trained models on CommonSenseQA (Tal-
mor et al., 2019) dataset. As shown in Table 3,
the results demonstrate a substantial improvement
on all of the models. This further substantiates
our claim that STC maintains generalisation and
enhances the overall capabilities of the model.

6.3 Generation Quality

We selected two of the most prominent models,
namely FLAN-UL2 and Vicuna 13B, from the
Encoder-Decoder and Decoder-Only architectures
for qualitative evaluation. Through qualitative anal-
ysis, we provide insights into the logicality and
reasoning quality of the generated responses. The
model selection was based on their overall per-
formance in both the baseline and self-tuned ver-
sions. We evaluated the generated responses of
these models using Human and machine evalua-
tion, explained further below.

Human Evaluation We hired two annotators to
assess the quality of the responses. The responses
were presented to them in a randomized order, and
they were instructed to select the response that
appeared to be more logical. Additional details can
be found in Appendix E. The results of the human
evaluation are presented in Figure 4, indicating that
the STC got a higher preference from both of the
annotators for being a more logical response.

Preference
Original
Self-Tuned

Preference (%)

ChatGPT  Claude  Human ChatGPT  Claude  Human
Annotated By

Figure 4: Human and machine evaluation results for
FLAN-UL2 and Vicuna 13B. The dotted line is the
random choice percentage (50%).

Machine Evaluation In addition to human eval-
uation, we employed Large Language Models
(LLMs), specifically ChatGPT and Claude, to eval-
uate the quality and logicality of the generated re-
sponses. The models were prompted to select the
more logical response, as further explained in Ap-
pendix F. These results complement the human
evaluation, and as shown in Figure 4, indicate that
LLMs also favor the responses generated by the
Self-Tuned model over the baseline.

7 Ablation

In this section, we empirically validate the neces-
sity of joint reward function through an ablation
study. We used Vicuna-7B to train with either QA
similarity only or self-logicality checking only.

QA Similarity Only By using QA similarity
only as a reward function, the response length de-
creased as the reward mean increased, as shown in
Figure 5. This is an expected flow as ROUGE-2 is
a recall-based similarity metric that gives a higher
score as two texts contain more same words.
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Figure 5: Plot of response length and reward mean with
using ROUGE-2 only.



Self-Logicality Only We compare the objective
KL divergence of using self-logicality reward only
and joint reward to assess the training stability in
Figure 6. Ideally, the stable PPO training should
result in the objective KL converging to the pre-
defined target KL divergence with stable updates,
which is 6 in our case. As shown in Figure 6, STC
reached the target value with stable updates, while
the self-logicality-only case failed to reach.

o

Objective KL
N

N

o
o

10 20 30 40
Training Steps

Reward Self Logicality === Joint (STC)

Figure 6: Plot of objective KL divergence from self-
logicality reward only and STC.

As language models depend heavily on the input
and the prompt, they still have inconsistencies even
with the self-preference method. Although our
method is more consistent than the previous works,
as shown in Section 3, the language models are still
a sub-optimal oracle. In that sense, we used the
QA similarity, which is a rule-based static metric,
along with self-logicality checking for stability.

8 Discussion

STC We demonstrate that our method enhances
the reasoning abilities of fine-tuned Language mod-
els with both quantitative and qualitative analysis.
We show that STC improved overall accuracy across
various datasets while preserving the models’ gen-
eral abilities. Furthermore, human and machine
evaluation confirms that our method enhances the
quality and logicality of the generated responses.
Additionally, we provide several examples in Ap-
pendix G for a comparative analysis of logicality
between the trained and baseline models.

However, it is worth noting that specific models
underperformed on particular datasets. Specifically,
we observed decreased performance in the FLAN-
T5-XL and XXL on the GSM8K and the Multi-
Arith for decoder base models. The reasons for the
decline in MultiArith for decoder-only models are
explained in the following paragraph.

MultiArith Despite the fact that the decoder-
only models were not directly trained for the arith-

metic reasoning task, they showed notable improve-
ments in GSM8K, AQUA, and SVAMP. However,
they showed lower accuracy in MultiArith while all
the encoder-decoder models increased. We believe
there are mainly two reasons for this.

First, MultiArith is not an optimal dataset for
CoT reasoning (Cobbe et al., 2021; Fu et al.,
2023c¢). This is shown in both annotations of Mul-
tiArith (Roy and Roth, 2015; Cobbe et al., 2021)
and the previous work, which studied the effects of
complex prompting for CoT reasoning (Fu et al.,
2023c). As Cobbe et al. (2021) stated early math
reasoning datasets, including MultiArith, were not
made for testing the capabilities of large language
models; it does not have human annotation on step-
wise reasoning. Also, Fu et al. (2023c) reported
that accuracy has increased for large language mod-
els (>175B) by intensifying the number of steps in
exemplars for few-shot reasoning in GSM8K and
MathQA, while it decreased in MultiArith. This
aligns with our results in Table 3, which shows that
strengthening the explanatory reasoning of the lan-
guage model can cause degradation in easy tasks.

Moreover, FLAN series models were specifically
trained for multi-step math reasoning tasks, includ-
ing GSMS8K. The significant contribution of multi-
task instruction-tuning in Chung et al. (2022) was
that the fine-tuned models could perform well on
unseen tasks in a zero-shot setting. Since GSM8K
and MultiArith are for the same task with the only
difference that comes from the difficulty (Fu et al.,
2023c), FLAN series models have performed well
for both before and after applying our method de-
spite the problem mentioned in the first point.

9 Conclusion

We propose a novel self-tuning framework STC,
where the model is trained based on its own evalu-
ation. The novelty of this paper lies in creating a
reasoning model that learns through self-evaluating
without relying on external knowledge. By fa-
cilitating the model’s self-checking ability for on
its own chain-of-thought responses, we encourage
the model to discover more elaborate rationales
through its own efforts. Our results show that the
self-guided method can strengthen the reasoning
ability in both the quantity and quality aspects.
Also, in comparison with Fu et al. (2023b), our
method preserves the general knowledge about the
world in original pre-trained models.



Limitations

Our framework shows the potentiality of self-
guided learning in arithmetic reasoning tasks.
While we currently utilize the self-logicality check
reward to evaluate the overall response of the ac-
tive model, recent papers have introduced more
fine-grained evaluation metrics (Golovneva et al.,
2022) and problem decomposition methods for
COT (Zhou et al., 2023). These approaches analyze
the logicality and consider fluency, informativeness,
and other aspects of the explanation. By incorporat-
ing these fine-grained methods, we can potentially
obtain rewards that better reflect the quality of the
rationales, which can enable the model to find more
optimal reasoning paths.

Furthermore, in this study, we focus on train-
ing and testing our model using the arithmetic rea-
soning dataset. However, reasoning ability is not
limited to arithmetic but includes logical reasoning
(Liu et al., 2020; Saparov and He, 2023), common-
sense reasoning (Huang et al., 2019), etc. The ad-
vantage of the self-guided strategy is that it does not
require labels or human annotations, and language
models can be trained to obtain desired abilities
without weakening the general knowledge existing
in pre-trained model. Hence, we encourage apply-
ing self-guided learning methods to other reasoning
tasks or more broad fields in NLP.
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Appendix

This appendix contains the following contents: (1) The ablation study for text similarity reward in Section
4.3 (2) The query templates and toy examples for three different self-checking mechanisms introduced
in Section 3 (B); (3) The templates for self-logicality checking in Section 4.3 (C) (4) Computational
resources and hyperparameter settings in Appendix (D) (5) The question templates and instructions used
for human evaluation in Section 6.3 (E); (6) The prompt template used for machine evaluation with
ChatGPT and Claude in Section 6.3 (F); (7) Actual examples generated from trained FLAN-UL2 and
Vicuna 13B (G)

A QA Similarity Ablation Study

In this section, we report the results of the ablation study on selecting the QA similarity metric. We
demonstrate this by first comparing the sensitivity and adequacy of each metric on our task, and measuring
the alignment of each metric against the actual thoroughness of the generated responses. For Table 5 and
Table 7, we used "Janet’s ducks lay 16 eggs per day and, Janet eats 3 eggs for breakfast every morning, so
she has 16 - 3 = 13 eggs available for sale each day." as a toy example.

Alignment Against Thoroughness of Reasoning Paths We conducted an experiment calculating the
similarity between question and answer across Flan-T5 models. We can see the sentence similarity scores
exhibited a consistent rise, except for BLEURT in Table 5.

Model ROUGE-2 ROUGE-L BERTScore SimCSE BLEURT

FLAN-T5-Base (223M) 0.1595 0.2808 0.8568 0.7023 0.5586
FLAN-TS5-Large (1B) 0.1977 0.3286 0.8718 0.7363 0.5560
FLAN-T5-XL (3B) 0.1972 0.33 0.8726 0.7207 0.5492
FLAN-T5-XXL (11B) 0.2177 0.3544 0.8783 0.7525 0.5544

Table 5: Text similarity between question and answer among Flan-T5 models.

Sensitivity Comparison We compare the sensitivity of rule-based metric and embedding vector-based
metric. As shown in Table 5, BERTScore changes for 0.002 when we change number *16’ to other close
numbers. However, ROUGE-2 changes for 0.05 when we change /6’ to other close numbers. Since the
numbers are also considered a token in embedding vector-based similarity metrics like BERTScore, those
scores depend on the margin of error while calculating the similarity score. This can be a helpful aspect
in some tasks, but we use the QA similarity metric as a signal of how precisely the models utilize the
information and clues given in the question. Therefore, embedding vector-based similarity scores (e.g.
BERTScore, BLEURT, SimCSE) would not be appropriate for our task.

Answer BERTScore ROUGE-2
Janet’s ducks lay 16 eggs per day. Janet eats 3 eggs for breakfast every morning, ... 0.907 0.253
Janet’s ducks lay 17 eggs per day. Janet eats 3 eggs for breakfast every morning, ... 0.905 0.202
Janet’s ducks lay 15 eggs per day. Janet eats 3 eggs for breakfast every morning, ... 0.905 0.202
Janet’s ducks lay 11 eggs per day. Janet eats 3 eggs for breakfast every morning, ... 0.905 0.202
Janet’s ducks lay 19 eggs per day. Janet eats 3 eggs for breakfast every morning, ... 0.905 0.202

Table 6: The sensitivity comparison between BERTScore and ROUGE-2 by altering the numbers only in the
statement. As close numbers are also close in the embedding space, BERTScore gives a similar score to errors like
miscalculation. However, ROUGE-2 penalizes any numerical errors as it measures the exact match only.

Furthermore, we compare two rule-based similarity metrics, BLEU and ROUGE. While BLEU and
ROUGE calculate the exact match of words between two given sentences, ROUGE is a recall-based
method, and BLEU is a precision-based method. This is also well shown in the results in Table 7.
Regarding our training objective, the model will use the words that do not appear in the question while
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generating the chain-of-thought responses. In this case, precision-based metrics like BLEU will give
stronger penalties, and recall-based metrics like ROUGE will give relatively minor penalties to the new
tokens. Therefore, ROUGE-2, which is a recall-based similarity metric, would be more appropriate for
our objective.

Answer ROUGE-2 BLEU-2
Janet’s ducks lay 16 eggs per day and, ... for sale each day. [Genl]. 0.247 0.277
Janet’s ducks lay 16 eggs per day and, ... for sale each day. [Genl1] [Gen2]. 0.244 0.256
Janet’s ducks lay 16 eggs per day and, ... for sale each day. [Gen1] [Gen2] [Gen3]. 0.241 0.238
Janet’s ducks lay 16 eggs per day and, ... for sale each day. [Genl] [Gen2] [Gen3] [Gen4]. 0.238 0.222
Janet’s ducks lay 16 eggs per day and, ... for sale each day. [Gen1] [Gen2] [Gen3] [Gen4] [Gen5]. 0.235 0.208

Table 7: Sensitivity comparison between ROUGE-2 and BLEU-2. BLEU-2 is relatively more sensitive to the
new tokens as a precision-based metric. On the other hand, ROUGE-2 is relatively robust to the new tokens as a
recall-based metric.

B Can LLMs Evaluate Themselves?

This section reports the detailed templates used for each logicality checking mechanism in Section 3. Every
query template shown in the following paragraphs is used after generating a zero-shot chain-of-thought
reasoning response from the model.

B.1 Self-Correction

Using the query template shown in Pang et al. (2023), we queried the model with yes/no questions
according to the following format:

Is the answer to the question correct? The question is: {question}. The answer is: {response}

where {question} and {response} refer to the given question and generated response from the model,
respectively. We greedy decoded responses from FLAN-T5-Large, FLAN-T5-XL, and FLAN-T5-XXL.
All the responses from three models were either yes or no as shown in Table ??.

B.2 Self-Rating

Using the query template shown in Pang et al. (2023), we queried the model with open question according
to the following format:

Please evaluate the answer to the question and give me an evaluation score from I to {max_score}.
The question is: {question}. The answer is: {response}

where {max_score}, {question} and {response} refer to the maximum scale of score, given question
and generated response from the model, respectively. We greedy decoded responses from FLAN-T5-Large,
FLAN-T5-XL, and FLAN-T5-XXL. All the responses from three models were floats (e.g. 1.0, 8.0) as
shown in Figure ??.

B.3 Self-Preference

We queried multi-choice question with four choices as the following example:
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Select the item which derived the answers with the most logical ways.

(1) There are 16 balls / 2 = 8 golf balls. There are 8 golf balls * 2 / 2 = 4 blue golf balls. Therefore, the
answer is 4.

(2) If half of the balls are golf balls, the juggler can juggle 16. 1/2 * 16 = 8 golf balls. Since each juggler
has 8 golf balls, then the 8 golf balls are 8 / 2 = 4 balls. The 8§ golf balls are all blue golf balls. Therefore,
the answer is 4.

(3) 16 /2 =8 golf balls. 8 / 2 =4 balls are blue. Therefore, the final answer is 4. Therefore, the final
answer is 4.

(4) Let x be the number of blue balls. Half of the balls are golf balls. If 1 /2 of the balls are golf balls, this
will be x * 2 = 4. This means that there are 4 blue balls. Therefore the final answer is 4.

We sampled the responses from this example for hundred times to measure if the model shows a
consistent preference for a certain chain-of-thought reasoning style. If the model’s response is not one of
1 to 4, we consider it as a hallucination.

Figure 2 shows that the model prefers the fourth option, Let x be the number of blue balls. Half of the
balls are golf balls. If 1 /2 of the balls are golf balls, this will be x * 2 = 4. This means that there are 4
blue balls. Therefore the final answer is 4. in both original and reversed order.

C Logicality Checking

We query the model in the format of a dichotomous question in Table 8 to select the more logical answer
with two options, the greedy decoded response A res from the original model and the top-p sampled
response A ac: from the active model. If the model selects A 4., we give a reward of 1 and 0 otherwise.
This leads the model to search the new reasoning paths which are likely to be more logical than A_re;y.

Instruction Given the question "{question}", which of the following responses is more logical:
(1) {Greedy Decoded Response from the Reference Model}
(2) {Sampled Response from the Active Model}

Options

Table 8: The dichotomous question template for self-logicality checking.

D Implementation Details

All models were trained on either A6000 or A100 NVIDIA GPUs with Parameter Efficient Fine-Tuning
and model parallelism for three epochs using AdamW (Loshchilov and Hutter, 2019) optimiser. Each
model was trained with its respective original floating point precision. For example, Flan-UL2 was trained
using bf16, while Flan-T5-XXL utilized full precision fp32. Hyperparameters for PPO and LoRA are
shown in Table 9. Each model took around one day per epoch for training.

init_kl_coef was 0.1 for the encoder-decoder models and 0.05 for the decoder-only models. We
distinguished the KL coefficient as the encoder-decoder models have seen the math reasoning tasks at
the pre-training stage, while the decoder-only models did not. Also, the mini-batch size was 4 on the
models with more than 10B parameters and 8 for the rest. We use TRL (von Werra et al., 2020), the
huggingface implementation of Proximal Policy Optimization (PPO) to optimise the model using the dual
reward function explained in Section 4.3.

Parameter Efficient Fine-Tuning Training large language models demands significant computational
resources, making it impractical for many use cases. To address this challenge and enable training models
of sizes ranging from 1 billion to 20 billion parameters within computationally constrained environments,
we employed a Parameter Efficient Fine-Tuning method called LoRA (Hu et al., 2021; Sourab Mangrulkar,
2022). In our approach, we adopted the rank 64 for LoRA for all models, ensuring a balance between
having sufficient trainable parameters and avoiding excessive memory consumption.

Model Parallelism While PEFT (Appendix D) effectively addresses the challenge of training LLMs up
to a specific limit, the substantial number of parameters of huge Language models make them unable to fit
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within the memory capacity of a single GPU. Consequently, we utilize model parallelism techniques to
overcome the memory limitations inherent in training Large Language Models (LLMs). Specifically, we
employ the Hugging Face implementation of DeepSpeed Stage 2 (Rajbhandari et al., 2020; Ren et al.,
2021; Rajbhandari et al., 2021) to distribute the training process across multiple GPUs.

Hyperparameter Setting
ppo_epoch 4
init_KI_coef 0.1 (Encoder-Decoder), 0.05 (Decoder-Only)
horizon 1,000
batch_size 128
mini_batch_size 4,8
gradient_accumulation_steps 1
output_min_length 200
output_max_length 400
optimizer AdamW
learning_rate 5e-05
gamma 0.99
rank 64

Table 9: Hyperparameter settings for PPO and LoRA.
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E Human Evaluation

We hired two non-expertise annotators for human evaluation. Each annotator was tested on FLAN-UL2
and Vicuna 13B. Each question asked the annotators to select the more logical answer between the
response from the original language model and the self-tuned language model. The responses from both
models were greedy decoded responses.

The annotators were first informed with the given instruction in Table 10. Then they annotated for fifty
questions with the template shown in Table 11. The results for human preference can be found in Figure 4.

This would be the instruction and following questions for 50 questions:

Instructi . . . .
nstruction Read the given question and the following responses to answer the questions.
Consider
(1) Preciseness
Criteria (2) The validity of reasoning steps

(3) The degree of hallucination
(4) Elaborativeness

to answer the questions.

Table 10: The first instruction page given to annotators. the instruction provides general criteria for evaluating the
logicality of responses.

Read the given question and the following responses to answer the questions.
Instruction Consider preciseness, the validity of reasoning steps, and elaborativeness to answer the
questions.

Question: Robin’s hair was 16 inches long...

(1
Response 1
(2)

Response 2

Options

Which of the responses is more logical? Enter 1 or 2.

Table 11: The actual human evaluation template shown for the annotators. The responses were saved automatically
into a JSON file.

F Machine Evaluation

Table 12 show the prompt that was used to evaluate the quality of generated responses using ChatGPT and
Claude. While making the template as similar as possible to human evaluation, we removed the notation
"Question:" in Table 11 to clarify the prompt.

Which of the given responses provides more logical reasoning to answer the question?
Select either (1), (2), or both.

ey

Response 1

2

Response 2

Instruction

Options

Table 12: The actual machine evaluation template prompted to ChatGPT and Claude. The responses were saved
automatically into JSON file.
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G Generation Examples

We demonstrate and compare the example responses between the original instruction-tuned models and
the trained models. The responses were greedily decoded for both models. We categorize the examples
into three different types: 1) Examples with same responses (G.1); 2) Examples with minor differences
(G.2); 3) Examples with significant differences (G.3). The examples may contain the responses with
miscalculation or hallucinations for both baseline and trained models. We report the responses from

FLAN-UL?2 and Vicuna 13B each for three categories.

G.1 Examples with Exact Same Responses

Question:
While on vacation, Gwen took 41 pictures at the zoo and 29 at the museum.

Query If she later deleted 15 of the pictures, how many pictures from her vacation did she still have?
Answer the question by reasoning step-by-step.
Gwen took 41 + 29 = 70 pictures in total.
STEPER After deleting 15 pictures, she had 70 - 15 = 55 pictures left.
Therefore, the answer is 55.
Gwen took 41 + 29 = 70 pictures in total.
Baseline After deleting 15 pictures, she had 70 - 15 = 55 pictures left.
Therefore, the answer is 55.
Table 13: Examples with exact same responses generated from FLAN-UL2
Question:
We ordered 9 pizzas. Each pizza has 10 slices.
Query If there are 2 of us How many slices of pizza does each of us get if distributed equally?
Answer the question by reasoning step-by-step.
Answer:
9 pizzas
10 slices/pizza = «9*10=90»90 slices
2 people
STEPER 90 slices = «2%90=180»180 slices
So, each person gets 180 slices/2 people = «180/2=90»90 slices.
Therefore, each person gets 90 slices of pizza if the pizzas are distributed equally.
9 pizzas
10 slices/pizza = «9*10=90»90 slices
Baseline 2 people

90 slices = «2*¥90=180»180 slices
So, each person gets 180 slices/2 people = «180/2=90»90 slices.
Therefore, each person gets 90 slices of pizza if the pizzas are distributed equally.

Table 14: Examples with exact same responses generated from Vicuna 13B
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G.2 Examples with Minor Differences

Query

Question:

Robin’s hair was 16 inches long. He cut off 11 inches.
Then it again grew by 12 inches. How long is his hair now?
Answer the question by reasoning step-by-step.

STEPER

Robin’s hair was 16 inches long and he cut off 11 inches so 16 - 11 =5 inches long.
His hair was 5 inches long and grew 12 inches so it is now 5 + 12 = 17 inches long.
Therefore, the answer is 17.

Baseline

Robin’s hair was 16 inches long and he cut off 11 inches so 16 - 11 =5 inches long.
His hair was 5 inches long and grew 12 inches so 5 + 12 = 17 inches long.
Therefore, the answer is 17.

Table 15: Examples with minor differences generated from FLAN-UL2. The different phrase is underlined.

Query

Question:

Carol and her mom were picking carrots from their garden.

Carol picked 29 and her mother picked 16.

If only 38 of the carrots were good, how many bad carrots did they have?
Answer the question by reasoning step-by-step.

Answer:

STEPER

First, we need to find out how many carrots they picked altogether.
Carol picked 29 and her mother picked 16, so they picked a total of 29 + 16 = 45 carrots.

Next, we need to find out how many good carrots they picked.
Since they only picked 38 good carrots and they picked a total of 45 carrots,
it means that they left 45 - 38 = 7 bad carrots in the garden.

Therefore, Carol and her mother picked a total of 45 carrots, and 7 of them were bad.

Baseline

First, we need to find out how many carrots they picked altogether.
Carol picked 29 and her mother picked 16, so they picked a total of 29 + 16 = 45 carrots.

Next, we need to find out how many good carrots they picked.
Since they only picked 38 good carrots, this means that they left 45 - 38 = 7 bad carrots in the

garden.

Therefore, Carol and her mother picked a total of 45 carrots, and 7 of them were bad.

Table 16: Examples with minor differences generated from Vicuna 13B. The different phrase is underlined.
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G.3 Examples with Major Differences

Question:
Quer In a video game, each enemy defeated gives you 9 points.
y If a level has 11 enemies total and you destroy all but 3 of them, how many points would you earn?
Answer the question by reasoning step-by-step.
If there are 11 enemies and you destroy all but 3 of them,
then you would have destroyed 11 - 3 = 8 enemies.
STEPER If each enemy is worth 9 points and you destroy 8 enemies,
then you would earn 8 * 9 = 72 points.
Therefore, the answer is 72.
Baseline You would earn 9 * 11 - 3 = 93 points. Therefore, the answer is 93.
Table 17: Examples with major differences generated from FLAN-UL2.
Question:
Brenda’s mother made 14 cookies for 2 guests.
Query If each of them had the same number of cookies How many did each of them have?
Answer the question by reasoning step-by-step.
Answer:
Answer: 7
Explanation:
Let’s assume that each guest gets x cookies.
Since each guest gets the same number of cookies, we can write:
STEPER xEx
Since there are 14 cookies in total, we can write:
2x = 14
Solving this equation, we find that x = 7.
Therefore, each guest gets 7 cookies.
Answer: 7
Explanation:
Baseline Let’s assume that each guest gets x cookies.
Since there are 2 guests and Brenda’s mother made 14 cookies in total,
each guest will get 14/2 =7 cookies.
Therefore, each guest gets 7 cookies.

Table 18: Examples with major differences generated from Vicuna 13B.
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