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Abstract

Large language models have demonstrated var-001
ious abilities, i.e. Chain-of-Thought reason-002
ing for Math Reasoning datasets. Can models003
learn to self-improve these skills? First, we004
statistically analyzed the potential of the self-005
evaluation ability of language models. Then,006
we present a novel self-tuning framework, STC,007
that leverages reinforcement learning to en-008
hance reasoning capabilities in large language009
models. STC encourages the generation of log-010
ical explanations by evaluating the greedy de-011
coded responses against the diverse sampled012
responses. Results highlight the effectiveness013
of our framework across various model sizes014
(1B-20B). We observe improvements in the015
accuracy of up to 5% on four different math016
reasoning datasets, simultaneously improving017
commonsense ability and retaining language018
understanding ability. Additionally, human and019
machine evaluation confirms the quality of the020
generated responses became more detailed and021
logical after training.022

1 Introduction023

Developing reasoning systems has long been a024

fundamental goal in the field of Artificial Intel-025

ligence (McCarthy, 1959). Reasoning systems026

can determine the solutions to complex problems027

through logical justification. With the advent of028

large language models and their success in gen-029

erating human-like text (Brown et al., 2020), re-030

searchers started to exploit language models’ rea-031

soning ability to solve logical problems. This in-032

cludes but is not limited to Chain-of-thought (CoT)033

(Wei et al., 2023; Kojima et al., 2023) or Tree-of-034

Thought (Yao et al., 2023), which have shown that035

step-wise thinking allows more accurate responses036

in reasoning tasks.037

Meanwhile, researchers have actively applied038

reinforcement learning (RL) on language models039

to align their behavior with human preferences040

(Ouyang et al., 2022; Ziegler et al., 2020) or AI041
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Figure 1: Comparison between self-verification
(Madaan et al., 2023), self-rating (Pang et al., 2023), and
self-preference (proposed method) as self-evaluation
framework of large language models.

preferences (Bai et al., 2022; Lee et al., 2023). 042

This approach has led to the development of mod- 043

els which can follow complex instructions such 044

as ChatGPT1, Claude2, and Stable Vicuna 3. In 045

contrast to auto-regressive token-wise objectives, 046

RL allows the model to be fine-tuned according to 047

a scalar reward that can be configured according 048

to a desired direction, which does not require the 049

existence of the gold answer. 050

Arithmetic reasoning task datasets typically pro- 051

vide the question and the target answer but often 052

lack explicit reasoning chains. This absence of 053

reasoning paths is due to the numerous possible 054

ways to arrive at the same final answer, rendering 055

the question open-ended and allowing for multiple 056

valid solutions. This characteristic has been high- 057

lighted in previous studies focusing on prompt en- 058

1https://openai.com/blog/chatgpt
2https://www.anthropic.com/index/

introducing-claude
3https://stability.ai/blog/

stablevicuna-open-source-rlhf-chatbot
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gineering for chain-of-thought reasoning (Fu et al.,059

2023c; Wang et al., 2023a). Taking advantage of060

the unsupervised setting in RL, we propose a novel061

self-guided approach that does not require any ex-062

ternal tools or human annotations, Self-Tuning with063

Choice (STC). Our working assumption is that in-064

tensifying the pre-trained language model’s inher-065

ent reasoning ability through a self-guided manner066

yields more logical and accurate reasoning.067

Our paper addresses two fundamental research068

objectives: 1) making chain-of-thought reasoning069

in instruction-tuned language models informative070

and explanatory; 2) enabling more accurate reason-071

ing in arithmetic reasoning tasks with unlabeled072

data. And our proposed method, Self-Tuning with073

Choice (STC), fine-tunes the instruction-tuned lan-074

guage model as an active policy with RL using a075

dual reward function consisting of a self-logicality076

reward and a QA similarity reward.077

We conducted experiments using STC framework078

on arithmetic reasoning task where the goal is to079

predict the final answer by generating a rationale080

given question. We use four different math datasets081

with varying difficulty levels and eight models rang-082

ing from 1B to 20B. As far as we know, it is the first083

trial of applying a self-reinforcement strategy for084

arithmetic reasoning tasks with unlabeled data. Our085

experimental results demonstrated that this frame-086

work improves the accuracy up to around 5% in087

both multi-choice (AQUA) and descriptive ques-088

tions (SVAMP). Furthermore, STC leads up to a 6%089

accuracy improvement in non-arithmetic tasks, like090

CommonsenseQA. Moreover, both machines and091

humans consistently favoured the response gener-092

ated from the model trained with STC, particularly093

regarding logical coherence. The summarized con-094

tributions of our work are presented as follows:095

1. We study the use of language models as a096

reward function in self-evaluation frameworks097

finding limitations with consistency.098

2. We introduce a novel reinforcement learning099

approach that enables self-tuning with consis-100

tent feedback (STC).101

3. We quantitatively and qualitatively validate102

that the models fine-tuned with STC make103

more explanatory and accurate responses.104

2 Related Works105

Large Language Model Self-Supervision The106

self-supervision capability of large language mod-107

els has been studied recently on behalf of previ- 108

ously introduced works (Huang et al., 2022; Pang 109

et al., 2023; Madaan et al., 2023; Ye et al., 2023). 110

As large language models can be used to elicit 111

zero-shot chain-of-thought reasoning, Huang et al. 112

(2022) sampled diverse responses from the model 113

and selected the most probable answer by hard- 114

voting to supervise itself. Madaan et al. (2023) 115

improved the accuracy on non-arithmetic reasoning 116

tasks by querying the models to refine the initial 117

responses of itself. Ye et al. (2023) expanded this 118

approach by conducting self-revision in a single 119

inference stage to improve the response quality. 120

Pang et al. (2023) applied reinforcement learn- 121

ing on self-supervision by using a large language 122

model as a reward model to score the response. 123

However, it is essential to note that while (Pang 124

et al., 2023) and (Madaan et al., 2023; Ye et al., 125

2023) applied self-improvement methods on large 126

language models, they reported limitations specifi- 127

cally in math reasoning datasets. 128

Chain-of-Thought Reasoning Chain-of-thought 129

(CoT) reasoning represents a sequence of sentences 130

with step-wise explanations which contribute to 131

reaching the final answer (Wei et al., 2023; Kojima 132

et al., 2023). Wei et al. (2023) made large lan- 133

guage models generate step-by-step explanations 134

in a few-shot manner and significantly improved 135

reasoning tasks. Kojima et al. (2023) showed that 136

a simple prompt "Let’s think step-by-step." can en- 137

able CoT reasoning in a zero-shot setting. After 138

the emergence of CoT reasoning, there have been 139

many attempts to increase the accuracy of large 140

language models by utilizing emergent CoT rea- 141

soning abilities of large language models (Zhang 142

et al., 2022; Wang et al., 2023a; Zhou et al., 2023; 143

Wang et al., 2023b; Du et al., 2023). Zhang et al. 144

(2022), Wang et al. (2023a) and Zhou et al. (2023) 145

showed the importance of prompting by demon- 146

strating that design of prompts in zero-shot and 147

few-shot settings further improves CoT reasoning 148

abilities of large language models. Meanwhile, Du 149

et al. (2023) and Wang et al. (2023b) used the CoT 150

reasoning responses as part of the bigger pipeline 151

for achieving more accurate and precise reasoning. 152

Unlike these previous methods, we aim to propose 153

a new self-fine-tuning method rather than relying 154

on prompt engineering. 155

Reinforcement Learning for Language Models 156

RL has recently shown significant success in field 157
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of NLP (Wu et al., 2016; Wu and Hu, 2018; Jang158

et al., 2022; Ouyang et al., 2022; Rafailov et al.,159

2023). Prior to the recent success, there were160

approaches to improve the generation quality in161

downstream tasks such as machine translation (Wu162

et al., 2016) and summarization (Wu and Hu, 2018).163

While these works used pre-defined reward func-164

tions, (e.g. BLEU (Papineni et al., 2002), ROUGE165

(Lin, 2004)), OpenAI trained a new reward model166

with human preference data to leverage the human167

feedback as the reward signal and fine-tuned large168

language models with RL (Ziegler et al., 2020;169

Stiennon et al., 2022; Ouyang et al., 2022). Fur-170

thermore, Rafailov et al. (2023) merged the reward171

model training and the language model fine-tuning172

into a single stage by converting it into a classi-173

fication task on human preference data. While174

RL allowed notable improvements in the general175

abilities of language models, fine-grained human-176

annotated data are still required for either training177

the reward model or directly fine-tuning the policy.178

3 Can LLMs Evaluate Themselves?179

In this section, we empirically show the capabil-180

ities of language models as a consistent logical-181

ity checker. Under the criteria of consistency and182

preciseness, we test three different self-evaluating183

prompts shown in Figure 1. The first two methods184

are self-verification and self-rating, which were185

proposed by Madaan et al. (2023) and Pang et al.186

(2023). Identifying limitations in LLM consis-187

tency in these previous works motivates our pro-188

posed method, which incorporates self-checking189

with multi-choice preference.190

Self-Verification We queried models to evaluate191

whether their response is correct with the template192

shown in Appendix B.1. The models were asked193

yes/no questions for the given question and answer194

pair. As shown in Table 1, every model tells yes in195

the majority of cases, which contradicts the base-196

line accuracy shown in Table 1. Miscalculation197

problems of language models (Yuan et al., 2023;198

Imani et al., 2023) also support the inadequacy of199

self-correction as a logicality-checking mechanism.200

Self-Rating We assess the consistency of lan-201

guage models as scorer, which was proposed by202

Pang et al. (2023). We queried models with the tem-203

plate shown in Appendix B.2 to rate their responses204

in two different scales: 1) from 1 to 5 and 2) from 1205

to 10. We apply the Mann-Whitney U Test (Mann206

Test Accuracy (%) Self-Accuracy (%)
Alpaca (7B) 4.17 91.96

Vicuna (13B) 11.07 92.65
FLAN-T5-XXL (11B) 17.36 98.18

FLAN-UL2 (20B) 24.71 99.32

Table 1: Comparison between true accuracy on GSM8K
and the self-verification result. ’Self-Accuracy’ denotes
the proportion of ’yes’ in self-verification results.

and Whitney, 1947) where the null hypothesis is: 207

The population distribution of the scores from a 208

scale of 1 to 5 and 1 to 10 are the same. 209

As the P-value in Table 2 shows, we can con- 210

clude that none of the tested models consistently 211

evaluate with interval scale scoring. 212

Statistics P-Value (α = 0.05)
Alpaca (7B) 382615.5 2.67e-160

Vicuna (13B) 2058.0 6.0394e-19
FLAN-T5-XXL (11B) 1211065.5 1.90e-105

FLAN-UL2 (20B) 999689.0 5.08e-35

Table 2: Mann-Whitney U-Test results for self-rating.

Self-Preference We measure the consistency of 213

preference in multi-choice question setting through 214

both specific examples and general metrics. For 215

specific examples, we sample diverse responses 216

on a single question and query the model to select 217

the most logical response with the example shown 218

in Appendix B.3. Four sampled CoT responses 219

were given as choices. To prevent the order bias in 220

options, we also queried the model with reversed 221

orders. Figure 2 shows that the model has a con- 222

sistent preference for a single, more logical option 223

regardless of the order of options. 224

Input Order: 1, 2, 3, 4 Input Order: 4, 3, 2, 1
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Figure 2: Example from a single instance showing that
the models are not sensitive to the ordering of options
in multi-choice preference evaluation.

Also, we measured Cohen’s κ (Cohen, 1960) of 225

FLAN-T5-XXL and FLAN-UL2 on GSM8K by 226

randomizing the order of items in a multi-choice 227
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question setting. With the sampled responses from228

the GSM8K test set, FLAN-T5-XXL and FLAN-229

UL2 got 0.443 and 0.498, respectively, indicating230

reasonable consistency. Meanwhile, this also high-231

lights the limitation in evaluation with LLMs with-232

out self consistency evaluation.233

Comparison Self-checking mechanisms from234

previous works showed either inconsistent or con-235

sistent but unreliable results. Even though Madaan236

et al. (2023) suggested a consistent and reliable self-237

checking mechanism, it required a large size as they238

have shown the limitation of their method with Vi-239

cuna 13B (Chiang et al., 2023). Also, Rafailov et al.240

(2023) fine-tuned the policy to align its preference241

to human preference with RL on text generation242

tasks, but their method still required fine-grained243

human-annotated data. On the other hand, asking244

the preference through multi-choice questions al-245

lowed both consistent and reliable self-checking246

with small instruction-tuned models. In this vein,247

we propose a novel framework STC for reasoning248

tasks relying on the preference of the instruction-249

tuned models in terms of logicality.250

4 Methodology251

STC employs Reinforcement Learning (RL) to en-252

hance the reasoning abilities of the instruction-253

tuned language models by searching for more logi-254

cal responses than greedy decoding through sam-255

pling. This is further explained in Section 4.2.256

4.1 Preliminary257

The main objective of RL is to train the policy258

to maximize the expected return of the rewards,259

defined in Equation 1:260

π∗ = argmax
π

Es,a,r

[
τ∑

t=0

γtR(st, at)

]
(1)261

where π represents the policy initialized from the262

parameters of the pre-trained language model, st263

denotes the space of input token sequences, at rep-264

resents the token generated by the language model,265

rt is the reward received by the language model at266

time t, and γ is the discount factor, and τ represents267

the generated sequence length.268

We define the active model πAct as the model269

that will be trained, and the reference model πRef270

as the original model that would be compared with271

πAct during training. πAct and πRef will get an272

input xi = [Qi; p] where Qi denotes each question 273

and p denotes the fixed zero-shot chain-of-thought 274

prompts (e.g. Let’s think step-by-step.) (Kojima 275

et al., 2023). Each model will return the response 276

AπAct and AπRef respectively. 277

4.2 Framework 278

STC operates by first generating zero-shot CoT re- 279

sponses by appending the prompt p, Answer the 280

question by reasoning step-by-step. πRef and 281

πAct generates AπRef and AπAct respectively, us- 282

ing greedy decoding and top-p sampling (Holtz- 283

man et al., 2020). First, we query πAct to select 284

the more logical answer and give the reward of 1 if 285

AπAct is selected and 0 otherwise. In addition, we 286

give an explanatory reasoning reward by compar- 287

ing the bi-gram overlap between Q and AπAct us- 288

ing ROUGE (Lin, 2004). Finally, this dual reward 289

function, comprising the Self-Logicality Reward 290

and QA Similarity Reward, determines the final re- 291

ward R(Q,AπAct , AπRef ) for AπAct . This reward 292

is then utilized to optimize the policy through the 293

use of PPO. 294

4.3 Reward Design 295

We propose a dual reward function which serves 296

two different purposes: logicality and informative- 297

ness of the model’s responses. The full reward 298

function R(Q,AπRef , AπAct) is as follows: 299

IL × Sim(Q,AπAct) (2) 300

where IL and Sim(Q,AπAct) refer to self- 301

logicality and QA similarity reward respectively. 302

Self-Logicality Reward We rely on the internal 303

reasoning capabilities of large language models for 304

rewarding. Self-logicality reward is an indicator 305

function that can be written as follows: 306

IL =

{
1 if Logi(AπAct , AπRef ) = AπAct

0 if Logi(AπAct , AπRef ) = AπRef

(3) 307

where Logi(AπAct , AπRef ) refers to the choice 308

of πAct in evaluating the logicality between AπAct 309

and AπRef . Self-logicality reward tells which rea- 310

soning paths should be further explored or pruned. 311

The detailed dichotomous question prompt tem- 312

plate and its example are in Appendix C. 313
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Figure 3: The pipeline of self-tuning with joint reward function by comparing sampled and greedy decoded chain-
of-thought reasoning path. We sample the reasoning paths to find the paths which can be potentially more logical
than the greedy decoded path. The dashed line and dotted line refer to greedy decoding and sampling respectively.

QA Similarity Reward QA Similarity Reward314

is driven by the nature of arithmetic tasks, where315

the necessary information for problem-solving is316

present within the question itself. Therefore, QA317

Similarity Reward measures how well the answer318

incorporates those clues.319

Sim(Q,AπAct) (4)320

We measure the text similarity between the ques-321

tion and the response from the active model, which322

indicates how well πAct is using the key informa-323

tion given in the question. We empirically justi-324

fied this in Appendix A, which led us to choose325

ROUGE-2 as a QA similarity metric.326

5 Experimental Design327

In this section, we provide a detailed explanation328

of the datasets (5.1) and language models (5.2)329

that were utilized for both training and testing pur-330

poses. We also provide a concise overview of the331

implementation details in Appendix (D) employed332

during training and testing our method.333

5.1 Datasets334

We use GSM8K (Cobbe et al., 2021), AQUA (Ling335

et al., 2017) , MultiArith (Roy and Roth, 2015),336

and SVAMP (Patel et al., 2021) which consist337

of school-level arithmetic problems for our ex-338

periments. We train our model on the GSM8K339

train dataset and evaluate the trained model on the340

test dataset of GSM8K, AQUA, MultiArith, and341

SVAMP. As shown in Table 3, GSM8K is the hard- 342

est dataset among them, so we expected the model 343

to generalize arithmetic reasoning ability through 344

GSM8K training. 345

Moreover, we use a multitask language under- 346

standing dataset MMLU (Hendrycks et al., 2021), 347

which consists of a wide range of problems (e.g. 348

history, medicine, etc.), to measure the general 349

ability of the trained model. Following Chia et al. 350

(2023), we evaluate the model with 5-shot prompt- 351

ing on 57 different tasks. 352

5.2 Models 353

We use four encoder-decoder models and four 354

decoder-only models, which are instruction-tuned. 355

For encoder-decoder models, we use FLAN mod- 356

els, including FLAN-T5-Large, XL, XXL, and 357

FLAN-UL2 (Tay et al., 2023). For decoder-only 358

models, we use Vicuna (Chiang et al., 2023), Al- 359

paca (Taori et al., 2023), and Falcon4 (Almazrouei 360

et al., 2023). Along with model architecture, we 361

note that encoder-decoder models were specifically 362

pre-trained on arithmetic reasoning datasets, and 363

decoder-only models were not. 364

6 Results 365

We evaluated our method both quantitatively and 366

qualitatively. First, we quantified the zero-shot 367

and few-shot reasoning capabilities of the trained 368

model on all four datasets in Section 6.1. Then, in 369

4https://huggingface.co/tiiuae/falcon-40b, the
related publication not provided.
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Specialized Generalized
GSM8K AQUA MultiArith SVAMP MMLU Common

Random Choice 0% 20% 0% 0% 25% 20%
Encoder-Decoder

FLAN-T5-Large 1B
Baseline 5.91% 22.83% 13.33% 7.00% 41.94% 82.55%
STC 6.90% 23.23% 15.00% 7.00% 41.85% 82.80%

FLAN-T5-XL 3B
Baseline 11.75% 24.02% 23.33% 16.00% 49.27% 86.07&
STC 10.54% 27.17% 25.56% 20.67% 49.34% 86.65%

FLAN-T5-XXL 11B
Baseline 17.36% 28.74% 51.11% 31% 54.54% 84.02 %
STC 16.53% 25.59% 53.33% 32.33% 54.52% 84.11%

FLAN-UL2 20B
Baseline 24.71% 21.26% 64.44% 32.33% 55.13% 89.10%
STC 26.31% 23.62% 67.22% 33.67% 55.23% 89.10%

Decoder-Only

Alpaca 7B
Baseline 4.17% 20.47% 8.89% 21.67% 40.23% 27.93%
STC 4.17% 25.98% 8.33% 25.67% 40.24% 33.08%

Falcon 7B
Baseline 5.31% 20.47% 26.11% 16.67% 25.37% 20.88%
STC 6.98% 22.44% 22.22% 17.67% 25.41% 21.04%

Vicuna 7B
Baseline 7.88% 23.62% 26.66% 33.33% 44.73% 35.87%
STC 9.10% 24.41% 24.44% 35.00% 44.89% 37.01%

Vicuna 13B
Baseline 11.07% 26.38% 43.33% 31.33% 51.26% 43.16%
STC 11.37% 28.35% 44.44% 32.67% 51.33% 43.98%

Table 3: Accuracy table on four math reasoning datasets, general language understanding (MMLU), and common
sense reasoning (CommonSenseQA). Across eight models, results show consistent improvement across all datasets,
with some anomalies in the MultiArith dataset explained in Section 8.

Section 6.2, we assessed if the general language370

understanding abilities were retained after self-371

tuning. Furthermore, we qualitatively validate if372

our method strengthened the logicality and explana-373

tory reasoning of instruction-tuned models through374

both human and machine evaluation in Section 6.3.375

6.1 Specialized: Arithmetic Reasoning376

For the arithmetic reasoning task, we compare the377

accuracy of the baseline and self-tuned version of378

eight instruction-tuned models shown in Table 3. In379

the case of the FLAN series, which are the encoder-380

decoder models, GSM8K and AQUA were partially381

used for instruction-tuning (Chung et al., 2022).382

Every dataset was unseen for the rest of the cases.383

Zero-Shot CoT The encoder-decoder models384

showed improvements in every case on unseen385

datasets, which are MultiArith and SVAMP. The386

smallest model, FLAN-T5-Large showed the least387

improvement, and the models with the most im-388

provement varied. Specifically, FLAN-UL2 in-389

creased by 3.22% on MultiArith, and FLAN-T5-390

XL increased by 4.67% on SVAMP. Meanwhile, for391

the seen datasets, FLAN-T5-Large and FLAN-UL2392

improved in GSM8K, and all the models except for393

FLAN-T5-XXL improved in AQUA.394

On the other hand, the decoder-only models im-395

proved in every case for GSM8K, AQUA, and396

SVAMP. For example, Falcon increased the most397

on GSM8K by 1.67%, and Alpaca increased the398

most on AQUA and SVAMP by 5.51% and 4%, re-399

spectively. While Vicuna 13B was the only model 400

that improved in MultiArith. 401

Overall, for FLAN-UL2 and Vicuna 13B, which 402

are the largest models in the encoder-decoder mod- 403

els and decoder-only models, the accuracy in- 404

creased in all four datasets. 405

Few-Shot CoT To further evaluate the effective- 406

ness of our method, we assess the few-shot chain 407

of thought (CoT) reasoning abilities of the trained 408

models. For this evaluation, we selected four 409

models, Alpaca, Vicuna-13b, FLAN-T5-XXL, and 410

FLAN-UL2, and tested on the GSM8K dataset us- 411

ing few-shot examples from (Fu et al., 2023a). The 412

results are shown in Table 4. 413

Few-Shot CoT
Models Baseline STC

Alpaca 7B 5.61% 5.61%
Vicuna 13B 21.99% 25.17%
Flan-T5-XXL 11B 16.76% 16.24%
FLAN-UL2 20B 26.23% 26.61%

Table 4: Accuracy table for Few-Shot Chain-of-Thought
reasoning on GSM8K dataset.

We observe that both trained models demon- 414

strated the same pattern in few-shot CoT reasoning 415

as zero-shot CoT. STC-trained Alpaca performed 416

the baseline, and few-shot FLAN-T5-XXL de- 417

creased performance just like Zero-Shot. However, 418

it is noteworthy that the accuracy was improved for 419

all of the models in comparison to zero-shot, which 420

is expected in a few shot settings. 421
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6.2 Generalized: Language Understanding422

MMLU We also report the accuracy shift of the423

models on MMLU in Table 3. As Fu et al. (2023b)424

analyzed the trade-off in specializing the language425

models on certain tasks and generalized ability,426

we analyzed the shift in general ability after train-427

ing with STC. As shown in Table 3, all the mod-428

els were improved in generalization ability in the429

decoder-only models, while FLAN-T5-Large and430

XL showed a fraction of a percent decrease in the431

encoder-decoder models. Overall, the trained mod-432

els retained their general ability.433

We attribute this to using PEFT, which updates434

the partial parameters during training. Additionally,435

the adaptive KL regularization of rewards and the436

effect of the clip, which are components of PPO,437

contribute to preventing significant deviations of438

the active model from the reference models.439

Commonsense Reasoning We extended our440

method evaluation to include a Commonsense441

reasoning dataset to assess its impact on non-442

numerical datasets. For this evaluation, we tested443

all the trained models on CommonSenseQA (Tal-444

mor et al., 2019) dataset. As shown in Table 3,445

the results demonstrate a substantial improvement446

on all of the models. This further substantiates447

our claim that STC maintains generalisation and448

enhances the overall capabilities of the model.449

6.3 Generation Quality450

We selected two of the most prominent models,451

namely FLAN-UL2 and Vicuna 13B, from the452

Encoder-Decoder and Decoder-Only architectures453

for qualitative evaluation. Through qualitative anal-454

ysis, we provide insights into the logicality and455

reasoning quality of the generated responses. The456

model selection was based on their overall per-457

formance in both the baseline and self-tuned ver-458

sions. We evaluated the generated responses of459

these models using Human and machine evalua-460

tion, explained further below.461

Human Evaluation We hired two annotators to462

assess the quality of the responses. The responses463

were presented to them in a randomized order, and464

they were instructed to select the response that465

appeared to be more logical. Additional details can466

be found in Appendix E. The results of the human467

evaluation are presented in Figure 4, indicating that468

the STC got a higher preference from both of the469

annotators for being a more logical response.470

FLAN−UL2 Vicuna 13B

ChatGPT Claude Human ChatGPT Claude Human

0

25

50

75

Annotated By

P
re

fe
re

nc
e 

(%
)

Preference

Original

Self−Tuned

Figure 4: Human and machine evaluation results for
FLAN-UL2 and Vicuna 13B. The dotted line is the
random choice percentage (50%).

Machine Evaluation In addition to human eval- 471

uation, we employed Large Language Models 472

(LLMs), specifically ChatGPT and Claude, to eval- 473

uate the quality and logicality of the generated re- 474

sponses. The models were prompted to select the 475

more logical response, as further explained in Ap- 476

pendix F. These results complement the human 477

evaluation, and as shown in Figure 4, indicate that 478

LLMs also favor the responses generated by the 479

Self-Tuned model over the baseline. 480

7 Ablation 481

In this section, we empirically validate the neces- 482

sity of joint reward function through an ablation 483

study. We used Vicuna-7B to train with either QA 484

similarity only or self-logicality checking only. 485

QA Similarity Only By using QA similarity 486

only as a reward function, the response length de- 487

creased as the reward mean increased, as shown in 488

Figure 5. This is an expected flow as ROUGE-2 is 489

a recall-based similarity metric that gives a higher 490

score as two texts contain more same words. 491

1
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O
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e 
K

LD

QA Similarity Reward Only Self−Logicality Reward Only

Figure 5: Plot of response length and reward mean with
using ROUGE-2 only.
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Self-Logicality Only We compare the objective492

KL divergence of using self-logicality reward only493

and joint reward to assess the training stability in494

Figure 6. Ideally, the stable PPO training should495

result in the objective KL converging to the pre-496

defined target KL divergence with stable updates,497

which is 6 in our case. As shown in Figure 6, STC498

reached the target value with stable updates, while499

the self-logicality-only case failed to reach.500

0

2

4

6

0 10 20 30 40
Training Steps

O
bj

ec
tiv

e 
K

L

Reward Self Logicality Joint (STC)

Figure 6: Plot of objective KL divergence from self-
logicality reward only and STC.

As language models depend heavily on the input501

and the prompt, they still have inconsistencies even502

with the self-preference method. Although our503

method is more consistent than the previous works,504

as shown in Section 3, the language models are still505

a sub-optimal oracle. In that sense, we used the506

QA similarity, which is a rule-based static metric,507

along with self-logicality checking for stability.508

8 Discussion509

STC We demonstrate that our method enhances510

the reasoning abilities of fine-tuned Language mod-511

els with both quantitative and qualitative analysis.512

We show that STC improved overall accuracy across513

various datasets while preserving the models’ gen-514

eral abilities. Furthermore, human and machine515

evaluation confirms that our method enhances the516

quality and logicality of the generated responses.517

Additionally, we provide several examples in Ap-518

pendix G for a comparative analysis of logicality519

between the trained and baseline models.520

However, it is worth noting that specific models521

underperformed on particular datasets. Specifically,522

we observed decreased performance in the FLAN-523

T5-XL and XXL on the GSM8K and the Multi-524

Arith for decoder base models. The reasons for the525

decline in MultiArith for decoder-only models are526

explained in the following paragraph.527

MultiArith Despite the fact that the decoder-528

only models were not directly trained for the arith-529

metic reasoning task, they showed notable improve- 530

ments in GSM8K, AQUA, and SVAMP. However, 531

they showed lower accuracy in MultiArith while all 532

the encoder-decoder models increased. We believe 533

there are mainly two reasons for this. 534

First, MultiArith is not an optimal dataset for 535

CoT reasoning (Cobbe et al., 2021; Fu et al., 536

2023c). This is shown in both annotations of Mul- 537

tiArith (Roy and Roth, 2015; Cobbe et al., 2021) 538

and the previous work, which studied the effects of 539

complex prompting for CoT reasoning (Fu et al., 540

2023c). As Cobbe et al. (2021) stated early math 541

reasoning datasets, including MultiArith, were not 542

made for testing the capabilities of large language 543

models; it does not have human annotation on step- 544

wise reasoning. Also, Fu et al. (2023c) reported 545

that accuracy has increased for large language mod- 546

els (>175B) by intensifying the number of steps in 547

exemplars for few-shot reasoning in GSM8K and 548

MathQA, while it decreased in MultiArith. This 549

aligns with our results in Table 3, which shows that 550

strengthening the explanatory reasoning of the lan- 551

guage model can cause degradation in easy tasks. 552

Moreover, FLAN series models were specifically 553

trained for multi-step math reasoning tasks, includ- 554

ing GSM8K. The significant contribution of multi- 555

task instruction-tuning in Chung et al. (2022) was 556

that the fine-tuned models could perform well on 557

unseen tasks in a zero-shot setting. Since GSM8K 558

and MultiArith are for the same task with the only 559

difference that comes from the difficulty (Fu et al., 560

2023c), FLAN series models have performed well 561

for both before and after applying our method de- 562

spite the problem mentioned in the first point. 563

9 Conclusion 564

We propose a novel self-tuning framework STC, 565

where the model is trained based on its own evalu- 566

ation. The novelty of this paper lies in creating a 567

reasoning model that learns through self-evaluating 568

without relying on external knowledge. By fa- 569

cilitating the model’s self-checking ability for on 570

its own chain-of-thought responses, we encourage 571

the model to discover more elaborate rationales 572

through its own efforts. Our results show that the 573

self-guided method can strengthen the reasoning 574

ability in both the quantity and quality aspects. 575

Also, in comparison with Fu et al. (2023b), our 576

method preserves the general knowledge about the 577

world in original pre-trained models. 578
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Limitations579

Our framework shows the potentiality of self-580

guided learning in arithmetic reasoning tasks.581

While we currently utilize the self-logicality check582

reward to evaluate the overall response of the ac-583

tive model, recent papers have introduced more584

fine-grained evaluation metrics (Golovneva et al.,585

2022) and problem decomposition methods for586

COT (Zhou et al., 2023). These approaches analyze587

the logicality and consider fluency, informativeness,588

and other aspects of the explanation. By incorporat-589

ing these fine-grained methods, we can potentially590

obtain rewards that better reflect the quality of the591

rationales, which can enable the model to find more592

optimal reasoning paths.593

Furthermore, in this study, we focus on train-594

ing and testing our model using the arithmetic rea-595

soning dataset. However, reasoning ability is not596

limited to arithmetic but includes logical reasoning597

(Liu et al., 2020; Saparov and He, 2023), common-598

sense reasoning (Huang et al., 2019), etc. The ad-599

vantage of the self-guided strategy is that it does not600

require labels or human annotations, and language601

models can be trained to obtain desired abilities602

without weakening the general knowledge existing603

in pre-trained model. Hence, we encourage apply-604

ing self-guided learning methods to other reasoning605

tasks or more broad fields in NLP.606
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Appendix882

This appendix contains the following contents: (1) The ablation study for text similarity reward in Section883

4.3 (2) The query templates and toy examples for three different self-checking mechanisms introduced884

in Section 3 (B); (3) The templates for self-logicality checking in Section 4.3 (C) (4) Computational885

resources and hyperparameter settings in Appendix (D) (5) The question templates and instructions used886

for human evaluation in Section 6.3 (E); (6) The prompt template used for machine evaluation with887

ChatGPT and Claude in Section 6.3 (F); (7) Actual examples generated from trained FLAN-UL2 and888

Vicuna 13B (G)889

A QA Similarity Ablation Study890

In this section, we report the results of the ablation study on selecting the QA similarity metric. We891

demonstrate this by first comparing the sensitivity and adequacy of each metric on our task, and measuring892

the alignment of each metric against the actual thoroughness of the generated responses. For Table 5 and893

Table 7, we used "Janet’s ducks lay 16 eggs per day and, Janet eats 3 eggs for breakfast every morning, so894

she has 16 - 3 = 13 eggs available for sale each day." as a toy example.895

Alignment Against Thoroughness of Reasoning Paths We conducted an experiment calculating the896

similarity between question and answer across Flan-T5 models. We can see the sentence similarity scores897

exhibited a consistent rise, except for BLEURT in Table 5.898

Model ROUGE-2 ROUGE-L BERTScore SimCSE BLEURT
FLAN-T5-Base (223M) 0.1595 0.2808 0.8568 0.7023 0.5586

FLAN-T5-Large (1B) 0.1977 0.3286 0.8718 0.7363 0.5560
FLAN-T5-XL (3B) 0.1972 0.33 0.8726 0.7207 0.5492

FLAN-T5-XXL (11B) 0.2177 0.3544 0.8783 0.7525 0.5544

Table 5: Text similarity between question and answer among Flan-T5 models.

Sensitivity Comparison We compare the sensitivity of rule-based metric and embedding vector-based899

metric. As shown in Table 5, BERTScore changes for 0.002 when we change number ’16’ to other close900

numbers. However, ROUGE-2 changes for 0.05 when we change ’16’ to other close numbers. Since the901

numbers are also considered a token in embedding vector-based similarity metrics like BERTScore, those902

scores depend on the margin of error while calculating the similarity score. This can be a helpful aspect903

in some tasks, but we use the QA similarity metric as a signal of how precisely the models utilize the904

information and clues given in the question. Therefore, embedding vector-based similarity scores (e.g.905

BERTScore, BLEURT, SimCSE) would not be appropriate for our task.906

Answer BERTScore ROUGE-2
Janet’s ducks lay 16 eggs per day. Janet eats 3 eggs for breakfast every morning, ... 0.907 0.253
Janet’s ducks lay 17 eggs per day. Janet eats 3 eggs for breakfast every morning, ... 0.905 0.202
Janet’s ducks lay 15 eggs per day. Janet eats 3 eggs for breakfast every morning, ... 0.905 0.202
Janet’s ducks lay 11 eggs per day. Janet eats 3 eggs for breakfast every morning, ... 0.905 0.202
Janet’s ducks lay 19 eggs per day. Janet eats 3 eggs for breakfast every morning, ... 0.905 0.202

Table 6: The sensitivity comparison between BERTScore and ROUGE-2 by altering the numbers only in the
statement. As close numbers are also close in the embedding space, BERTScore gives a similar score to errors like
miscalculation. However, ROUGE-2 penalizes any numerical errors as it measures the exact match only.

Furthermore, we compare two rule-based similarity metrics, BLEU and ROUGE. While BLEU and907

ROUGE calculate the exact match of words between two given sentences, ROUGE is a recall-based908

method, and BLEU is a precision-based method. This is also well shown in the results in Table 7.909

Regarding our training objective, the model will use the words that do not appear in the question while910
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generating the chain-of-thought responses. In this case, precision-based metrics like BLEU will give 911

stronger penalties, and recall-based metrics like ROUGE will give relatively minor penalties to the new 912

tokens. Therefore, ROUGE-2, which is a recall-based similarity metric, would be more appropriate for 913

our objective. 914

Answer ROUGE-2 BLEU-2
Janet’s ducks lay 16 eggs per day and, ... for sale each day. [Gen1]. 0.247 0.277
Janet’s ducks lay 16 eggs per day and, ... for sale each day. [Gen1] [Gen2]. 0.244 0.256
Janet’s ducks lay 16 eggs per day and, ... for sale each day. [Gen1] [Gen2] [Gen3]. 0.241 0.238
Janet’s ducks lay 16 eggs per day and, ... for sale each day. [Gen1] [Gen2] [Gen3] [Gen4]. 0.238 0.222
Janet’s ducks lay 16 eggs per day and, ... for sale each day. [Gen1] [Gen2] [Gen3] [Gen4] [Gen5]. 0.235 0.208

Table 7: Sensitivity comparison between ROUGE-2 and BLEU-2. BLEU-2 is relatively more sensitive to the
new tokens as a precision-based metric. On the other hand, ROUGE-2 is relatively robust to the new tokens as a
recall-based metric.

B Can LLMs Evaluate Themselves? 915

This section reports the detailed templates used for each logicality checking mechanism in Section 3. Every 916

query template shown in the following paragraphs is used after generating a zero-shot chain-of-thought 917

reasoning response from the model. 918

B.1 Self-Correction 919

Using the query template shown in Pang et al. (2023), we queried the model with yes/no questions 920

according to the following format: 921

Is the answer to the question correct? The question is: {question}. The answer is: {response} 922

where {question} and {response} refer to the given question and generated response from the model, 923

respectively. We greedy decoded responses from FLAN-T5-Large, FLAN-T5-XL, and FLAN-T5-XXL. 924

All the responses from three models were either yes or no as shown in Table ??. 925

B.2 Self-Rating 926

Using the query template shown in Pang et al. (2023), we queried the model with open question according 927

to the following format: 928

Please evaluate the answer to the question and give me an evaluation score from 1 to {max_score}. 929

The question is: {question}. The answer is: {response} 930

where {max_score}, {question} and {response} refer to the maximum scale of score, given question 931

and generated response from the model, respectively. We greedy decoded responses from FLAN-T5-Large, 932

FLAN-T5-XL, and FLAN-T5-XXL. All the responses from three models were floats (e.g. 1.0, 8.0) as 933

shown in Figure ??. 934

B.3 Self-Preference 935

We queried multi-choice question with four choices as the following example: 936
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Select the item which derived the answers with the most logical ways.937

(1) There are 16 balls / 2 = 8 golf balls. There are 8 golf balls * 2 / 2 = 4 blue golf balls. Therefore, the938

answer is 4.939

(2) If half of the balls are golf balls, the juggler can juggle 16. 1 / 2 * 16 = 8 golf balls. Since each juggler940

has 8 golf balls, then the 8 golf balls are 8 / 2 = 4 balls. The 8 golf balls are all blue golf balls. Therefore,941

the answer is 4.942

(3) 16 / 2 = 8 golf balls. 8 / 2 = 4 balls are blue. Therefore, the final answer is 4. Therefore, the final943

answer is 4.944

(4) Let x be the number of blue balls. Half of the balls are golf balls. If 1 / 2 of the balls are golf balls, this945

will be x * 2 = 4. This means that there are 4 blue balls. Therefore the final answer is 4.946

We sampled the responses from this example for hundred times to measure if the model shows a947

consistent preference for a certain chain-of-thought reasoning style. If the model’s response is not one of948

1 to 4, we consider it as a hallucination.949

Figure 2 shows that the model prefers the fourth option, Let x be the number of blue balls. Half of the950

balls are golf balls. If 1 / 2 of the balls are golf balls, this will be x * 2 = 4. This means that there are 4951

blue balls. Therefore the final answer is 4. in both original and reversed order.952

C Logicality Checking953

We query the model in the format of a dichotomous question in Table 8 to select the more logical answer954

with two options, the greedy decoded response AπRef from the original model and the top-p sampled955

response AπAct from the active model. If the model selects AπAct , we give a reward of 1 and 0 otherwise.956

This leads the model to search the new reasoning paths which are likely to be more logical than AπRef .957

Instruction Given the question "{question}", which of the following responses is more logical:

Options (1) {Greedy Decoded Response from the Reference Model}
(2) {Sampled Response from the Active Model}

Table 8: The dichotomous question template for self-logicality checking.

D Implementation Details958

All models were trained on either A6000 or A100 NVIDIA GPUs with Parameter Efficient Fine-Tuning959

and model parallelism for three epochs using AdamW (Loshchilov and Hutter, 2019) optimiser. Each960

model was trained with its respective original floating point precision. For example, Flan-UL2 was trained961

using bf16, while Flan-T5-XXL utilized full precision fp32. Hyperparameters for PPO and LoRA are962

shown in Table 9. Each model took around one day per epoch for training.963

init_kl_coef was 0.1 for the encoder-decoder models and 0.05 for the decoder-only models. We964

distinguished the KL coefficient as the encoder-decoder models have seen the math reasoning tasks at965

the pre-training stage, while the decoder-only models did not. Also, the mini-batch size was 4 on the966

models with more than 10B parameters and 8 for the rest. We use TRL (von Werra et al., 2020), the967

huggingface implementation of Proximal Policy Optimization (PPO) to optimise the model using the dual968

reward function explained in Section 4.3.969

Parameter Efficient Fine-Tuning Training large language models demands significant computational970

resources, making it impractical for many use cases. To address this challenge and enable training models971

of sizes ranging from 1 billion to 20 billion parameters within computationally constrained environments,972

we employed a Parameter Efficient Fine-Tuning method called LoRA (Hu et al., 2021; Sourab Mangrulkar,973

2022). In our approach, we adopted the rank 64 for LoRA for all models, ensuring a balance between974

having sufficient trainable parameters and avoiding excessive memory consumption.975

Model Parallelism While PEFT (Appendix D) effectively addresses the challenge of training LLMs up976

to a specific limit, the substantial number of parameters of huge Language models make them unable to fit977
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within the memory capacity of a single GPU. Consequently, we utilize model parallelism techniques to 978

overcome the memory limitations inherent in training Large Language Models (LLMs). Specifically, we 979

employ the Hugging Face implementation of DeepSpeed Stage 2 (Rajbhandari et al., 2020; Ren et al., 980

2021; Rajbhandari et al., 2021) to distribute the training process across multiple GPUs. 981

Hyperparameter Setting
ppo_epoch 4
init_kl_coef 0.1 (Encoder-Decoder), 0.05 (Decoder-Only)
horizon 1,000
batch_size 128
mini_batch_size 4, 8
gradient_accumulation_steps 1
output_min_length 200
output_max_length 400
optimizer AdamW
learning_rate 5e-05
gamma 0.99
rank 64

Table 9: Hyperparameter settings for PPO and LoRA.
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E Human Evaluation982

We hired two non-expertise annotators for human evaluation. Each annotator was tested on FLAN-UL2983

and Vicuna 13B. Each question asked the annotators to select the more logical answer between the984

response from the original language model and the self-tuned language model. The responses from both985

models were greedy decoded responses.986

The annotators were first informed with the given instruction in Table 10. Then they annotated for fifty987

questions with the template shown in Table 11. The results for human preference can be found in Figure 4.988

Instruction This would be the instruction and following questions for 50 questions:
Read the given question and the following responses to answer the questions.

Criteria

Consider

(1) Preciseness
(2) The validity of reasoning steps
(3) The degree of hallucination
(4) Elaborativeness

to answer the questions.

Table 10: The first instruction page given to annotators. the instruction provides general criteria for evaluating the
logicality of responses.

Instruction
Read the given question and the following responses to answer the questions.
Consider preciseness, the validity of reasoning steps, and elaborativeness to answer the
questions.

Options

Question: Robin’s hair was 16 inches long...

(1)
Response 1
(2)
Response 2

Which of the responses is more logical? Enter 1 or 2.

Table 11: The actual human evaluation template shown for the annotators. The responses were saved automatically
into a JSON file.

F Machine Evaluation989

Table 12 show the prompt that was used to evaluate the quality of generated responses using ChatGPT and990

Claude. While making the template as similar as possible to human evaluation, we removed the notation991

"Question:" in Table 11 to clarify the prompt.992

Instruction Which of the given responses provides more logical reasoning to answer the question?
Select either (1), (2), or both.

Options

(1)
Response 1
(2)
Response 2

Table 12: The actual machine evaluation template prompted to ChatGPT and Claude. The responses were saved
automatically into JSON file.
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G Generation Examples 993

We demonstrate and compare the example responses between the original instruction-tuned models and 994

the trained models. The responses were greedily decoded for both models. We categorize the examples 995

into three different types: 1) Examples with same responses (G.1); 2) Examples with minor differences 996

(G.2); 3) Examples with significant differences (G.3). The examples may contain the responses with 997

miscalculation or hallucinations for both baseline and trained models. We report the responses from 998

FLAN-UL2 and Vicuna 13B each for three categories. 999

G.1 Examples with Exact Same Responses 1000

Query

Question:
While on vacation, Gwen took 41 pictures at the zoo and 29 at the museum.
If she later deleted 15 of the pictures, how many pictures from her vacation did she still have?
Answer the question by reasoning step-by-step.

STEPER
Gwen took 41 + 29 = 70 pictures in total.
After deleting 15 pictures, she had 70 - 15 = 55 pictures left.
Therefore, the answer is 55.

Baseline
Gwen took 41 + 29 = 70 pictures in total.
After deleting 15 pictures, she had 70 - 15 = 55 pictures left.
Therefore, the answer is 55.

Table 13: Examples with exact same responses generated from FLAN-UL2

Query

Question:
We ordered 9 pizzas. Each pizza has 10 slices.
If there are 2 of us How many slices of pizza does each of us get if distributed equally?
Answer the question by reasoning step-by-step.
Answer:

STEPER

9 pizzas
10 slices/pizza = «9*10=90»90 slices
2 people
90 slices = «2*90=180»180 slices
So, each person gets 180 slices/2 people = «180/2=90»90 slices.
Therefore, each person gets 90 slices of pizza if the pizzas are distributed equally.

Baseline

9 pizzas
10 slices/pizza = «9*10=90»90 slices
2 people
90 slices = «2*90=180»180 slices
So, each person gets 180 slices/2 people = «180/2=90»90 slices.
Therefore, each person gets 90 slices of pizza if the pizzas are distributed equally.

Table 14: Examples with exact same responses generated from Vicuna 13B
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G.2 Examples with Minor Differences1001

Query

Question:
Robin’s hair was 16 inches long. He cut off 11 inches.
Then it again grew by 12 inches. How long is his hair now?
Answer the question by reasoning step-by-step.

STEPER
Robin’s hair was 16 inches long and he cut off 11 inches so 16 - 11 = 5 inches long.
His hair was 5 inches long and grew 12 inches so it is now 5 + 12 = 17 inches long.
Therefore, the answer is 17.

Baseline
Robin’s hair was 16 inches long and he cut off 11 inches so 16 - 11 = 5 inches long.
His hair was 5 inches long and grew 12 inches so 5 + 12 = 17 inches long.
Therefore, the answer is 17.

Table 15: Examples with minor differences generated from FLAN-UL2. The different phrase is underlined.

Query

Question:
Carol and her mom were picking carrots from their garden.
Carol picked 29 and her mother picked 16.
If only 38 of the carrots were good, how many bad carrots did they have?
Answer the question by reasoning step-by-step.
Answer:

STEPER

First, we need to find out how many carrots they picked altogether.
Carol picked 29 and her mother picked 16, so they picked a total of 29 + 16 = 45 carrots.

Next, we need to find out how many good carrots they picked.
Since they only picked 38 good carrots and they picked a total of 45 carrots,
it means that they left 45 - 38 = 7 bad carrots in the garden.

Therefore, Carol and her mother picked a total of 45 carrots, and 7 of them were bad.

Baseline

First, we need to find out how many carrots they picked altogether.
Carol picked 29 and her mother picked 16, so they picked a total of 29 + 16 = 45 carrots.

Next, we need to find out how many good carrots they picked.
Since they only picked 38 good carrots, this means that they left 45 - 38 = 7 bad carrots in the
garden.

Therefore, Carol and her mother picked a total of 45 carrots, and 7 of them were bad.

Table 16: Examples with minor differences generated from Vicuna 13B. The different phrase is underlined.
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G.3 Examples with Major Differences 1002

Query

Question:
In a video game, each enemy defeated gives you 9 points.
If a level has 11 enemies total and you destroy all but 3 of them, how many points would you earn?
Answer the question by reasoning step-by-step.

STEPER

If there are 11 enemies and you destroy all but 3 of them,
then you would have destroyed 11 - 3 = 8 enemies.

If each enemy is worth 9 points and you destroy 8 enemies,
then you would earn 8 * 9 = 72 points.

Therefore, the answer is 72.
Baseline You would earn 9 * 11 - 3 = 93 points. Therefore, the answer is 93.

Table 17: Examples with major differences generated from FLAN-UL2.

Query

Question:
Brenda’s mother made 14 cookies for 2 guests.
If each of them had the same number of cookies How many did each of them have?
Answer the question by reasoning step-by-step.
Answer:

STEPER

Answer: 7

Explanation:
Let’s assume that each guest gets x cookies.
Since each guest gets the same number of cookies, we can write:
x = x

Since there are 14 cookies in total, we can write:
2x = 14

Solving this equation, we find that x = 7.
Therefore, each guest gets 7 cookies.

Baseline

Answer: 7

Explanation:
Let’s assume that each guest gets x cookies.
Since there are 2 guests and Brenda’s mother made 14 cookies in total,
each guest will get 14/2 = 7 cookies.
Therefore, each guest gets 7 cookies.

Table 18: Examples with major differences generated from Vicuna 13B.
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