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Abstract

The lack of openly accessible, well-curated reaction databases remains a major
obstacle to data-driven research in chemistry. Many existing chemical datasets are
proprietary and/or limited to unbalanced overall transformations that map reac-
tants directly to products without revealing underlying mechanisms, intermediates,
or byproducts. As a result, machine learning models trained on such data often
act as “black boxes,” predicting products without explaining how or why they
form. To address this gap, we present the largest and most comprehensive publicly
available dataset of manually curated elementary reaction steps, integrated into a
platform that supports continuous curation, search functionality, and community
contribution at scale. Our datasets cover polar and radical elementary steps, com-
plete mechanistic pathways, and combinatorially generated mechanisms, with each
reaction represented as a balanced, canonicalized SMIRKS string with reactive
atom mapping and mechanistic annotations. By making mechanistic reaction data
widely available, we aim to enable the development of interpretable and more
accurate machine learning models for reaction and pathway prediction. We make
the platform publicly available at https://deeprxn.ics.uci.edu/.

1 AI Task Definition

Chemists reason about reactions through detailed stepwise mechanisms that outline how atoms and
electrons rearrange, and what drives each step. In contrast, many ML models map reactants directly
to products without intermediates or mechanistic context, limiting interpretability and generalization.
Our dataset enables a new class of tasks: predicting and generating individual elementary steps and
complete pathways with explicit mechanistic detail. Models trained on such data can explain how and
why products form, identify byproducts, reveal alternative branches and intermediates, and support
interpretable discovery of new reactions in a way that mirrors the reasoning chemists naturally use.
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2 Dataset Rationale

While some mechanistic datasets exist, they remain limited in scope. Gas-phase resources such as
the NIST Chemical Kinetics Database [[12], the Master Chemical Mechanism [|15]], and the Reaction
Mechanism Generator (RMG) database [6] primarily cover radical reactions and omit multi-phase
or solution-phase processes critical for pharmaceutical, biochemical, and environmental chemistry.
The USPTO dataset [11] does include many polar reactions, and recent work by Coley et al. [2] and
Jung et al. [9] has algorithmically converted USPTO reactions into mechanistic steps using templates.
However, these USPTO-derived datasets are restricted to the reaction types represented in patents,
omit key context such as solvents and temperatures, and may suffer from incomplete reactions or
inaccurate mappings due to automated extraction.

To overcome these limitations, we propose an adaptable and continuously expanding dataset of
manually curated elementary step mechanisms. Each step is curated and verified by expert organic
chemists for plausibility and includes: (1) reactant SMIRKS strings, (2) product SMIRKS strings, (3)
precise reactive atom mapping and arrow-pushing annotations, and, where available, (4) temperature,
(5) solvent, (6) numerical rate constants, and (7) scholarly references. Manual verification ensures
greater accuracy and reliability than automated approaches. Crucially, our dataset is designed to be
flexible: we actively expand its coverage and can incorporate missing or underrepresented reaction
types by identifying and adding relevant mechanisms from the literature. This adaptability ensures a
diverse and balanced representation of mechanistic classes that can evolve to meet the needs of the
community.

3 Data Creation Pathway

We have assembled a diverse collection of elementary mechanistic steps spanning multiple reaction
classes. For polar (2e™) processes, approximately 13K steps were curated from literature and
textbooks. To supplement these polar reactions, combinatorial datasets were generated by pairing
atom mapped structures together, creating roughly 100K nucleophilic steps with Mayr-derived rate
constants [13]], and 51M proton-transfer steps derived from the Eigen relationship [4, 5]]. For pathway
testing, a set of 1K textbook [3] reaction pathways was curated, and a comprehensive polar set
exceeding 350K elementary steps is currently undergoing verification.

For radical (1e™) processes, aprroximately 2K literature steps and 3K atmospheric reactions (from
MCM [135]) have been collected, with an additional 8K plausible room-temperature steps being
incorporated from RMG [6].

We are also incorporating pericyclic processes, including 3K [4+2] cycloadditions which are currently
undergoing validation.

The ultimate objective is a master mechanistic dataset encompassing polar, radical, and pericyclic
steps, with balanced representation, rate data where available, and broad mechanistic diversity.

4 Cost & Scalability

The main cost is expert labor; unlike automated pipelines, our approach prioritizes accuracy and
interpretability via manual expert verification. This is a relatively inexpensive operation which
requires a small, dedicated team rather than major investments in hardware or experimental facilities:

Chemistry Graduate Students (1-2 people): Responsible for curating, labeling, and balancing ele-
mentary reaction steps across polar, radical, and pericyclic classes. They manually verify plausibility
and ensure consistency across datasets.

Computer Science Graduate Student (1 person): Maintains the platform, validates reactions using
chemoinformatics libraries, performs combinatorial reaction generation, and coordinates model
training, validation, and benchmarking.



5 Acceleration Potential

Historically, proprietary databases like Reaxys and CAS dominated reaction “recipes,” describing
reactants and products without mechanistic detail. The release of the open access USPTO dataset
enabled searchable resources such as ORD [10] and spurred ML advances using these recipes.
Likewise, a balanced, high-quality public dataset of elementary steps could drive models that not
only predict products but also uncover new mechanistic pathways.

Rapid identification of products and their underlying pathways would be transformative. Gaps in
mechanistic knowledge hinder pharmaceutical synthesis, compromise drug safety and shelf life,
obscure harmful species in secondary organic aerosols, and affect the fate of pharmaceuticals once
they enter the environment. A high-quality mechanistic dataset can address these challenges by
enabling machine learning models to explain the steps leading to a product. This mechanistic
grounding gives models a deeper understanding of chemical reactivity, better equipping them to
handle such challenges while providing interpretable predictions that chemists can readily validate.
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A Appendix / supplemental material

In this appendix, we provide additional details about the data curation and formatting.

A.1 Data Format

We provide an example of an atom mapped SMIRKS with arrow pushing annotation:

H,C CH

H

SMIRKS

r 1
[H:20][0:21][C:22]1=[CH:23][C+:24](CCCT{C)C)OCC.CC[O-:10] > »CCO.CCOCT=CC(=0)C(CCC)C 10=20;20,21=21,22;22,23=23,24

Figure 1: The reaction is stored as a SMIRKS string which contains atom mappings for the reactive
atoms. The nucelophilic source atom is mapped as atom 10, and the electrophilic sink atom is mapped
as atom 20. The reactions come with arrow-codes, which specify the flow of electrons. For example,
10=20 indicates the electrons from atom 10 move to atom 20, then 20,21=21,22 indicates the electrons
move from the bond between atoms 20,21 to the bond between atoms 21,22 etc.

A.2 Pathway Dataset

To build a pedagogically diverse set of organic reactions, we curated 1,187 single-step transformations
from the intermediate-level textbook by Clayden, Greeves, and Warren [3]]. This text includes many
modern reactions not typically covered in introductory courses, such as allylsilane additions, enol
silyl ethers, boron-mediated aldol reactions, organosulfur and organophosphorus chemistry, electron-
transfer reductions, and heterocycle syntheses. Each textbook example was translated into a dataset
entry that includes reactant(s), reaction temperature, and product(s) for use in product-prediction
tasks. Many of these transformations are accompanied by explicit arrow-pushing mechanisms for
the key steps. Implied multi-step workups were excluded to ensure that each entry represents a
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single-step transformation. All entries include scholarly literature references, and when textbook
schemes used generic substituents (R groups), representative examples from the research literature
were selected to match the transformation. Each entry also records an estimate of the minimum
number of elementary mechanistic steps needed to reach the product.

A.3 Mayr Combinatorial Reaction Generation

Additional reactions were generated from Mayr—Ofial nucleophilicity (/V, sx) and electrophilicity
(F) parameters [13]. We selected 853 of 1,254 nucleophiles and 313 of 352 electrophiles, excluding
sterically hindered species, protic-solvent data, and certain hard anions (e.g., acetate, benzoate,
methyl carbonate). This yielded 257,712 nucleophile—electrophile pairs, of which 96,558 with
sN(N + E) > 3 were converted to mapped SMIRKS with explicit electron flow. One thousand
of the least reactive pairs were manually checked for plausibility. While S 2 reactions are key in
organic chemistry, classic sp? electrophiles like alkyl halides are missing from the Mayr dataset.

A.4 Proton Transfer Combinatorial Reaction Generation

A comprehensive set of acid—base proton transfer steps was generated combinatorially using aqueous
pK, values. Starting from 7,613 heteroatom acids and their conjugate bases (primarily from the
DataWarrior set, supplemented with work from Reich [14] and Guthrie [[7} 8])), all pairwise combina-
tions were enumerated. For arrow-pushing specification, the acidic proton was mapped as atom 20,
the attached heteroatom as atom 21, and the basic site as atom 10.

Using a simplified Eigen relationship [4} 5], second-order rate constants at 25 °C were estimated
from ApK, values using the following equation:

logky = ApK, +logk_1 =~ ApK,+9

Only steps with log k1 > 3 (= 102 M~! s~1) were retained as kinetically plausible. This conservative
cutoff yielded 51,505,065 heteroatom—heteroatom proton transfer steps encoded as SMIRKS with
explicit electron flow.

Carbon acids were treated separately using intrinsic rate constants and Brgnsted 3 values in the
Eigen—Bernasconi equation [1]]. From 65 carbon acids and 7 classes of heteroatom bases, 4,902
plausible proton transfers with log k1 > 3 were included. An additional 49 literature-reported proton
transfers from heteroatom acids to carbon bases (with experimental rates) were also added.

The resulting dataset spans acids with pK, values from —15 to 437, emphasizing structural diversity
over reaction conditions. All entries are mechanistically annotated and suitable for machine learning
applications.
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