
TABFLEX: Scaling Tabular Learning to Millions with
Linear Attention

Yuchen Zeng∗1, Wonjun Kang2,3, Andreas C. Müller4

1

UW-Madison
2

FuriosaAI
3

Seoul National University
4

Microsoft

Abstract

Recent advances in the field of in-context learning (ICL) have demonstrated im-
pressive performance for tabular classification, exemplified by TABPFN’s success
on small datasets. However, the quadratic complexity of the attention mechanism
limits its applicability to larger datasets. To address this issue, we conduct a
comprehensive comparison of popular scalable attention alternatives, including
state-space models (SSMs) and linear attention mechanisms, revealing that the
inherent causality of SSMs hinders ICL performance for large datasets, while
linear attention preserves effectiveness. Leveraging these insights, we introduce
TABFLEX, a model based on linear attention that supports thousands of features
and hundreds of classes, capable of handling datasets with millions of samples.
Extensive experiments demonstrate that TABFLEX is significantly faster than most
existing methods while achieving top-two performance on small datasets among
25 baselines, with a 2× speedup over TABPFN and a 1.5× speedup over XGBoost.
On large datasets, TABFLEX remains efficient (e.g., approximately 5 seconds on
the poker-hand dataset, which consists of millions of samples), while achieving
relatively solid performance.

1 Introduction

In recent years, Large language Models (LLMs) have achieved breakthroughs not only in language
tasks [1, 6, 10, 22, 26] but also in handling diverse data modalities, including vision [7, 26] and
audio [13, 14, 26]. Their success stems from the underlying transformer architecture, which uses
attention mechanisms [51] to capture complex patterns in data. Consequently, researchers have begun
exploring the potential of transformers in traditional machine learning tasks, particularly tabular
classification. Tabular data represents one of the most fundamental and critical types of information
encountered in real-world applications, spanning domains such as recommendation systems [55],
finance [5], and medicine [35].

Numerous efforts have been made to adapt Transformers for tabular classification tasks [4, 21, 27, 33,
34]. For instance, FT-Transformer [27] introduces a feature tokenizer to convert each example into
a sequence of embeddings, then utilizes a Transformer to process these and make predictions via a
special CLS token. TabTransformer [34] employs the Transformer architecture to learn embeddings for
categorical features, concatenating them with continuous features for improved accuracy. LIFT [21]
converts tabular datasets into sentences that include feature names and task descriptions, utilizing fine-
tuned large language models for predictions. Unfortunately, these aforementioned methods, along
with non-Transformer neural network approaches (e.g., Multilayer Perceptron [45] and ResNet [32]),
suffer from a common inefficiency compared to gradient-boosted trees methods. Their large model
sizes result in longer training and inference times.

∗Work done during the internship at Microsoft. Email: yzeng58@wisc.edu.

Table Representation Learning Workshop at NeurIPS 2024.

As a Transformer-based method, TABPFN [33] stands out for its superior performance and efficiency
on small datasets. It leverages a key capability of LLMs: in-context learning (ICL) [10], which
enables LLMs to learn from a few examples and make predictions for new test instances without
needing parameter updates. TABPFN employs a customized ICL implementation that processes
all training and testing samples in a single prompt, completing classification for all test samples in
one forward pass. This approach enables rapid predictions within seconds for simple, small tabular
datasets, making it highly efficient and effective on such tasks. However, TABPFN faces challenges
with complex datasets that typically demand larger sample sizes for effective learning, primarily
due to scalability limitations imposed by the quadratic complexity of the attention mechanism. This
constraint introduces difficulties in both scalable pre-training and inference processes.

In this paper, we address the scalability limitations of TABPFN and enhance the competitiveness
of neural network-based methods for tabular classification. In doing so, we investigate scalable
alternatives to traditional attention mechanisms, focusing on state-space models (SSMs), including
the recently popular Mamba model [28], and linear attention [36]. Our analysis reveals that (Finding
1) the inherent causality of SSMs impedes ICL performance compared to non-causal mechanisms.
In contrast, (Finding 2) linear attention does not suffer from this limitation, maintaining comparable
performance while improving computational efficiency. Based on these findings, we develop our
model, TABFLEX, which leverages linear attention. It comprises three sub-models, each optimized
for different scenarios, with the most suitable one selected based on dataset characteristics (e.g.,
sample size). This model supports thousands of features, hundreds of classes, and millions of
samples. We conduct comprehensive experiments with TABFLEX across a diverse range of datasets,
including small, large, and high-dimensional datasets. (Finding 3) TABFLEX demonstrates robust
performance with impressive computational efficiency. Notably, on the poker-hand dataset, which
contains over one million samples, TABFLEX classifies all instances in less than 5 seconds while
achieving competitive performance.

2 Related Works

Transformer-based Approaches for Tabular Classification. Recent years have witnessed numer-
ous attempts to employ Transformers for tabular classification [4, 21, 27, 33, 34]. These methods
utilize Transformers in diverse ways to tackle tabular data. TabNet [4], one of the pioneering efforts,
applies unsupervised pre-training on masked tabular datasets to infer missing features, thereby en-
hancing the model’s understanding of datasets and features. It then performs supervised learning
on feature selection to obtain the final decision boundary, akin to decision trees. Huang et al. [34]
introduced TabTransformer, which leverages Transformers to better handle categorical features by
concatenating their contextual embeddings with numerical features. FT-Transformer [27] introduces
a feature tokenizer to convert each example into a sequence of embeddings, enabling Transformers to
process tabular datasets and make predictions. LIFT [21] utilizes a pre-trained language model with
parameter-efficient fine-tuning, incorporating task descriptions and converting each sample into a
complete sentence with feature names in the prediction prompt. TABPFN [33] is trained offline on
synthetic datasets derived from prior distributions and performs ICL rather than additional parameter
tuning for a given dataset, enabling it to solve small tabular classification tasks within seconds. Prior
to our work, TuneTable [23] extended TABPFN to scale to large datasets by performing prefix-tuning
for each dataset to achieve better performance. Notably, while most of these methods are computa-
tionally intensive due to the need for training large models, TABPFN achieves efficiency through
ICL. Our method builds upon TABPFN, extending its scalability to large datasets while maintaining
and even improving its efficiency.

Attention Mechanisms and Scalable Alternatives. While attention in Transformers [51] is central
to the strong performance of language models, it encounters scaling challenges for long sequences
due to its quadratic computational and memory complexity. To overcome these limitations, several
scalable alternatives have been proposed [19, 28, 36, 40, 41, 48], all aiming to achieve subquadratic
time complexity. Classical RNNs offer one potential solution, providing efficient linear-time inference.
However, they struggle with training efficiency and lack the parallelization capabilities of Transformer
architectures. Linear attention [36] addresses both concerns by reformulating self-attention as a
linear dot-product of kernel feature maps, reducing the computational complexity from quadratic to
linear time. Additionally, causal linear attention can be interpreted as a form of RNN, as the model
makes predictions based on a current token and a “hidden state,” which summarizes information

2

from the previous tokens. State-space models (SSMs), another popular variant of RNNs, address
the drawbacks of classical RNNs by considering linear RNNs and proposing novel algorithms for
efficient training [19, 28, 29, 30, 40, 41, 48].

Dao et al. [20] identified that another bottleneck in attention mechanisms’ speed stems from the
relatively slow access to high-bandwidth memory (HBM) in GPUs. To address this limitation,
FlashAttention [18, 20, 46] restructures attention computation to optimize the utilization of high-
speed on-chip SRAM while minimizing access to slower HBM, thereby enhancing the efficiency
of GPU-based attention operations. FlashAttention strategically balances computational efficiency
against memory bandwidth efficiency. Although the computational complexity in terms of sequence
length remains quadratic, the optimizations introduced by FlashAttention significantly accelerate
attention computation in wall-clock time.

We provide extended related works in Sec. A, which offers an in-depth discussion of other base-
lines, encompassing classical machine learning methods, gradient-boosting decision trees, and
non-transformer neural network architectures tailored for tabular classification tasks.

3 Background

This section elucidates the key concepts underpinning TABPFN and introduces two prominent
scalable alternatives to standard attention mechanisms: SSMs and linear attention.

Input Feature
Projection ×12 Label Prediction

(x1, y1)

(x2, y2)

(xn, yn)

···

xtest,1

xtest,2

xtest,m

···

MLP

MLP

MLP

···

MLP

MLP

MLP

···

A
tte

nt
io

n

MLP

MLP

MLP

···

MLP

MLP

MLP

···

MLP

MLP

MLP

···

ŷtest,1

ŷtest,2

ŷtest,m

···

Figure 1: Illustration of TABPFN’s classifica-
tion approach for an entire dataset via one sin-
gle forward pass. In each layer, attention outputs
for training sample positions attend to all other
training samples, ensuring that predictions are in-
variant to the order of training samples. Conversely,
attention outputs for test sample positions attend
only to training samples, ensuring independent pre-
dictions for each test instance, unaffected by other
test samples. The final classification for each test
sample is derived by applying an MLP to the cor-
responding Transformer output at its respective
position.

Implementation of ICL in TABPFN [33]. To
elucidate the efficiency of TABPFN and its abil-
ity to classify all samples in a single forward
pass, we first describe its ICL implementation.
Fig. 1 illustrates how TABPFN processes an
entire dataset, classifying all test samples simul-
taneously. The key innovation lies in treating
each sample as a token. The input sequence be-
gins with a concatenation of all training samples,
where both features and labels are projected into
embeddings using MLPs. Following the training
samples, all test samples (features only) are ap-
pended, with their features similarly embedded.
This concatenated sequence of embeddings is
then fed into multiple Transformer layers. Im-
portantly, the outputs corresponding to training
sample positions are computed by attending to
all other training samples, while the outputs for
test sample positions also attend to the train-
ing samples — enabling each test prediction
to leverage the full training set without being
influenced by other test samples. Finally, predic-
tions of the test samples are generated by pro-
jecting the Transformer outputs at test positions
into probability distributions. This implementa-
tion is functionally equivalent to standard ICL
but significantly more efficient. Standard ICL
would require m separate prompts (where m is
the number of test samples), each containing all training samples and one test sample, necessitating
m prediction passes. A notable feature of TABPFN’s architecture is its use of an encoder with
non-causal attention. This allows outputs within training sample positions to interact freely, rendering
the order of training samples inconsequential.

State Space Models (SSMs). Recently, SSMs have emerged as highly promising alternatives to
the attention mechanism, exhibiting linear computational complexity and demonstrating excellent
performance in language modeling tasks. The SSM framework is based on a continuous system that
transforms a one-dimensional signal x(t) ∈ R into y(t) ∈ R through an intermediate H-dimensional

3

0 1000 2000 3000
Number of Training Samples

0.76
0.78
0.80
0.82

Ac
cu

ra
cy Non-causal Masked

Causal Masked

(a) Effect of causal masking on per-
formance. The non-causal masked
model shows better sample utiliza-
tion and accuracy as the number
of samples grows. In contrast, the
causal model’s accuracy declines.

0.00.51.0
Training Loss

0.0 0.5 1.0
Test Mean AUC

Tr
an

sf
or

m
er

M
am

ba

(b) ICL performance comparison
between Mamba and Transformer
models. Results show Transformer-
based models achieve lower training
loss and higher AUC across 150 test
datasets.

0.0 0.2 0.4 0.6
Runtime

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Softmax Attention Linear Attention

(c) Accuracy and runtime compar-
ison of softmax and linear atten-
tion. Replacing softmax with linear
attention preserves comparable ac-
curacy while significantly reducing
runtime.

Figure 2: Impact of model architecture on tabular classification performance.

latent state h(t) ∈ RH , as shown in (1). Here, B ∈ RH×1 is the input transition vector and
A ∈ RH×H is the state transition matrix. The latent state h(t) is then projected into the output
y(t) using the output mapping vector C ∈ R1×H . For deep learning applications, discrete A and
B replace continuous A and B through discretization methods, such as zero-order hold. This
yields updated hidden state and output equations as shown in (2). While (2) is structured as linear
RNN, it can be reformulated as Convolutional Neural Network (CNN) as (3), enabling efficient and
parallelizable training. SSMs address the quadratic time complexity problem with respect to sequence
length, as the output for each new token depends solely on the hidden states and the current token, in
contrast to standard attention mechanisms that attend to all previous tokens. Consequently, SSMs
operate as a causal mechanism.

h′(t) = Ah(t) +Bx(t)

y(t) = Ch(t)
(1)

ht = Aht−1 +Bxt,

yt = Cht

(2)
K = (CB,CAB, . . . ,CA

t−1
B),

(y1, . . . , yt) = (x1, . . . , xt) ∗K
(3)

Linear attention. Assume a sequence with length n ∈ N+ and embedding size d ∈ N+. We first
focus on non-causal cases. For the i-th position, let qi ∈ Rd, ki ∈ Rd, and vi ∈ Rd denote the query,
key, and value vectors, respectively, where i = 1, . . . , n. In softmax attention, the similarity between
qi and kj for any i ̸= j is computed as exp (q⊤

i kj). The attention output at the i-th position, denoted
as ai ∈ Rd, is obtained by averaging the values across all tokens weighted by their similarities. This
process requires O(n) complexity, as it necessitates computing similarities with all n tokens. Linear
attention reduces this complexity by replacing the similarity computation from exp(q⊤

i kj) with
ϕ(qi)

⊤ϕ(kj), where ϕ : Rd → Rd is a feature conversion function. For linear attention outputs (4)
across all positions, we identify two common terms:

∑n
j=1 ϕ (kj) · vj and

∑n
j=1 ϕ (kj), which can

be computed once. Consequently, for the linear output at position i, we only need to compute ϕ(qi)
and multiply it with these two statistics, resulting in O(1) complexity, thus significantly reducing
computational demands.

(Softmax) ai =
∑n

j=1 exp (q⊤
i kj)·vj∑n

j=1 exp (q⊤
i kj)

(Linear) ai =
∑n

j=1 ϕ(qi)
⊤ϕ(kj)·vj∑n

j=1 ϕ(qi)
⊤ϕ(kj)

=
ϕ(qi)

⊤ ∑n
j=1 ϕ(kj)·vj

ϕ(qi)
⊤ ∑n

j=1 ϕ(kj)

(4)

For causal cases, for position i, we simply replace the sum from j = 1 to n with j = 1 to i, as each
token attends only to previous tokens. The statistics then become

∑i−1
j=1 ϕ (kj) · vj and

∑i−1
j=1 ϕ (kj),

which can be viewed as hidden states in RNNs. Thus, causal linear attention can be conceptualized
as a linear RNN, which is also a variant of SSM.

4 Architectural Exploration for Scalable Tabular Learning

This section examines alternative model architectures to enhance the scalability of the standard
attention mechanism used in TABPFN. Among the various options, two primary contenders emerge:

4

(i) State-Space Models (SSMs) and (ii) linear attention. We note that linear attention with causal
masking can be viewed as a type of SSM. Our analysis focuses on determining which of these
approaches is most effective for tabular classification tasks within the framework of ICL.

4.1 Causal Model vs. Non-Causal Model

Ideally, the order of training samples (i.e., in-context demonstrations) provided in the prompt should
not influence the final prediction. However, SSMs are inherently causal, computing outputs based on
new inputs and hidden states derived from previous inputs. This characteristic suggests a potential
drawback for SSMs in this context. To validate our hypothesis regarding the suboptimal performance
of causal models in ICL, we conduct two experiments: (i) we compare the performance of TABPFN
with a modified version of the same model that uses causal attention, and (ii) we evaluate TABPFN
against both its original version and a model incorporating Mamba (specifically Mamba-II), a leading
SSM-based architecture.

Causal Attention vs. Non-Causal Attention. In our first experiment, we compare the ICL
capabilities of non-causal and causal attention mechanisms using the same experimental setup as
TABPFN. We replicate TABPFN’s methodology for generating synthetic datasets from priors, training
a modified version of TABPFN that employs causal attention instead. For the inference stage, we
generate 20 synthetic datasets. Each dataset maintains a consistent 1000 test samples while we vary
the number of training samples. We then calculate the classification accuracy for each dataset and
average the results across all 20 simulations. The results are visualized in Fig. 2a.

Our observations reveal that non-causal attention generally outperforms causal attention. As we
increase the number of training samples, the accuracy of the non-causal model continues to improve.
In contrast, the causal attention model shows accuracy improvements only within a very small range
of training samples, after which performance begins to decline with additional samples. These
findings indicate that TABPFN with non-causal attention functions as an effective ICL model, adeptly
leveraging context from a large number of samples. Conversely, the same model equipped with
causal attention fails to capitalize on the additional data, highlighting the superiority of the non-causal
approach in this tabular learning scenario.

Mamba vs. Transformer. In this experiment, we further investigate whether Mamba, the most
popular SSM-based model, is suitable for ICL. We replicate TABPFN’s training methodology
precisely, substituting the transformer layer with a Mamba layer. To evaluate performance, we test
the modified model on the same 150 validation datasets used in the original TABPFN study (refer
to Section F.3 of their paper for details). Fig. 2b visualizes the training loss and test mean AUC for
both methods. We observe that the model with Mamba exhibits significantly higher training loss
compared to the original TABPFN, along with substantially lower test mean AUC. This experiment
with a popular SSM model further demonstrates that SSMs underperform non-causal models in our
specified tasks.

4.2 Softmax Attention vs. Linear Attention

To address the quadratic complexity of standard attention mechanisms, linear attention has emerged
as a popular alternative [36]. To investigate its impact on ICL in tabular classification, we replaced
TABPFN’s attention mechanism with linear attention and trained a model following the same strategy
as TABPFN. We then evaluated both TABPFN and this linear attention model on 57 real datasets
(used in Table 2 of McElfresh et al. [39], where TABPFN achieved top performance among 19
methods for tabular classification). Fig. 2c visualizes the test accuracy and runtime. Our results
demonstrate that linear attention does not decrease performance and significantly improves speed,
making it a suitable method for scaling TABPFN to larger datasets.

5 TABFLEX: Scaling TABPFN for Large Datasets

Based on the empirical findings presented in Sec. 4, we identify non-causal linear attention as the
optimal candidate to replace standard softmax attention in TABPFN. This section proceeds in two
parts: first, we conduct a thorough analysis of the linear attention mechanism to ensure its efficient
implementation.; subsequently, we leverage this efficient implementation to train our proposed model,

5

Algorithm 1: Conditional Model Selection
Input :A dataset D with number of instances n and number

of features d
1 // Large dataset with few features;
2 if n ≥ 3K and d ≤ 100 then
3 return TABFLEX-L100(D);
4 // High-dimensional datasets;
5 else if d > 100 or (d/n ≥ 0.2 and n ≥ 3K) then
6 if d ≤ 1000 then
7 return TABFLEX-H1K(D);
8 else
9 Apply random projection to D to reduce the number

of features to 1000, yielding D′;
10 return TABFLEX-H1K(D′);

11 // Small datasets;
12 else
13 return TABFLEX-S100(D);

0

20

M
ea

n
Ru

nt
im

e

Tab
PFN

Tab
Fle

x
0.70

0.75

M
ea

n
AU

C

Figure 3: Runtime and AUC
comparison of TABPFN and
TABFLEX on validation datasets.

TABFLEX. Our approach aims to enhance the scalability and performance of tabular learning while
maintaining computational efficiency.

Computation Analysis. Dao et al. [20] demonstrates that significant wallclock speedup for softmax
attention can be achieved by optimizing the number of memory reads/writes between GPU high
bandwidth memory (HBM) and GPU on-chip SRAM. Based on this criterion, Yang et al. [53]
proposed FlashLinearAttention for speeding up causal linear attention. This raises a natural question:
can we further improve the speed of non-causal linear attention (we omit non-causal when it does not
cause further confusion) by reducing the number of memory reads/writes? Our results in Theorem 1
analyze the #HBM access and HBM memory usage of FlashLinearAttention and linear attention,
concluding that further optimization is not necessary. In Sec. B, we first propose an HBM-efficient
linear attention, and then show that the PyTorch implementation only incurs a marginal increase in
terms of #HBM access and HBM memory usage, with FLOPS remaining unchanged. We provide
more details, including the analysis of different attention mechanisms and actual memory usage and
runtime visualization of these mechanisms in Sec. B. The resulting theorem below demonstrates that
the straightforward PyTorch implementation of linear attention already achieves linear HBM access,
matching the performance of FlashLinearAttention after optimization. Consequently, we adopt the
straightforward implementation of linear attention in our model.
Theorem 1 (High Bandwidth Memory Efficiency of Linear Attention). Let Q,K,V ∈ RN×D

represent the query, key, and value matrices for a single attention head, where N is the sequence
length and D is the embedding size. Both causal FlashLinearAttention (Alg. 2) and non-causal linear
attention (Listing 1) require O(ND) HBM accesses, O(ND) HBM memory, and O(ND2) FLOPS
to compute the attention output.

TABFLEX. While TABPFN excels on small, simple datasets with fewer than 100 features and
10 classes, it struggles with more complex tasks, such as high-dimensional datasets or those with
numerous classes. Our objective is to extend the use cases by training a model that maintains
comparable speed to TABPFN while offering reasonable performance across a broader spectrum
of datasets. Since models trained with numerous features and long contexts often suffer from poor
performance in small regions due to optimization challenges, we develop three specialized models:

• TABFLEX-S100: Trained on prompts with 1152 length (same as TABPFN), 100 features, and
10 classes. Optimized for low-dimensional datasets. ‘S’ denotes standard configuration, ‘100’
indicates feature capacity.

• TABFLEX-L100: Utilizes prompts of 50K length, 100 features, and 10 classes. Designed for large
low-dimensional datasets. ‘L’ signifies larger sample size, ‘100’ represents feature count.

• TABFLEX-H1K: Employs prompts of 50K length, 1K features, and 100 classes. Suited for large
high-dimensional datasets. ‘H’ indicates high-dimensional capabilities, ‘1K’ denotes 1K features.

6

Algorithm Class Mean AUC Std. AUC Time / 1000 inst.
median mean mean median median mean

TABPFN† [33] TF 0.97 0.84 0.15 0.08 0.56 0.74
CatBoost [43] GBDT 0.97 0.92 0.15 0.07 1.95 20.51
TABFLEX (Ours) TF 0.96 0.90 0.15 0.08 0.22 0.37
XGBoost [12] GBDT 0.96 0.91 0.16 0.09 0.38 0.85
RandomForest [38] Classical 0.95 0.90 0.16 0.09 0.32 0.47
SAINT [47] TF 0.94 0.86 0.16 0.11 146.15 170.56
HyperFast [9] Non-TF NN 0.94 0.87 0.15 0.09 53.45 89.75
LightGBM [37] GBDT 0.93 0.85 0.18 0.09 0.29 0.90
ResNet [32] Non-TF NN 0.93 0.85 0.16 0.10 8.83 15.99
DANet [11] Non-TF NN 0.92 0.85 0.16 0.08 57.18 64.29
NODE [42] Non-TF NN 0.91 0.83 0.16 0.11 131.73 160.76
FTTransformer [27] TF 0.89 0.81 0.17 0.11 18.04 27.91
SVM [15] Classical 0.89 0.78 0.19 0.09 2.06 61.18
MLP-rtdl [27] Non-TF NN 0.88 0.75 0.18 0.11 7.09 15.21
DeepFM [31] Non-TF NN 0.87 0.77 0.19 0.12 4.89 6.05
TabNet [4] TF 0.85 0.68 0.26 0.14 29.34 35.12
STG [52] Non-TF NN 0.82 0.71 0.20 0.14 15.98 18.58
TuneTables [23] TF 0.81 0.70 0.25 0.16 32.96 73.40
LinearModel [17] Classical 0.78 0.67 0.19 0.14 0.03 0.04
MLP [45] Non-TF NN 0.76 0.68 0.20 0.13 11.23 18.31
DecisionTree [44] Classical 0.74 0.63 0.24 0.18 0.01 0.03
TabTransformer [34] TF 0.72 0.61 0.17 0.13 13.45 22.05
KNN [16] Classical 0.70 0.61 0.21 0.14 0.03 0.05
VIME [54] Non-TF NN 0.60 0.54 0.25 0.15 15.60 17.98
NAM [2] Non-TF NN 0.39 0.44 0.27 0.19 97.99 233.77

Table 1: Performance comparison of algorithms across 98 simple datasets (as used in Table 1 of
McElfresh et al. [39]). The reported AUC values are normalized. The “Time/1000 inst.” column
represents the combined training and test time for all datasets, divided by the total number of samples.
Notably, TABFLEX achieves top 3 performance, with faster runtimes compared to baselines of similar
performance, and a 2× speedup relative to TABPFN†. TABPFN† denotes TABPFN limited to a
maximum of 3000 training samples.

We use a conditional model selection strategy, as shown in the Alg. 1, to choose the appropriate model
based on the target dataset’s size and dimensionality, ensuring optimal performance across diverse
data characteristics. Our code is publicably accessible at https://anonymous.4open.science/
r/TabFlex. Additional training details, including training loss, hyperparameters, and other relevant
information, are provided in Sec. C.1.

In Fig. 3, we visualize the mean runtime and mean AUC comparison of TABPFN and TABFLEX on
the validation datasets, comprising 40 datasets with varying sample sizes (up to 100K), dimensions
(up to 3K), and number of classes (up to 100). Detailed information about these datasets is provided
in Sec. C.2. Our analysis reveals that TABFLEX not only exhibits superior performance but also
demonstrates faster execution times compared to TABPFN.

6 Experiments

In this section, we evaluate TABFLEX’s performance and speed across 115 OpenML tabular
datasets [50]. Our results show that TABFLEX achieves comparable performance to TABPFN on small
datasets while offering significant speedup, and substantially outperforms it on high-dimensional
and large datasets. TABFLEX exhibits competitive performance among 23 common baselines while
maintaining high efficiency, notably processing the largest dataset with over one million samples in
just 4.88 seconds.

7

https://anonymous.4open.science/r/TabFlex
https://anonymous.4open.science/r/TabFlex

Algorithm Class Mean AUC Std. AUC Time / 1000 inst.
median mean mean median median mean

TABPFN† [33] TF 0.97 0.90 0.21 0.15 0.82 1.04
TABFLEX (Ours) TF 0.96 0.89 0.22 0.16 0.29 0.48
CatBoost [43] GBDT 0.95 0.89 0.23 0.16 2.59 19.51
ResNet [32] Non-TF NN 0.93 0.84 0.24 0.16 13.90 23.40
SAINT [47] TF 0.93 0.84 0.24 0.20 173.63 195.16
RandomForest [38] Classical 0.92 0.86 0.24 0.17 0.45 0.61
XGBoost [12] GBDT 0.91 0.86 0.24 0.18 0.49 0.95
HyperFast [9] Non-TF NN 0.91 0.83 0.22 0.17 64.38 136.74
DANet [11] Non-TF NN 0.89 0.80 0.25 0.19 67.70 78.21
SVM [15] Classical 0.87 0.75 0.28 0.22 0.71 87.84
NODE [42] Non-TF NN 0.86 0.80 0.24 0.18 157.18 194.07
DeepFM [31] Non-TF NN 0.86 0.79 0.28 0.27 5.48 5.95
FTTransformer [27] TF 0.84 0.78 0.25 0.21 25.40 33.34
LightGBM [37] GBDT 0.83 0.76 0.28 0.21 0.25 0.67
MLP-rtdl [27] Non-TF NN 0.83 0.74 0.26 0.20 12.65 22.97
LinearModel [17] Classical 0.81 0.71 0.27 0.21 0.05 0.06
TuneTables [23] TF 0.80 0.72 0.32 0.24 53.48 113.49
STG [52] Non-TF NN 0.79 0.67 0.29 0.23 18.46 21.26
TabTransformer [34] TF 0.79 0.64 0.24 0.16 19.04 32.84
MLP [45] Non-TF NN 0.72 0.65 0.29 0.25 17.83 27.67
DecisionTree [44] Classical 0.63 0.55 0.35 0.31 0.01 0.02
KNN [16] Classical 0.62 0.56 0.30 0.25 0.03 0.03
TabNet [4] TF 0.56 0.50 0.42 0.40 34.66 42.09
VIME [54] Non-TF NN 0.49 0.48 0.37 0.27 18.43 20.11
NAM [2] Non-TF NN 0.33 0.38 0.38 0.31 147.30 341.58

Table 2: Performance of algorithms across 57 datasets of size less than or equal to 1250 (used in
Table 2 of McElfresh et al. [39]). The reported AUC values are normalized. The “Time/1000 inst.”
column represents the combined training and test time for all datasets, divided by the total number of
samples. Notably, TABFLEX achieves top 2 performance, with significant faster runtimes compared
to baselines of similar performance, and a 2× speedup relative to TABPFN†. TABPFN† denotes
TABPFN limited to a maximum of 3000 training samples.

6.1 Experimental Setup

Unless otherwise stated, we follow the identical experiment setup of McElfresh et al. [39] for
benchmarking all baselines.

Datasets. For simple datasets, we use two sets of datasets, the first one include 98 datasets reported
in Table 1 of McElfresh et al. [39], while the second one include 57 datasets reported in Table 2 of
McElfresh et al. [39]. Lastly, we evaluate the methods on the TabZilla hard benchmark [39], which
comprises 36 challenging datasets, including 11 high-dimensional (with 100 ≤ features ≤ 2000) and
large (containing ≥ 50K instances) datasets. Detailed information about the datasets, including their
names and characteristics, is provided in Sec. D.1. Furthermore, we consider additional datasets,
with details and results presented in Sec. D.2.

Baselines. We evaluate our approach against a comprehensive set of baselines, as considered by
McElfresh et al. [39]. These include: (i) classical tabular classification methods: Random Forest [38],
SVM [15], LinearModel [17], KNN [16] and Decision Tree [44]; (ii) Gradient Boosted Decision
Trees (GBDT) methods: XGBoost [12], CatBoost [43], and LightGBM [37]; (iii) Non-Transformer
Neural Netowork (Non-TF NN) methods: SAINT [47], ResNet [32], DANet [11], NODE [42],
MLP [45], MLP-rtdl [27], DeepFM [31], STG [52], VIME [54], and NAM [2]; (iv) Transformer (TF)
methods: TABPFN†[33], FTTransformer [27], TabNet [4], and TabTransformer [34]. The results
for these methods, except TABPFN, are taken directly from McElfresh et al. [39], who conducted

8

their experiments using a V100 GPU, while our experiments are run on an A100 GPU, which may
introduce slight variations in performance. Additionally, we incorporate two recent methods designed
for scaling tabular classification: TuneTables [23], a TF method, and HyperFast [9], a Non-TF NN
method. Following McElfresh et al. [39], we implement TABPFN† with prompts containing up to
3000 training samples. In other words, for larger datasets, we use 3000 training samples for efficiency.

Note that not all baselines successfully ran on all datasets. Many methods face constraints and
encounter issues, particularly with the TabZilla hard benchmark, often due to poor scalability. We
explicitly indicate which methods failed to run smoothly across all datasets. Originally, TABPFN
was limited to datasets with no more than 100 features and 10 classes. To facilitate a fair compar-
ison between TABFLEX and TABPFN, we implemented workarounds to prevent TABPFN from
encountering errors. For datasets exceeding 100 features, we performed random feature selec-
tion. For those with more than 10 classes, we evaluated the accuracy of the nine most prevalent
classes and marked all other classes as other, and incorrect. For TuneTables, we directly import
TuneTablesClassifier from their Python package tunetables. Note that our results differ from
those reported in their paper, as their study involved more extensive hyperparameter search, which
significantly increased runtime. We also compare our methods with TuneTables using the dataset
split specified in their paper’s setting, with results deferred to Sec. D.3. Similarly, for HyperFast, we
utilize HyperFastClassifier directly from their Python package hyperfast default parameters.
Notably, HyperFast is meta-trained on many datasets we use for evaluation.

6.2 Evaluation on Simple Datasets

We evaluate TABFLEX’s tabular classification performance on two sets of datasets: 98 simple datasets
from Table 1 and 57 small datasets from Table 2 of McElfresh et al. [39]. The results are reported
in Table 1 and Table 2, respectively. For each dataset, we consider ten different train/test splits,
computing the mean and standard deviation of AUC, as well as the total runtime per 1000 instances.
We then calculate the median and mean of these values across the entire set of datasets: 98 simple
datasets for Table 1 and 57 small datasets for Table 2. Algorithms are ranked based on AUC and
time. Our results demonstrate that TABFLEX achieves nearly identical performance to TABPFN† on
small, simple datasets while offering more than a 2x speedup. Compared to faster methods, such as
Decision Tree and Linear Model in Table 1, and Decision Tree, Linear Model, LightGBM, and KNN
in Table 2, their performance is significantly inferior to TABFLEX.

6.3 Evaluation on Hard Datasets

0.0 0.1 0.2 0.3 0.4 0.5
Time per 1000 instances

0.4

0.6

0.8

1.0

M
ed

ia
n

AU
C

XGBoost LightGBM

RandomForestTabFlex
TabPFN

LinearModel

DecisionTree
KNN

Dataset Coverage
Completed all datasets
Completed subset of datasets

Figure 4: Visualization of tabular classification
methods with processing times under 0.5 sec-
onds per 1000 instances on the TabZilla hard
benchmark [39]. For methods that only com-
pleted experiments on a subset of datasets, we
report the median AUC across these completed
datasets. TABPFN† denotes TABPFN limited to a
maximum of 3000 training samples. Compared to
two other methods (XGBoost and TABPFN†) that
successfully ran on all datasets, TABFLEX achieves
a 2× speedup while maintaining relatively good
performance.

In this experiment, we compare TABFLEX to
baselines on the TabZilla hard benchmark [39],
which includes 36 datasets. However, due to the
challenging nature of the datasets in the TabZilla
hard benchmark, many baselines fail to execute
successfully. In Fig. 4, we visualize the Median
AUC and the runtime per 1000 instances across
the 36 datasets, with methods that successfully
executed on all datasets marked as stars, and
methods that failed to execute on some datasets
marked as circles. This figure focuses on ef-
ficient methods, excluding those slower than
0.5 seconds per 1000 instances. We observe
that only TABFLEX, TABPFN†, and XGBoost
successfully run on all datasets. In particular,
TABFLEX is faster and performs better than
TABPFN†, and is faster than XGBoost while
sacrificing only a small performance margin.

Next, we focus on 11 high-dimensional and
large datasets within the TabZilla hard bench-
mark. Since most baselines do not obtain com-
plete results for all datasets, instead of compar-
ing TABFLEX to a specific baseline, we report

9

the 5th-best AUC and 5th-best runtime, using these values to summarize the general performance
distribution of the baselines. The results are presented in Table 3. We observe that, for these datasets,
TABFLEX substantially outperforms TABPFN†. While TABPFN† follows McElfresh et al. [39]’s
strategy of using only 3000 training samples, TABFLEX utilizes all available training data, achieving
superior performance with comparable or slightly higher processing times. TABFLEX exhibits com-
petitive performance among baselines while maintaining high efficiency. Notably, on large datasets
with more than 50K instances, TABFLEX is significantly faster than the baselines. For instance, on the
largest dataset, poker-hand, containing over one million samples, TABFLEX significantly outperforms
other baselines, classifying all samples in just 4.88 seconds, while the fifth fastest method requires
more than 500 seconds.

Dataset #Classes #Features #Instances AUC Time (seconds)

5th Best TABPFN† TABFLEX 5th Best TABPFN† TABFLEX

SpeedDating 2 120 8378 0.86 0.55 0.85 1.58 1.58 1.89
higgs 2 28 98050 0.79 0.72 0.76 3.46 2.82 4.92
cnae-9 9 856 1080 1.00 0.48 0.96 0.51 0.51 3.80
albert 2 78 425240 0.71 0.69 0.70 33.98 9.39 13.46
audiology 24 69 226 0.92 0.82 0.81 0.13 0.23 0.26
jasmine 2 144 2984 0.86 0.70 0.86 0.68 1.27 0.99
nomao 2 118 34465 0.99 0.76 0.99 4.03 1.82 5.34
Bioresponse 2 1776 3751 0.85 0.50 0.75 2.49 1.29 12.38
MiniBooNE 2 50 130064 0.98 0.98 0.97 10.80 3.19 7.22
airlines 2 7 539383 0.70 0.63 0.64 6.53 9.73 4.20
poker-hand 10 10 1025009 0.54 0.72 0.84 504.52 15.36 4.88

Table 3: Performance comparison of TABFLEX, TABPFN†, and other baselines on large, high-
dimensional datasets from the TabZilla hard benchmark [39]. Baseline results are summarized
by the 5th highest AUC and 5th lowest runtime for each dataset. TABFLEX significantly outperforms
TABPFN† on these datasets, achieving comparable performance to other baselines while maintaining
exceptional speed. TABPFN† denotes TABPFN limited to a maximum of 3000 training samples.

7 Conclusion & Discussion

Conclusion. To extend TABPFN for ICL on larger and more challenging tabular classification tasks,
in this paper, we conduct a comprehensive exploration of scalable alternatives to attention, ultimately
selecting non-causal linear attention. Through computational analysis for algorithmic optimization
of the implementation of linear attention, we develop our model, TABFLEX. We demonstrate that
TABFLEX achieves comparable performance to TABPFN on small datasets with more than 2×
speedup, while outperforming most other baselines with significantly reduced computational time.
Moreover, TABFLEX significantly outperforms TABPFN on larger and more complex datasets,
becoming much faster than most other baselines on datasets larger than 100K samples, while
maintaining performance on par with state-of-the-art methods. We posit that TABFLEX further
elevates the performance ceiling of neural network-based models on tabular classification tasks.

Limitations & Future Works. While our work achieves fast inference and relatively well perfor-
mance on datasets with approximately two thousand features, extending it to scale to more features
remains an intriguing research direction. Notably, image classification tasks typically involve a large
number of features. Adapting our work for image classification could lead to broader applications,
given its extremely fast inference and ability to simultaneously output labels for all test samples,
making this a promising avenue for future research. For image classification, one potential approach
could involve using a visual encoder to preprocess the images before feeding them into our model —
a strategy that may prove effective. Beyond image datasets, extending our work to other modalities
such as audio classification is also of interest. This expansion might necessitate developing novel
methods for generating synthetic datasets for model pretraining, as well as conducting comprehensive
analyses on the impact of various hyperparameters such as the number of layers and embedding size.
Such investigations would optimize the model architecture to effectively handle an increased number
of features, potentially broadening the applicability of our approach across diverse domains.

10

References
[1] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman, D. Almeida,

J. Altenschmidt, S. Altman, S. Anadkat, et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

[2] R. Agarwal, L. Melnick, N. Frosst, X. Zhang, B. Lengerich, R. Caruana, and G. E. Hinton.
Neural additive models: Interpretable machine learning with neural nets. Advances in neural
information processing systems, 34:4699–4711, 2021.

[3] M. A. Ahamed and Q. Cheng. Mambatab: A simple yet effective approach for handling tabular
data. arXiv preprint arXiv:2401.08867, 2024.

[4] S. Ö. Arik and T. Pfister. Tabnet: Attentive interpretable tabular learning. In Proceedings of the
AAAI conference on artificial intelligence, volume 35, pages 6679–6687, 2021.

[5] K. Arun, G. Ishan, and K. Sanmeet. Loan approval prediction based on machine learning
approach. IOSR J. Comput. Eng, 18(3):18–21, 2016.

[6] J. Bai, S. Bai, Y. Chu, Z. Cui, K. Dang, X. Deng, Y. Fan, W. Ge, Y. Han, F. Huang, et al. Qwen
technical report. arXiv preprint arXiv:2309.16609, 2023.

[7] J. Bai, S. Bai, S. Yang, S. Wang, S. Tan, P. Wang, J. Lin, C. Zhou, and J. Zhou. Qwen-vl: A
frontier large vision-language model with versatile abilities. arXiv preprint arXiv:2308.12966,
2023.

[8] B. Bischl, G. Casalicchio, M. Feurer, F. Hutter, M. Lang, R. G. Mantovani, J. N. van Rijn, and
J. Vanschoren. Openml benchmarking suites. arXiv:1708.03731v2 [stat.ML], 2019.

[9] D. Bonet, D. M. Montserrat, X. Giró-i Nieto, and A. G. Ioannidis. Hyperfast: Instant clas-
sification for tabular data. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pages 11114–11123, 2024.

[10] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,
G. Sastry, A. Askell, et al. Language models are few-shot learners. In Advances in Neural
Information Processing Systems, volume 33, pages 1877–1901, 2020.

[11] J. Chen, K. Liao, Y. Wan, D. Z. Chen, and J. Wu. Danets: Deep abstract networks for tabular data
classification and regression. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 36, pages 3930–3938, 2022.

[12] T. Chen and C. Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd
acm sigkdd international conference on knowledge discovery and data mining, pages 785–794,
2016.

[13] Y. Chu, J. Xu, X. Zhou, Q. Yang, S. Zhang, Z. Yan, C. Zhou, and J. Zhou. Qwen-audio:
Advancing universal audio understanding via unified large-scale audio-language models. arXiv
preprint arXiv:2311.07919, 2023.

[14] Y. Chu, J. Xu, Q. Yang, H. Wei, X. Wei, Z. Guo, Y. Leng, Y. Lv, J. He, J. Lin, et al. Qwen2-audio
technical report. arXiv preprint arXiv:2407.10759, 2024.

[15] C. Cortes. Support-vector networks. Machine Learning, 1995.

[16] T. Cover and P. Hart. Nearest neighbor pattern classification. IEEE transactions on information
theory, 13(1):21–27, 1967.

[17] D. R. Cox. The regression analysis of binary sequences. Journal of the Royal Statistical Society
Series B: Statistical Methodology, 20(2):215–232, 1958.

[18] T. Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. In
The Twelfth International Conference on Learning Representations, 2024. URL https://
openreview.net/forum?id=mZn2Xyh9Ec.

11

https://openreview.net/forum?id=mZn2Xyh9Ec
https://openreview.net/forum?id=mZn2Xyh9Ec

[19] T. Dao and A. Gu. Transformers are SSMs: Generalized models and efficient algorithms through
structured state space duality. In Forty-first International Conference on Machine Learning,
2024. URL https://openreview.net/forum?id=ztn8FCR1td.

[20] T. Dao, D. Y. Fu, S. Ermon, A. Rudra, and C. Re. Flashattention: Fast and memory-efficient
exact attention with IO-awareness. In A. H. Oh, A. Agarwal, D. Belgrave, and K. Cho, editors,
Advances in Neural Information Processing Systems, 2022. URL https://openreview.
net/forum?id=H4DqfPSibmx.

[21] T. Dinh, Y. Zeng, R. Zhang, Z. Lin, M. Gira, S. Rajput, J. yong Sohn, D. Papailiopoulos, and
K. Lee. LIFT: Language-interfaced fine-tuning for non-language machine learning tasks. In
A. H. Oh, A. Agarwal, D. Belgrave, and K. Cho, editors, Advances in Neural Information
Processing Systems, 2022. URL https://openreview.net/forum?id=s_PJMEGIUfa.

[22] A. Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-Dahle, A. Letman, A. Mathur, A. Schelten,
A. Yang, A. Fan, et al. The llama 3 herd of models. arXiv preprint arXiv:2407.21783, 2024.

[23] B. Feuer, R. T. Schirrmeister, V. Cherepanova, C. Hegde, F. Hutter, M. Goldblum, N. Cohen,
and C. White. Tunetables: Context optimization for scalable prior-data fitted networks. arXiv
preprint arXiv:2402.11137, 2024.

[24] M. Feurer, K. Eggensperger, S. Falkner, M. Lindauer, and F. Hutter. Auto-sklearn 2.0: Hands-
free automl via meta-learning. arXiv:2007.04074 [cs.LG], 2021.

[25] J. H. Friedman. Greedy function approximation: a gradient boosting machine. Annals of
statistics, pages 1189–1232, 2001.

[26] G. Gemini Team, R. Anil, S. Borgeaud, Y. Wu, J.-B. Alayrac, J. Yu, R. Soricut, J. Schalkwyk,
A. M. Dai, A. Hauth, et al. Gemini: a family of highly capable multimodal models. arXiv
preprint arXiv:2312.11805, 2023.

[27] Y. Gorishniy, I. Rubachev, V. Khrulkov, and A. Babenko. Revisiting deep learning models for
tabular data. Advances in Neural Information Processing Systems, 34:18932–18943, 2021.

[28] A. Gu and T. Dao. Mamba: Linear-time sequence modeling with selective state spaces. In
First Conference on Language Modeling, 2024. URL https://openreview.net/forum?
id=tEYskw1VY2.

[29] A. Gu, I. Johnson, K. Goel, K. K. Saab, T. Dao, A. Rudra, and C. Re. Combining recurrent,
convolutional, and continuous-time models with linear state space layers. In A. Beygelzimer,
Y. Dauphin, P. Liang, and J. W. Vaughan, editors, Advances in Neural Information Processing
Systems, 2021. URL https://openreview.net/forum?id=yWd42CWN3c.

[30] A. Gu, K. Goel, and C. Re. Efficiently modeling long sequences with structured state spaces.
In International Conference on Learning Representations, 2022. URL https://openreview.
net/forum?id=uYLFoz1vlAC.

[31] H. Guo, R. Tang, Y. Ye, Z. Li, and X. He. Deepfm: a factorization-machine based neural
network for ctr prediction. arXiv preprint arXiv:1703.04247, 2017.

[32] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–
778, 2016.

[33] N. Hollmann, S. Müller, K. Eggensperger, and F. Hutter. TabPFN: A transformer that
solves small tabular classification problems in a second. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=cp5PvcI6w8_.

[34] X. Huang, A. Khetan, M. Cvitkovic, and Z. Karnin. Tabtransformer: Tabular data modeling
using contextual embeddings. arXiv preprint arXiv:2012.06678, 2020.

[35] A. E. Johnson, T. J. Pollard, L. Shen, L.-w. H. Lehman, M. Feng, M. Ghassemi, B. Moody,
P. Szolovits, L. Anthony Celi, and R. G. Mark. Mimic-iii, a freely accessible critical care
database. Scientific data, 3(1):1–9, 2016.

12

https://openreview.net/forum?id=ztn8FCR1td
https://openreview.net/forum?id=H4DqfPSibmx
https://openreview.net/forum?id=H4DqfPSibmx
https://openreview.net/forum?id=s_PJMEGIUfa
https://openreview.net/forum?id=tEYskw1VY2
https://openreview.net/forum?id=tEYskw1VY2
https://openreview.net/forum?id=yWd42CWN3c
https://openreview.net/forum?id=uYLFoz1vlAC
https://openreview.net/forum?id=uYLFoz1vlAC
https://openreview.net/forum?id=cp5PvcI6w8_
https://openreview.net/forum?id=cp5PvcI6w8_

[36] A. Katharopoulos, A. Vyas, N. Pappas, and F. Fleuret. Transformers are rnns: Fast autoregressive
transformers with linear attention. In International conference on machine learning, pages 5156–
5165. PMLR, 2020.

[37] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y. Liu. Lightgbm: A highly
efficient gradient boosting decision tree. Advances in neural information processing systems,
30, 2017.

[38] A. Liaw, M. Wiener, et al. Classification and regression by randomforest. R news, 2(3):18–22,
2002.

[39] D. C. McElfresh, S. Khandagale, J. Valverde, V. P. C, G. Ramakrishnan, M. Goldblum, and
C. White. When do neural nets outperform boosted trees on tabular data? In Thirty-seventh
Conference on Neural Information Processing Systems Datasets and Benchmarks Track, 2023.
URL https://openreview.net/forum?id=CjVdXey4zT.

[40] A. Orvieto, S. L. Smith, A. Gu, A. Fernando, C. Gulcehre, R. Pascanu, and S. De. Resurrecting
recurrent neural networks for long sequences. In International Conference on Machine Learning,
pages 26670–26698. PMLR, 2023.

[41] B. Peng, E. Alcaide, Q. G. Anthony, A. Albalak, S. Arcadinho, S. Biderman, H. Cao, X. Cheng,
M. N. Chung, L. Derczynski, et al. Rwkv: Reinventing rnns for the transformer era. In The
2023 Conference on Empirical Methods in Natural Language Processing, 2023.

[42] S. Popov, S. Morozov, and A. Babenko. Neural oblivious decision ensembles for deep learning
on tabular data. arXiv preprint arXiv:1909.06312, 2019.

[43] L. Prokhorenkova, G. Gusev, A. Vorobev, A. V. Dorogush, and A. Gulin. Catboost: unbiased
boosting with categorical features. Advances in neural information processing systems, 31,
2018.

[44] J. R. Quinlan. Induction of decision trees. Machine learning, 1:81–106, 1986.

[45] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-propagating
errors. nature, 323(6088):533–536, 1986.

[46] J. Shah, G. Bikshandi, Y. Zhang, V. Thakkar, P. Ramani, and T. Dao. Flashattention-3: Fast and
accurate attention with asynchrony and low-precision. arXiv preprint arXiv:2407.08608, 2024.

[47] G. Somepalli, M. Goldblum, A. Schwarzschild, C. B. Bruss, and T. Goldstein. Saint: Improved
neural networks for tabular data via row attention and contrastive pre-training. arXiv preprint
arXiv:2106.01342, 2021.

[48] Y. Sun, L. Dong, S. Huang, S. Ma, Y. Xia, J. Xue, J. Wang, and F. Wei. Retentive network: A
successor to transformer for large language models. arXiv preprint arXiv:2307.08621, 2023.

[49] A. F. Thielmann, M. Kumar, C. Weisser, A. Reuter, B. Säfken, and S. Samiee. Mambular: A
sequential model for tabular deep learning. arXiv preprint arXiv:2408.06291, 2024.

[50] J. Vanschoren, J. N. van Rijn, B. Bischl, and L. Torgo. OpenML: Networked science in machine
learning. SIGKDD Explorations, 15(2):49–60, 2013.

[51] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin. Attention is all you need. Advances in neural information processing systems,
30, 2017.

[52] Y. Yamada, O. Lindenbaum, S. Negahban, and Y. Kluger. Feature selection using stochastic
gates. In International conference on machine learning, pages 10648–10659. PMLR, 2020.

[53] S. Yang, B. Wang, Y. Shen, R. Panda, and Y. Kim. Gated linear attention transformers with
hardware-efficient training. In Forty-first International Conference on Machine Learning, 2024.

[54] J. Yoon, Y. Zhang, J. Jordon, and M. Van der Schaar. Vime: Extending the success of self-
and semi-supervised learning to tabular domain. Advances in Neural Information Processing
Systems, 33:11033–11043, 2020.

[55] S. Zhang, L. Yao, A. Sun, and Y. Tay. Deep learning based recommender system: A survey and
new perspectives. ACM computing surveys (CSUR), 52(1):1–38, 2019.

13

https://openreview.net/forum?id=CjVdXey4zT

Appendix
A Extended Related Works 15

B Computation Analysis of Various Attention Mechanism 16

B.1 HBM-Efficient Linear Attention . 17

B.2 Simplified PyTorch Implementation of Linear Attention 18

C Details of TABFLEX 19

C.1 Model Training . 20

C.2 Validation Datasets . 21

D Supplementary Experimental Details and Results 21

D.1 TabZilla Datasets . 21

D.2 Evaluation on Additional Datasets . 21

D.3 Additional Comparison with TuneTables . 24

14

A Extended Related Works

Classical Machine Learning Approaches for Tabular Classification. Classical machine learning
algorithms have long been the foundation of tabular data classification. These methods include
k-Nearest Neighbors (KNN) [16], Logistic Regression [17], Decision Trees [44], and Support Vector
Machines (SVM) [15]. These classical models, while effective, often struggle to handle complex,
high-dimensional tabular datasets, motivating the development of more sophisticated approaches.

Gradient-Boosting Decision Trees for Tabular Classification Gradient-boosting decision trees
(GBDTs) [25] have emerged as a cornerstone in tabular classification, owing to their exceptional
ability to capture intricate patterns in structured data. By iteratively combining predictions from
weak learners, GBDTs refine their outputs to minimize errors, resulting in high predictive accuracy.
XGBoost [12] introduced weighted quantile sketching, advanced regularization techniques, and
sparsity-awareness, achieving state-of-the-art performance. LightGBM [37], a computationally
efficient GBDT implementation, employs Gradient-based One-Side Sampling and a leaf-wise tree
growth strategy. CatBoost [43] leverages symmetric trees and introduces ordered boosting, with a
particular emphasis on effectively handling categorical features. These advancements have rendered
GBDTs not only powerful but also versatile tools in the domain of tabular data, dominating tabular
classification in terms of both speed and performance until the advent of TABPFN.

Transformer-based Approaches for Tabular Classification. Recent years have witnessed numer-
ous attempts to employ Transformers for tabular classification [4, 21, 27, 33, 34]. These methods
utilize Transformers in diverse ways to tackle tabular data. TabNet [4], one of the pioneering efforts,
applies unsupervised pre-training on masked tabular datasets to infer missing features, thereby en-
hancing the model’s understanding of datasets and features. It then performs supervised learning
on feature selection to obtain the final decision boundary, akin to decision trees. Huang et al. [34]
introduced TabTransformer, which leverages Transformers to better handle categorical features by
concatenating their contextual embeddings with numerical features. While TabTransformer processes
categorical and continuous features separately, SAINT [47] projects both feature types into a shared
embedding space before passing them through transformer blocks, thereby enhancing overall perfor-
mance. FT-Transformer [27] introduces a feature tokenizer to convert each example into a sequence
of embeddings, enabling Transformers to process tabular datasets and make predictions. LIFT [21]
utilizes a pre-trained language model with parameter-efficient fine-tuning, incorporating task de-
scriptions and converting each sample into a complete sentence with feature names in the prediction
prompt. TABPFN [33] is trained offline on synthetic datasets derived from prior distributions and
performs ICL rather than additional parameter tuning for a given dataset, enabling it to solve small
tabular classification tasks within seconds. Prior to our work, TuneTable [23] extended TABPFN to
scale to large datasets by performing prefix-tuning for each dataset to achieve better performance.
Notably, while most of these methods are computationally intensive due to the need for training large
models, TABPFN achieves efficiency through ICL. Our method builds upon TABPFN, extending its
scalability to large datasets while maintaining and even improving its efficiency.

Attention Mechanisms and Scalable Alternatives. While attention in Transformers [51] is central
to the strong performance of language models, it encounters scaling challenges for long sequences
due to its quadratic computational and memory complexity. To overcome these limitations, several
scalable alternatives have been proposed [19, 28, 36, 40, 41, 48], all aiming to achieve subquadratic
time complexity. In contrast, classical RNNs provide the advantage of efficient linear-time inference
but suffer from limitations in training efficiency, lacking the parallelization capabilities of Transformer
architectures. Linear attention [36] addresses both concerns by reformulating self-attention as a
linear dot-product of kernel feature maps, reducing the computational complexity from quadratic to
linear time. Additionally, causal linear attention can be interpreted as a form of RNN, as the model
makes predictions based on a current token and a “hidden state,” which summarizes information
from the previous tokens. State-space models (SSMs), another popular variant of RNNs, address
the drawbacks of classical RNNs by considering linear RNNs and proposing novel algorithms for
efficient training [19, 28, 29, 30, 40, 41, 48].

Dao et al. [20] identified that another bottleneck in attention mechanisms’ speed stems from the
relatively slow access to high-bandwidth memory (HBM) in GPUs. To address this limitation,
FlashAttention [18, 20, 46] restructures attention computation to optimize the utilization of high-

15

speed on-chip SRAM while minimizing access to slower HBM, thereby enhancing the efficiency
of GPU-based attention operations. FlashAttention strategically balances computational efficiency
against memory bandwidth efficiency. Although the computational complexity in terms of sequence
length remains quadratic, the optimizations introduced by FlashAttention significantly accelerate
attention computation in wall-clock time.

Non-Transformer Neural Network-based Approaches for Tabular Classification. Non-
Transformer neural networks, such as Multi-Layer Perceptrons (MLP) [45], were explored for
tabular classification long before Transformer-based methods, but their performance was limited.
In recent years, several novel neural network techniques have been developed for this task, includ-
ing ResNet [32], DANet [11], NODE [42], DeepFM [31], STG [52], VIME [54], and NAM [2].
DeepFM [31] employs a factorization machine-based neural network to learn from categorical data.
Drawing inspiration from CatBoost, Popov et al. [42] present a novel neural network architecture
designed specifically for tabular data, named Neural Oblivious Decision Ensembles (NODE). While
self- and semi-supervised learning have demonstrated effectiveness in the domains of computer vision
and natural language processing, Yoon et al. [54] proposed Value Imputation and Mask Estimation
(VIME), which represents the first attempt to address tabular tasks using a self- and semi-supervised
learning framework. [2] proposed the Neural Additive Model (NAM), an interpretable neural network
that maintains strong performance on tabular data. Yamada et al. [52] proposed a feature selection
method using stochastic gates (STG), which is a neural network-based and effective approach for
tabular data. Chen et al. [11] designed an abstract layer, a specialized neural component for tabular
data, and proposed Deep Abstract Networks (DANets) by stacking these layers.

Some approaches even replace Transformers with SSMs for tabular learning [3, 49]. However, these
methods require training on a per-dataset basis, leading to high computational costs, and they are
generally slower than GBDTs for tabular classification tasks.

B Computation Analysis of Various Attention Mechanism

In this section, we provide a computational analysis of various attention mechanisms, comparing
standard attention, FlashAttention (specifically FlashAttention-I [20]), causal FlashLinearAttention
(referred to as FlashLinearAttention in Yang et al. [53]), and non-causal linear attention. To clarify,
FlashLinearAttention is designed to reduce HBM access specifically for causal linear attention. For
notational simplicity, we use the term “linear attention” to refer to non-causal linear attention.

Algorithm 2: Causal FlashLinearAttention Implementation [53]

Input: Matrices Q,K,V ∈ RN×D in HBM, on-chip SRAM of size M
1 Set block size B;
2 Initialize O = (0)N×D ∈ RN×D in HBM;
3 Divide Q into T = ⌈NB ⌉ blocks Q1, . . . ,QT of size B ×D each, and divide K,V into

T = ⌈NB ⌉ blocks K1, . . . ,KT and V1 . . .VT of size B ×D each;
4 Divide O into T blocks O1, . . . ,OT of size B ×D each;
5 On on-chip SRAM, construct causal mask, M ∈ RB×B ;
6 On SRAM, initialize S = (0)D×D ∈ RD×D;
7 for 1 ≤ j ≤ T do
8 Load Kj ,Vj ,Qj ,Oj from HBM to on-chip SRAM;
9 Write Oj ← QjS + ((QjK

⊤
j)⊙M) · Vj to HBM;

10 On chip, compute S ← S +K⊤
j Vj ;

11 end
Output: O

We evaluate these mechanisms based on their High Bandwidth Memory (HBM) access, memory
requirements, and floating-point operations per second (FLOPS) when computing attention outputs
given query, key, and value inputs. While Dao et al. [20] have provided computations for standard
attention and FlashAttention, we focus our analysis on causal FlashLinearAttention (detailed in
Alg. 2) and HBM-efficient non-causal linear attention (developed by us and detailed in Alg. 3)

16

in Sec. B.1. In practice, we employ a simplified PyTorch implementation of linear attention and
demonstrate its efficiency, as it only causes marginal increases in HBM access and memory usage as
we demonstrate in Sec. B.2. Furthermore, we present visualizations in Sec. B.2 that illustrate the time
and CUDA memory consumption of these attention mechanisms across various sequence lengths and
scenarios.

Algorithm 3: HBM-Efficient Implementation of Linear Attention

Input: Matrices Q,K,V ∈ RN×D in HBM, on-chip SRAM of size M
1 Set block size B;
2 Initialize O = (0)N×D ∈ RN×D in HBM;
3 Divide Q into T = ⌈NB ⌉ blocks Q1, . . . ,QT of size B ×D each, and divide K,V into

T = ⌈NB ⌉ blocks K1, . . . ,KT and V1, . . . ,VT of size B ×D each;
4 Divide O into T blocks O1, . . . ,OT of size B ×D each;
5 On on-chip SRAM, initialize S = (0)D×D ∈ RD×D;
6 for 1 ≤ i ≤ T do
7 Load Ki,Vi;
8 On chip, compute S ← S +K⊤

i Vi;
9 for 1 ≤ j ≤ T do

10 Load Qj ,Oj ;
11 Write Oj ← QjS to HBM;

Output: O

B.1 HBM-Efficient Linear Attention

In this section, we analyze the number of HBM accesses, HBM memory, and FLOPS required by
FlashLinearAttention (Alg. 2) and linear attention (Alg. 3).
Lemma 2. Let Q,K,V ∈ RN×D represent the query, key, and value matrices for a single attention
head, where N is the sequence length and D is the embedding size. Both FlashLinearAttention
(Alg. 2) and linear attention (Alg. 3) require 5ND HBM accesses to compute the attention output.

Proof of Lemma 2. For causal FlashLinearAttention (Alg. 2):

• Line 8: Loading Kj ,Vj ,Qj ,Oj necessitates 4BD HBM accesses.

• Line 9: Writing Oj requires BD HBM accesses.

These operations are executed T times, where T = ⌈NB ⌉. Thus, the total HBM accesses are:

5BD · T = 5BD · ⌈N
B
⌉ = 5ND.

For non-causal linear attention (Alg. 3):

• Line 7: Loading Ki,Vi requires 2BD HBM accesses.

• Line 10: Loading Qj ,Oj demands 2BD HBM accesses.

• Line 11: Writing Oj necessitates BD HBM accesses.

These operations are also repeated T times, where T = ⌈NB ⌉. Consequently, the total HBM accesses
are:

5BD · T = 5BD · ⌈N
B
⌉ = 5ND.

Therefore, we conclude that both causal FlashLinearAttention and non-causal linear attention require
5ND HBM accesses to compute the attention output.

17

Lemma 3. Let Q,K,V ∈ RN×D represent the query, key, and value matrices for a single attention
head, where N is the sequence length and D is the embedding size. Both FlashLinearAttention
(Alg. 2) and linear attention (Alg. 3) require 4ND HBM memory to compute the attention output.

Proof of Lemma 3. For both algorithms:

• Storing Q,K,V requires 3ND memory.

• Storing O requires ND memory.

Total HBM memory usage: 4ND.

Lemma 4. Let Q,K,V ∈ RN×D represent the query, key, and value matrices for a single attention
head, where N is the sequence length and D is the embedding size. Both FlashLinearAttention
(Alg. 2) and linear attention (Alg. 3) require O(ND2) FLOPS to compute the attention output.

Proof of Lemma 4. For causal FlashLinearAttention (Alg. 2):

• Computing (QjK
⊤
j)⊙M requires B2(2D − 1) +B2 FLOPs.

• The result of step 1 multiplied by Vj requires B2(2D − 1) +BD(2B − 1) FLOPs.

• Computing QjS requires B ·D(2D − 1) FLOPs.

• Computing K⊤
j Vj (line 10) requires (2B − 1) ·D2 FLOPs.

The total number of FLOPs for one iteration is:

B2(2D − 1) +B2 +B2(2D − 1) +BD(2B − 1) +B ·D(2D − 1) + (2B − 1) ·D2

= 4B2D −BD + 4BD2 −D2.

These operations are repeated T = ⌈NB ⌉ times. The total number of FLOPs is:

(4B2D −BD + 4BD2 −D2) · T = O(ND2).

For non-causal linear attention (Alg. 3):

• Computing K⊤
i Vi (line 8) requires D2(2B − 1) FLOPs.

• Computing QjS (line 11) requires (2D − 1)BD FLOPs.

These operations are repeated T = ⌈NB ⌉ times. The total number of FLOPs is:

(2BD2 −D2 + 2BD2 −BD) · T = O(ND2).

Thus, we conclude that both algorithms require O(ND2) FLOPs to compute the attention output.

B.2 Simplified PyTorch Implementation of Linear Attention

In our implementation, we adopt a straightforward PyTorch approach to linear attention rather than
an HBM-efficient method. We employ the concise two-line implementation presented in Listing 1. In
the following lemma, we demonstrate that this straightforward implementation only incurs a marginal
increase in HBM accesses and HBM memory usage.

1 def linear_attn(q, k, v):
2 """
3 q: (batch , heads , seq_q , dim_qk)
4 k: (batch , heads , seq_kv , dim_qk)
5 v: (batch , heads , seq_kv , dim_v)
6 """
7 kv = torch.einsum("bhnd ,bhnm ->bhdm", k, v)

18

8 o = torch.einsum("bhld ,bhdm ->bhlm", q, kv)
9 return o.contiguous ()

Listing 1: Straightforward PyTorch implementation of linear attention [36].

Theorem 1. Let Q,K,V ∈ RN×D represent the query, key, and value matrices for a single attention
head, where N is the sequence length and D is the embedding size. Both causal FlashLinearAttention
(Alg. 2) and non-causal linear attention (Listing 1) require O(ND) HBM accesses, O(ND) HBM
memory, and O(ND2) FLOPS to compute the attention output.

Proof. Let us consider the implementation in Listing 1 and compare it to Alg. 3. PyTorch’s optimized
tensor computation ensures efficiency, with the primary distinction between Listing 1 and Alg. 3
being the storage of kv in the former, which is equivalent to S ∈ RD×D in Alg. 3. This results in the
following changes:

• HBM Accesses: By Lemma 2, Alg. 3 requires 5ND HBM accesses. Due to the additional write
and load operations for S ∈ RD×D, Listing 1 requires 5ND + 2D2 HBM accesses.

• HBM Memory Usage: By Lemma 3, Alg. 3 requires 4ND HBM memory usage. Due to the
additional storage requirements for S ∈ RD×D, Listing 1 requires 4ND + D2 HBM memory
usage.

The number of FLOPS remains unaffected. The analysis above, in conjunction with Lemmas 2, 3,
and 4, yields the desired outcome.

In Table 4, we summarize the #HBM access, HBM memory, and FLOPS required by standard
attention (with naive PyTorch implementation), FlashAttention-I, FlashLinearAttention (causal), and
linear attention with both implementations.

Standard Attention FlashAttention FlashLinearAttention Linear Attention
[20] [53] Alg. 3 Listing 1

HBM access 4N2 + 4ND 12N2D2

M + 16N2D
M + 2ND 5ND 5ND 5ND + 2D2

Memory 2N2 + 4ND 2N + 4ND 4ND 4ND 4ND +D2

FLOPS O(N2D) O(N2D) O(ND2) O(ND2) O(ND2)

Table 4: Comparison of memory and computational costs across different attention mechanisms.
FlashAttention improves the speed of standard attention by optimizing # HBM access. Flash causal
linear attention takes a similar approach, achieving linear # HBM access. However, we show that
non-causal linear attention already achieves linear # HBM access, matching the efficiency of flash
causal linear attention without requiring any additional optimization on # HBM access.

Subsequently, we visualize the empirical execution time and CUDA memory utilization of
FlashAttention-2, FlashLinearAttention, and linear attention in Fig. 5a and Fig. 5b, respectively. We
vary the head dimension ∈ {32, 64, 128, 256}, the number of heads ∈ {2, 4, 8, 16}, and the sequence
length ∈ {24, 25, . . . , 215}. We focus on the self-attention case, randomly generating input (serving
as key, query, and values) with a batch size of 10, and replicate the experiment 5 times. The final
values presented are aggregated across these 5 simulations. Notably, we were unable to obtain results
for FlashLinearAttention in two configurations: (1) head dimension 256 with 8 heads, and (2) head
dimension 256 with 16 heads, due to illegal memory access error incurred by the PyTorch package
fla [53]. Our observations from the figures indicate that both runtime and CUDA memory usage
of FlashLinearAttention and linear attention exhibit linear growth with respect to sequence length,
aligning with the predictions of Theorem 1.

C Details of TABFLEX

In this section, we elucidate the finer details of TABFLEX, encompassing our model training details
and validation dataset selection process.

19

0 20000
0

5000

2 Heads

FlashAttention
Linear Attention (Non-Causal)

FlashLinearAttention (Causal)

0 20000

4 Heads

0 20000

8 Heads

0 20000

16 Heads

0 20000
0

5000

0 20000 0 20000 0 20000

0 20000
0

5000

0 20000 0 20000 0 20000

0 20000
0

5000

0 20000 0 20000 0 20000

H
ea

d
D

im
: 3

2
H

ea
d

D
im

: 6
4

H
ea

d
D

im
: 1

28
H

ea
d

D
im

: 2
56

H
ea

d
D

im
: 3

2
H

ea
d

D
im

: 6
4

H
ea

d
D

im
: 1

28
H

ea
d

D
im

: 2
56

H
ea

d
D

im
: 3

2
H

ea
d

D
im

: 6
4

H
ea

d
D

im
: 1

28
H

ea
d

D
im

: 2
56

H
ea

d
D

im
: 3

2
H

ea
d

D
im

: 6
4

H
ea

d
D

im
: 1

28
H

ea
d

D
im

: 2
56

Sequence Length

(a) Time

0 20000
0

1

1e10 2 Heads

FlashAttention
Linear Attention (Non-Causal)

FlashLinearAttention (Causal)

0 20000

4 Heads

0 20000

8 Heads

0 20000

16 Heads

0 20000
0

1

1e10

0 20000 0 20000 0 20000

0 20000
0

1

1e10

0 20000 0 20000 0 20000

0 20000
0

1

1e10

0 20000 0 20000 0 20000

H
ea

d
D

im
: 3

2
H

ea
d

D
im

: 6
4

H
ea

d
D

im
: 1

28
H

ea
d

D
im

: 2
56

H
ea

d
D

im
: 3

2
H

ea
d

D
im

: 6
4

H
ea

d
D

im
: 1

28
H

ea
d

D
im

: 2
56

H
ea

d
D

im
: 3

2
H

ea
d

D
im

: 6
4

H
ea

d
D

im
: 1

28
H

ea
d

D
im

: 2
56

H
ea

d
D

im
: 3

2
H

ea
d

D
im

: 6
4

H
ea

d
D

im
: 1

28
H

ea
d

D
im

: 2
56

Sequence Length

(b) CUDA Memory

Figure 5: Time and CUDA memory usage comparison of FlashAttention-2 [18], causal FlashLinearAt-
tention [53], and linear attention [36] (implemented as in Listing 1). Results for FlashLinearAttention
in two configurations: (1) head dimension 256 with 8 heads, and (2) head dimension 256 with 16
heads are missing, due to illegal memory access error incurred by the PyTorch package fla [53].

C.1 Model Training

We implement linear attention with the feature function elu(·) + 1, adhering to the default imple-
mentation proposed by Katharopoulos et al. [36]. Unless otherwise specified, we adopt the training
setup of TABPFN for TABFLEX-S100, TABFLEX-L100, and TABFLEX-H1K. Each model is trained
on a single Nvidia A100 80GB PCIe GPU.

Hyperparameters Batch Size Epoch Learning Rate #Steps/epoch
TABFLEX-S100 1210 8 3e-5 8192
TABFLEX-L100 110 4 3e-5 8192
TABFLEX-H1K 1410 4 3e-5 1024

Table 5: Hyperparameters used for training TABFLEX models. The number of steps per epoch
indicates the quantity of synthetic datasets generated and used for training within each epoch.

0 50 100
Epoch

0.4

0.6

0.8

1.0

Lo
ss

0 250000 500000
Wallclock Time

0.4

0.6

0.8

1.0 TabFlex-S100
TabFlex-L100
TabFlex-H1K

Figure 6: Visualization of training loss for
TABFLEX models as a function of epoch and wall-
clock time.

Table 5 summarizes the hyperparameters se-
lected for training TABFLEX-S100, TABFLEX-
L100, and TABFLEX-H1K. For all three meth-
ods, we utilize the same embedding size of 512,
consistent with TABPFN. We extend the fea-
ture capacity by modifying the first linear layer,
which projects the features into embeddings –
specifically, we increase the number of neurons
responsible for receiving the features.

The training loss curves are illustrated in Fig. 6.
We observe that as the number of features
and the length of training dataset sequences in-
crease, the training process becomes more time-

consuming. In fact, training a robust TABFLEX-H1K model requires more than three weeks.

20

C.2 Validation Datasets

We select the validation datasets from the OpenML AutoML Benchmark [24] by choosing 10 datasets
from each of the following sample size intervals: [0.1K, 1K), [1K, 10K), and [10K, 100K). To ensure
diversity in the validation set, we also vary the number of classes and features within each interval.
The details of all datasets used in validation are summarized in Table 6.

OpenML did Dataset #Features #Instances #Classes
279 meta-stream-intervals.arff 75 45164 11
311 oil-spill 50 937 2
742 fri-c4-500-100 101 500 2
825 boston-corrected 21 506 2
833 bank32nh 33 8192 2
841 stock 10 950 2
920 fri-c2-500-50 51 500 2
940 water-treatment 37 527 2
981 kdd-internet-usage 69 10108 2
1039 hiva-agnostic 1618 4229 2
1491 one-hundred-plants-margin 65 1600 100
1492 one-hundred-plants-shape 65 1600 100
1503 spoken-arabic-digit 15 263256 10
1515 micro-mass 1301 571 20
1536 volcanoes-b6 4 10130 5
1541 volcanoes-d4 4 8654 5
1549 autoUniv-au6-750 41 750 8
40645 GAMETES-Epistasis-2-Way-1000atts-0.4H-EDM-1-

EDM-1-1
1001 1600 2

40672 fars 30 100968 8
40677 led24 25 3200 10
40693 xd6 10 973 2
40705 tokyo1 45 959 2
40922 Run-or-walk-information 7 88588 2
40985 tamilnadu-electricity 4 45781 20
41082 USPS 257 9298 10
41144 madeline 260 3140 2
41986 GTSRB-HOG01 1569 51839 43
41988 GTSRB-HOG02 1569 51839 43
41989 GTSRB-HOG03 2917 51839 43
41990 GTSRB-HueHist 257 51839 43
41991 Kuzushiji-49 785 270912 49
42193 compas-two-years 14 5278 2
42206 porto-seguro 38 595212 2
42343 KDD98 478 82318 2

Table 6: Characteristics of datasets in our diverse validation set.

D Supplementary Experimental Details and Results

In this section, we present the details of the test datasets and additional experiment results.

D.1 TabZilla Datasets

The results of our experiments on TabZilla-related datasets are reported in Table 1, 2, and 3. [39]
presents the details of the datasets used in their hard benchmark (Table 3) in Table 4 of their paper.
We provide the specifications of the datasets used for our evaluation in Table 1 and Table 2 in Table 7
and Table 8, respectively.

D.2 Evaluation on Additional Datasets

In this section, we provide additional evaluation of TABFLEX on eight large datasets randomly
selected from OpenML-CC18 Benchmarks [8], after excluding the datasets contained in TabZilla’s

21

Dataset D N C Dataset D N C Dataset D N C

cmc 9 1473 3 socmob 5 1156 1 adult-census 14 32561 2

kc1 21 2109 1 vehicle 18 846 4 breast-cancer 9 286 2

kc2 21 522 1 heart-h 13 294 1 mfeat-factors 216 2000 10

pc3 37 1563 1 jasmine 144 2984 1 mfeat-zernike 47 2000 10

pc4 37 1458 1 phoneme 5 5404 1 dresses-sales 12 500 2

pc1 21 1109 1 semeion 256 1593 10 mfeat-fourier 76 2000 10

cjs 33 2796 6 heart-c 13 303 1 balance-scale 4 625 3

car 6 1728 4 kr-vs-kp 36 3196 1 bank-marketing 16 45211 2

tae 5 151 3 spambase 57 4601 1 car-evaluation 21 1728 4

jm1 21 10885 1 satimage 36 6430 6 cylinder-bands 37 540 2

dna 180 3186 3 mushroom 22 8124 1 mfeat-karhunen 64 2000 10

musk 167 6598 1 diabetes 8 768 1 credit-approval 15 690 2

wdbc 30 569 1 rabe_266 2 120 1 ozone-level-8hr 72 2534 2

wilt 5 4839 1 breast-w 9 699 1 analcatdata_dmft 4 797 6

ilpd 10 583 1 elevators 18 16599 1 monks-problems-
2

6 601 2

sick 28 3772 1 Satellite 36 5100 1 cardiotocography 35 2126 10

iris 4 150 3 fertility 9 100 1 PhishingWebsites 30 11055 2

lymph 18 148 4 ionosphere 34 351 1 synthetic_control 60 600 6

churn 20 5000 1 transplant 3 131 1 steel-plates-fault 27 1941 7

colic 22 368 1 eucalyptus 19 736 5 mfeat-
morphological

6 2000 10

ecoli 7 336 8 Australian 14 690 1 acute-
inflammations

6 120 2

autos 25 205 6 hayes-roth 4 160 3 analcatdata_boxing1 3 120 2

scene 299 2407 1 dermatology 34 366 6 analcatdata_chlamydia 3 100 2

profb 9 672 1 MiceProtein 77 1080 8 wall-robot-
navigation

24 5456 4

colic 26 368 1 SpeedDating 120 8378 1 visualizing_livestock 2 130 2

labor 16 57 1 tic-tac-toe 9 958 1 Click_prediction_small11 39948 2

irish 5 500 1 hill-valley 100 1212 1 analcatdata_authorship70 841 4

glass 9 214 6 page-blocks 10 5473 5 banknote-
authentication

4 1372 2

yeast 8 1269 4 lung-cancer 56 32 3 LED-display-
domain-7digit

7 500 10

sonar 60 208 1 qsar-biodeg 41 1055 1 visualizing-
environmental

3 111 2

splice 60 3190 3 fri_c3_100_5 5 100 1 postoperative-
patient-data

8 88 2

libras 104 360 10 ada_agnostic 48 4562 1 blood-transfusion-
service-center

4 748 2

anneal 38 898 5 fri_c0_100_5 5 100 1

Table 7: Datasets utilized in the evaluation presented in Table 1. Here D, N , and C denote the
number of features, instances, and classes, respectively.

22

Dataset #Features #Instances #Classes
Australian 14 690 2
LED-display-domain-7digit 7 500 10
MiceProtein 77 1080 8
acute-inflammations 6 120 2
analcatdata_authorship 70 841 4
analcatdata_boxing1 3 120 2
analcatdata_chlamydia 3 100 2
analcatdata_dmft 4 797 6
anneal 38 898 5
autos 25 205 6
balance-scale 4 625 3
blood-transfusion-service-center 4 748 2
blood-transfusion-service-center 4 748 2
breast-cancer 9 286 2
breast-w 9 699 2
colic 26 368 2
colic 22 368 2
credit-approval 15 690 2
cylinder-bands 37 540 2
dermatology 34 366 6
diabetes 8 768 2
dresses-sales 12 500 2
ecoli 7 336 8
eucalyptus 19 736 5
fertility 9 100 2
fri_c0_100_5 5 100 2
fri_c3_100_5 5 100 2
glass 9 214 6
hayes-roth 4 160 3
heart-c 13 303 2
heart-h 13 294 2
hill-valley 100 1212 2
ilpd 10 583 2
ionosphere 34 351 2
iris 4 150 3
irish 5 500 2
kc2 21 522 2
labor 16 57 2
lung-cancer 56 32 3
lymph 18 148 4
monks-problems-2 6 601 2
pc1 21 1109 2
postoperative-patient-data 8 88 2
profb 9 672 2
qsar-biodeg 41 1055 2
rabe_266 2 120 2
socmob 5 1156 2
sonar 60 208 2
synthetic_control 60 600 6
tae 5 151 3
tic-tac-toe 9 958 2
transplant 3 131 2
vehicle 18 846 4
visualizing_environmental 3 111 2
visualizing_livestock 2 130 2
wdbc 30 569 2
yeast 8 1269 4

Table 8: Datasets utilized in the evaluation presented in Table 2.

23

evaluation. As shown in Table 9, TABFLEX consistently outperforms TABPFN in terms of speed and
achieves superior performance on the majority of the datasets.

Dataset #Features #Instances #Classes Mean AUC Mean Time (seconds)
TABPFN TABFLEX TABPFN TABFLEX

kick 33 72983 2 0.663 0.684 13.330 3.096
Click-prediction-small-1220 10 39948 2 0.652 0.659 3.663 0.887
house-8L 9 22784 2 0.947 0.945 1.383 0.536
okcupid-stem 20 50789 3 0.825 0.828 6.152 1.511
volcanoes-b1 4 10176 5 0.660 0.663 0.349 0.202
volcanoes-b2 4 10668 5 0.651 0.652 0.375 0.217
kdd-internet-usage 69 10108 2 0.932 0.932 1.021 0.851
BNG(tic-tac-toe) 10 39366 2 0.836 0.835 3.626 1.111

Table 9: Performance comparison between TABPFN and TABFLEX on an additional large
dataset. We observe that TABFLEX is consistently faster than TABPFN and outperforms it on the
majority of the datasets.

D.3 Additional Comparison with TuneTables

As mentioned in Sec. 6, the results of TuneTables presented in Table 10 of our main experiments
use TuneTablesClassifier. However, we note that the original paper reported results after 30
iterations of hyperparameter tuning. They also applied this process to TABPFN, using a different
subset of datasets as training samples at each iteration. In Table 10, we compare the performance
of TABFLEX without any hyperparameter tuning to the results reported in their paper. TABFLEX
remains competitive, particularly when the number of samples is limited. While TuneTables tends
to perform better with larger sample sizes due to its ability to update model parameters based on
training data, TABFLEX maintains comparable performance while being significantly faster.

24

Dataset Size TABPFN TuneTables TABFLEX

Acc. Runtime (sec.) Acc. Runtime (sec.) Acc. Runtime (sec.)

breast-cancer 286 .765 29 .770 65 .793 1
heart-c 303 .848 40 .903 66 .903 0
ecoli 336 .848 30 .843 66 .882 0
colic 368 .856 39 .892 66 .892 0
dresses-sales 500 .578 41 .580 122 .580 0
cylinder-bands 540 .800 41 .846 82 .796 0
climate 540 .959 59 .951 97 .963 0
balance-scale 625 .990 29 .995 55 1.000 0
blood-transfusion 748 .801 25 .782 56 .840 0
cmc 1473 .554 91 .556 109 .605 0
kc-1 2109 .862 168 .856 187 .867 0
bioresponse 3151 .797 638 .798 3012 .720 13
christine 5418 .742 666 .755 3920 .721 11
robert 10000 .250 964 .414 2397 .333 17
dilbert 10000 .922 761 .992 3749 .802 17
har 10299 .936 370 .981 2657 .918 9
eeg-eye-state 14980 .940 178 .986 1929 .837 1
elevators 16599 .902 186 .902 1297 .907 1
riccardo 20000 .922 1395 .995 5247 .773 31
volkert 58310 .567 459 .693 6331 .561 12
higgs 67557 .671 931 .714 4084 .691 1
connect-4 98050 .668 931 .817 5395 .692 1
BNG (vote) 131072 .968 1976 .974 2493 .974 1
albert 425240 .642 2363 .658 17518 .637 1
airlines 539383 .600 2602 .653 44434 .597 2
BNG (labor) 1000000 .937 5518 .967 7717 .950 8
agrawall 1000000 .948 5158 .950 45504 .948 3
poker-hand 1025009 .531 2423 1.000 10471 .542 15
click-prediction-small 1997410 .833 10421 .837 33148 .833 5

Table 10: Accuracy comparison of TABPFN, TuneTables, and TABFLEX on test datasets from Feuer
et al. [23]. Results for TABPFN and TuneTables are directly sourced from Feuer et al. [23], where
hyperparameter tuning was performed 30 times for both methods. For TABPFN, hyperparameters
determine the subset of the dataset used in ICL. TABFLEX results are reported without hyperparameter
tuning.

25

	Introduction
	Related Works
	Background
	Architectural Exploration for Scalable Tabular Learning
	Causal Model vs. Non-Causal Model
	Softmax Attention vs. Linear Attention

	TabFlex: Scaling TabPFN for Large Datasets
	Experiments
	Experimental Setup
	Evaluation on Simple Datasets
	Evaluation on Hard Datasets

	Conclusion & Discussion
	Extended Related Works
	Computation Analysis of Various Attention Mechanism
	HBM-Efficient Linear Attention
	Simplified PyTorch Implementation of Linear Attention

	Details of TabFlex
	Model Training
	Validation Datasets

	Supplementary Experimental Details and Results
	TabZilla Datasets
	Evaluation on Additional Datasets
	Additional Comparison with TuneTables

