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Abstract

Multi-modal conversational recommendation
(multi-modal CRS) can potentially revolution-
ize how customers interact with e-commerce
platforms. Yet conversational samples, as train-
ing data for such a system, are difficult to ob-
tain in large quantities, particularly in new plat-
forms. Motivated by this challenge, we aim to
design innovative methods for training multi-
modal CRS effectively even in a low resource
setting. Specifically, assuming the availability
of a small number of samples with dialog states,
we devise an effective dialog state encoder to
bridge the semantic gap between conversation
and product representations for recommenda-
tion. To reduce the cost of dialog state anno-
tation, a semi-supervised learning method is
developed to effectively train the dialog state
encoder with a small set of labeled conver-
sations. In addition, we design a correlation
regularisation that leverages knowledge in the
multi-modal domain database to better align
textual and visual modalities. Experiments on
two datasets (SIMMC and MMD) demonstrate
the effectiveness of our method. Particularly,
with only 5% of the MMD training set, our
method (namely SeMANTIC) obtains better
NDCG scores than those of baseline models
trained on the full MMD training dataset.

1 Introduction

Recently, there has been a growing interest in con-
versational recommendation systems (CRS). These
systems bring together the user-friendly nature of
conversational Al and the business potential of rec-
ommendation systems, potentially revolutionizing
how customers engage with e-commerce platforms.
Unfortunately, conventional text-based dialogue
systems have inherent limitations in capturing user
preferences. In many practical situations, a blend
of textual and visual cues allows agents to recom-
mend products that are better aligned with user
interests (e.g., see Figure 1 for an example).
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Figure 1: In a multimodal CRS, a user expresses her/his
requirements with preferred example image. The dialog
state (belief state) encapsulates user interest across turns
and modalities.

The advance in deep learning along with the
introduction of multi-modal benchmarks, such as
MMD (Saha et al., 2018), have contributed signifi-
cantly to the recent progress in multi-modal CRS. A
number of methods have been developed using Re-
current Neural Networks (RNN) (Saha et al., 2018),
RNN with attention (Cui et al., 2019), Graph Neu-
ral Networks (GNN) (Zhang et al., 2021), Memory
Networks (Nie et al., 2021), Knowledge-enhanced
Convolution Network (CNN) (Liao et al., 2018),
and Transformer (Ma et al., 2022). Unfortunately,
deep learning-based methods require a significant
number of sample conversations with relevance
annotation (for recommendation), which can be
challenging to acquire. For example, the aforemen-
tioned methods have been trained on MMD using
hundreds of thousands of conversations, and it is
unclear whether these approaches remain effective
when being trained with a smaller sample size.

In this paper, we examine multi-modal CRS in a
low resource setting. Specifically, we consider that
there is only a limited number of sample conver-
sations and strive to make the most of the data by
following two insights. Firstly, when the number of



sample conversations is limited, augmenting them
with dialog states can help align the representations
of dialogues and products for better matching. This
is supported by the fact that dialog state tracking
(DST) is essential for traditional text-based task-
oriented dialog (TOD) systems (Lei et al., 2018;
Hosseini-Asl et al., 2020; Zhang et al., 2020; Yang
et al., 2021). Unfortunately, dialog state annota-
tion can be time-consuming, especially in multi-
modal dialogs. Therefore, we assume that only a
subset of sample conversations are annotated with
dialog states, and design an effective method for
dialog state modeling. Secondly, the vast amount
of products with both textual and visual informa-
tion should be exploited to bridge the cross-modal
semantic gap. Intuitively, doing so helps improve
the system’s capability in understanding user pref-
erences across modalities (see U3, Figure 1).

With such considerations, we propose a Sam-
ple Efficient Multi-modAl coNversaTIonal reCom-
mendation system, or SeMANTIC for short. More
specifically, dialog contexts and candidate prod-
ucts are first encoded with a context encoder and a
product encoder separately, resulting in initial con-
text/product representations. Such representations
are then enhanced with Dialog-State Interaction
modules that capture the interactions of the context
(or the product) representations with shared dialog
state embeddings. By doing so, we leverage dia-
log states to align the representations of the dialog
and the product sides. Here, dialog state embed-
dings are learned via a teacher-student framework,
where the teacher network has access to the limited
size of dialogs with belief states, and the student
network learns from the teacher to estimate dialog
state embeddings from conversations without dia-
log states. We then propose a regularization term
that makes state-aware (text/visual) representations
of the same product closer to each other. By do-
ing so, we effectively utilize the large number of
products in the domain database for bridging the
cross-modal semantic gap.

All in all, our main contributions are as follows:

* We propose a novel model, SeMANTIC, that
enhances dialog and product representations
with dialog states, and a regularization term
that leverages the domain database to bridge
cross-modal semantic gap.

* A semi-supervised learning is proposed based
on the teacher-student framework to alleviate
the dialog state annotation cost.

* Extensive evaluation on SIMMC and MMD
datasets demonstrates the superiority of our
model in comparison to strong baselines in a
low resource setting.

* Further analysis validates that our semi-
supervised learning approach is data efficient
as it only requires a small ratio of supervision
for learning dialog state embeddings.

2 RELATED WORK
2.1 MultiModal Conversational Systems

There have been a growing number of studies on
multi-modal conversational systems thanks to the
introduction of multi-modal datasets such as SURE
(Long et al., 2023), FashionlQ (Wu et al., 2021;
Yuan and Lam, 2021), MMD (Saha et al., 2018)
and SIMMC (Kottur et al., 2021). Most of previ-
ous methods aim to enhance dialog representation
using different network architectures (Saha et al.,
2018; Ma et al., 2022; Nie et al., 2019; Zhang et al.,
2021), external knowledge or side information (Cui
et al., 2019; Nie et al., 2019; Zhang et al., 2021),
mutual-information (Zhou et al., 2020), knowledge
distillation (Jung et al., 2023), cross-modal interac-
tion or attention (Cui et al., 2019; Ma et al., 2022).
Unlike these studies, we target an under-
explored problem of learning effective represen-
tations with a limited number of conversations. It
is noted that our focus is on grounding dialogs on
external data (the recommendation task), which
remains challenge particularly now that response
generation can be greatly improved with large lan-
guage models. As dialog systems are complicated,
it is common for researchers to focus on substaks
such as recommendation (Nie et al., 2021; Zhang
etal., 2021), dense retrieval (Wu et al., 2023; Wang,
2024), Dialog State Tracking (DST) (Chen et al.,
2020; Kumar et al., 2020) for deeper analysis.

2.2 Learning in a Low-Resource Setting

Deep learning has been the mainstream approach
recently. Unfortunately, deep learning methods are
also data hungry, requiring a large amount of train-
ing conversational samples with annotation. For
example, to train a conversational recommendation
system, it is needed to collect diverse dialog sam-
ples annotated with recommendations and various
user requests (Budzianowski et al., 2018; Li et al.,
2018; Liu et al., 2020). As labeled data is difficult
to obtain, it is desirable to develop data efficient
methods based on pretrained models (Yang et al.,



2023; He et al., 2022), meta-learning (Dai et al.,
2020), or semi-supervised learning (Yang et al.,
2022; Huang et al., 2020; Li et al., 2020).

Our work falls into the semi-supervised learning
category but focuses on multi-modal dialogs. To
the best of our knowledge, our work is the first at-
tempt at this important problem. It should be noted
that we cannot simply adopt a unimodal method to
a multi-modal scenario. For instance, one simple
way to apply these available methods (Huang et al.,
2020; Zhang et al., 2020) to our task is to consider
DST as a text sequence generation task. However,
as we empirically show in Section 5.3, without
careful consideration of the semantic gap between
modalities as well as between products and dialogs,
even groundtruth (sequentialized) DST will not fa-
cilitate the recommendation task.

3 METHODOLOGY

Problem Formalization Let D be the set of M
fully labeled dialogues 7; = {ut|1 < t < n,},
where u; indicates the t-th turn from either the user
or the agent. Each (user or agent) utterance uy
contains the textual part u] and the visual part u/,
i.e. a list of user uploaded images or system rec-
ommended product images. For t-th user turn, we
are provided with a dialog state s} that summa-
rizes the user requests throughout the conversation.
Additionally, let Dp be the set of partially labeled
dialogs of which we do not have dialog state annota-
tion. We assume that Dp is larger in size compared
to D, but still in a moderate size. The CRS task
is formalized as selecting products from a domain
database P = {(p}, p1)|1 < k < np} as response
to a user request. Here, a product in P is associated
with both textual description p{ and images pi.
The overall architecture of SeMANTIC is de-
picted in Figure 2, where the main idea is to
treat dialog states as shared (continuous) variables
that bridge the semantic gaps between the textual
modality and the visual modality, and between the
conversation and the product sides. Specifically,
representations of user texts/images and product
texts/images are both enhanced with dialog state
embeddings using Dialog State Interaction (DSI)
modules (Section 3.2). Here, the dialog state em-
beddings are obtained by encoding the groundtruth
dialog states for those in D, and inferred by the
dialog learner for those in the partially labeled set
(Section 4). To mitigate the limited size of Df, we
add a regularization term inferred from the partially

labeled dialogs Dp and the abundance of products
in the domain database P (section 3.4 and 4).

3.1 Context and Product Encoders

Context Encoder Let 7 be a dialog context and
ul = {w,wi, ... ,wmtT} be the textual utter-
ance at the t-th turn, where wy, is an one-hot repre-
sentation of the i-th word, we obtain the turn-level
text representation as follows:

Utj; = W Wemp + PE(Z)
Ul =[Uf, -, Upyr]
vl = SumPool[Sel f Attn(UL, UL, U]

where We,,,; is the word embeddings obtained from
BERT (Devlin et al., 2018), PE and SelfAttn denote
the position embedding and self-attention (Vaswani
et al., 2017). The dialog-level representation for
the textual modality is as follows:

vE =T, .., va]

CT = SelfAttn(VT, VT, VT

Similarly, we construct the turn-level vi-
sual representation from the t-th turn

uf = {In, Ia, . Ly 12

Ul = ResNet(I};)
vl = SumPooling[U}, ..., Utln,{]

Vi=[vi, ...Vl ]

s VY,

cl = CrossAttn(CT, VI v

The final dialog-level representations ¢’ and ¢! (for
the textual and visual modalities) are attained from
the last turn representations in C* and C7.

Product Encoder The product text p” and visual
p! representations for a product p; = (pf, pf) are
obtained similarly to the turn-level dialog represen-
tations (i.e. v/ and v/). Note also that the low-level
image representation ResNet are shared between
the context encoder and the product encoder.

3.2 Dialogue State Interaction Module

Our objective is to exploit dialog states to align rep-
resentations in multi-modal CRS. As such, we first
get a dialog state embedding Sy € RstateXTdim
from the context (see Section 4 for more details).
Inspired by Memory Networks (Sukhbaatar et al.,
2015), we then introduce Dialog State Interaction
(DSI) modules to enhance both dialog and product
representations with information in dialog states.
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Figure 2: The overall architecture of SSMANTIC (left). Here, Dialog State Interaction (DSI) modules of the same
color are shared between the dialog product sides. The details of a DSI module is shown on the right block.

The general architecture of Dialog State Inter-
action (DSI) module is depicted in Figure 2 with
K layers of multi-hop interactions. Given an input
vector x and a state embedding matrix S, the
outputs of the k-th layer are obtained:

cos(x, S,i)
Z?smw cos(xg, Skz,j)

k41,4 =

Nstate

Tp1 = T + § Ak41,ik+1,i
1

where Wy, denotes the model parameters and
ap+1 corresponds to the attention score vector.
Note that x( is obtained from a context or prod-
uct encoder (e.g. ¢!, or pT) and Sy is from the
state encoder module. As dialog state embeddings
(S) are shared for the dialog context and the prod-
uct candidate (see Figure 2), DSI module helps
align the corresponding representations for effec-
tive matching.

3.3 Recommendation

Given a dialog 7 and a candidate product p, the
relevance score is measured as follows:

f(r, p) = tanh[cos(z°T, 2FT) 4 cos(zT, 2TT)]
where €7, €1 2PT P! are enhanced represen-
tations of the context and the candidate product,
and extracted from the last layers of DSI modules.

3.4 Training

To train SeMANTIC, we construct a training set
+ + — - :
{(Tia Piir -+ - 7pinposapi17 ERR) pinneg)} by Samphng
dialog contexts and the gold image responses from
Dp. Here, 7; indicates one conversation context,

whereas ,o;;- and p;, denote a positive recommen-
dation and a (sample) negative recommendation
for the i-th context. Note also that the dialog state
encoder is trained jointly with the rest of the model.
However, we postpone the detailed discussion un-
til Section 4, where semi-supervised learning for
dialog state modeling is described.

Ranking Loss The main objective for training
SeMANTIC is to maximize the margin in the rel-
evance score of the positive product compared to
the negative product. In other words, we minimize
the following rank loss:

E’I‘k‘ = max((), 1- f(Tv p+) + f(Ta p_))

where the loss is measured for a sample triple
(1,p", p~). Here, we drop the context and product
indices for simplicity.

Jensen Shannon Divergence To better align the
context and the product representations, we mea-
sure Jensen-Shannon divergence (Menéndez et al.,
1997) between the attention vectors extracted from
the last layer of DSI (Equation 3.2 for £k = K).
Specifically, we respectively obtain (a“”, a®") for
the context text and images, and (@®T, a®T) for the
product text and images, then measure:

g(r,p) = JS(a“T,a"T) + JS(a™T, a")

Intuitively, we would like the g score to be small for
the relevant pair (7, p™) and larger for the irrelevant
pair (7, p~). To achieve this, we incorporate the
following loss to the objective function:

+)_

Ljs = max(0,9(T,p g(t,p7))

Correlation Similarity Due to the limited size
of conversational samples, we rely on the larger



Ngtate X Mdim
Nstate X MNdim
[—
 —

State Learner
i | State Encoder Value Predictor

SK + SV SK CT CI

Figure 3: The State Encoder in the teacher SeMANTIC
(left) vs that in the student SeMANTIC.

number of available products to bridge the gap
between the textual and visual modalities. Our goal
is to minimize the regularization term calculated
for a given product p as follows:

Leo—sim(p) = maxz(0,1 — cos(zFT, zF'T))
The idea here is make the (text/visual) state-
enhanced representations of the same product
closer to each other.

Overall Finally, the overall loss function L,y is:

+
Z *Cr/c + *C.]S + Z »Ccofsim(pik)
i pﬁ
where pi indicates either a positive or negative
sample associated with the context 7;.

4 Semi-supervised State Learning

To leverage small samples with dialog states, we
follow the teacher-student framework (Chen et al.,
2017), where the teacher and student have a similar
structure (Figure 2) but differ in the dialog state
encoder (Figure 3).

Teacher State Encoder The teacher has access
to the ground truth dialog state in D, where each
dialog state u® = [(u™, ufV)|1 < i < ngare)
is a list of slot and value pairs. The slot keys are
drawn from a predefined set of 144 product prop-
erties defined in the domain database P, such as
color or type. For each slot key such as color, the
slot value is “none” if it is not mentioned in the
dialog context 74, and a specific value (e.g. red)
otherwise. For the i-th slot, we treat the slot key
and value as strings and attain the key and value

embeddings S5 € RY*"4, SV € R'*"d via BERT
and MeanPooling, which is similar to the text en-
coder in Section 3.1. The state embedding is then
obtained via self attention as follows:

S; =8k +sY
S =151, ., Snuure]

» MMNstate

S = SelfAttn(S, S, S)

Student State Encoder The student network es-
timates the slot value embedding from the con-
text information by employing a “Value Predictor”.
Specifically, we first obtain the key embedding
SK ¢ Rnstatexna for all slot keys similarly to that
in the teacher state encoder. The value embedding
are then calculated as follows:

c=c"+c!
SV = CrossAtin(S¥,C, C)

where CrossAttn is the cross attention operator. We
then obtain the predicted state embedding .S using
the “State Learner” as follows:

S=85K+35Y
S = SelfAttn(S, S, S)

Joint Training We train the teacher network on
Dr and the student network on D + Dp using the
loss function £, as in Section 3.4. Hereafter, we
refer to the teacher and the student training losses
as L% and L5, We then let the teacher guide the
student network by minimizing the mean square
error measured between groundtruth dialog state
embeddings and the predicted state embeddings on
Dr. The joint training objective, therefore, is:

alyif +(1—a) [L3ff + Y MSE(S;,S)

7.€Dp

where S;, §Z are the outputs of the teacher and
student encoders, respectively.

S Experiments

Evaluation Datasets Experiments are conducted
on MMD (Saha et al., 2018) and SIMMC (Kottur
etal., 2021). The MMD dataset contains more than
150k conversations in retail domain. Following pre-
vious works (Nie et al., 2021; Zhang et al., 2021),
we adopt the updated MMD dataset constructed by
Nie (Nie et al., 2021) and refer to it as MMD-v2,



which is divided into training/validation/test sets
with ratio 70%/15%/15%. To study the impact of
the sample size and dialog states, we select around
7765 samples (5% of MMD-v2) and perform dia-
log state annotation with slot keys being product
attributes. We refer to this set of MMD as MMD-
v3. We split the data to sets train/valid/test so that
the training/valid/test set of MMD-v3 is a subset of
the corresponding set of MMD-v2. As for SIMMC,
the dataset contains 10681 scene based conversa-
tions, which is divided into 68% for training, 16%
for validation, and 16% for testing. We extend the
multimodal coreference resolution task into a rec-
ommendation task by utilizing bounding boxes to
extract product objects from the same scene.

Implementation Details We implement our pro-
posed model using PyTorch! and conduct our ex-
periments on 1 NVIDIA V100 GPU with a mini-
batch size 64 and 50 epochs. The dimension of
the initial word embedding is set to 768, and the
dimension of the initial image embedding is set to
512. The dimensions of both context representation
and product representation are set to 768. For each
experimental setting, the results from multiple runs
of SeMANTIC and the baselines are averaged.

Evaluation Metrics Following (Nie et al., 2021;
Zhang et al., 2021), Precision @k, Recall @k, and
NDCG @k for (k=5, 10, and 20) are the adopted
metrics for the recommendation task in CRS.

Compared Methods We compare SeMANTIC
to baselines with published codes including
MHRED (Saha et al., 2018), UMD (Cui et al.,
2019), MAGIC (Nie et al., 2019), LARCH (Nie
etal., 2021), and TREASURE (Zhang et al., 2021).
In addition, we also adapt CLIP (Radford et al.,
2021), which is a popular image-text pretrained
model, as one of our baseline. Details about the
compared methods are given in the Appendix.

Experimental Design Our experiments are de-
signed to answer the following research questions:
1) RQ1: How do SeMANTIC and other baselines
perform when being trained with small conversa-
tional sample sets? (Section 5.1); 2) RQ2: How is
the effectiveness of SeMANTIC when only smaller
samples are labeled with dialog states? (Section
5.2); 3) RQ3: Do baselines effectively exploit di-
alog states if we provide them with grouthtruth
dialog states during testing? (Section 5.3).

"https://pytorch.org/

5.1 Main Results

We consider the case when the number of conversa-
tional samples is in the scale of SIMMC or MMD-
v3, which is much smaller compared to MMD-
v2. Note that on MMD, all compared models are
trained on MMD-v3 but tested on MMD-v3 or
MMD-v2. In addition, we consider Dp = Dy for
SeMANTIC here, leaving the analysis for different
ratios of these two sets to next section.

Table 1 presents the experimental results, where
a number of observations can be drawn. Firstly,
SeMANTIC outperforms the compared methods
on SIMMC and two testing sets of MMD, par-
tially validating its effectiveness and generaliza-
tion. Secondly, while the unified memory network
in LARCH may help bridge semantic gaps across
modalities as well as between the conversation and
product sides, the method may be too complex to
be trained effectively with a small sample size. As
a result, LARCH falls short compared to simpler
methods like MHRED, MAGIC, and TREASURE,
despite being the second best-performing method
when being trained with the MMD-v2 training set
(Nie et al., 2021). And finally, even though we train
our method with MMD-v3, which is only 5% of
the training set of TREASURET (MMD-v2), the
evaluation results on the test set of MMD-v2 show
that our method is comparable to TREASURE{
on NDCG@5, NDCG@10 , and even better on
NDCG@20. It should be noted that training on
MMD-v2 is time-consuming, thereby preventing
us from training compared models multiple times
for comparison. As a result, we directly report the
results of TREASURE 1 from (Zhang et al., 2021).

Despite being a powerful pretrained model for
image-text retrieval, CLIP does not perform well
in our specific task and domain, particularly on
MMD - the more challenging dataset compared to
SIMMC. This highlights the importance of efficient
methods for low-resource domain, of which data is
not abundant for pretraining.

5.2 The Impacts of Sample Size

To verify the effectiveness of semi-supervised state
learning, we conduct experiments on MMD-v3 and
change the ratio of the sizes of D to Dp. For
every epoch, we first jointly train both teacher and
student models on D, then train the student model
on Dp without considering ground-truth dialogue
state. Figure 4 indicates that our model improves
as more annotated data is utilized. Furthermore,



MMD

Method P@s R@5 NDCG@5 | P@10 R@10 NDCG@10 | P@20 R@20 NDCG @20
. | MHRED 34.56:£1.50 | 40.91+1.83 | 39.09£1.35 | 20.54:£0.79 | 48.55£1.92 | 42.6041.33 | 12.1440.42 | 57.35+1.94 | 45.82:£1.31
% | uMD 27.13£4.80 | 30.0424.71 | 25.624:4.08 | 18.13£2.06 | 42.5244.61 | 31.23+3.87 | 11.82:0.81 | 55.27+3.67 | 35.89+3.42
< | MacIC 46.33£0.77 | 53.48+0.94 | 51.61+1.87 | 26.21£0.34 | 60.72+0.83 | 54.86+1.55 | 14.39+0.19 | 66.93£0.93 | 57.10+1.44
Q| cLp 14.10£0.19 | 16.96+0.33 | 16.81£0.37 | 8.7140.12 | 20.88+0.43 | 18.63+£0.41 | 5.47+0.08 | 26.11+0.52 | 20.60+0.43
& | LARCH 30.6422.57 | 37.00£2.93 | 36.66+3.25 | 21.2241.23 | 50.23£2.77 | 43.5622.94 | 13.0120.36 | 61.25+1.59 | 48.00£2.53
= | TREASURE | 45756147 | 5334178 | 52.1142.10 | 25.5040.55 | 59.824131 | 55.36+1.95 | 14.15£0.19 | 66.37+0.91 | 57.46+1.73
SeMANTIC | 63.87:£0.39 | 75.19+0.54 | 75.87+0.71 | 32.96:0.16 | 77.7140.53 | 76.94:0.72 | 17.06::0.09 | 80.52::0.47 | 77.91+0.71
. | MHRED 30.66::3.00 | 35.3043.71 | 36.47+331 | 18.51:£1.43 | 44.08+£3.36 | 39.8743.22 | 10.9740.64 | 52.29+3.08 | 42.85:+3.09
¢ | ump 13.49£0.66 | 15.661.59 | 15.00£1.81 | 10.74£0.22 | 24.93+1.39 | 18.68:£1.55 | 7.81£0.76 | 35.9742.72 | 22.76:1.68
< | MacIC 38.3141.77 | 44.88£2.06 | 43.38+2.60 | 22.08+0.62 | 51.86:1.44 | 46.46+2.34 | 12.48+0.22 | 58.85+1.02 | 48.96:+2.16
g | cup 12.0840.32 | 14.824029 | 15.394£0.33 | 7.2240.19 | 17.640.31 | 14.3744.89 | 449:+0.11 | 21.81:£0.37 | 18.2440.37
& | LARCH 23.61:£1.42 | 28.55£1.66 | 29.39£1.95 | 16.90£0.52 | 40.02+1.16 | 35.3241.71 | 10.710.12 | 50.41£0.56 | 39.51+1.44
= | TREASURE | 34994174 | 41.06£2.05 | 39.7541.79 | 20474072 | 4804181 | 42884165 | 11854036 | 5573185 | 45.66+1.62
SeMANTIC | 58.66::0.32 | 69.66::0.34 | 71.080.65 | 30.2940.09 | 72.06::0.17 | 72.08::0.59 | 15.66:0.06 | 74.60+0.24 | 72.94:0.59
| TREASURE f | 59.87 71.39 71.24 31.34 74.85 72.72 16.33 78.17 72.87
SIMMC
MHRED 2293051 | 67.20+1.41 | 51.16:£1.30 | 14.46+0.22 | 85.83+1.12 | 57.14£1.18 | 8.27£0.04 | 94.57£0.45 | 60.2441.01
MAGIC 26.95:+£0.38 | 78.1620.98 | 63.5241.00 | 15.62:£0.36 | 90.86+1.08 | 68.32:+1.18 | 8.56::0.03 | 97.69£0.32 | 70.10+0.84
CLIP 29.714£0.49 | 80.74£1.16 | 70.46+1.21 | 17.06:£0.15 | 91.18+0.28 | 74.33:091 | 9.224£0.07 | 97.41+0.11 | 76.18+0.89
LARCH 23314093 | 71.15£1.71 | 57.83+1.84 | 14.48+0.31 | 86.854:1.72 | 63.80+1.48 | 8.15£0.08 | 96.10::0.89 | 66.69+1.23
TREASURE | 27.50£0.47 | 79.43+1.00 | 64.99:1.31 | 16.00£0.18 | 91.662:0.57 | 69.89:£1.24 | 8.60£0.04 | 98.10£0.16 | 71.27+1.07
SeMANTIC | 31.99:£0.33 | 87.14+0.71 | 76.82::0.87 | 17.85:£0.09 | 95.45+0.41 | 79.960.75 | 9.35£0.01 | 98.99:£0.14 | 81.04:0.64

Table 1: The overall results of SeMANTIC and baselines, in which the average and standard deviations of different
runs are reported. MMD v3/ v2 (or MMD v3/ v3) means we train the model on the training set of MMD-v3 and
evaluate on the testing set of MMD-v2 (or MMD-v3). TREASURE} is both trained and tested on MMD-v2 and

reported from (Zhang et al., 2021).
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Figure 4: Performance of SeMANTIC trained with vary-
ing size of fully labeled data on MMD-v3.

the reduction in standard deviation indicates that
the model’s performance becomes more stable as
more samples with labeled states are considered.
More importantly, our model’s performance with
20% of the supervision ratio is nearly as good as
having full supervision to learn state embeddings.

We evaluate the impact of the number of train-
ing (conversational) samples by conducting experi-
ments on MMD-v2. Specifically, we keep D to be
MMD-v3 training set, and increase the set Dp to in-
clude more samples from the training set of MMD-
v2. The results of SeMANTIC and TREASURE
are then reported on the testing set of MMD-v2 in
Figure 5. The results show that SeMANTIC out-
performs TREASURE in terms of NDCG@5 when
the size of Dp to be around 10% of the MMD-v2,
validating the sample efficiency of SeSMANTIC.
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68
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Figure 5: Performance of SeMANTIC trained with vary-
ing sample sizes on MMD-v2.

5.3 Can Baselines Benefit from Dialog States?

We study whether the incorporation of dialog states
into baselines can help improve performance of
such methods. As adapting the baselines to in-
corporate dialog state prediction is nontrivial, we
directly consider ground truth dialog states as part
of the dialog input for the baselines during both
training and testing. As SeSMANTIC (w/ DS) only
exploits groundtruth values during training, this
setting gives baseline methods considerable advan-
tage. This experiment is carried out on MMD-v32.
For SeMANTIC (w/o DS), state encoding excludes
slot values during training, making it fair to com-
pare with the baselines (w/o DS).

The performance comparison between the base-

We skip the report on SIMMC due to similar observations



Figure 6: The impacts of dialog states on SeMANTIC
and compared methods, tested on MMD-v3.

\
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Figure 7: The impacts of different loss functions on
SeMANTIC, tested on MMD-v3.

lines and SeMANTIC with and without dialog
states is presented in Figure 6. Among all the meth-
ods, only LARCH and SeMANTIC show improve-
ment on NDCG@k (k=5,10) when dialog states
are considered. One possible explanation is that
the slot values in dialogue states may not match
product attribute values. As a result, only LARCH,
which leverages diverse interactions between di-
alogs and knowledge, and SeMANTIC, which in-
corporates correlation similarity, can make good
use of dialog state information.

5.4 Ablation Study

To examine the contributions of different loss func-
tions, we exclude MSE loss (w/o M SFE), correla-
tion similarity loss (w/o co_sim), or JS divergence
(w/o JS) from the training objective.

Figure 7 shows the impact of different loss types
on SeMANTIC, measured on MMD-v3. The re-
sults reveal several findings. Firstly, the extraction
of hidden information from text-image correlation
in products (co_sim) and MSE loss are essential in
enhancing the model’s performance, given that the
model’s performance declines without this informa-
tion. Secondly, the incorporation of L ;g helps re-
duce variation, making the model more stable. This
is because excluding JS (w/o JS) leads to larger er-
ror bars in Figure 7.

Eval Metrics Per Rec | Per Dialog
Win 32.20% 32.22%
Tie 63.84% 65.22%
Lose 5.98%% 2.56%

Table 2: Human evaluation for SeMANTIC vs TREA-
SURE: the evaluation is measured per recommendation
(per rec) or per dialog.

6 Human Evaluation and Case Study

To assess the effectiveness of our method, we con-
duct a human evaluation comparing its recommen-
dation results against TREASURE (Zhang et al.,
2021). We randomly sample 10 dialogues from
MMD dataset, each has 6 recommendation turns
on average. Three participants are then recruited,
each is presented with recommendation results
from both methods without revealing the method
identities. We then count the ratio that SeMAN-
TIC wins/ties/loses (to) TREASURE over all votes.
The results of the human evaluation are summa-
rized in Table2, demonstrating the superiority of
our method over TREASURE. Please refer the Ap-
pendix for the case study.

7 CONCLUSION AND FUTURE WORK

This paper presents a novel approach named Se-
MANTIC for multimodal conversational recom-
mendation systems (CRS). To align multi-modal
representations, we propose dialog state interac-
tion modules to enhance both the dialog and the
product sides with dialog states. To overcome the
challenge of collecting dialogue state labels, we
develop a state value predictor to learn the dia-
log state embedding following a teacher-student
framework. In addition, we introduce a correla-
tion regularization for semantic alignment on the
abundant products in the domain database. Our
thorough experiments demonstrate the superiority
of our proposed approach in the recommendation
task when compared to existing methods.

Our method can be adapted to reduce the sample
collection cost for general multimodal dialogues.
For instance, one can consider dialog summaries
instead of “dialog states” as the bridge for align-
ing multi-modal dialog representations. Those en-
hanced representations can then be used for down-
stream tasks such as external (textual/visual) knowl-
edge retrieval or response generation.



Limitations

Due to time and computational constraints, our
study did not carefully study the approach based
on large vision-language models, such as (Radford
etal., 2021; Li et al., 2023; Zhao et al., 2023; Wang
et al., 2022). These models have shown promising
results in various tasks, including semantic align-
ment and understanding in multimodal settings.

In the future, we plan to investigate how to ef-
ficiently and effectively adapt these large vision-
language large models to our domain-specific
database and explore their potential as base models
for semantic alignment and recommendation in our
multimodal conversational recommendation sys-
tem. This would involve addressing challenges re-
lated to model scalability, computational resources,
and efficient fine-tuning on domain-specific data.

By incorporating these advanced models, we aim
to further enhance the performance and capabili-
ties of our system, leveraging the rich information
present in both textual and visual modalities.

Ethical Concerns

Our work is conducted using simulated data (pub-
lished datasets), similar to previous studies (Saha
etal., 2018; Cui et al., 2019; Nie et al., 2019; Zhang
et al., 2021; Nie et al., 2021), and does not involve
the use of any user-sensitive information.

During dialogue state annotation, we recruited
participants from a crowd-sourcing platform and
presented dialogue context, as illustrated in Fig-
urel. Payment was adjusted appropriately consid-
ering the demographic profile of the participants.
Additionally, we provided clear explanations re-
garding the utilization of the data.

The purpose of our research is to develop and
evaluate a multimodal conversational recommen-
dation system in a low resource setting. We rec-
ommend following data protection guidelines and
regulations when applying our method in real plat-
forms. It is crucial to obtain user agreements and
informed consent before analyzing user requests or
engaging in any data collection activities. This can
be achieved through agree-upon interviews, and/or
perform data simulation instead of using real con-
versations.
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A Appendix
A.1 Dataset Statistics

In this paper, we conduct extensive experiments
on two well-known datasets, namely MMD and
SIMMC. For further insights, detailed statistics are
provided in Table3 and Table4 respectively. Here,
“Avg Rec Turns” indicates the average number of
recommendations per dialog; and “Avg Pos Imgs”
denotes the number of correct recommendations
per turn whereas “Avg Neg Imgs” is the number of
distractors for evaluation.

Dataset MMD v2 MMD v3 with DS
Dataset Stats Train Valid | Test | Train | Valid | Test
Dialogs 105439 | 22595 | 22595 | 5478 | 1113 | 1174
Proportion 70% 15% 15% | 2% | 14% | 14%
Avg Rec Turns 5 5 5 6 6 6
Avg Pos Imgs 4 4 4 4 4 4
Avg Neg Imgs 616 618 994 628 | 632 | 989

Table 3: Statistics of the dataset by (Nie et al., 2019)
(MMD v2) and the subset with dialogue state annotation
(MMD v3 with DS).

Dataset SIMMC
Dataset Stats Train | Valid | Test
Dialogs 7307 | 1687 | 1687
Proportion 68% | 16% | 16%
Avg Rec Turns 4 4 4
Avg Pos Imgs 2 2 2
Avg Neg Imgs 22 22 22

Table 4: Statistics of the SIMMC dataset.

A.2 Additional Experimental Results

Effect of Hyper-parameter o To study the effect
of hyper-parameter o, we did several experiments
with different « on MMD/ v3. The results with
different «v are given in Table5, which shows that
our method is not sensitive to a.

Param o | R@5 | R@10 | R@20

a=01 |7357£1.59 | 74.81£1.64 | 75.85£1.55
a=03 | 7404£1.64 | 7527£1.69 | 76.22:+1.67
a=05 | 75.87£0.71 | 76.94+0.72 | 77.9140.71
a=07 |7565£1.71 | 76.77£1.79 | 77.74£1.73
a=09 | 75694078 | 76.91+0.61 | 77.8440.60

Table 5: The results with different o on MMD v3.

Varying Sizes of Conversational Samples In
Section 5.2, to study the impacts of sample size,
we show the performance of SeMANTIC trained



with varying sample sizes on MMD-v2 in terms of
NDCG@5 and Recall@5. Here, we further show
the experiments in terms of NDCG@10 and Re-
call@10, and the results are provided in Figure9.
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Figure 8: Performance in terms of NDCG@10 and
Recall@10 for SeMANTIC trained with varying ratio
of fully labeled data on MMD-v3.

Varying Size of Fully Labeled Data In Section
5.2, to study the impacts of sample size, we show
the performance of SeMANTIC trained with vary-
ing ratio of fully labeled data on MMD-v3 in terms
of NDCG @5 and Recall@5. Here, we further show
the experiments in terms of NDCG@10 and Re-
call@10, and the results are provided in FigureS.

Furthermore, The results for changing the vary-
ing number of samples with dialog states (ds) on
SIMMC dataset are presented in Table 6.

Ablation Study We further extend the ablation
study to SIMMC dataset and Table 8 showcases
more details of the impact of different loss types
on SeMANTIC.

Human Evaluation and Case Studies To vali-
date the effectiveness of our SeMANTIC, we pre-
sented a win case, a tie case, and a lose case in
Figure 10. Additionally, we showcased the results
of the TREASURE. Analysis of these retrieval re-
sults indicates our model’s ability to accurately
comprehend user intentions. Specifically, in Figure
10(a), SeMANTIC outperforms TREASURE by de-
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== Recall@10 (TREASURE w/ full MMD-v2)
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Figure 9: Performance in terms of NDCG@10, Re-
call@10 of SeMANTIC with different sizes of conver-
sational samples.
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livering the most correct images. Furthermore, in
Figure 10(b), both SeMANTIC and TREASURE
correctly select images, but SeMANTIC also ar-
ranges them at the top positions. In Figure 10(c),
although SeMANTIC receives lower ratings in hu-
man evaluation, it consistently prioritizes global
truth relevant items at the top positions. This obser-
vation underscores our model’s proficiency in ex-
tracting pertinent information from utterance con-
texts to enhance understanding of user intentions
for image response selection.

Question: Can you show me a few of your top knit woven pantyhose?

N LTAM K
s |3 ﬂ WELIAL |

(a) Case Win

Question: Can you show me some of your blouse having an loop type closure?

SeMANTIC ‘."’ '(‘Q a .ﬂ ‘ s
el BUH 15

(b) Case Tie

Question: Show me more like the 4th casual trousers but in pocket type.

ath Product: ﬂ'
SeMANTIC nn”x n.‘_'

TREASURE \" ! i " Q%,“

(c) Case Lose

Figure 10: Top-10 image response selection results of
our SeMANTIC and TREASURE in case win, tie and
lose.

A.3 Implementation Details

We implement our proposed model using Py-
Torch library 3 and conduct our experiments on
1 NVIDIA V100 GPU with a mini-batch size 64
and 50 epochs. Adam (Kingma and Ba, 2014) is
adopted as the optimizer, with the initial learning
rate 5 x 10~ and the linear learning rate sched-
uler (Goyal et al., 2017) is used. Additionally, the
dimension of the initial word embedding is set to
768, and the dimension of the initial image embed-

3https://pytorch.org/



P@s R@5 NDCG@5 P@10 R@10 NDCG@10 P@20 R@20 NDCG@20
SeMANTIC(0% labeled ds) 59.26+1.14 69.66+£1.34 68.46+£1.66 31.33+£0.52 73.79£1.24 70.21£1.22 16.31£0.27 76.91+1.30 71.30%1.16
SeMANTIC(1% labeled ds) 61.08+£0.72 71.87£091 7223£1.06 31.76+£0.37 74.83+0.85 73.52+1.03 16.47£0.19 77.69+0.98 74.524+1.04
SeMANTIC(5% labeled ds) 61.47£1.35 7230£1.49 7323+1.74 31.95+0.55 74.91£1.06 74.51£1.70 16.45+0.33 77.86+0.97 75.52+1.66
SeMANTIC(10% labeled ds) ~ 62.56+0.56  73.66+0.73  74.89+£0.90 32.484+0.19 76.594+0.51 76.13+£0.80 16.89+£0.07 79.75+£0.42 77.2040.77
SeMANTIC(20% labeled ds) ~ 63.2940.52 74.67+0.55 75.50£0.20 32.794+0.25 77.444+0.55 76.67£0.19 16.99£0.10 80.30£0.47 77.6540.16
SeMANTIC(100% labeled ds)  63.804+0.39  75.194+0.54 75.87+£0.71 32.96+0.16 77.714+0.53 76.94+0.72 17.06+0.09 80.52+£0.47 77.91£0.71

Table 6: Performance of SeMANTIC on SIMMC when different size of labeled data is used for training.

P@5 R@5 NDCG@5 P@10 R@10 NDCG@10 P@20 R@20 NDCG@20
MHRED(D,, 100%) 16.23 17.87 22.86 12.40 25.82  27.66 9.22 45.83  33.15
UMD(D,, 100%) 3431 39.99 40.19 19.82 4629 4297 11.69 5492 4596
MAGIC(D,, 100%) 54.46 65.89 66.39 2990 7127 6841 1580 7549  69.79
LARCH(D,, 100%) 55.01 65.82 68.29 29.99 7161 7121 1595 7620 73.02
TREASURE(D,, 100%) 59.87 71.39 7124 31.34 7485 7272 16.33 7817 72.87
SeMANTIC(Dp 5% and Dp 20%)  60.26 71.36 71.80 31.18 73.90 72.84 16.13  76.67  73.77
SeMANTIC(DF 5% and Dp 100%) 60.54 71.68 72.67 31.81 7471 73.99 1624 7762 7493

Table 7: Detailed information about the performance of compared methods on MMD-v2, which are trained with

different size of conversational samples for training.

ding is set to 512. The dimension of both context
representation and product representation are set
to 768. The number of layers of all transformer
based encoders and decoders are set to 3, the num-
ber of attention heads in the multi-head attention
is 8 and the inner-layer size is 768. We set all
dropout rate to 0.1 (Srivastava et al., 2014), and «
to 0.5 (Section 4). Moreover, we use 5 turns prior
to the current turn as the context with the maximum
sentence length of 30 and the maximum number
of historical images to 5. It is worth mentioning
that although both Ll¢6¢her and £3iudent contain
Ljs and L.o—sim, such losses are calculated by
the teacher model and deactivated by the student
model on Dg. These losses are only activated for
the student model on Dp.

For CLIP, we only fine-tune its final linear pro-
jector and add self-attention layers to encoder turn
level text embedding and image embedding. Then
we concatenate text embedding and image embed-
ding as the final context embedding and product
embedding. For other baseline methods, we ad-
here to a standardized approach which adopts the
default configurations as set in the original papers.
By doing so, we ensure a consistent and accurate
comparison with the established methodology.

A4 Detailed Comparisons to Previous
Methods

In the following, we provide detailed description
on the compared baselines. In addition, we provide
detailed discussion on previous methods that are
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closely related to our work but we are fail to con-
duct an empirical comparison as we do not have
access to the original source code.

* MHRED: Saha et al. (2018) present a ba-
sic multimodal hierarchical encoder-decoder
model (MHRED) as a first benchmark in the
field of multimodal CRS.

e UMD: Cui et al. (2019) propose a user
attention-guided multimodal CRS which is
based on MHRED and uses a hierarchical
product taxonomy tree to extract visual fea-
tures.

* MAGIC: MAGIC (Nie et al., 2019) proposes
knowledge-aware RNN to encode dialog con-
text for response generation and product rec-
ommendation.

* LARCH Nie et al. (2021) introduce a con-
textual image search scheme (LARCH) with
multi-form knowledge interactions via mem-
ory network.

* TREASURE Zhang et al. (2021) introduce
TREASURE that represents dialog contexts
using graph-based models and incorporate
side information such as the product attributes
and style-tips from celebrities.

* UniTranSeR (Ma et al., 2022) proposes a uni-
fied model based on Transformer to map im-
age and textual modalities to a unified space.



MMD

Method P@s R@5 NDCG@5 | P@10 R@10 NDCG@10 | P@20 R@20 NDCG @20
wlo co_sim | 38.84::1.98 | 45.024:2.29 | 43.90£3.51 | 21.874:0.92 | 50.84:£2.21 | 46524321 | 12.114:044 | 56.47£2.11 | 48.5543.04
w/oMSE | 59.26+1.14 | 69.66=:1.34 | 68.461.66 | 31.33+0.52 | 73.79+1.25 | 70.21£122 | 16314027 | 76.91£1.30 | 71.30+1.16
wlo IS 63264209 | 74.48£2.65 | 74.8543.56 | 32.79+0.85 | 77.2842.16 | 76.05+3.33 | 16.96::0.37 | 80.014:1.90 | 76.99+3.23
SeMANTIC | 63.87:£0.39 | 75.1920.54 | 75.87£0.71 | 32.96:0.16 | 77.712:0.53 | 76.940.72 | 17.06:0.09 | 80.52::0.47 | 77.91+0.71
SIMMC
wlo co_sim | 31.7920.26 | 86314027 | 75.16:0.13 | 17.124:0.07 | 94.64:0.19 | 78.100.18 | 9.31£0.02 | 97.28::0.04 | 80.624:0.41
w/oMSE | 31.0320.19 | 86.44:£0.36 | 75.23£0.48 | 17.1940.02 | 94.74:£0.13 | 78.00£0.42 | 9.310.01 | 97.18£0.11 | 80.7320.39
wlo IS 31.2740.37 | 87.01£0.80 | 76.74=1.15 | 17.2140.10 | 95.38::0.46 | 79342099 | 9.34:£0.01 | 98.33:0.06 | 81.09+:0.88
SeMANTIC | 31.99+0.33 | 87.14+0.71 | 76.824:0.87 | 17.85::0.09 | 95.45:0.41 | 79.96::0.75 | 9.35:£0.01 | 98.99:0.14 | 81.04::0.64

Table 8: Effect of different loss functions.

As we fail to obtain their source code for em-
pirical comparison, we analyze the method
and find that this method is not designed for
the multi-modal recommendation. Specifi-
cally, UniTranSeR first performs intention
detection, then just uses the intent (textual
modality) for product search. The exper-
iments were conducted on MMD-v1 with
much easier setting where the number of can-
didates is only 8 products.

MDS-S2 (Chen et al., 2023) recently intro-
duced a novel method for multi-modal task-
oriented dialog systems. The main idea is to
exploit both the attribute and the relation in-
formation for external grounding knowledge
retrieval, which is then used for text gener-
ation. The system is designed for external
knowledge base that is more structured with
well-defined attributes and relations. As both
MMD and SIMMC do not fit this assump-
tion, MDS-S2 has been tested on a newly con-
structed dataset.

14



	Introduction
	RELATED WORK
	MultiModal Conversational Systems
	Learning in a Low-Resource Setting

	METHODOLOGY
	Context and Product Encoders
	Dialogue State Interaction Module
	Recommendation
	Training

	Semi-supervised State Learning
	Experiments
	Main Results
	The Impacts of Sample Size
	Can Baselines Benefit from Dialog States?
	Ablation Study

	Human Evaluation and Case Study
	CONCLUSION AND FUTURE WORK
	Appendix
	Dataset Statistics
	Additional Experimental Results
	Implementation Details 
	Detailed Comparisons to Previous Methods


