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Abstract
Multi-modal conversational recommendation001
(multi-modal CRS) can potentially revolution-002
ize how customers interact with e-commerce003
platforms. Yet conversational samples, as train-004
ing data for such a system, are difficult to ob-005
tain in large quantities, particularly in new plat-006
forms. Motivated by this challenge, we aim to007
design innovative methods for training multi-008
modal CRS effectively even in a low resource009
setting. Specifically, assuming the availability010
of a small number of samples with dialog states,011
we devise an effective dialog state encoder to012
bridge the semantic gap between conversation013
and product representations for recommenda-014
tion. To reduce the cost of dialog state anno-015
tation, a semi-supervised learning method is016
developed to effectively train the dialog state017
encoder with a small set of labeled conver-018
sations. In addition, we design a correlation019
regularisation that leverages knowledge in the020
multi-modal domain database to better align021
textual and visual modalities. Experiments on022
two datasets (SIMMC and MMD) demonstrate023
the effectiveness of our method. Particularly,024
with only 5% of the MMD training set, our025
method (namely SeMANTIC) obtains better026
NDCG scores than those of baseline models027
trained on the full MMD training dataset.028

1 Introduction029

Recently, there has been a growing interest in con-030

versational recommendation systems (CRS). These031

systems bring together the user-friendly nature of032

conversational AI and the business potential of rec-033

ommendation systems, potentially revolutionizing034

how customers engage with e-commerce platforms.035

Unfortunately, conventional text-based dialogue036

systems have inherent limitations in capturing user037

preferences. In many practical situations, a blend038

of textual and visual cues allows agents to recom-039

mend products that are better aligned with user040

interests (e.g., see Figure 1 for an example).041

Hi, I am here to see few black colored party
dress

I think dark color does not suit me. Show me
something with sleeves like this

......

Maxi Party  Dress
Vintage, Half Sleeves

Slim Floral Party
Dress, Sleeveless

Type: party dress
Color: dislike black
Sleeve: short sleeves

Belief State

Products

U1

U2

U3

Figure 1: In a multimodal CRS, a user expresses her/his
requirements with preferred example image. The dialog
state (belief state) encapsulates user interest across turns
and modalities.

The advance in deep learning along with the 042

introduction of multi-modal benchmarks, such as 043

MMD (Saha et al., 2018), have contributed signifi- 044

cantly to the recent progress in multi-modal CRS. A 045

number of methods have been developed using Re- 046

current Neural Networks (RNN) (Saha et al., 2018), 047

RNN with attention (Cui et al., 2019), Graph Neu- 048

ral Networks (GNN) (Zhang et al., 2021), Memory 049

Networks (Nie et al., 2021), Knowledge-enhanced 050

Convolution Network (CNN) (Liao et al., 2018), 051

and Transformer (Ma et al., 2022). Unfortunately, 052

deep learning-based methods require a significant 053

number of sample conversations with relevance 054

annotation (for recommendation), which can be 055

challenging to acquire. For example, the aforemen- 056

tioned methods have been trained on MMD using 057

hundreds of thousands of conversations, and it is 058

unclear whether these approaches remain effective 059

when being trained with a smaller sample size. 060

In this paper, we examine multi-modal CRS in a 061

low resource setting. Specifically, we consider that 062

there is only a limited number of sample conver- 063

sations and strive to make the most of the data by 064

following two insights. Firstly, when the number of 065
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sample conversations is limited, augmenting them066

with dialog states can help align the representations067

of dialogues and products for better matching. This068

is supported by the fact that dialog state tracking069

(DST) is essential for traditional text-based task-070

oriented dialog (TOD) systems (Lei et al., 2018;071

Hosseini-Asl et al., 2020; Zhang et al., 2020; Yang072

et al., 2021). Unfortunately, dialog state annota-073

tion can be time-consuming, especially in multi-074

modal dialogs. Therefore, we assume that only a075

subset of sample conversations are annotated with076

dialog states, and design an effective method for077

dialog state modeling. Secondly, the vast amount078

of products with both textual and visual informa-079

tion should be exploited to bridge the cross-modal080

semantic gap. Intuitively, doing so helps improve081

the system’s capability in understanding user pref-082

erences across modalities (see U3, Figure 1).083

With such considerations, we propose a Sam-084

ple Efficient Multi-modAl coNversaTIonal reCom-085

mendation system, or SeMANTIC for short. More086

specifically, dialog contexts and candidate prod-087

ucts are first encoded with a context encoder and a088

product encoder separately, resulting in initial con-089

text/product representations. Such representations090

are then enhanced with Dialog-State Interaction091

modules that capture the interactions of the context092

(or the product) representations with shared dialog093

state embeddings. By doing so, we leverage dia-094

log states to align the representations of the dialog095

and the product sides. Here, dialog state embed-096

dings are learned via a teacher-student framework,097

where the teacher network has access to the limited098

size of dialogs with belief states, and the student099

network learns from the teacher to estimate dialog100

state embeddings from conversations without dia-101

log states. We then propose a regularization term102

that makes state-aware (text/visual) representations103

of the same product closer to each other. By do-104

ing so, we effectively utilize the large number of105

products in the domain database for bridging the106

cross-modal semantic gap.107

All in all, our main contributions are as follows:108

• We propose a novel model, SeMANTIC, that109

enhances dialog and product representations110

with dialog states, and a regularization term111

that leverages the domain database to bridge112

cross-modal semantic gap.113

• A semi-supervised learning is proposed based114

on the teacher-student framework to alleviate115

the dialog state annotation cost.116

• Extensive evaluation on SIMMC and MMD 117

datasets demonstrates the superiority of our 118

model in comparison to strong baselines in a 119

low resource setting. 120

• Further analysis validates that our semi- 121

supervised learning approach is data efficient 122

as it only requires a small ratio of supervision 123

for learning dialog state embeddings. 124

2 RELATED WORK 125

2.1 MultiModal Conversational Systems 126

There have been a growing number of studies on 127

multi-modal conversational systems thanks to the 128

introduction of multi-modal datasets such as SURE 129

(Long et al., 2023), FashionIQ (Wu et al., 2021; 130

Yuan and Lam, 2021), MMD (Saha et al., 2018) 131

and SIMMC (Kottur et al., 2021). Most of previ- 132

ous methods aim to enhance dialog representation 133

using different network architectures (Saha et al., 134

2018; Ma et al., 2022; Nie et al., 2019; Zhang et al., 135

2021), external knowledge or side information (Cui 136

et al., 2019; Nie et al., 2019; Zhang et al., 2021), 137

mutual-information (Zhou et al., 2020), knowledge 138

distillation (Jung et al., 2023), cross-modal interac- 139

tion or attention (Cui et al., 2019; Ma et al., 2022). 140

Unlike these studies, we target an under- 141

explored problem of learning effective represen- 142

tations with a limited number of conversations. It 143

is noted that our focus is on grounding dialogs on 144

external data (the recommendation task), which 145

remains challenge particularly now that response 146

generation can be greatly improved with large lan- 147

guage models. As dialog systems are complicated, 148

it is common for researchers to focus on substaks 149

such as recommendation (Nie et al., 2021; Zhang 150

et al., 2021), dense retrieval (Wu et al., 2023; Wang, 151

2024), Dialog State Tracking (DST) (Chen et al., 152

2020; Kumar et al., 2020) for deeper analysis. 153

2.2 Learning in a Low-Resource Setting 154

Deep learning has been the mainstream approach 155

recently. Unfortunately, deep learning methods are 156

also data hungry, requiring a large amount of train- 157

ing conversational samples with annotation. For 158

example, to train a conversational recommendation 159

system, it is needed to collect diverse dialog sam- 160

ples annotated with recommendations and various 161

user requests (Budzianowski et al., 2018; Li et al., 162

2018; Liu et al., 2020). As labeled data is difficult 163

to obtain, it is desirable to develop data efficient 164

methods based on pretrained models (Yang et al., 165
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2023; He et al., 2022), meta-learning (Dai et al.,166

2020), or semi-supervised learning (Yang et al.,167

2022; Huang et al., 2020; Li et al., 2020).168

Our work falls into the semi-supervised learning169

category but focuses on multi-modal dialogs. To170

the best of our knowledge, our work is the first at-171

tempt at this important problem. It should be noted172

that we cannot simply adopt a unimodal method to173

a multi-modal scenario. For instance, one simple174

way to apply these available methods (Huang et al.,175

2020; Zhang et al., 2020) to our task is to consider176

DST as a text sequence generation task. However,177

as we empirically show in Section 5.3, without178

careful consideration of the semantic gap between179

modalities as well as between products and dialogs,180

even groundtruth (sequentialized) DST will not fa-181

cilitate the recommendation task.182

3 METHODOLOGY183

Problem Formalization Let DF be the set of M184

fully labeled dialogues τi = {ut|1 ≤ t ≤ nτi},185

where ut indicates the t-th turn from either the user186

or the agent. Each (user or agent) utterance ut187

contains the textual part uTt and the visual part uIt ,188

i.e. a list of user uploaded images or system rec-189

ommended product images. For t-th user turn, we190

are provided with a dialog state sTt that summa-191

rizes the user requests throughout the conversation.192

Additionally, let DP be the set of partially labeled193

dialogs of which we do not have dialog state annota-194

tion. We assume that DP is larger in size compared195

to DF , but still in a moderate size. The CRS task196

is formalized as selecting products from a domain197

database P = {(ρTk , ρIk)|1 ≤ k ≤ nP} as response198

to a user request. Here, a product in P is associated199

with both textual description ρTk and images ρIk.200

The overall architecture of SeMANTIC is de-201

picted in Figure 2, where the main idea is to202

treat dialog states as shared (continuous) variables203

that bridge the semantic gaps between the textual204

modality and the visual modality, and between the205

conversation and the product sides. Specifically,206

representations of user texts/images and product207

texts/images are both enhanced with dialog state208

embeddings using Dialog State Interaction (DSI)209

modules (Section 3.2). Here, the dialog state em-210

beddings are obtained by encoding the groundtruth211

dialog states for those in DF , and inferred by the212

dialog learner for those in the partially labeled set213

(Section 4). To mitigate the limited size of DF , we214

add a regularization term inferred from the partially215

labeled dialogs DP and the abundance of products 216

in the domain database P (section 3.4 and 4). 217

3.1 Context and Product Encoders 218

Context Encoder Let τ be a dialog context and 219

uTt = {wt1, wt2, . . . , wtnT
t
} be the textual utter- 220

ance at the t-th turn, where wti is an one-hot repre- 221

sentation of the i-th word, we obtain the turn-level 222

text representation as follows: 223

UT
ti = wtiWemb + PE(i) 224

UT
t = [UT

t1, ..., U
T
tnT

t
] 225

vTt = SumPool[SelfAttn(UT
t , U

T
t , U

T
t )] 226

where Wemb is the word embeddings obtained from 227

BERT (Devlin et al., 2018), PE and SelfAttn denote 228

the position embedding and self-attention (Vaswani 229

et al., 2017). The dialog-level representation for 230

the textual modality is as follows: 231

V T = [vT1 , ..., vTnτ
] 232

CT = SelfAttn(V T , V T , V T ) 233

Similarly, we construct the turn-level vi- 234

sual representation from the t-th turn 235

uIt = {It1, It2, . . . , ItnI
t
}: 236

U I
ti = ResNet(Iti) 237

vIt = SumPooling[U I
t1, ..., U

I
tnI

t
] 238

V I = [vI1, ..., vInτ
] 239

CI = CrossAttn(CT , V I , V I) 240

The final dialog-level representations cT and cI (for 241

the textual and visual modalities) are attained from 242

the last turn representations in CT and CI . 243

Product Encoder The product text ρT and visual 244

ρI representations for a product ρl = (ρTl , ρ
I
l ) are 245

obtained similarly to the turn-level dialog represen- 246

tations (i.e. vTt and vIt ). Note also that the low-level 247

image representation ResNet are shared between 248

the context encoder and the product encoder. 249

3.2 Dialogue State Interaction Module 250

Our objective is to exploit dialog states to align rep- 251

resentations in multi-modal CRS. As such, we first 252

get a dialog state embedding S0 ∈ Rnstate×ndim 253

from the context (see Section 4 for more details). 254

Inspired by Memory Networks (Sukhbaatar et al., 255

2015), we then introduce Dialog State Interaction 256

(DSI) modules to enhance both dialog and product 257

representations with information in dialog states. 258
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State Encoder
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Text Encoder Image EncoderRecommend

Dialog Context 

Candidate Product 

Figure 2: The overall architecture of SeMANTIC (left). Here, Dialog State Interaction (DSI) modules of the same
color are shared between the dialog product sides. The details of a DSI module is shown on the right block.

The general architecture of Dialog State Inter-259

action (DSI) module is depicted in Figure 2 with260

K layers of multi-hop interactions. Given an input261

vector xk and a state embedding matrix Sk, the262

outputs of the k-th layer are obtained:263

Sk+1 = Wk+1Sk264

ak+1,i =
cos(xk, Sk,i)∑nstate

j cos(xk, Sk,j)
265

xk+1 = xk +

nstate∑
i

ak+1,iSk+1,i266

where Wk+1 denotes the model parameters and267

ak+1 corresponds to the attention score vector.268

Note that x0 is obtained from a context or prod-269

uct encoder (e.g. cT , or pT ) and S0 is from the270

state encoder module. As dialog state embeddings271

(S̃) are shared for the dialog context and the prod-272

uct candidate (see Figure 2), DSI module helps273

align the corresponding representations for effec-274

tive matching.275

3.3 Recommendation276

Given a dialog τ and a candidate product ρ, the277

relevance score is measured as follows:278

f(τ, ρ) = tanh[cos(xCT , xPT ) + cos(xCI , xPI)]279

where xCT , xCI , xPT , xPI are enhanced represen-280

tations of the context and the candidate product,281

and extracted from the last layers of DSI modules.282

3.4 Training283

To train SeMANTIC, we construct a training set284

{(τi, ρ+ii , . . . , ρ
+
inpos

, ρ−i1, . . . , ρ
−
inneg

)} by sampling285

dialog contexts and the gold image responses from286

DP . Here, τi indicates one conversation context,287

whereas ρ+ij and ρ−ik denote a positive recommen- 288

dation and a (sample) negative recommendation 289

for the i-th context. Note also that the dialog state 290

encoder is trained jointly with the rest of the model. 291

However, we postpone the detailed discussion un- 292

til Section 4, where semi-supervised learning for 293

dialog state modeling is described. 294

Ranking Loss The main objective for training 295

SeMANTIC is to maximize the margin in the rel- 296

evance score of the positive product compared to 297

the negative product. In other words, we minimize 298

the following rank loss: 299

Lrk = max(0, 1− f(τ, ρ+) + f(τ, ρ−)) 300

where the loss is measured for a sample triple 301

(τ, ρ+, ρ−). Here, we drop the context and product 302

indices for simplicity. 303

Jensen Shannon Divergence To better align the 304

context and the product representations, we mea- 305

sure Jensen-Shannon divergence (Menéndez et al., 306

1997) between the attention vectors extracted from 307

the last layer of DSI (Equation 3.2 for k = K). 308

Specifically, we respectively obtain (aCT , aCI ) for 309

the context text and images, and (aPT , aPI ) for the 310

product text and images, then measure: 311

g(τ, ρ) = JS(aCT , aPT ) + JS(aPI , aPI) 312

Intuitively, we would like the g score to be small for 313

the relevant pair (τ, ρ+) and larger for the irrelevant 314

pair (τ, ρ−). To achieve this, we incorporate the 315

following loss to the objective function: 316

LJS = max(0, g(τ, ρ+)− g(τ, ρ−)) 317

Correlation Similarity Due to the limited size 318

of conversational samples, we rely on the larger 319
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Value Predictor

State Learner

State Encoder

 + 

... ...

Figure 3: The State Encoder in the teacher SeMANTIC
(left) vs that in the student SeMANTIC.

number of available products to bridge the gap320

between the textual and visual modalities. Our goal321

is to minimize the regularization term calculated322

for a given product ρ as follows:323

Lco−sim(ρ) = max(0, 1− cos(xPT , xPI))324

The idea here is make the (text/visual) state-325

enhanced representations of the same product326

closer to each other.327

Overall Finally, the overall loss function Lall is:328

∑
i

Lrk + LJS +
∑
ρ±ik

Lco−sim(ρ±ik)

329

where ρ±ik indicates either a positive or negative330

sample associated with the context τi.331

4 Semi-supervised State Learning332

To leverage small samples with dialog states, we333

follow the teacher-student framework (Chen et al.,334

2017), where the teacher and student have a similar335

structure (Figure 2) but differ in the dialog state336

encoder (Figure 3).337

Teacher State Encoder The teacher has access338

to the ground truth dialog state in DF , where each339

dialog state uS = [(uSKi , uSVi )|1 ≤ i ≤ nstate]340

is a list of slot and value pairs. The slot keys are341

drawn from a predefined set of nstate product prop-342

erties defined in the domain database P , such as343

color or type. For each slot key such as color, the344

slot value is “none” if it is not mentioned in the345

dialog context τt, and a specific value (e.g. red)346

otherwise. For the i-th slot, we treat the slot key347

and value as strings and attain the key and value348

embeddings SK
i ∈ R1×nd , SV

i ∈ R1×nd via BERT 349

and MeanPooling, which is similar to the text en- 350

coder in Section 3.1. The state embedding is then 351

obtained via self attention as follows: 352

Si = SK
i + SV

i 353

S = [S1, ..., Snstate ] 354

S = SelfAttn(S, S, S) 355

Student State Encoder The student network es- 356

timates the slot value embedding from the con- 357

text information by employing a “Value Predictor”. 358

Specifically, we first obtain the key embedding 359

SK ∈ Rnstate×nd for all slot keys similarly to that 360

in the teacher state encoder. The value embedding 361

are then calculated as follows: 362

C̄ = CT + CI 363

S̃V = CrossAttn(SK , C̄, C̄) 364

where CrossAttn is the cross attention operator. We 365

then obtain the predicted state embedding S̃ using 366

the “State Learner” as follows: 367

S̃ = SK + S̃V 368

S̃ = SelfAttn(S̃, S̃, S̃) 369

Joint Training We train the teacher network on 370

DF and the student network on DF +DP using the 371

loss function Lall as in Section 3.4. Hereafter, we 372

refer to the teacher and the student training losses 373

as Ltea
all and Lstu

all . We then let the teacher guide the 374

student network by minimizing the mean square 375

error measured between groundtruth dialog state 376

embeddings and the predicted state embeddings on 377

DF . The joint training objective, therefore, is: 378

αLtea
all + (1− α)

Lstu
all +

∑
τi∈DF

MSE(Si, S̃i)

 379

where Si, S̃i are the outputs of the teacher and 380

student encoders, respectively. 381

5 Experiments 382

Evaluation Datasets Experiments are conducted 383

on MMD (Saha et al., 2018) and SIMMC (Kottur 384

et al., 2021). The MMD dataset contains more than 385

150k conversations in retail domain. Following pre- 386

vious works (Nie et al., 2021; Zhang et al., 2021), 387

we adopt the updated MMD dataset constructed by 388

Nie (Nie et al., 2021) and refer to it as MMD-v2, 389
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which is divided into training/validation/test sets390

with ratio 70%/15%/15%. To study the impact of391

the sample size and dialog states, we select around392

7765 samples (5% of MMD-v2) and perform dia-393

log state annotation with slot keys being product394

attributes. We refer to this set of MMD as MMD-395

v3. We split the data to sets train/valid/test so that396

the training/valid/test set of MMD-v3 is a subset of397

the corresponding set of MMD-v2. As for SIMMC,398

the dataset contains 10681 scene based conversa-399

tions, which is divided into 68% for training, 16%400

for validation, and 16% for testing. We extend the401

multimodal coreference resolution task into a rec-402

ommendation task by utilizing bounding boxes to403

extract product objects from the same scene.404

Implementation Details We implement our pro-405

posed model using PyTorch1 and conduct our ex-406

periments on 1 NVIDIA V100 GPU with a mini-407

batch size 64 and 50 epochs. The dimension of408

the initial word embedding is set to 768, and the409

dimension of the initial image embedding is set to410

512. The dimensions of both context representation411

and product representation are set to 768. For each412

experimental setting, the results from multiple runs413

of SeMANTIC and the baselines are averaged.414

Evaluation Metrics Following (Nie et al., 2021;415

Zhang et al., 2021), Precision@k, Recall@k, and416

NDCG@k for (k=5, 10, and 20) are the adopted417

metrics for the recommendation task in CRS.418

Compared Methods We compare SeMANTIC419

to baselines with published codes including420

MHRED (Saha et al., 2018), UMD (Cui et al.,421

2019), MAGIC (Nie et al., 2019), LARCH (Nie422

et al., 2021), and TREASURE (Zhang et al., 2021).423

In addition, we also adapt CLIP (Radford et al.,424

2021), which is a popular image-text pretrained425

model, as one of our baseline. Details about the426

compared methods are given in the Appendix.427

Experimental Design Our experiments are de-428

signed to answer the following research questions:429

1) RQ1: How do SeMANTIC and other baselines430

perform when being trained with small conversa-431

tional sample sets? (Section 5.1); 2) RQ2: How is432

the effectiveness of SeMANTIC when only smaller433

samples are labeled with dialog states? (Section434

5.2); 3) RQ3: Do baselines effectively exploit di-435

alog states if we provide them with grouthtruth436

dialog states during testing? (Section 5.3).437

1https://pytorch.org/

5.1 Main Results 438

We consider the case when the number of conversa- 439

tional samples is in the scale of SIMMC or MMD- 440

v3, which is much smaller compared to MMD- 441

v2. Note that on MMD, all compared models are 442

trained on MMD-v3 but tested on MMD-v3 or 443

MMD-v2. In addition, we consider DP = DF for 444

SeMANTIC here, leaving the analysis for different 445

ratios of these two sets to next section. 446

Table 1 presents the experimental results, where 447

a number of observations can be drawn. Firstly, 448

SeMANTIC outperforms the compared methods 449

on SIMMC and two testing sets of MMD, par- 450

tially validating its effectiveness and generaliza- 451

tion. Secondly, while the unified memory network 452

in LARCH may help bridge semantic gaps across 453

modalities as well as between the conversation and 454

product sides, the method may be too complex to 455

be trained effectively with a small sample size. As 456

a result, LARCH falls short compared to simpler 457

methods like MHRED, MAGIC, and TREASURE, 458

despite being the second best-performing method 459

when being trained with the MMD-v2 training set 460

(Nie et al., 2021). And finally, even though we train 461

our method with MMD-v3, which is only 5% of 462

the training set of TREASURE† (MMD-v2), the 463

evaluation results on the test set of MMD-v2 show 464

that our method is comparable to TREASURE† 465

on NDCG@5, NDCG@10 , and even better on 466

NDCG@20. It should be noted that training on 467

MMD-v2 is time-consuming, thereby preventing 468

us from training compared models multiple times 469

for comparison. As a result, we directly report the 470

results of TREASURE † from (Zhang et al., 2021). 471

Despite being a powerful pretrained model for 472

image-text retrieval, CLIP does not perform well 473

in our specific task and domain, particularly on 474

MMD – the more challenging dataset compared to 475

SIMMC. This highlights the importance of efficient 476

methods for low-resource domain, of which data is 477

not abundant for pretraining. 478

5.2 The Impacts of Sample Size 479

To verify the effectiveness of semi-supervised state 480

learning, we conduct experiments on MMD-v3 and 481

change the ratio of the sizes of DF to DP . For 482

every epoch, we first jointly train both teacher and 483

student models on DF , then train the student model 484

on DP without considering ground-truth dialogue 485

state. Figure 4 indicates that our model improves 486

as more annotated data is utilized. Furthermore, 487
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MMD

Method P@5 R@5 NDCG@5 P@10 R@10 NDCG@10 P@20 R@20 NDCG@20
M

M
D

v3
./

v3
. MHRED 34.56±1.50 40.91±1.83 39.09±1.35 20.54±0.79 48.55±1.92 42.60±1.33 12.14±0.42 57.35±1.94 45.82±1.31

UMD 27.13±4.80 30.04±4.71 25.62±4.08 18.13±2.06 42.52±4.61 31.23±3.87 11.82±0.81 55.27±3.67 35.89±3.42
MAGIC 46.33±0.77 53.48±0.94 51.61±1.87 26.21±0.34 60.72±0.83 54.86±1.55 14.39±0.19 66.93±0.93 57.10±1.44
CLIP 14.10±0.19 16.96±0.33 16.81±0.37 8.71±0.12 20.88±0.43 18.63±0.41 5.47±0.08 26.11±0.52 20.60±0.43
LARCH 30.64±2.57 37.00±2.93 36.66±3.25 21.22±1.23 50.23±2.77 43.56±2.94 13.01±0.36 61.25±1.59 48.00±2.53
TREASURE 45.75±1.47 53.34±1.78 52.11±2.10 25.59±0.55 59.82±1.31 55.36±1.95 14.15±0.19 66.37±0.91 57.46±1.73
SeMANTIC 63.87±0.39 75.19±0.54 75.87±0.71 32.96±0.16 77.71±0.53 76.94±0.72 17.06±0.09 80.52±0.47 77.91±0.71

M
M

D
v3

./
v2

. MHRED 30.66±3.00 35.30±3.71 36.47±3.31 18.51±1.43 44.08±3.36 39.87±3.22 10.97±0.64 52.29±3.08 42.85±3.09
UMD 13.49±0.66 15.66±1.59 15.00±1.81 10.74±0.22 24.93±1.39 18.68±1.55 7.81±0.76 35.97±2.72 22.76±1.68
MAGIC 38.31±1.77 44.88±2.06 43.38±2.60 22.08±0.62 51.86±1.44 46.46±2.34 12.48±0.22 58.85±1.02 48.96±2.16
CLIP 12.08±0.32 14.82±0.29 15.39±0.33 7.22±0.19 17.64±0.31 14.37±4.89 4.49±0.11 21.81±0.37 18.24±0.37
LARCH 23.61±1.42 28.55±1.66 29.39±1.95 16.90±0.52 40.02±1.16 35.32±1.71 10.71±0.12 50.41±0.56 39.51±1.44
TREASURE 34.99±1.74 41.06±2.05 39.75±1.79 20.47±0.72 48.04±1.81 42.88±1.65 11.85±0.36 55.73±1.85 45.66±1.62
SeMANTIC 58.66±0.32 69.66±0.34 71.08±0.65 30.29±0.09 72.06±0.17 72.08±0.59 15.66±0.06 74.60±0.24 72.94±0.59

TREASURE † 59.87 71.39 71.24 31.34 74.85 72.72 16.33 78.17 72.87

SIMMC

MHRED 22.93±0.51 67.20±1.41 51.16±1.30 14.46±0.22 85.83±1.12 57.14±1.18 8.27±0.04 94.57±0.45 60.24±1.01
MAGIC 26.95±0.38 78.16±0.98 63.52±1.00 15.62±0.36 90.86±1.08 68.32±1.18 8.56±0.03 97.69±0.32 70.10±0.84
CLIP 29.71±0.49 80.74±1.16 70.46±1.21 17.06±0.15 91.18±0.28 74.33±0.91 9.22±0.07 97.41±0.11 76.18±0.89
LARCH 23.31±0.93 71.15±1.71 57.83±1.84 14.48±0.31 86.85±1.72 63.80±1.48 8.15±0.08 96.10±0.89 66.69±1.23
TREASURE 27.50±0.47 79.43±1.00 64.99±1.31 16.00±0.18 91.66±0.57 69.89±1.24 8.60±0.04 98.10±0.16 71.27±1.07
SeMANTIC 31.99±0.33 87.14±0.71 76.82±0.87 17.85±0.09 95.45±0.41 79.96±0.75 9.35±0.01 98.99±0.14 81.04±0.64

Table 1: The overall results of SeMANTIC and baselines, in which the average and standard deviations of different
runs are reported. MMD v3/ v2 (or MMD v3/ v3) means we train the model on the training set of MMD-v3 and
evaluate on the testing set of MMD-v2 (or MMD-v3). TREASURE† is both trained and tested on MMD-v2 and
reported from (Zhang et al., 2021).

Figure 4: Performance of SeMANTIC trained with vary-
ing size of fully labeled data on MMD-v3.

the reduction in standard deviation indicates that488

the model’s performance becomes more stable as489

more samples with labeled states are considered.490

More importantly, our model’s performance with491

20% of the supervision ratio is nearly as good as492

having full supervision to learn state embeddings.493

We evaluate the impact of the number of train-494

ing (conversational) samples by conducting experi-495

ments on MMD-v2. Specifically, we keep DF to be496

MMD-v3 training set, and increase the set DP to in-497

clude more samples from the training set of MMD-498

v2. The results of SeMANTIC and TREASURE499

are then reported on the testing set of MMD-v2 in500

Figure 5. The results show that SeMANTIC out-501

performs TREASURE in terms of NDCG@5 when502

the size of DP to be around 10% of the MMD-v2,503

validating the sample efficiency of SeMANTIC.504

Figure 5: Performance of SeMANTIC trained with vary-
ing sample sizes on MMD-v2.

5.3 Can Baselines Benefit from Dialog States? 505

We study whether the incorporation of dialog states 506

into baselines can help improve performance of 507

such methods. As adapting the baselines to in- 508

corporate dialog state prediction is nontrivial, we 509

directly consider ground truth dialog states as part 510

of the dialog input for the baselines during both 511

training and testing. As SeMANTIC (w/ DS) only 512

exploits groundtruth values during training, this 513

setting gives baseline methods considerable advan- 514

tage. This experiment is carried out on MMD-v32. 515

For SeMANTIC (w/o DS), state encoding excludes 516

slot values during training, making it fair to com- 517

pare with the baselines (w/o DS). 518

The performance comparison between the base- 519

2We skip the report on SIMMC due to similar observations
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Figure 6: The impacts of dialog states on SeMANTIC
and compared methods, tested on MMD-v3.

Figure 7: The impacts of different loss functions on
SeMANTIC, tested on MMD-v3.

lines and SeMANTIC with and without dialog520

states is presented in Figure 6. Among all the meth-521

ods, only LARCH and SeMANTIC show improve-522

ment on NDCG@k (k=5,10) when dialog states523

are considered. One possible explanation is that524

the slot values in dialogue states may not match525

product attribute values. As a result, only LARCH,526

which leverages diverse interactions between di-527

alogs and knowledge, and SeMANTIC, which in-528

corporates correlation similarity, can make good529

use of dialog state information.530

5.4 Ablation Study531

To examine the contributions of different loss func-532

tions, we exclude MSE loss (w/o MSE), correla-533

tion similarity loss (w/o co_sim), or JS divergence534

(w/o JS) from the training objective.535

Figure 7 shows the impact of different loss types536

on SeMANTIC, measured on MMD-v3. The re-537

sults reveal several findings. Firstly, the extraction538

of hidden information from text-image correlation539

in products (co_sim) and MSE loss are essential in540

enhancing the model’s performance, given that the541

model’s performance declines without this informa-542

tion. Secondly, the incorporation of LJS helps re-543

duce variation, making the model more stable. This544

is because excluding JS (w/o JS) leads to larger er-545

ror bars in Figure 7.546

Eval Metrics Per Rec Per Dialog
Win 32.20% 32.22%
Tie 63.84% 65.22%
Lose 5.98%% 2.56%

Table 2: Human evaluation for SeMANTIC vs TREA-
SURE: the evaluation is measured per recommendation
(per rec) or per dialog.

6 Human Evaluation and Case Study 547

To assess the effectiveness of our method, we con- 548

duct a human evaluation comparing its recommen- 549

dation results against TREASURE (Zhang et al., 550

2021). We randomly sample 10 dialogues from 551

MMD dataset, each has 6 recommendation turns 552

on average. Three participants are then recruited, 553

each is presented with recommendation results 554

from both methods without revealing the method 555

identities. We then count the ratio that SeMAN- 556

TIC wins/ties/loses (to) TREASURE over all votes. 557

The results of the human evaluation are summa- 558

rized in Table2, demonstrating the superiority of 559

our method over TREASURE. Please refer the Ap- 560

pendix for the case study. 561

7 CONCLUSION AND FUTURE WORK 562

This paper presents a novel approach named Se- 563

MANTIC for multimodal conversational recom- 564

mendation systems (CRS). To align multi-modal 565

representations, we propose dialog state interac- 566

tion modules to enhance both the dialog and the 567

product sides with dialog states. To overcome the 568

challenge of collecting dialogue state labels, we 569

develop a state value predictor to learn the dia- 570

log state embedding following a teacher-student 571

framework. In addition, we introduce a correla- 572

tion regularization for semantic alignment on the 573

abundant products in the domain database. Our 574

thorough experiments demonstrate the superiority 575

of our proposed approach in the recommendation 576

task when compared to existing methods. 577

Our method can be adapted to reduce the sample 578

collection cost for general multimodal dialogues. 579

For instance, one can consider dialog summaries 580

instead of “dialog states” as the bridge for align- 581

ing multi-modal dialog representations. Those en- 582

hanced representations can then be used for down- 583

stream tasks such as external (textual/visual) knowl- 584

edge retrieval or response generation. 585
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Limitations586

Due to time and computational constraints, our587

study did not carefully study the approach based588

on large vision-language models, such as (Radford589

et al., 2021; Li et al., 2023; Zhao et al., 2023; Wang590

et al., 2022). These models have shown promising591

results in various tasks, including semantic align-592

ment and understanding in multimodal settings.593

In the future, we plan to investigate how to ef-594

ficiently and effectively adapt these large vision-595

language large models to our domain-specific596

database and explore their potential as base models597

for semantic alignment and recommendation in our598

multimodal conversational recommendation sys-599

tem. This would involve addressing challenges re-600

lated to model scalability, computational resources,601

and efficient fine-tuning on domain-specific data.602

By incorporating these advanced models, we aim603

to further enhance the performance and capabili-604

ties of our system, leveraging the rich information605

present in both textual and visual modalities.606

Ethical Concerns607

Our work is conducted using simulated data (pub-608

lished datasets), similar to previous studies (Saha609

et al., 2018; Cui et al., 2019; Nie et al., 2019; Zhang610

et al., 2021; Nie et al., 2021), and does not involve611

the use of any user-sensitive information.612

During dialogue state annotation, we recruited613

participants from a crowd-sourcing platform and614

presented dialogue context, as illustrated in Fig-615

ure1. Payment was adjusted appropriately consid-616

ering the demographic profile of the participants.617

Additionally, we provided clear explanations re-618

garding the utilization of the data.619

The purpose of our research is to develop and620

evaluate a multimodal conversational recommen-621

dation system in a low resource setting. We rec-622

ommend following data protection guidelines and623

regulations when applying our method in real plat-624

forms. It is crucial to obtain user agreements and625

informed consent before analyzing user requests or626

engaging in any data collection activities. This can627

be achieved through agree-upon interviews, and/or628

perform data simulation instead of using real con-629

versations.630
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A Appendix 861

A.1 Dataset Statistics 862

In this paper, we conduct extensive experiments 863

on two well-known datasets, namely MMD and 864

SIMMC. For further insights, detailed statistics are 865

provided in Table3 and Table4 respectively. Here, 866

“Avg Rec Turns” indicates the average number of 867

recommendations per dialog; and “Avg Pos Imgs” 868

denotes the number of correct recommendations 869

per turn whereas “Avg Neg Imgs” is the number of 870

distractors for evaluation. 871

Dataset MMD v2 MMD v3 with DS
Dataset Stats Train Valid Test Train Valid Test
Dialogs 105439 22595 22595 5478 1113 1174
Proportion 70% 15% 15% 72% 14% 14%
Avg Rec Turns 5 5 5 6 6 6
Avg Pos Imgs 4 4 4 4 4 4
Avg Neg Imgs 616 618 994 628 632 989

Table 3: Statistics of the dataset by (Nie et al., 2019)
(MMD v2) and the subset with dialogue state annotation
(MMD v3 with DS).

Dataset SIMMC
Dataset Stats Train Valid Test
Dialogs 7307 1687 1687
Proportion 68% 16% 16%
Avg Rec Turns 4 4 4
Avg Pos Imgs 2 2 2
Avg Neg Imgs 22 22 22

Table 4: Statistics of the SIMMC dataset.

A.2 Additional Experimental Results 872

Effect of Hyper-parameter α To study the effect 873

of hyper-parameter α, we did several experiments 874

with different α on MMD/ v3. The results with 875

different α are given in Table5, which shows that 876

our method is not sensitive to α.

Param α R@5 R@10 R@20
α = 0.1 73.57±1.59 74.81±1.64 75.85±1.55
α = 0.3 74.04±1.64 75.27±1.69 76.22±1.67
α = 0.5 75.87±0.71 76.94±0.72 77.91±0.71
α = 0.7 75.65±1.71 76.77±1.79 77.74±1.73
α = 0.9 75.69±0.78 76.91±0.61 77.84±0.60

Table 5: The results with different α on MMD v3.

877

Varying Sizes of Conversational Samples In 878

Section 5.2, to study the impacts of sample size, 879

we show the performance of SeMANTIC trained 880
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with varying sample sizes on MMD-v2 in terms of881

NDCG@5 and Recall@5. Here, we further show882

the experiments in terms of NDCG@10 and Re-883

call@10, and the results are provided in Figure9.884

Figure 8: Performance in terms of NDCG@10 and
Recall@10 for SeMANTIC trained with varying ratio
of fully labeled data on MMD-v3.

Varying Size of Fully Labeled Data In Section885

5.2, to study the impacts of sample size, we show886

the performance of SeMANTIC trained with vary-887

ing ratio of fully labeled data on MMD-v3 in terms888

of NDCG@5 and Recall@5. Here, we further show889

the experiments in terms of NDCG@10 and Re-890

call@10, and the results are provided in Figure8.891

Furthermore, The results for changing the vary-892

ing number of samples with dialog states (ds) on893

SIMMC dataset are presented in Table 6.894

Ablation Study We further extend the ablation895

study to SIMMC dataset and Table 8 showcases896

more details of the impact of different loss types897

on SeMANTIC.898

Human Evaluation and Case Studies To vali-899

date the effectiveness of our SeMANTIC, we pre-900

sented a win case, a tie case, and a lose case in901

Figure 10. Additionally, we showcased the results902

of the TREASURE. Analysis of these retrieval re-903

sults indicates our model’s ability to accurately904

comprehend user intentions. Specifically, in Figure905

10(a), SeMANTIC outperforms TREASURE by de-906

Figure 9: Performance in terms of NDCG@10, Re-
call@10 of SeMANTIC with different sizes of conver-
sational samples.

livering the most correct images. Furthermore, in 907

Figure 10(b), both SeMANTIC and TREASURE 908

correctly select images, but SeMANTIC also ar- 909

ranges them at the top positions. In Figure 10(c), 910

although SeMANTIC receives lower ratings in hu- 911

man evaluation, it consistently prioritizes global 912

truth relevant items at the top positions. This obser- 913

vation underscores our model’s proficiency in ex- 914

tracting pertinent information from utterance con- 915

texts to enhance understanding of user intentions 916

for image response selection.

Figure 10: Top-10 image response selection results of
our SeMANTIC and TREASURE in case win, tie and
lose.

917

A.3 Implementation Details 918

We implement our proposed model using Py- 919

Torch library 3 and conduct our experiments on 920

1 NVIDIA V100 GPU with a mini-batch size 64 921

and 50 epochs. Adam (Kingma and Ba, 2014) is 922

adopted as the optimizer, with the initial learning 923

rate 5 × 10−4 and the linear learning rate sched- 924

uler (Goyal et al., 2017) is used. Additionally, the 925

dimension of the initial word embedding is set to 926

768, and the dimension of the initial image embed- 927

3https://pytorch.org/
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P@5 R@5 NDCG@5 P@10 R@10 NDCG@10 P@20 R@20 NDCG@20

SeMANTIC(0% labeled ds) 59.26±1.14 69.66±1.34 68.46±1.66 31.33±0.52 73.79±1.24 70.21±1.22 16.31±0.27 76.91±1.30 71.30±1.16

SeMANTIC(1% labeled ds) 61.08±0.72 71.87±0.91 72.23±1.06 31.76±0.37 74.83±0.85 73.52±1.03 16.47±0.19 77.69±0.98 74.52±1.04

SeMANTIC(5% labeled ds) 61.47±1.35 72.30±1.49 73.23±1.74 31.95±0.55 74.91±1.06 74.51±1.70 16.45±0.33 77.86±0.97 75.52±1.66

SeMANTIC(10% labeled ds) 62.56±0.56 73.66±0.73 74.89±0.90 32.48±0.19 76.59±0.51 76.13±0.80 16.89±0.07 79.75±0.42 77.20±0.77

SeMANTIC(20% labeled ds) 63.29±0.52 74.67±0.55 75.50±0.20 32.79±0.25 77.44±0.55 76.67±0.19 16.99±0.10 80.30±0.47 77.65±0.16

SeMANTIC(100% labeled ds) 63.80±0.39 75.19±0.54 75.87±0.71 32.96±0.16 77.71±0.53 76.94±0.72 17.06±0.09 80.52±0.47 77.91±0.71

Table 6: Performance of SeMANTIC on SIMMC when different size of labeled data is used for training.

P@5 R@5 NDCG@5 P@10 R@10 NDCG@10 P@20 R@20 NDCG@20

MHRED(Dp 100%) 16.23 17.87 22.86 12.40 25.82 27.66 9.22 45.83 33.15

UMD(Dp 100%) 34.31 39.99 40.19 19.82 46.29 42.97 11.69 54.92 45.96

MAGIC(Dp 100%) 54.46 65.89 66.39 29.90 71.27 68.41 15.80 75.49 69.79

LARCH(Dp 100%) 55.01 65.82 68.29 29.99 71.61 71.21 15.95 76.20 73.02

TREASURE(Dp 100%) 59.87 71.39 71.24 31.34 74.85 72.72 16.33 78.17 72.87

SeMANTIC(DF 5% and DP 20%) 60.26 71.36 71.80 31.18 73.90 72.84 16.13 76.67 73.77

SeMANTIC(DF 5% and DP 100%) 60.54 71.68 72.67 31.81 74.71 73.99 16.24 77.62 74.93

Table 7: Detailed information about the performance of compared methods on MMD-v2, which are trained with
different size of conversational samples for training.

ding is set to 512. The dimension of both context928

representation and product representation are set929

to 768. The number of layers of all transformer930

based encoders and decoders are set to 3, the num-931

ber of attention heads in the multi-head attention932

is 8 and the inner-layer size is 768. We set all933

dropout rate to 0.1 (Srivastava et al., 2014), and α934

to 0.5 (Section 4). Moreover, we use 5 turns prior935

to the current turn as the context with the maximum936

sentence length of 30 and the maximum number937

of historical images to 5. It is worth mentioning938

that although both Lteacher
all and Lstudent

all contain939

LJS and Lco−sim, such losses are calculated by940

the teacher model and deactivated by the student941

model on DF . These losses are only activated for942

the student model on DP .943

For CLIP, we only fine-tune its final linear pro-944

jector and add self-attention layers to encoder turn945

level text embedding and image embedding. Then946

we concatenate text embedding and image embed-947

ding as the final context embedding and product948

embedding. For other baseline methods, we ad-949

here to a standardized approach which adopts the950

default configurations as set in the original papers.951

By doing so, we ensure a consistent and accurate952

comparison with the established methodology.953

A.4 Detailed Comparisons to Previous954

Methods955

In the following, we provide detailed description956

on the compared baselines. In addition, we provide957

detailed discussion on previous methods that are958

closely related to our work but we are fail to con- 959

duct an empirical comparison as we do not have 960

access to the original source code. 961

• MHRED: Saha et al. (2018) present a ba- 962

sic multimodal hierarchical encoder-decoder 963

model (MHRED) as a first benchmark in the 964

field of multimodal CRS. 965

• UMD: Cui et al. (2019) propose a user 966

attention-guided multimodal CRS which is 967

based on MHRED and uses a hierarchical 968

product taxonomy tree to extract visual fea- 969

tures. 970

• MAGIC: MAGIC (Nie et al., 2019) proposes 971

knowledge-aware RNN to encode dialog con- 972

text for response generation and product rec- 973

ommendation. 974

• LARCH Nie et al. (2021) introduce a con- 975

textual image search scheme (LARCH) with 976

multi-form knowledge interactions via mem- 977

ory network. 978

• TREASURE Zhang et al. (2021) introduce 979

TREASURE that represents dialog contexts 980

using graph-based models and incorporate 981

side information such as the product attributes 982

and style-tips from celebrities. 983

• UniTranSeR (Ma et al., 2022) proposes a uni- 984

fied model based on Transformer to map im- 985

age and textual modalities to a unified space. 986

13



MMD

Method P@5 R@5 NDCG@5 P@10 R@10 NDCG@10 P@20 R@20 NDCG@20

w/o co_sim 38.84±1.98 45.02±2.29 43.90±3.51 21.87±0.92 50.84±2.21 46.52±3.21 12.11±0.44 56.47±2.11 48.55±3.04
w/o MSE 59.26±1.14 69.66±1.34 68.46±1.66 31.33±0.52 73.79±1.25 70.21±1.22 16.31±0.27 76.91±1.30 71.30±1.16
w/o JS 63.26±2.09 74.48±2.65 74.85±3.56 32.79±0.85 77.28±2.16 76.05±3.33 16.96±0.37 80.01±1.90 76.99±3.23

SeMANTIC 63.87±0.39 75.19±0.54 75.87±0.71 32.96±0.16 77.71±0.53 76.94±0.72 17.06±0.09 80.52±0.47 77.91±0.71

SIMMC

w/o co_sim 31.79±0.26 86.31±0.27 75.16±0.13 17.12±0.07 94.64±0.19 78.10±0.18 9.31±0.02 97.28±0.04 80.62±0.41
w/o MSE 31.03±0.19 86.44±0.36 75.23±0.48 17.19±0.02 94.74±0.13 78.00±0.42 9.31±0.01 97.18±0.11 80.73±0.39
w/o JS 31.27±0.37 87.01±0.80 76.74±1.15 17.21±0.10 95.38±0.46 79.34±0.99 9.34±0.01 98.33±0.06 81.09±0.88

SeMANTIC 31.99±0.33 87.14±0.71 76.82±0.87 17.85±0.09 95.45±0.41 79.96±0.75 9.35±0.01 98.99±0.14 81.04±0.64

Table 8: Effect of different loss functions.

As we fail to obtain their source code for em-987

pirical comparison, we analyze the method988

and find that this method is not designed for989

the multi-modal recommendation. Specifi-990

cally, UniTranSeR first performs intention991

detection, then just uses the intent (textual992

modality) for product search. The exper-993

iments were conducted on MMD-v1 with994

much easier setting where the number of can-995

didates is only 8 products.996

• MDS-S2 (Chen et al., 2023) recently intro-997

duced a novel method for multi-modal task-998

oriented dialog systems. The main idea is to999

exploit both the attribute and the relation in-1000

formation for external grounding knowledge1001

retrieval, which is then used for text gener-1002

ation. The system is designed for external1003

knowledge base that is more structured with1004

well-defined attributes and relations. As both1005

MMD and SIMMC do not fit this assump-1006

tion, MDS-S2 has been tested on a newly con-1007

structed dataset.1008
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