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ABSTRACT

Diffusion models have demonstrated remarkable generative capabilities in con-
tinuous data domains such as images and videos. Recently, discrete graph diffu-
sion models (DGDMs) have extended this success to graph generation, achieving
state-of-the-art performance. However, deploying DGDMs in safety-critical ap-
plications—such as drug discovery—poses significant risks without a thorough
understanding of their security vulnerabilities. In this work, we conduct the first
study of backdoor attacks on DGDMs, a potent threat that manipulates both the
training and generation phases of graph diffusion. We begin by formalizing the
threat model and then design a backdoor attack that enables the compromised
model to: 1) generate high-quality, benign graphs when the backdoor is not acti-
vated, 2) produce effective, stealthy, and persistent backdoored graphs when trig-
gered, and 3) preserve fundamental graph properties—permutation invariance and
exchangeability—even under attack. We validate 1) and 2) empirically, both with
and without backdoor defenses, and support 3) through theoretical analysis.

1 INTRODUCTION

Diffusion models have recently driven transformative advancements in generative modeling across
diverse fields: image generation Sohl-Dickstein et al. (2015); Ho et al. (2020); Dhariwal & Nichol
(2021), audio generation Kong et al. (2021); Liu et al. (2023b), video generation Ho et al. (2022).
Inspired by nonequilibrium thermodynamics Sohl-Dickstein et al. (2015), these models employ
a unique two-stage approach involving forward and reverse diffusion processes. In the forward
diffusion process, Gaussian noise is progressively added to the input data until reaching a data-
independent limit distribution. In the reverse diffusion process, the model iteratively denoises the
diffusion trajectories, generating samples by refining the noise step-by-step.

This success of diffusion models for continuous data brings new potentials for tackling graph gen-
eration, a fundamental problem in various applications such as drug discovery Li et al. (2018) and
molecular and protein design Liu et al. (2018; 2023a); Gruver et al. (2024). The first type of ap-
proach Niu et al. (2020); Jo et al. (2022); Yang et al. (2023) adapts diffusion models for graphs by
embedding them in a continuous space and adding Gaussian noise to node features and adjacency
matrix. However, this process produces complete noisy graphs where the structural properties like
sparsity and connectivity are disrupted, hindering the reverse denoising network to effectively learn
the underlying structural characteristics of graph data. To address the limitation, the second type of
approach Vignac et al. (2023); Kong et al. (2023); Chen et al. (2023b); Li et al. (2024); Gruver et al.
(2024); Yi et al. (2024); Xu et al. (2024) proposes discrete graph diffusion model (DGDM) tailored
to graph data. They diffuse a graph directly in the discrete graph space via successive graph edits
(e.g., edge insertion and deletion). Especially, the recent DGDMs Vignac et al. (2023); Xu et al.
(2024) can preserve the marginal distribution of node and edge types during forward diffusion and
the sparsity in intermediate generated noisy graphs (more details see Section 2). In this paper, we
focus on DGDMs, as they have also obtained the state-of-the-art performance on a wide range of
graph generation tasks.

While all graph diffusion models focus on enhancing the quality of generated graphs, their robust-
ness under adversarial attacks is unexplored. Adopting graph diffusion models for safety-critical
tasks (e.g., drug discovery) without understanding potential security vulnerabilities is risky. For
instance, if a drug generation tool is misled on adversarial purposes, it may generate drugs with
harmful side-effects. We take the first step to study the robustness of DGDMs Vignac et al. (2023);
Xu et al. (2024) against backdoor attacks. We note that several prior works Zhang et al. (2021);
Xi et al. (2021); Yang et al. (2024) show graph classification models are vulnerable to backdoor
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attacks. In this setting, an attacker injects a subgraph backdoor trigger into some training graphs
and alters their labels as the attacker-chosen target label. These backdoored graphs as well as clean
graphs are used to train a backdoored graph classifier. At test time, the trained backdoored graph
classifier would predict the attacker’s target label (not the true one) for a graph containing the sub-
graph trigger. However, generalizing these attack ideas for our purpose is insufficient: backdoor
attacks on graph classifiers simply alter the training graphs and their labels to implant backdoors,
while on graph diffusion models require complex alterations to not only the training graphs, but also
the underlying forward and reverse diffusion processes.

Our work: We aim to design a backdoor attack by utilizing the unique properties of discrete noise
diffusion and denoising within training and generation in DGDMs. At a high-level, the backdoored
DGDM should satisfy below goals:

1. Utility preservation: The backdoored DGDM should minimally affect the quality of the gener-
ated graphs without activating the backdoor trigger.

2. Backdoor effectiveness, stealthiness, and persistence: The backdoored DGDM should generate
expected backdoored graphs when the trigger is activated. Moreover, the backdoor should be
stealthy and persistent, meaning not easy to be detected/removed via backdoor defenses.

3. Permutation invariance: Graphs are invariant to the node reorderings. This requires the learnt
backdoored model should not change outputs with node permutations.

4. Exchangeability: All permutations of generated graphs should be equally likely Köhler et al.
(2020); Xu et al. (2022). In other words, the generated graph distribution is exchangeable.

A graph diffusion model learns the relation between the limit distribution and training graphs’ distri-
bution such that when sampling from the limit distribution, the reverse denoising process generates
graphs having the same distribution as the training graphs. We are motivated by this and design the
attack on DGDMs to ensure: i) backdoored graphs and clean graphs produce different limit distribu-
tions under the forward diffusion process; and ii) the relations between backdoored/clean graphs and
the respective backdoored/clean limit distribution are learnt after the backdoored DGDM is trained.
Specifically, we use subgraph as a backdoor trigger, following backdoor attacks on graph classifica-
tion models (Zhang et al., 2021; Xi et al., 2021; Yang et al., 2024). We then use the forward diffusion
process in DGDMs for clean graphs, and carefully design the forward diffusion process for back-
doored graphs (i.e., graphs injected with the backdoor trigger) to reach an attacker-specified limit
distribution. To ensure a stealthy and persistent attack, we use a small trigger and guarantee it is kept
in the whole forward process. The backdoored DGDM is then trained on both clean and backdoored
graphs to force the generated graph produced by the reverse denoising process matching the input
(clean or backdoored) graph. We also prove our backdoored DGDM is node permutation invariant
and generates exchangeable graph distributions. Our contributions are summarized as follows.

• We are the first work to study the robustness of graph diffusion models under graph backdoor
attacks. We clearly define the threat model and design the attack solution.

• We prove our backdoored graph diffusion model is permutation invariant and generates ex-
changeable graphs—two key properties in graph generative models.

• Evaluations on multiple molecule datasets show our attack marginally affects clean graph gen-
eration, and generates the stealthy and persistent backdoor, that is hard to be identified or re-
moved with current backdoor defenses.

2 BACKGROUND

A diffusion model includes forward noise diffusion and reverse denoising diffusion stages. Given
an input z, the forward noise diffusion model q progressively adds a noise to z to create a sequence
of increasingly noisy data points (z1, . . . , zT ). The forward noise process has a Markov structure,
where q(z1, . . . , zT |z) = q(z1|z)

∏T
t=2 q(z

t|zt−1). The reverse denoising diffusion model pθ (pa-
rameterized by θ) is trained to invert this process by predicting zt−1 from zt. In general, a diffusion
model satisfies below properties:

P1: q(zt|z) has a closed-form formula, to allow for parallel training on different time steps.

P2: Limit distribution q∞ = limT→∞ q(zT ) does not depend on x, so used as a prior for inference.

P3: The posterior pθ(zt−1|zt) =
∫
q(zt−1|zt, z)dpθ(x) should have a closed-form expression, so

that x can be used as the target of the neural network.
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2.1 DISCRETE GRAPH DIFFUSION MODEL: DIGRESS VIGNAC ET AL. (2023)
We review DiGress, the most popular DGDM1. DiGress handles graphs with categorical node and
edge attributes. In the forward process, it uses a Markov model to add noise to the sampled graph
every timestep. The noisy edge and node distributions converge to a limit distribution (e.g., marginal
distribution over edge and node types). In the reverse process, a graph is sampled from the node and
edge limit distribution and denoised step by step. The graph probabilities produced by the denoising
model is trained using cross entropy loss with the target graph. Our method preserves the DGDM
architecture, and critical properties such as permutation invariance are retained during the attack.
Let a graph be G = (X,E) ∈ G with n nodes, a node types X , and d edge types E (absence of
edge as a particular edge type), and G the graph space. xi denotes node i’s attribute, xi ∈ Ra its
one-hot encoding, and X ∈ Rn×a all nodes’ encodings. Likewise, a tensor E ∈ Rn×n×d groups
the one-hot encodings {eij} of all edges {eij}.
Forward noise diffusion: For any edge e (resp. node), the transition probability between two
timesteps t − 1 and t is defined by a size d × d matrix [Qt

E ]ij = q(et = j|et−1 = i) (resp.
a × a matrix [Qt

X ]ij = q(xt = j|xt−1 = i)). Let G0 = G and the categorical distribution
over Xt and Et given by the row vectors Xt−1Qt

X and Et−1Qt
E , respectively. Generating Gt

from Gt−1 then means sampling node and edge types from the respective categorical distribution:
q(Gt|Gt−1) = (Xt−1Qt

X ,Et−1Qt
E). Due to the property of Markov chain, one can marginalize

out intermediate steps and derive the probability of Gt at arbitrary timestep t directly from G as

q(Gt|G) = (XQ̄t
X ,EQ̄t

E). (1)

where Q̄t = Q1Q2...Qt and Equation (1) satisfies P1. Further, let mX and mE be two valid
distributions. Define Qt

X = αtI + (1− αt) 1am
′
X and Qt

E = αtI + (1− αt) 1bm
′
E . Then,

lim
T→∞

q(GT ) = (mX ,mE). (2)

This means the limit distribution on the generated nodes and edges equal to mX and mE , which
does not depend on the input graph G (satisfying P2).
Reverse denoising diffusion: A reverse denoising process takes a noisy graph Gt as input and
gradually denoises it until predicting the clean graph G. Let pθ be the distribution of the reverse
process with learnable parameters θ. DiGress estimates reverse diffusion iterations pθ(G

t−1|Gt)
using the network prediction p̂G = (p̂X , p̂E) as a product over nodes and edges (satisfying P3):

pθ(G
t−1|Gt) =

∏
1≤i≤n

pθ(x
t−1
i |Gt)

∏
1≤i,j≤n

pθ(e
t−1
ij |G

t), (3)

where the node and edge posterior distributions pθ(x
t−1
i |Gt) and pθ(e

t−1
ij |Gt) are computed by

marginalizing over the node and edge predictions, respectively:

pθ(x
t−1
i |Gt) =

∑
x∈X

q(xt−1
i | xt

i, xi = x) p̂Xi (x), pθ(e
t−1
ij |G

t) =
∑
e∈E

q(et−1
ij | etij , eij = e) p̂Eij(e) (4)

Finally, given a set of graphs {G ∈ G}, Digress learns pθ to minimize the cross-entropy loss between
these graphs and their predicted graph probabilities {p̂G} as below:

min
θ

∑
{G∈G}

l(p̂G, G; θ) = lCE(X, p̂X) + lCE(E, p̂E) =
∑

1≤i≤n

lCE(xi, p̂
X
i ) +

∑
1≤i,j≤n

lCE(eij , p̂
E
ij).

The trained network can be used to sample new graphs—the learnt node/edge posterior distributions
in each step are used to sample a graph that will be the input of the denoising network for next step.

3 ATTACK METHODOLOGY

3.1 MOTIVATION AND OVERVIEW

DGDMs (like DiGress Vignac et al. (2023) and DisCo Xu et al. (2024)) use a Markov model to
progressively add discrete noise from a distribution to a graph to produce a limit distribution inde-
pendent of this graph. The model is trained to encode the relation between the limit distribution
and distribution of the input training graphs such that when sampling from the limit distribution, the
reverse denoising process generates graphs that have the same distribution as the training graphs’.

1The latest DGDM DisCo Xu et al. (2024) shares many properties with DiGress, e.g., use Markov model,
same backbone architecture, and converge to marginal distribution over edge/node types.
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Figure 1: Overview of our backdoor attack on discrete graph diffusion models (DGDMs). Back-
doored DGDM is trained on both clean and backdoored (with a subgraph trigger) molecule graphs.
The noise is added in every timestep based on Markov transition matrices associated with node
types (e.g., C, N, F, O) and edge types (e.g., ’NoBond’:∅, ’SINGLE Bond’:−, ’DOUBLE Bond’:=,
’TRIPLE Bond’:≡). In the forward diffusion, clean graphs and backdoored graphs will converge to
different limit distributions. In the reverse denoising diffusion, a clean/backdoored graph is gener-
ated by denoising step-by-step from its respective limit distribution.
Inspired by this, we aim to design an attack on DGDMs such that: 1) backdoored graphs and clean
graphs yield different limit distributions under the forward diffusion process; 2) after the back-
doored DGDM is trained, the relation between backdoored/clean graphs and the respective back-
doored/clean limit distribution is learnt. Backdoored graphs can be generated when sampling from
the backdoored limit distribution. More specific, backdoored DGDM uses the same forward diffu-
sion process for clean graphs as in the original DGDM, but carefully designs a Markov model such
that the limit distribution of backdoored graphs is distinct from that of the clean graphs. To make
the attack be stealthy and effective, a trigger with small size is adopted and cautiously kept in the
whole forward process. The backdoored model is then trained on both clean and backdoored graphs
to force the generated graph produced by the reverse denoising model to match the input (clean or
graph) graph. Figure 1 overviews our backdoored attack on DGDMs.

3.2 THREAT MODEL

Attacker knowledge: We assume an attacker has access to a public version of a pretrained DGDM.
This is practical in the era of big data/model where training cost is huge and developers tend to
use publicly available checkpoints to customize (e.g., finetuning the model with their task-specific
data).2 This implies the attacker knows the details of model finetuning and graph generation.
Attacker capability: Following backdoor attacks on graph classification models Zhang et al.
(2021); Yang et al. (2024), the attacker uses subgraph as a backdoor trigger and injects the trig-
ger into some training graphs. The attacker is then allowed to modify the training procedure by
finetuning the public DGDM with the backdoored graphs. The modifications can be, e.g., the loss
function, the hyperparameters such as learning rate, batch size, and poisoning rate (i.e., fraction of
graphs are backdoored). Inspired by recent backdoor attacks on image diffusion models Chen et al.
(2023a); Chou et al. (2023), we also assume the attacker can manipulate the initialization process
of diffusion sampling. Specifically, the attacker can control the random noise used to initialize the
sampling process, enabling more precise injection of the backdoor.
Attacker goal: The attacker aims to design a stealthy and persistent backdoor attack on a DGDM
such that the learnt backdoored DGDM: preserves the utility, is effective, permutation invariant, and
generates exchangeable graphs (Goals 1-4 in Introduction).

3.3 ATTACK PROCEDURE

We use a subgraph Gs = (Xs,Es) with ns nodes as a backdoor trigger. A clean graph G = (X,E),
injected with Gs, produces the backdoored graph GB = (XB ,EB), where

XB = X ⊙ (1−MX) +Xs ⊙MX , EB = E ⊙ (1−ME) +Es ⊙ME (5)

where MX ∈ Rn×a and ME ∈ Rn×n×b are the node mask and edge mask indicating the ns nodes.
2E.g., image diffusion models such as Stable Diffusion https://huggingface.co/stabilityai/

stable-diffusion-2-1 and SDXL https://huggingface.co/stabilityai/
stable-diffusion-xl-refiner-1.0, are open-sourced.
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Forward diffusion in backdoored DGDM: Following Vignac et al. (2023); Xu et al. (2024), we
use a Markov model to add noise to the backdoored graph Gt

B = (Xt
B ,E

t
B) in every timestep t and

denote transition matrix in the tth timestep for node and edge types as Qt
XB

and Qt
EB

, respectively.
q(Gt

B |Gt−1
B ) = (q(Xt

B |Xt−1
B ), q(Et

B |Et−1
B )) = (Xt−1

B Qt
XB

,Et−1
B Qt

EB
); (6)

where X0
B = XB , E0

B = EB , Q̄t
XB

= Q1
XB

· · ·Qt
XB

, and Q̄t
EB

= Q1
EB

· · ·Qt
EB

.

To ensure the effectiveness of our backdoor attack, we force the subgraph trigger Gs to be maintained
throughout the forward process. Formally,

Xt
B ←Xt ⊙ (1−MX) +Xs ⊙MX ; Et

B ← Et ⊙ (1−ME) +Es ⊙ME . (7)

Then we have
q(Xt

B |Xt−1
B ) = Xt−1Qt

XB
⊙ (1−MX) +Xs ⊙MX (8)

q(Et
B |Et−1

B ) = Et−1Qt
EB
⊙ (1−ME) +Es ⊙ME (9)

Based on Markov chain, we derive q(Gt
B |GB) satisfying P1, with the proof in Appendix A.1:

q(Xt
B |XB) = XQ̄t

XB
⊙ (1−MX) +Xs ⊙MX ; q(Et

B |EB) = EQ̄t
EB
⊙ (1−ME) +Es ⊙ME

(10)

where the backdoor trigger is kept in the noising process. We further denote mXB
and mEB

as
the valid distributions of node and edge types specified by the attacker. Define αt ∈ (0, 1) and let
Qt

XB
= αtI + (1− αt) 1am

′
XB

,Qt
EB

= αtI + (1− αt) 1bm
′
EB

. Then we can prove that, for all
i, limT→∞(Q̄T

XB
, Q̄T

EB
)ei = (mXB

,mEB
) (see Appendix A.3), implying

lim
T→∞

q(GT
B) = (mXB ,mEB ) (11)

This shows the backdoored limit distribution does not depend on the input graph GB , but only the
specified mXB

and mEB
(thus satisfying P2).

Reverse denoising diffusion: Recall a denoising diffusion process samples from the limit distribu-
tion and gradually denoises the sample until matching the input. To achieve it, we first derive the
posterior of the backdoored reverse diffusion. Let pθB be the distribution of the reverse backdoored
process with learnable parameters θB . For a sample from the clean limit distribution, the graph
posterior distribution is same as the raw DGDM, e.g., Eqn (3) in DiGress. While for a sample from
the backdoored limit distribution, we define the backdoored graph posterior distribution as below:

pθB (Gt−1
B |Gt

B) =
∏
i

pθB (xt−1
B,i |G

t
B)

∏
i,j

pθB (et−1
B,ij |G

t
B) (12)

where pθB (x
t−1
B,i |Gt

B) and pθB (e
t−1
B,ij |Gt

B) are respectively computed by marginalizing over the node
edge predictions:

pθB (xt−1
B,i |G

t
B) =

∑
x∈X

q(xt−1
B,i | x

t
B,i, xB,i = x) p̂XB

i (x) (13)

pθB (et−1
B,ij |G

t
B) =

∑
e∈E

q(et−1
B,ij |e

t
B,ij , eB,ij = e) p̂EB

ij (e) (14)

where pθB (G
t−1
B |Gt

B) use the network prediction p̂G
B = (p̂X

B , p̂E
B) as a product over nodes and

edges in the backdoored graph. Further, q(et−1
B,ij | etB,ij , eB,ij = e) can be computed via Bayesian

rule given q(Gt
B |G

t−1
B ) and q(Gt

B |GB). See below where the proof is in Appendix A.2.
q(Xt−1

B |Xt
B ,XB) = Xt

B(Q
t
XB

)′ ⊙XBQ̄
t−1
XB
⊙ (1−MX) +Es ⊙MX ; (15)

q(Et−1
B |Et

B ,EB) = Et
B(Q

t
EB

)′ ⊙EBQ̄
t−1
EB
⊙ (1−ME) +Es ⊙ME (16)

To ensure the backdoored model integrates the relation between both clean and backdoored graphs
and their respective limit distribution, we learn the model by minimizing the cross-entropy loss over
clean and backdoored training graphs, by matching the respective predicted graph probabilities. I.e.,

min
θB

∑
{G=(X,E)}

l(p̂G, G; θB) +
∑

{GB=(XB ,EB)}

l(p̂GB , GB ; θB)

=
∑

{G=(X,E)}

(
lCE(X, p̂X) + lCE(E, p̂E)

)
+

∑
{GB=(XB ,EB)}

(
lCE(XB , p̂

XB ) + lCE(EB , p̂
EB )

)
(17)Algorithm 1 and Algorithm 2 in Appendix instantiate our attack on training backdoored DiGress

and sampling from the learnt backdoored DiGress, respectively.

5
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3.4 PERMUTATION INVARIANCE AND EXCHANGEABILITY

Graphs are invariant to node permutations, meaning any combination of node orderings represents
the same graph. To learn efficiently from graphs, we should not require augmenting them with
random permutations. This implies the gradients do not change if training graphs are permuted.
Consider a graph G = (X,E) and π a node permutation acting on G as π(G) = (π(X), π(E)).

Theorem 1 (Backdoored DiGress is Permutation Invariant (See Proof in Appendix B.1)). Let Gt =
(Xt,Et) be an intermediate noised (clean or backdoored) graph, and π(Gt) = (π(Xt), π(Et))
be its permutation. Backdoored DiGress is permutation invariant, i.e., pθB (π(G

t)) = π(pθB (G
t)).

The true likelihood of a graph is computationally intractable, as it requires summing the likelihoods
over all permutations. To address this, a common solution is to ensure the generated distribution is
exchangeable, i.e., that all permutations of generated graphs are equally likely Köhler et al. (2020).

Theorem 2 (Backdoored DiGress Produces Exchangeable Distributions (See Proof in Appendix
B.2)). Backdoored DiGress generates graphs with node features X and edges E that satisfy
P (X,E) = P (π(X), π(E)) for any permutation π.

4 EXPERIMENTS

4.1 SETUP

Datasets: Following Vignac et al. (2023); Jo et al. (2022); Xu et al. (2024), we test our attack on
three widely-used molecule datasets: one small dataset QM9 Wu et al. (2018) containing molecules
with up to 9 atoms, and two large datasets: MOSES Polykovskiy et al. (2020) containing drug-like
molecules, and GuacaMol Brown et al. (2019) containing larger molecules. Details of these datasets
and the training/test sets are in Appendix D.1.
Backdoor trigger: We create an artificial molecule as a subgraph trigger, where the atoms in this
molecule are connected by bonds that rarely exist (e.g., O ≡ O ≡ O). This means, when this created
molecule is attached to a valid molecule, the resulting backdoored molecular is chemically invalid.
Figure 2 in Appendix shows a few examples in our datasets.
Backdoored/clean limit distribution: We let mX and mE be the prior distributions of node and
edge types over the clean training graphs; and mXr

and mEr
the prior distributions of node and

edge types over the backdoored training graphs. We then set the backdoored limit distribution as
mXB

= (1 − r)mX + rmXr , mEB
= (1 − r)mE + rmEr , r ∈ (0, 1). We see that a smaller r

yields the backdoored limit distribution closer to the clean limit distribution. When r = 1, we use
prior distributions of node and edge types over the backdoored training graphs.
Evaluation metrics: Following graph generation methods Vignac et al. (2023); Jo et al. (2022), we
use two metrics to measure the utility of generated graphs. A larger value indicates a better quality.

• Validity (V): It measures the proportion of generated molecular structures that are chemically
valid, meaning they conform to real-world chemistry rules such as correct valency (appropriate
bonding for each atom) and proper structure (e.g., no broken or incomplete bonds).

• Uniqueness (U): It measures the proportion of molecules that have different SMILES3 strings.
Different SMILES strings of molecules imply they are non-isomorphic.

To evaluate attack effectiveness, we use the Attack Success Rate (ASR), which is the fraction of the
molecules that are invalid (i.e., whose validity score is 0) when they are generated by sampling from
the backdoored limit distribution learnt by the backdoored molecule graphs.
Parameter setting: Key factors affect attack effectiveness.

• Poisoning rate (PR): The fraction of training graphs that are injected with the backdoor trigger.
• Subgraph trigger: To ensure a stealthy backdoor, we create an invalid molecule subgraph with

3 nodes and vary the number of injected edges to the valid molecule.
• Backdoor limit distribution: r controls the similarity between the limit distribution learnt on

backdoor graphs and the prior distribution (i.e., the limit distribution on the clean graphs). A
larger r indicates a smaller similarity.

By default, we set PR=5%, r = 0.5, #injected edges=3 on QM9 and 5 on MOSES and GuacaMol.
We also study the impact of them. Each experiment is run 3 times and results are averaged.

3Short for “Simplified Molecular Input Line Entry System”. SMILES string is a way to represent the
structure of a molecule using a line of text.
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4.2 ATTACK RESULTS WITHOUT DEFENSE

In this part, we show the results of our backdoor attack on DiGress on the three evaluated datasets
(without backdoor defenses). Additional results are deferred in Appendix D.3.

Table 1: Defaults results (%) on the datasets.

Datasets QM9 MOSES GuacaMol
ASR V U ASR V U ASR V U

w/o. attack - 99 100 - 83 100 - 85 100
w. attack 100 97 100 87 83 100 85 86 100

Main results: Table 1 shows the results on 1000
graphs under the default setting (e.g., poisoning
rate is 5%). We have the following observations:

1) When DiGress is trained with clean graphs
(i.e., without attack), the validity and unique-
ness are promising (close to the reported re-
sults in Vignac et al. (2023)), indicating DiGress can generate high-quality graphs; 2) Back-
doored DiGress have very similar validity and uniqueness as the original DiGress, indi-
cating it marginally affects the DiGress’s utility; 3) Backdoored DiGress produces high
ASRs, validating its effectiveness at generating invalid molecule graphs with backdoor trig-
ger activated. Figure 4 in Appendix D.3 also visualizes the different generation dynam-
ics of the backdoored and clean molecule graphs via their respective limit distribution.

Table 2: Backdoor attack results on the
three datasets with varying r and poison-
ing rates. 0%: normal training.

QM9
PR r=0.2 r=0.5 r=1

ASR V U ASR V U ASR V U
0% - 99 100 - 99 100 - 99 100
1% 100 99 100 100 100 100 100 99 100
2% 100 99 100 100 97 100 100 99 100
5% 100 97 100 100 97 100 100 100 100
10% 100 100 100 100 98 100 100 100 100

MOSES
PR r=0.2 r=0.5 r=1

ASR V U ASR V U ASR V U
0% - 83 100 - 83 100 - 83 100
1% 80 84 100 72 83 100 70 86 100
2% 86 83 100 85 85 100 82 83 100
5% 90 84 100 87 83 100 86 85 100
10% 100 84 100 95 86 100 92 83 100

GuacaMol
PR r=0.2 r=0.5 r=1

ASR V U ASR V U ASR V U
0% - 85 100 - 85 100 - 85 100
1% 82 85 100 74 87 100 70 85 100
2% 86 86 100 82 86 100 83 86 100
5% 92 85 100 85 86 100 85 86 100
10% 100 87 100 100 85 100 92 86 100

Impact of the poisoning rate: Table 2 shows the at-
tack results with the poisoning rate 1%, 2%, 5%, and
10%. Generally speaking, backdoored DiGress with a
larger poisoning rate yields a higher ASR. This is be-
cause training a backdoored DiGress with more back-
doored graphs could better learn the relation between
these backoored graphs and the backdoored limit dis-
tribution. This observation is consistent with prior
works on classification models Zhang et al. (2021);
Yang et al. (2024). Further, the validity and unique-
ness of the backdoored DiGress are almost the same
as those of raw DiGress. This implies backdoored Di-
Gress does not affect clean graphs’ forward diffusion.
Impact of the backdoored limit distribution: Table
2 also shows the attack results with varying r that con-
trols the attacker specified limit distribution. When
the backdoored limit distribution and the clean one are
closer (i.e., smaller r), ASR tends to be larger. This
may because a smaller gap between the two limit dis-
tributions facilitates the backdoored training more eas-
ily to learn the relations between the input graphs and
their underlying limit distributions. Hence, the gen-
erated graphs can be better differentiated through the
reverse denoising on samples from the respective limit distributions. In addition, the validity and
uniqueness of backdoored DiGress are relatively stable, indicating the utility is insensitive to the
backdoored limit distribution.
Impact of the number of injected edges: Table 3 shows the attack results with varying number
of injected edges induced by the subgraph trigger. We see ARS is higher with a larger number of
injected edges. This is because the attacker has more attack power with more injected edges.

Persistent vs. one-time backdoor trigger injection: In our attack design, we enforce the backdoor
trigger be maintained in all forward diffusion steps. Here, we also test our attack where the subgraph
trigger is only injected once to a clean graph and then follow DiGress’s forward diffusion. The
results are shown in Table 4. We can see the ASR is extremely low (≤ 5% in all cases), which
implies the necessity of retaining the trigger in the entire forward process.

4.3 ATTACK RESULTS WITH DEFENSES

4.3.1 BACKDOOR DEFENSES

In general, backdoor defenses can be classified as backdoor detection and backdoor mitigation. We
test our attack on both structural similarity-based graph backdoor detection Zhang et al. (2021);
Yang et al. (2024) and finetuning-based backdoor mitigation.
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Table 6: Backdoor attack results against fine-
tuning on clean graphs with varying number of
finetuning epochs (PR=5%, r = 0.5).

#Epochs QM9 MOSES Guacamol
ASR V U ASR V U ASR V U

0 100 97 100 87 83 100 85 86 100
10 99 97 100 87 84 100 85 86 100
20 99 98 100 86 83 100 84 86 100
50 99 98 100 85 85 100 84 88 100
100 99 100 100 82 83 100 82 87 100

Table 7: Backdoor attack results against fine-
tuning on varying ratios of backdoored graphs
mapping to the clean limit distribution.

Ratio QM9 MOSES GuacaMol
ASR V U ASR V U ASR V U

0% 100 97 100 87 83 100 85 86 100
1% 99 97 100 86 82 100 85 87 100
2% 99 95 100 84 80 100 84 85 100
5% 99 92 100 80 83 100 81 86 100
10% 99 94 100 75 81 100 78 87 100

Table 3: Impact of #injected edges by our
subgraph trigger on the three datasets.
#Edges QM9 MOSES GuacaMol

ASR V U ASR V U ASR V U
1 78 100 100 71 84 100 78 84 100
3 100 97 100 86 82 100 83 85 100
5 100 98 98 87 83 100 85 86 100
7 100 98 98 92 84 99 92 84 100

1) Structural similarity-based backdoor detec-
tion: This detection method assumes backdoored
graphs are structurally dissimilar from clean ones. It
works by first learning a similarity threshold from
a set of trusted clean graphs. A new graph is then
flagged as malicious if its structural similarity to this
clean set falls below the learned threshold.

Table 4: Backdoor attack results (%) with
one-time subgraph trigger injection on the
three datasets.

PR QM9 MOSES GuacaMol
r=0.2 0.5 1 r=0.2 0.5 1 r=0.2 0.5 1

0% - - - - - - - - -
1% 2 2 4 3 4 5 3 3 4
2% 3 4 3 4 3 3 3 4 4
5% 5 1 3 1 5 3 4 5 4

10% 5 4 5 4 4 5 4 5 5

2) Finetuning-based backdoor mitigation: Assume
our attack learnt the backdoored graph diffusion
model, we consider two types of finetuning strategies.
Finetuning with clean graphs: A naive strategy is
to finetune the learnt backdoored model with clean
graphs. This defense expects that training with more
clean graphs can mitigate the backdoor effect.
Finetuning with backdoored graphs: Another strategy
is inspired by the adversarial training strategy Madry
et al. (2018), which augments training data with adver-
sarial examples—the examples with adversarial per-
turbation, but assigns them a correct label. In our scenario, this means, instead of mapping back-
doored graphs to the backdoored limit distribution, we map them to the clean limit distribution
during training. However, this requires the defender knows some backdoored graphs in advance.

4.3.2 ATTACK RESULTS

Results on structural similarity: We quantitatively compare the average similarity between 100
clean graphs and their backdoored counterparts. In particular, we use two commonly-used graph
similarity metrics from Wills & Meyer (2020): Graph Edit Distance (GED) and Normalized Lapla-
cian Distance (NLD). The smaller distance indicates a larger similarity. Table 5 shows the results.
Observed distance values are low, which implies distinguishing the backdoored graphs is hard.

Table 5: Similarity between clean and
backdoored graphs.

QM9 MOSES GuacaMol
GED↓ NLD↓ GED↓ NLD↓ GED↓ NLD↓

0.2 0.43 0.1 0.39 0.4 0.34

Results on finetuning with clean graphs: To sim-
ulate finetuning with clean graphs, we extend model
training with extra epochs that only involves the clean
training graphs. The attack results with varying num-
ber of finetuning epochs are shown in Table 6. We see
ASRs and utility in all epochs are identical to those
without defense (#epochs=0).
Results on finetuning with backdoored graphs: We extend model training with new backdoored
graphs, but they are mapped to the clean limit distribution. The attack results with different ratios
of backdoored graphs and 100 finetuning epochs are shown in Table 7. Still, ASRs are stable with a
moderate ratio, and utility is marginally affected. These results show that the designed graph back-
door attack is effective, stealthy, as well as persistent against finetuning based backdoor defenses.

4.4 TRANSFERABILITY RESULTS

In this part, we evaluate the transferability of our attack on DiGress to attacking other DGDMs4. In
particular, we select the latest DisCo Xu et al. (2024)—it uses a similar Markov model to add noise
and converges to marginal distributions . More details refer to Xu et al. (2024).

4We highlight that continuous graph diffusion models use fundamentally different mechanisms and our
attack cannot be applied to them.
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Table 8: Transferring our attack results on DisCo without
and with defenses under the default setting.

Datasets QM9 MOSES GuacaMol
ASR V U ASR V U ASR V U

Transfer attack 100 95 100 99 92 100 99 94 100
Finetune on c. graphs 100 100 100 99 88 100 98 90 100
Finetune on b. graphs 100 100 100 98 91 100 96 92 100

To backdoor DisCo, we inject the Di-
Gress subgraph trigger (Eqn 7) into
the intermediate noisy versions of clean
graphs from DisCo’s forward diffusion,
using the same backdoored limit dis-
tribution as DiGress. We then train
the model on a mix of these poisoned
graphs and the remaining clean graphs.
As shown in Table 8, the attack is effective under the default setting (PR=5%, r=0.5), which vali-
dates its transferability across different DGDMs.5 The results in Table 8 show both ASR and utility
are stable—again indicating the proposed attack is persistent. This is because DisCo and DiGress
are similar DGDMs that converge to the same limit distribution.

5 RELATED WORK

Graph generative models: Graph generative models are classified as non-diffusion and diffusion
based methods. More details are refer in Appendix C.

Backdoor attacks on graph classification models: Various works Zügner et al. (2018); Dai et al.
(2018); Wang & Gong (2019); Mu et al. (2021); Wang et al. (2022; 2023; 2024) have shown graph
classification models are vulnerable to inference-time attacks. Zhang et al. (2021) designs the first
training- and inference-time backdoor attack on graph classification models. It injects a random
subgraph (e.g., via the Erdős–Rényi model) trigger into some training graphs at random nodes and
change graph labels to the attacker’s choice. Xi et al. (2021) optimizes the subgraph trigger in
order to insert at vulnerable nodes. Instead of using random subgraphs, Zheng et al. (2024) embeds
carefully-crafted motifs as backdoor triggers. Lately, Yang et al. (2024) generalizes backdoor attacks
from centralized to federated graph classification and shows more serious vulnerabilities.

Backdoor attacks on non-graph diffusion models: Two work Chen et al. (2023a) Chou et al.
(2023) concurrently show image diffusion models are vulnerable to backdoor attacks, where the
backdoor trigger is a predefined image object. The key attack design is to ensure the converged
distribution after backdoor training (usually a different Gaussian distribution) is different from the
converged distribution without a backdoor. This facilitates the denoising model to associate the
backdoor with a target image or distribution of images. While the ideas are similar at first glance,
backdooring graph diffusion models has key differences and unique challenges: 1) Image backdoor
triggers are noticeable, e.g., an eyeglass or a stop sign is used as a trigger in Chou et al. (2023), which
can be detected or filtered via statistical analysis on image features. Instead, our subgraph trigger is
stealthy (see Table 5). 2) The backdoored forward process in image diffusion models can be easily
realized via one-time trigger injection; Such a strategy is ineffective to backdoor graph diffusion
models as shown in Table 4. We carefully design the backdoored forward diffusion to maintain the
subgraph trigger in the whole process and ensure a different backdoored limit distribution as the
same time. 3) Uniquely, backdoored graph diffusion models needs to be node permutation invariant
and generate exchangeable graphs.

6 CONCLUSION

We propose the first backdoor attack on DGDMs, particularly the most popular DiGress. Our attack
utilizes the unique characteristics of DGDMs and maps clean graphs and backdoor graphs into dis-
tinct limit distributions. Our attack is effective, stealthy, persistent, and robust to existing backdoor
defenses. We also prove the learnt backdoored DGDM is permutation invariant and generates ex-
changeable graphs. In future, we will generalize our attack on graph diffusion models for generating
large-scale graphs, and design more effective (provable) defenses.

Reproducibility Statement: Our source code and all configuration files to reproduce our results will
be made publicly available upon publication. All experiments are conducted on the public QM9,
GuacaMol, and MOSES benchmarks. To ensure a fair comparison and facilitate reproducibility,
we use the original network architecture and all hyperparameters from the DiGress paper Vignac
et al. (2023). Experiments were performed on NVIDIA A6000 GPUs, with each run requiring
approximately 16 GB of RAM and taking around 10 hours to complete.

5Results on other settings are similar and omitted for simplicity. We further apply finetuning-based defenses
using the same settings as in the DiGress experiments.
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A PROOFS

The below proofs A.1-A.3 derive the three properties (P1-P3) required in Section 2 for our setting.

P1: forward distribution q(Gt
B |GB)

P2: limit distribution lim
t→∞

q(Gt
B)

P3: reverse denoising distribution q(Gt−1
B |Gt

B , GB)

A.1 DERIVING q(Gt
B |GB)

We derive q(Et
B |EB) for simplicity as it is identical to derive q(Xt

B |XB). Recall

Et
B |EB ∼ Et ⊙ (1−ME) +Es ⊙ME .

Et
B |Et−1

B ∼ Et−1Qt
EB
⊙ (1−ME) +Es ⊙ME

Due to the properties of Markov chain and q(Et
B |E

t−1
B ), following existing discrete diffusion mod-

els Austin et al. (2021), one can marginalize out the intermediate steps and derive below:

q(Et
B |EB) = EQ̄t

EB
⊙ (1−ME) +Es ⊙ME

A.2 DERIVING q(Gt−1
B |Gt

B , GB)

We derive q(Et−1
B |Et

B ,EB) for simplicity as it is identical to derive q(Xt−1
B |Xt

B ,XB).

q(Et−1
B |Et

B ,EB)

= q(Et
B |Et−1

B ,EB) q(E
t−1
B |EB)

= q(Et
B |Et−1

B ) q(Et−1
B |EB)

∝ q(Et−1
B |Et

B) q(E
t−1
B |EB)

=
(
Et(Qt

EB
)′ ⊙ (1−ME) +Es ⊙ME

)
⊙

(
EQ̄t−1

EB
⊙ (1−ME) +Es ⊙ME

)
= Et(Qt

EB
)′ ⊙EQ̄t−1

EB
⊙ (1−ME) +Es ⊙ME ,

where the first and third equations use the Bayesian rule, the second equation uses the Markov
property, the fourth equation uses the define of Q̄EB

in the opposite direction, and the last equation
we use that (1−ME)⊙ME = 0, (1−ME)⊙ (1−ME) = (1−ME), and ME ⊙ME = ME .

A.3 DERIVING EQUATION 11

Recall Qt
XB

= αtI+(1−αt) 1am
′
XB

and Qt
EB

= αtI+(1−αt) 1bm
′
EB

. Then we want to show
the limit probability of jumping from any state to a state j is proportional to the marginal probability
of category j. Formally,

lim
T→∞

(Q̄T
XB

, Q̄T
EB

)ei = (mXB
,mEB

), ∀i.

We ignore the subscript a, b, XB , and EB for description simplicity. First, we show the square of
the row-column product (1m′)2 = 1m′1m′ = 1m′, where the column-row product m′1 = 1, as
m is a provability vector.

Next, we prove via induction that: Q̄t = ᾱtI + β̄t1m′ for ᾱt =
∏t

τ=1 α
τ and β̄t = 1− ᾱt.

Step I: Base case. When t = 1, we have Q̄1 = Q1 = α1I + β11m′ = ᾱ1I + β̄11m′, satisfying
the base case.

Step II: Inductive Hypothesis. Assume t = k, Q̄k = ᾱkI + β̄k1m′ for ᾱk =
∏k

τ=1 α
τ and

β̄k = 1− ᾱk.
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Step III: Inductive Step. We prove that Q̄k+1 = ᾱk+1I + β̄k+11m′ for ᾱk+1 =
∏k+1

τ=1 α
τ and

β̄k+1 = 1− ᾱk+1. The detail is shown below:

Q̄k+1 = Q̄kQk+1

= (ᾱkI + β̄k1m′) (αk+1I + βk+1 1m′)

= ᾱkαk+1I + (ᾱkβk+1 + β̄kαk+1)1m′ + β̄kβk+11m′1m′

= ᾱk+1I +
(
ᾱk(1− αk+1) + (1− ᾱk)αk+1 + (1− ᾱk)(1− αk+1)

)
1m′

= ᾱk+1I + (1− ᾱk+1)1m′

As T → ∞, ᾱT → 0. Hence limT→∞ Q̄T = 1m′, where all rows are m′. Thus, for any base
vector ei, limT→∞ Q̄Tei = m.

B PERMUTATION INVARIANCE AND EXCHANGEABILITY

B.1 PROOF OF THEOREM 3

Theorem 3 (Backdoored DiGress is Permutation Invariant). Let Gt = (Xt,Et) be an intermediate
noised (clean or backdoored) graph, and π(Gt) = (π(Xt), π(Et)) be its permutation. Backdoored
DiGress is permutation invariant, i.e., pθB (π(G

t)) = π(pθB (G
t)).

We need to prove that: i) the neural network building blocks are permutation invariant; and ii) the
objection function (i.e., the training loss) is also permutation invariant.

Proving i): DiGress uses three types of blocks:

- 1) spectral and structural features (e.g., eigenvalues of the graph Laplacian and cycles in the graph)
to improve the network expressivity);

- 2) graph transformer layers (consisting of graph self-attention and fully connected multiple-layer
perception);

- 3) layer-normalization.

DiGress proves that these blocks are permutation invariant. Backdoored DiGress uses the same
network architecture as DiGress and hence is also permutation invariant.

Proving ii): Backdoored DiGress optimizes the cross-entropy loss on clean graphs {G = (X,E)}
and backdoored graphs {GB = (XB ,EB)} to learn the model θB :

min
θB

L({G}, {GB}; θB)

=
∑

{G=(X,E)}

(
lCE(X, p̂X) + lCE(E, p̂E)

)
+

∑
{GB=(XB ,EB)}

(
lCE(XB , p̂

XB ) + lCE(EB , p̂
EB )

)
For a clean graph G or a backdoored graph GB , its associated cross-entropy loss can be decom-
posed to be the sum of the loss of individual nodes and edges. For instance, lCE(X, p̂X) =∑

1≤i≤n lCE(xi, p̂
X
i ), lCE(EB , p̂

EB ) =
∑

1≤i,j≤n lCE(eB,ij , p̂
E
B,ij).

Hence, the total loss on the clean and backdoored graphs does not change with any node permutation
π. That is,

L({π(G)}, {π(GB)}; θB) = L({G}, {GB}; θB).

B.2 PROOF OF THEOREM 4

Theorem 4 (Backdoored DiGress Produces Exchangeable Distributions). Backdoored DiGress gen-
erates graphs with node features X and edges E that satisfy P (X,E) = P (π(X), π(E)) for any
permutation π.

The proof builds on the result in Xu et al. (2022):
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Algorithm 1 Backdoored DiGress Training
Input: Training graphs Gtr , poison rate p%, subgraph trigger Gs = (Xs,Es), model parameter θB , and
transition matrices {Qt

X , Qt
E , Q

t
XB

, Qt
EB
}.

Preprocess: Sample p% of Gtr and inject Gs to obtain the backdoored graphs GB ; clean graphs GC = Gtr\GB
1: Sample G = (X,E) ∼ {GB ,GC}
2: Sample t ∼ Uniform(1, · · · , T )
3: if G ∈ GB then
4: // Sample a noisy backdoored graph

Sample Gt ∼ (XQ̄t
XB
⊙ (1−MX) +Xs ⊙MX)× (EQ̄t

EB
⊙ (1−ME) +Es ⊙ME)

5: else
6: Sample Gt ∼XQ̄t

X ×EQ̄t
E // Sample a noisy clean graph

7: end if
8: p̂X , p̂E ← pθB (Gt) // Forward pass
9: // Minimize the cross-entropy loss

optimizer.step(lCE(p̂
X ,X) + lCE(p̂

E ,E))

Algorithm 2 Sampling from Backdoored DiGress
Input: Trained model pθB , timestep T , marginal distributions {mn

X ,mn
E , mn

XB
,mn

EB
} for all graph sizes

n.
1: Sample a graph size n from training data distribution
2: if Generating a clean sample then
3: Sample GT ∼ qX(mn

X)× qE(m
n
E)

4: else
5: Sample GT ∼ qX(mn

XB
)× qE(m

n
EB

)
6: end if
7: for t = T to 1 do
8: Forward pass: p̂X , p̂E ← pθB (Gt)

9: Compute node posterior: pθB (xt−1
i |Gt)←

∑
x q(x

t−1
i |xi = x, xt)p̂Xi (x) i ∈ 1, . . . , n

10: Compute edge posterior: pθB (et−1
ij |G

t)←
∑

e q(e
t−1
ij |eij = e, eti)p̂

E
ij(e), i, j ∈ 1, . . . , n

11: Generate graph from the categorical distribution: Gt−1 ∼
∏

i pθB (xt−1
i |Gt)

∏
i,j pθB (et−1

ij |G
t)

12: end for
13: return G0

Proposition 1 (Xu et al. (2022)). Let C be a particle. If,

i) a distribution p(CT ) is invariant under the transformation Tg of a group element g, i.e., p(CT ) =
p(Tg(CT ));

ii) the Markov transitions p(Ct−1 | Ct) are equivariant, i.e., p(Ct−1 | Ct) = p(Tg(Ct−1) | Tg(Ct)),

then the density pθ(C0) is also invariant under the transformation Tg , i.e., pθ(C0) = pθ(Tg(C0)).

We apply Proposition 1 to our setting:

First, the clean or backdoored limit distribution p(GT ) or p(GT
B) is the product of independent and

identical distribution on each node and edge. It is thus permutation invariant and satisfies condition
i).

Second, the denoising network pθB in backdoored DiGress is permutation equivariant (Theorem 3).
Moreover, the network prediction p̂θB (G) → pθB (G

t−1|Gt) =
∑

G q(Gt−1, G|Gt)p̂θB (G) defin-
ing the transition probabilities is equivariant to joint permutations of p̂θB (G) and Gt, and so to the
joint permutations of p̂θB (GB) and Gt

B . Thus, condition ii) is also satisfied.

Together, the backdoored DiGress generated the graph with node features X and edges E that
satisfy P (X,E) = P (π(X), π(E)) for any permutation π, meaning the generated graphs are
exchangeable.
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(a) QM9-clean (b) MOSES-clean (c) GuacaMol-clean

(d) QM9-backdoor (e) MOSES-backdoor (f) GuacaMol-backdoor

Figure 2: Example clean molecules and their backdoored ones.

C RELATED WORK ON GRAPH GENERATIVE MODELS

C.1 NON-DIFFUSION GRAPH GENERATIVE MODELS

They are classified as non-autoregressive and autoregressive graph generative models. Non-
autoregressive models generate all edges at once, and utilize variational autoencoder (VAE) Si-
monovsky & Komodakis (2018); Ma et al. (2018); Liu et al. (2018); Zahirnia et al. (2022), genera-
tive adversarial network (GAN) Maziarka et al. (2020), and normalizing flow (NF) Madhawa et al.
(2019); Zang & Wang (2020); Kuznetsov & Polykovskiy (2021) techniques. VAE- and GAN-based
methods generate graph edges independently from latent representations, but they face limitations in
the size of produced graphs. In contrast, NF-based methods require invertible model architectures to
establish a normalized probability distribution, which can introduce complexity and constrain model
flexibility.

Autoregressive models build graphs by adding nodes and edges sequentially, using frameworks like
NF Shi et al. (2020); Luo et al. (2021), VAE Jin et al. (2018; 2020), and recurrent networks Li
et al. (2018); You et al. (2018); Dai et al. (2020). These methods are effective at capturing complex
structural patterns and can incorporate constraints during generation, making them superior to non-
autoregressive models. However, a notable drawback is their sensitivity to node orderings, which
affects training stability and generation performance Vignac et al. (2023).

C.2 GRAPH DIFFUSION MODELS

Initial attempts for graph generation closely follow diffusion models that rely on continuous Gaus-
sian noise Niu et al. (2020); Jo et al. (2022); Yang et al. (2023). However, continuous noises have no
meaningful interpretations for graph data Liu et al. (2023a). To address it, many approach Vignac
et al. (2023); Kong et al. (2023); Chen et al. (2023b); Liu et al. (2023a); Li et al. (2024); Gruver
et al. (2024); Yi et al. (2024); Xu et al. (2024) propose discrete diffusion model tailored to graph
data. For instance, DiGress Vignac et al. (2023) extends Liu et al. (2023a) to tailor graph generation
with categorical node and edge attributes. By preserving sparsity and structural properties of graphs
through a discrete noise model, DiGress effectively captures complex relationships within graphs,
particularly crucial for applications like drug discovery and molecule generation, and obtains the
SOTA performance. DiGress is also permutation invariant, produces large graphs, and generated
graphs are unique and valid, thanks to the exchangeable distribution.

D EXPERIMENTS

D.1 DATASET DESCRIPTION

QM9: It is a molecule dataset with 4 distinct elements and 5 bond types. The maximum number of
heavy atoms a graph is 9.

Molecular Sets (MOSES): It is specially designed to evaluate generative models for molecular
graph generation. MOSES consists of molecular structures represented in the SMILES format. The
dataset contains 1.9M+ unique molecules derived from the ZINC Clean Leads dataset, ensuring the
molecules are drug-like and chemically realistic.
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Dataset #Epochs r=0.2 r=0.5 r=1
ASR V U ASR V U ASR V U

QM9
0 100 97 100 100 97 100 100 100 100

10 100 97 100 99 97 100 100 100 100
20 99 98 100 99 98 100 100 100 100
50 98 98 100 99 98 100 99 100 100

100 98 99 100 99 100 100 99 100 100

MOSES
0 90 84 100 87 83 100 86 85 100

10 90 84 100 87 84 100 86 86 100
20 90 85 100 86 83 100 85 84 100
50 88 86 100 85 85 100 82 86 100

100 82 85 100 82 85 100 82 82 100

Guacamol
0 92 85 100 85 86 100 85 86 100

10 92 84 100 85 86 100 85 85 100
20 90 85 100 84 86 100 83 86 100
50 88 84 100 84 88 100 80 90 100

100 90 86 100 82 87 100 81 92 100

Table 9: Attack results against finetuning on clean graphs with varying finetuning epochs.

Dataset Ratio r=0.2 r=0.5 r=1
ASR V U ASR V U ASR V U

QM9
0% 100 97 100 100 97 100 100 100 100
1% 99 97 100 99 97 100 100 99 100
2% 99 98 100 99 95 100 99 100 100
5% 98 97 100 99 92 100 97 100 100
10% 98 99 100 99 94 100 98 99 100

MOSES
0% 90 84 100 87 83 100 86 85 100
1% 89 83 100 86 82 100 86 86 100
2% 84 80 100 84 80 100 82 84 100
5% 80 81 100 80 83 100 79 81 100
10% 77 82 100 75 81 100 77 84 100

GuacaMol
0% 92 85 100 85 86 100 85 86 100
1% 91 85 100 85 87 100 86 85 100
2% 89 87 100 84 85 100 83 84 100
5% 86 89 100 81 86 100 81 83 100
10% 81 84 100 78 87 100 79 84 100

Table 10: Attack results against finetuning on varying ratios of backdoored graphs mapped to clean
limit distribution.

GuacaMol: It is a benchmark suite specifically designed for evaluating generative models in molec-
ular discovery. GuacaMol includes a collection of molecules from the ChEMBL database, a large
database of bioactive molecules with drug-like properties. The dataset contains 1.3 million drug-like
molecules in the SMILES format.

Training and testing: On QM9, we use 100k molecules for training, and 13k for evaluating the
attack effectiveness and utility. On MOSES, we use 1.58M graphs for training and 176k molecules
for testing. On GuacaMol, 200k molecules are used for training and 40k molecules for testing.

D.2 NETWORK ARCHITECTURE

We use the original DiGress network architecture, which consists of 9 graph transformer layers for
QM9, and 12 graph transformer layers for GuacaMol and MOSES.

D.3 MORE RESULTS

Visualizing the clean and backdoored graphs generated by the backdoored DiGress. Figure
3 shows example generated clean graphs, while Figure 4 shows example generated backdoored
graphs on the three molecule datasets. We observe that the generated clean graphs are valid, while
the backdoored graphs are invalid.

Comprehensive attack results against backdoor defenses with varying r: Table 9 and Table 10
show the attack results against the two finetuning-based backdoor defenses under different r. We
see ASR and utility in all epochs or ratios are identical to those without defense. This implies the
designed graph backdoor attack is stable w.r.t r.
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(a) QM9-clean

(b) MOSE-clean

(c) GuacaMol-clean

Figure 3: Example clean graphs generation.
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(a) QM9-backdoored

(b) MOSES-backdoored

(c) GuacaMol -backdoored

Figure 4: Example backdoored graphs generation.
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