
Data Diversification Methods In Alignment Enhance
Math Performance In LLMs

Anonymous Author(s)
Affiliation
Address
email

Abstract

While recent advances in preference learning have enhanced alignment in human1

feedback, mathematical reasoning remains a persistent challenge. We investi-2

gate how data diversification strategies in preference optimization can improve3

the mathematical reasoning abilities of large language models (LLMs). We eval-4

uate three common data generation methods—temperature sampling, Chain-of-5

Thought prompting, Monte Carlo Tree Search (MCTS), and introduce Diversified-6

ThinkSolve (DTS), a novel structured approach that systematically decomposes7

problems into diverse reasoning paths. Our results show that with strategically di-8

versified preference data, models can substantially improve mathematical reasoning9

performance, with the best approach yielding gains of 7.1% on GSM8K and 4.2%10

on MATH over the base model. Despite its strong performance, DTS incurs only a11

marginal computational overhead (1.03×) compared to the baseline, while MCTS12

is nearly five times more costly with lower returns. These findings demonstrate that13

structured exploration of diverse problem-solving methods creates more effective14

preference data for mathematical alignment than traditional approaches.15

1 Introduction16

Large language models (LLMs) have demonstrated remarkable capabilities across a wide range17

of tasks, but mathematical reasoning remains a particularly challenging domain Luo et al. [2023],18

Lightman et al. [2023]. While recent work has shown that Reinforcement Learning from Human19

Feedback (RLHF) Stiennon et al. [2020] and preference optimization techniques like Direct Preference20

Optimization (DPO) Rafailov et al. [2023] can substantially improve LLM performance on general21

tasks, their application to mathematical reasoning has received less attention.22

In standard preference optimization scenarios, datasets typically consist of unmodified preference23

pairs drawn from human annotations or model-generated evaluations. While such datasets can yield24

performance improvements Guo et al. [2024], Tunstall et al. [2023], Xia et al. [2024] in alignment25

with human preference, we hypothesize that more structured and diverse preference data can lead to26

significantly better performance specifically tailored to mathematical reasoning Liu et al. [2024b].27

Our work explores how strategically designed data generation and diversification methods can28

enhance the effectiveness of preference optimization for mathematical reasoning. We propose29

several approaches to generate preference data that incorporate diverse reasoning strategies, problem30

reformulations, and solution methodologies. By leveraging techniques such as Chain-of-Thought31

(CoT) prompting Wei et al. [2022], Kojima et al. [2022], Monte Carlo Tree Search (MCTS) Silver32

et al. [2016], Feng et al. [2023], and specialized thought-reflection mechanisms, we create datasets33

that expose LLMs to a richer space of mathematical problem-solving strategies during preference34

optimization.35

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

Among these approaches, we introduce Diversified-ThinkSolve (DTS), a novel structured method36

that systematically decomposes problems into diverse problem-solving approaches before generating37

solutions. DTS explicitly separates the thought generation process from solution execution, enabling38

exploration of multiple problem-solving strategies while maintaining computational efficiency. This39

approach addresses a fundamental limitation of traditional sampling methods—their inability to40

systematically explore diverse thinking pathways.41

We conduct a comprehensive comparative analysis of these strategies across standard mathematics42

benchmarks. Our DTS approach yields significant improvements in both GSM8K and MATH over43

the base model, while incurring only marginal computational overhead. Our findings highlight that44

structured exploration of analytical approaches creates more effective preference data for mathemati-45

cal alignment than traditional approaches, and that data quality and diversity can be more crucial than46

optimizing algorithmic approaches.47

2 Background48

In this section, we provide the necessary background and information regarding alignment training for49

LLMs. We start by providing a background on the RLHF process and then we discuss post-training50

alignment techniques utilized in this paper.51

2.1 Reinforcement Learning from Human Feedback52

Often after we pre-train a model we want to further adapt it to meet certain needs or specifications53

Stiennon et al. [2020], Bai et al. [2022a], Ouyang et al. [2022]. Reinforcement Learning from Human54

Feedback (RLHF) has become a standard approach for aligning large language models with human55

preferences and values Christiano et al. [2017], Leike et al. [2018]. RLHF emerged as a solution to56

the challenge of aligning AI systems with human values and preferences when these values were57

difficult to specify mathematically yet easy to judge. While RLHF requires relatively small amounts58

of comparison data to be effective compared to other approaches, sourcing high-quality preference59

data remains an expensive process. This technique has become particularly crucial for LLMs, where60

it helps guide these powerful systems toward producing outputs that humans find helpful, harmless,61

and honest Bai et al. [2022a,b].62

The RLHF process typically consists of three stages:63

Supervised Fine-Tuning (SFT): The model is first fine-tuned on demonstrations that exemplify64

desired behavior, producing a model πSFT.65

Reward Modeling: Human annotators compare model responses, and these comparisons train a66

reward model rϕ(x, y) that predicts human preferences. The reward model is trained using maximum67

likelihood on preference pairs (x, yw, yl) using the Bradley-Terry Model Bradley and Terry [1952],68

Plackett [1975] to model the preference probability.69

RL Optimization: The language model is then optimized further using reinforcement learning,70

typically with Proximal Policy Optimization (PPO), to maximize the reward while maintaining71

proximity to the reference model Jaques et al. [2017, 2020], Schulman et al. [2017].72

2.2 Preference Optimization Methods73

Recent work has introduced more efficient alternatives to the full RLHF pipeline. Direct Preference74

Optimization (DPO) Rafailov et al. [2023] eliminates the need for an explicit reward model and RL75

training by directly optimizing a policy from preference data:76

LDPO = −E(x,yw,yl)∼D
[
log σ

(
β(rw − rl)

)]
where rw and rl are the log probability ratios of the preferred and dispreferred responses relative to77

a reference model. This approach has shown comparable or superior performance to RLHF while78

being more computationally efficient and stable.79

More recent methods include Simple Preference Optimization (SimPO) Meng et al. [2024], which80

eliminates the need for a reference model while maintaining strong performance:81

2

LSimPO = −E(x,yw,yl)∼D [log σ (β(sw − sl)− γ)]

where sw and sl are length-normalized log probabilities, β controls preference signal strength, and γ82

is a target margin.83

We also compare with Odds Ratio Preference Optimization (ORPO) Hong et al. [2024], which84

combines supervised fine-tuning with preference optimization through a log odds ratio term, enabling85

effective alignment without a reference model. ORPO’s loss function balances a supervised term for86

the preferred completion with a preference term based on log odds ratios.87

3 Data Diversification Methods88

In this section, we describe our proposed data diversification strategies on creating high-quality89

preference data for fine-tuning and preference optimization.90

3.1 Baseline Strategy91

Our baseline strategy follows standard practice in preference optimization, generating multiple92

completions from the base model with only temperature sampling for diversity. During generation,93

we set the max_tokens to 1,024, the temperature to 2, top_p to 0.75, and top_k to 50. We94

generate 5 completions from the base model πSFT using the following system prompt template:95

“You will be given a math problem. Provide a step-by-step solution, clearly showing96

all calculations and reasoning. Ensure that each step is explained and justified.97

After your detailed solution, on a new line, give the final numerical answer in the98

format: ‘Final Answer: [number]’. Do not include any units in the final answer.99

Double-check your calculations to ensure accuracy.”100

3.2 Chain-of-Thought Strategy101

Chain-of-Thought (CoT) prompting Wei et al. [2022], Kojima et al. [2022] encourages LLMs102

to generate step-by-step reasoning before producing a final answer. This approach has shown103

significant improvements in mathematical problem-solving, particularly for complex multi-step104

problems Havrilla et al. [2024]. For generation, we used OptiLLM’s cot-reflection inference proxy105

to illicit chain of thought reasoning for our model during inference time1. This method implements106

chain-of-thought reasoning with <thinking>, <reflection>, and <output> section tags in the prompt.107

We set our temperature to 0.7 and max_tokens to 1,024 to avoid context length issues with108

increased token counts from chain-of-thought.109

3.3 MCTS Strategy110

Methods incorporating search algorithms like Monte Carlo Tree Search (MCTS) have shown promise111

for enhancing mathematical reasoning Feng et al. [2023], Yao et al. [2023], Liu et al. [2024a]. These112

approaches explore multiple solution paths and can identify effective reasoning strategies through113

simulation. For this strategy, we leverage MCTS through the OptiLLM inference proxy codelion114

[2024] to systematically explore the solution space2. For each mathematical problem, we initialize a115

dialogue-based MCTS search with the problem as the initial query and a structured solution prompt116

as the system prompt. We set our exploration_weight to 0.2, num_simulations to 2, and117

our simulation_depth to 1, which is the default configuration for the MCTS approach, and set118

temperature to 0.7 and max_tokens to 1,024 for our generation configuration. At the end, the N119

(in our case 5) most promising complete solution paths are picked.120

This lightweight MCTS approach enables efficient yet effective exploration of the solution space, find-121

ing diverse high-quality solutions that may not be discovered through simpler sampling approaches.122

1https://github.com/codelion/optillm/blob/main/optillm/cot_reflection.py
2https://github.com/codelion/optillm/blob/main/optillm/mcts.py

3

https://github.com/codelion/optillm/blob/main/optillm/cot_reflection.py
https://github.com/codelion/optillm/blob/main/optillm/mcts.py

Figure 1: Diversified-ThinkSolve (DTS) modular reasoning pipeline for generating diverse mathe-
matical problem solutions. Each math problem is first processed by a ThoughtGenerator to propose
multiple solution approaches. Then utilizing the SolutionGenerator with each approach, we are given
multiple solutions, contributing to a diverse set of preference data.

3.4 Diversified-ThinkSolve (DTS) Strategy123

While the previously described strategies offer certain improvements, they exhibit key limitations124

in generating truly diverse mathematical reasoning approaches. Temperature sampling produces125

variations that often follow similar reasoning patterns, and Chain-of-Thought, despite encouraging126

step-by-step reasoning, tends to converge on a single solution path. MCTS explores alternative127

branches but incurs substantial computational costs. To address these limitations, we introduce128

Diversified-ThinkSolve (DTS), a novel strategy specifically designed to generate diverse, high-quality129

mathematical reasoning paths with minimal computational overhead.130

DTS leverages DSPy, a declarative programming paradigm for language models, that enables modular131

and structured reasoning Khattab et al. [2023b,a]. Unlike traditional prompting approaches that132

produce variations of the same solution or chain-of-thought strategies that follow a single reasoning133

flow, DTS explicitly decomposes the mathematical problem-solving process into two distinct phases:134

multiple approach generation followed by targeted execution. This decomposition enables systematic135

exploration of the solution space while maintaining reasoning coherence.136

We implement DTS through two specialized modules. First, a ThoughtGenerator construct gener-137

ates N = 5 distinct reasoning approaches using the following prompt template:138

“Given the math problem: {problem}, provide 5 possible approaches or initial139

thoughts on how to solve it, including any relevant mathematical concepts, formulas,140

or techniques that may be applied. Consider multiple perspectives and potential141

solution paths, and describe each thought in 1-2 sentences.”142

Then, for each generated approach, a SolutionGenerator module produces a complete solution143

following that particular reasoning pathway: “Given the math problem: {problem} Using this144

approach: {approach} Please provide a detailed solution showing all work and steps.”145

Figure 1 illustrates this process. By decoupling reasoning approach generation from solution im-146

plementation, DTS systematically explores diverse problem-solving strategies while ensuring each147

solution maintains consistent reasoning flow. The modularity of this approach allows for easy148

adjustment of the number and type of reasoning paths without modifying the entire pipeline.149

A key advantage of DTS over other strategies is its explicit promotion of strategic diversity—it150

doesn’t merely produce different ways to present the same solution, but fundamentally different151

problem-solving approaches. This structured diversity creates more informative preference pairs that152

expose the model to a richer set of mathematical reasoning patterns during alignment.153

4

4 Experiment Setup154

4.1 Datasets and Models155

We conduct our experiments using the MetaMathQA dataset Yu et al. [2023] composed of 395k156

training examples which are all augmented from the training sets of GSM8K and MATH. Since this157

dataset consists of duplicated problems with distinct queries, we decided to use a deduplicated version158

containing 13,929 unique mathematical queries and solutions. For evaluation, we use GSM8K’s test159

set of 1,319 problems and the MATH-500 test subset.160

For training, we use meta-llama/Llama-3.1-8B-Instruct Meta AI [2024] as our base model for all ex-161

periments. For scoring completions, we use Nvidia’s Llama-3.1-Nemotron-70B-Reward-HF NVIDIA162

NeMo Team [2024], which demonstrated the highest accuracy in our reward model evaluation163

(Section 4.2).164

4.2 Reward Model Selection165

We evaluated several candidate reward models from the top models on RewardBench Lambert et al.166

[2024] by having them score both model-generated completions and ground truth solutions on the167

GSM8K test set. We tracked four key metrics: correct_higher (model’s correct output received168

higher reward than ground truth), correct_lower (model’s correct output received lower reward169

than ground truth), incorrect_higher (model’s incorrect output received higher reward than170

ground truth), and incorrect_lower (model’s incorrect output received lower reward than ground171

truth). An effective reward model should minimize incorrect_higher cases, which represent172

instances where incorrect solutions are scored above correct ones.173

Figure 2: Reward Model Accuracy Comparison. Bars represent average counts of prediction outcomes
for different reward models.

As shown in Figure 2, Nvidia’s Llama-3.1-Nemotron-70B-Reward-HF demonstrated the lowest rate174

of incorrect_higher judgments, with an average inaccuracy rate of 3.11% on the GSM8K test set.175

We further validated this model on a random sample of 4,919 problems from the harder MetaMathQA176

dataset, finding a comparable inaccuracy rate of 2.76%. More details can be found in Appendix C.2.177

4.3 Preference Data Generation and Filtering178

For each data generation strategy described in Section 3, we generated preference data from the179

MetaMathQA dataset. We applied a "mixed correctness" filtering approach, selecting only cases180

where 2-3 out of 5 model generations were correct, ensuring the model learns to distinguish between181

correct and incorrect reasoning patterns. We then used our reward model to select the highest-scored182

correct completion as yw and the highest-scored incorrect completion as yl for preference training.183

For each strategy, we created preference datasets of comparable size: Baseline (1,097 samples, 30.4%184

filtered rate from 3,610 problems), DTS (1,293 samples, 17.2% from 7,500 problems), Chain-of-185

Thought (1,247 samples subsampled from 2,493, 17.9% from the full dataset), and MCTS (1,586186

5

samples subsampled from 3,172, 22.8% from the full dataset). For training consistency, we used187

comparable dataset sizes across all strategies, sampling half of the subsets from the larger CoT and188

MCTS datasets.189

5 Results190

We present results comparing our different data generation strategies across various preference191

optimization methods.192

5.1 Analysis of Data Generation Strategies193

Table 1: Mathematical reasoning accuracy (%) on GSM8K (0-shot) and MATH-500 across different
data generation strategies and preference optimization methods. We report both the best and average
performance across 5 epochs for the optimal hyperparameter setting for each fine-tuning method and
data generation strategy.

Method GSM8K MATH

Best Avg Best Avg

Base models
Llama-3.1-8B-IT 76.1% – 48.2% –
Llama-3.1-70B-IT 85.4% – 61.6% –
Llama-3.2-1B-IT 44.9% – 23.4% –
Llama-3.2-3B-IT 73.1% – 44.8% –

Baseline
Baseline+SFT 76.7% 74.2% 48.4% 47.7%
Baseline+ORPO 77.6% 76.5% 51.8% 49.1%
Baseline+DPO 77.6% 76.8% 52.2% 49.6%
Baseline+SimPO 80.7% 78.9% 50.8% 48.0%

Chain-of-Thought (CoT)
CoT+SFT 76.7% 73.7% 50.6% 49.0%
CoT+ORPO 77.4% 77.1% 51.2% 48.2%
CoT+DPO 77.6% 74.5% 50.8% 48.1%
CoT+SimPO 77.6% 53.0% 50.4% 48.1%

MCTS
MCTS+SFT 76.7% 76.6% 48.8% 47.6%
MCTS+ORPO 79.0% 77.9% 50.8% 49.0%
MCTS+DPO 77.8% 77.3% 49.2% 42.8%
MCTS+SimPO 78.0% 59.7% 50.6% 24.2%

DTS
DTS+SFT 76.7% 75.7% 49.6% 48.8%
DTS+ORPO 77.2% 76.8% 50.6% 49.7%
DTS+DPO 81.2% 79.3% 52.4% 50.2%
DTS+SimPO 83.2% 81.5% 52.0% 49.6%

As shown in Table 1, DTS consistently outperforms other methods, achieving a 7.1% improvement194

over the base Llama-3.1-8B-IT model on GSM8K and a 4.2% improvement on MATH. The optimal195

fine-tuning method varies by benchmark, with SimPO yielding the best results for GSM8K and DPO196

performing best for MATH.197

Baseline Strategy: The standard approach of generating completions with temperature sampling198

showed moderate improvements over the base model, particularly when combined with SimPO,199

achieving 80.7% accuracy on GSM8K. This suggests that even simple diversity through temperature200

sampling can enhance performance. However, this strategy was consistently outperformed by more201

sophisticated diversification methods except when paired with SimPO, indicating that temperature202

sampling alone provides insufficient diversity for optimal mathematical reasoning.203

Chain-of-Thought Strategy: CoT showed mixed results with significant stability issues, particularly204

with SimPO where average performance dropped to 53.0% on GSM8K despite reasonable best-case205

6

performance (77.6%). Analysis revealed that incorrect CoT responses often contained repetitive206

patterns and low-quality reasoning, creating preference pairs with extremely poor rejected completions207

that may have hindered learning.208

MCTS Strategy: While MCTS showed promising results with ORPO (79.0% on GSM8K), it209

exhibited considerable instability with SimPO, where performance degraded substantially across210

epochs (average 59.7% on GSM8K, 24.2% on MATH). Despite MCTS’s systematic exploration211

capabilities, its high computational cost and inconsistent performance make it less practical than212

DTS.213

DTS Strategy: The DTS thought-based approach demonstrated substantial improvements across all214

fine-tuning methods, with the highest scores in both benchmarks. By explicitly generating multiple215

solution approaches before solving problems, this method effectively exposes the model to diverse216

reasoning paths. The structured exploration of different mathematical strategies appears to provide the217

model with a richer learning signal during preference optimization. When combined with SimPO, this218

approach achieved the highest average (81.5%) and best (83.2%) GSM8K scores, while pairing with219

DPO yielded the best MATH performance (52.4%). This suggests that decomposing mathematical220

reasoning into distinct thought processes creates more effective preference data for alignment.221

Interestingly, the baseline strategy with SimPO outperformed both the CoT and MCTS strategies on222

average, highlighting that sophisticated data generation methods must be carefully integrated with223

the appropriate preference optimization technique. The clear winner across both benchmarks is the224

DTS approach, which consistently produced high-quality, diverse preference data that translated to225

substantial improvements in mathematical reasoning capabilities.226

5.2 Hyperparameter Sensitivity Analysis227

Table 2: Unified hyperparameter sweep across fine–tuning methods and data–generation strategies.
For every hyperparameter setting we report the best–epoch accuracy (%) on GSM8K and MATH.
The highest score for each fine-tuning method’s data-generation strategy is bold. Overall best result
for each data-generation strategy is *.

Method Learning Rate β γ Baseline DTS CoT MCTS

SFT 1e-5 — — 76.7 / 48.4 76.7 / 49.6 76.7 / 50.6 76.7 / 48.8
3e-5 — — 76.7 / 48.2 76.7 / 49.0 76.7 / 48.0 76.7 / 48.2

DPO

7e-7 0.01 — 75.8 / 52.2 80.5 / 50.6 76.0 / 47.8 76.1 / 48.2
5e-7 0.01 — 76.9 / 51.6 81.2 / 50.4 77.6 / 47.6 77.0 / 49.2
3e-7 0.01 — 76.9 / 50.6 79.2 / 52.4 76.8 / 50.4 77.0 / 48.4
1e-7 0.01 — 77.6 / 48.2 77.5 / 49.2 77.5 / 50.2 77.8 / 48.4
3e-7 0.05 — 76.7 / 51.6 78.6 / 51.2 77.3 / 50.4 76.9 / 49.0
1e-7 0.05 — 77.6 / 51.2 77.7 / 49.0 77.0 / 50.8 77.3 / 48.8
3e-7 0.1 — 77.2 / 48.6 78.2 / 51.6 76.7 / 48.8 77.3 / 48.2
1e-7 0.1 — 77.2 / 50.8 77.3 / 49.0 77.3 / 49.2 77.1 / 48.6

Understanding the impact of hyperparameter choices on model performance is crucial when optimiz-228

ing preference learning for mathematical reasoning. While prior work has explored hyperparameter229

tuning for general preference learning Tang et al. [2024], the unique challenges of mathematical230

reasoning tasks may require different optimal configurations. Additionally, different data generation231

strategies might interact with hyperparameters in unexpected ways, potentially requiring strategy-232

specific tuning. We conduct this analysis to identify the most effective hyperparameter configurations233

for each data generation method and to provide practical guidance for researchers applying preference234

optimization to mathematical domains.235

As shown in Table 2, SimPO consistently demonstrates superior performance across most data genera-236

tion strategies, particularly with the DTS approach where it achieves remarkable performance (83.2%237

on GSM8K). The performance advantage of SimPO is particularly pronounced with the DTS strategy,238

where all hyperparameter configratuions yield strong and stable results, consistently outperforming239

other fine-tuning methods. Notably, for both CoT and MCTS strategies, the performance margin is240

7

1 2 3 4 5
72

74

76

78

80

82

84

Epoch

A
cc

ur
ac

y
(%

)

GSM8K Performance

1 2 3 4 5
46

47

48

49

50

51

52

53

Epoch

A
cc

ur
ac

y
(%

)

MATH Performance

Baseline
DTS
CoT
MCTS

Figure 3: Performance progression across training epochs for different data generation strategies
using optimal hyperparameters.

more modest, and in the case of MCTS, ORPO actually provides the best results for both GSM8K241

(79.0%) and MATH (50.8%).242

SFT: For supervised fine-tuning, we examined learning rates of 1e-5 and 3e-5, with 2e-5 being the243

standard default in most SFT implementations. Our results indicate minimal differences between244

these learning rates on GSM8K performance, with all configurations yielding identical accuracy245

(76.7%). However, the lower learning rate of 1e-5 consistently produced slightly better results on the246

more challenging MATH benchmark across all data generation strategies, improving performance by247

0.6-2.4%.248

ORPO: For ORPO, we found that the standard learning rate of 8e-6 recommended in the original249

work was excessive for mathematical reasoning tasks, significantly degrading model performance250

(see Appendix D.3). Our experiments with lower learning rates (5e-7, 2e-7, and 7e-8) revealed251

distinct optimal configurations for different data generation strategies. For MCTS, higher learning252

rates performed better, while the other strategies benefited from progressively lower learning rates.253

The best overall ORPO performance was achieved with MCTS at a learning rate of 5e-7, yielding254

79.0% on GSM8K and 50.8% on MATH—the highest scores for any MCTS configuration across255

fine-tuning methods. In our ORPO ablations, we set the λ weighing parameter by default to 1 which256

remained constant.257

DPO: Following recent findings that lower learning rates are beneficial for reasoning-intensive258

domains Shen et al. [2024], we conducted a thorough grid search across learning rates (1e-7, 3e-7, 5e-259

7, 7e-7) and beta values (0.01, 0.05, 0.1). Our results show that smaller learning rates (e.g., 5e-7) are260

more suitable for mathematical reasoning, with the optimal configuration varying by data generation261

strategy. DPO showed particularly strong performance on the MATH benchmark, achieving the262

highest overall MATH scores for both baseline (52.2%) and DTS (52.4%) strategies, representing263

a 4.2% improvement over the base model. The optimal beta value was consistently 0.01 across264

strategies, suggesting that a mild KL constraint is preferable for mathematical reasoning tasks.265

SimPO: Recent work has shown that when using online data with a reward model for preference266

data creation, increasing beta to 10 can substantially improve performance with the right learning267

rate Meng et al. [2024]. Our results strongly support this finding, as the best hyperparameters268

for baseline, DTS, and CoT all featured higher beta values (10) combined with carefully tuned269

learning rates. We also examined β = 2.5 and γ = 0.55, which were found promising in the270

original SimPO work for Llama 3 Instruct. Interestingly, while this configuration performed well,271

it was consistently outperformed by the higher beta configurations. The most striking result was272

achieved with DTS+SimPO at η = 5e− 7, β = 10, and γ = 0.3, which produced the highest overall273

performance on GSM8K (83.2%) while also maintaining strong MATH performance (52.0%).274

5.3 Training Dynamics275

Figure 3 illustrates performance evolution across training epochs for each data generation strategy.276

For GSM8K, we observe distinct patterns: DTS shows strong and consistent improvement, rising277

8

sharply after epoch 1 (78.2% to 81.4%) and maintaining growth through epoch 4 (83.2%). In stark278

contrast, CoT performance degrades heavily after epoch 1, dropping from 77.6% to 72.6% by epoch279

3, indicating significant instability. Baseline and MCTS follow similar trajectories with steady280

improvements until epoch 4 followed by slight regression.281

For MATH, all strategies exhibit substantial variability. Baseline and MCTS display a "dip-and-282

recover" pattern, with performance decreasing in the middle epochs before climbing to their peaks283

at epoch 5 (52.2% and 50.8% respectively). DTS shows similar volatility, achieving its highest284

performance at epoch 2 (52.4%) before dipping and partially recovering. CoT exhibits the opposite285

behavior, with performance increasing until epoch 4 (51.2%) before declining sharply at epoch 5286

(47.6%).287

These dynamics highlight that DTS offers the most stable improvements for GSM8K, while all strate-288

gies demonstrate significant epoch-to-epoch variability on the more challenging MATH benchmark.289

5.4 Computational Efficiency Considerations290

Each data generation pipeline incurs a distinct token budget that corresponds to GPU hours and cost.291

We look at the cost of a strategy given the expected number of generated tokens per problem. The292

computation for the relative compute for each data generation strategy can be found in Appendix C.5.293

Despite MCTS requiring significantly more computational resources, it does not yield proportional294

performance improvements, failing to match either DTS or even the baseline approach with SimPO.295

The DTS strategy offers an exceptional balance between performance and computational efficiency296

with only a 1.03x compute overhead compared to baseline, making it highly suitable for resource-297

constrained scenarios. Even with minimal additional computation, DTS achieves the best performance298

on both GSM8K (83.2%) and MATH (52.4%).299

CoT occupies a middle ground at 1.99x baseline compute, but its unstable training dynamics and300

inferior performance make it less attractive despite its moderate computational requirements. The301

baseline approach, while computationally efficient, cannot match DTS’s performance despite exten-302

sive hyperparameter optimization.303

Strategy Relative
Compute

GSM8K MATH

Baseline 1.00x 80.7% 52.2%
DTS 1.03x 83.2% 52.4%
CoT 1.99x 77.6% 51.2%
MCTS 4.85x 79.0% 50.8%

Table 3: Computational requirements and best performance for different data generation strategies
combined with their respective optimal fine-tuning method.

6 Conclusion304

Our findings demonstrate that strategic diversification of preference data can substantially enhance305

mathematical reasoning capabilities in LLMs. Several key insights emerge from our experiments:306

Diversity of reasoning paths is crucial: Strategies that explore multiple problem-solving approaches307

consistently outperformed the baseline, indicating that exposure to diverse reasoning paths develops308

more robust mathematical capabilities.309

Data quality trumps optimization algorithm: While SimPO and DPO performed best, the differ-310

ences between optimization methods were smaller than those between data generation strategies,311

suggesting that research should prioritize data quality and diversity over algorithm selection.312

Structured exploration outperforms random sampling: DTS’s superior performance highlights313

that systematic exploration of the solution space is more effective than random variations through314

temperature sampling for generating high-quality preference data.315

9

References316

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn Drain, Stanislav317

Fort, Deep Ganguli, Tom Henighan, Nicholas Joseph, Saurav Kadavath, John Kernion, Tom Conerly, Sheer El-318

Showk, Nelson Elhage, Zac Hatfield-Dodds, Danny Hernandez, Tristan Hume, Scott Johnston, Shauna Kravec,319

Liane Lovitt, Neel Nanda, Catherine Olsson, Dario Amodei, Tom Brown, Jack Clark, Sam McCandlish, Chris320

Olah, Ben Mann, and Jared Kaplan. Training a helpful and harmless assistant with reinforcement learning321

from human feedback. arXiv preprint arXiv:2204.05862, 2022a.322

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, John Kernion, Andy Jones, Anna Chen, Anna323

Goldie, Azalia Mirhoseini, Cameron McKinnon, Carol Chen, Catherine Olsson, Christopher Olah, Danny324

Hernandez, Dawn Drain, Deep Ganguli, Dustin Li, Eli Tran-Johnson, Ethan Perez, Jamie Kerr, Jamie Mueller,325

Jared Ladish, Joshua Landau, Kamal Ndousse, Kamile Lukosuite, Liane Lovitt, Michael Sellitto, Nelson326

Elhage, Nova Schiefer, Nelson Mercado, Nova DasSarma, Robert Lasenby, Robin Larson, Sam Ringer, Scott327

Johnston, Shauna Kravec, Sheer El Showk, Stanislav Fort, Thomas Lanham, Thomas Telleen-Lawton, Tom328

Conerly, Tom Henighan, Tristan Hume, Samuel R. Bowman, Zac Hatfield-Dodds, Ben Mann, Dario Amodei,329

Nicholas Joseph, Sam McCandlish, Tom Brown, and Jared Kaplan. Constitutional ai: Harmlessness from ai330

feedback. arXiv preprint arXiv:2212.08073, 2022b.331

Ralph Allan Bradley and Milton E. Terry. Rank analysis of incomplete block designs: I. the method of paired332

comparisons. Biometrika, 39(3/4):324–345, 1952. doi: 10.2307/2334029.333

Lichang Chen, Shiyang Li, Jun Yan, Hai Wang, Kalpa Gunaratna, Vikas Yadav, Zheng Tang, Vijay Srinivasan,334

Tianyi Zhou, Heng Huang, and Hongxia Jin. Alpagasus: Training a better alpaca with fewer data. arXiv335

preprint arXiv:2307.08701, 2024.336

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep reinforcement337

learning from human preferences. Advances in Neural Information Processing Systems, 30, 2017.338

codelion. Optillm: A framework for optimizing llm generations. https://github.com/codelion/optillm,339

2024.340

Tri Dao. FlashAttention-2: Faster attention with better parallelism and work partitioning. In International341

Conference on Learning Representations (ICLR), 2024.342

Shunyu Feng, Lisa Yuan, Aditya Sharma, Xiang Li, Antonio Torralba, Leslie Kaelbling, Joshua Tenenbaum,343

and Lerrel Pinto. Alphazero-like tree-search can guide large language model decoding and training. arXiv344

preprint arXiv:2309.17179, 2023.345

Luca Gallo and Sandiway Karmakar. A comparative study of dspy teleprompter algorithms for aligning large346

language models evaluation metrics to human evaluation. arXiv preprint arXiv:2405.10345, 2024.347

Shangmin Guo, Biao Zhang, Tianlin Liu, Tianqi Liu, Misha Khalman, Felipe Llinares, Alexandre Rame, Thomas348

Mesnard, Yao Zhao, Bilal Piot, Johan Ferret, and Mathieu Blondel. Direct language model alignment from349

online ai feedback, 2024.350

Alex Havrilla, Sharath Raparthy, Christoforus Nalmpantis, Jane Dwivedi-Yu, Maksym Zhuravinskyi, Eric351

Hambro, and Roberta Railneau. Glore: When, where, and how to improve llm reasoning via global and local352

refinements. arXiv preprint arXiv:2402.10963, 2024.353

Jiwoo Hong, Noah Lee, and James Thorne. Orpo: Monolithic preference optimization without reference model.354

arXiv preprint arXiv:2403.07691, 2024.355

Natasha Jaques, Shixiang Gu, Dzmitry Bahdanau, José Miguel Hernández-Lobato, Richard E Turner, and356

Douglas Eck. Sequence tutor: Conservative fine-tuning of sequence generation models with kl-control. In357

International Conference on Machine Learning, pages 1645–1654. PMLR, 2017.358

Natasha Jaques, Judy Hanwen Shen, Asma Ghandeharioun, Craig Ferguson, Agata Lapedriza, Noah Jones,359

Shixiang Shane Gu, and Rosalind Picard. Human-centric dialog training via offline reinforcement learning.360

arXiv preprint arXiv:2010.05848, 2020.361

Omar Khattab, Christopher Potts, Percy Liang, and Matei Zaharia. Dspy assertions: Computational constraints362

for self-refining language model pipelines. arXiv preprint arXiv:2312.13382, 2023a.363

Omar Khattab, Keshav Santhanam, Xiang Lisa Li, David Hall, Percy Liang, Christopher Potts, and Matei364

Zaharia. Dspy: Compiling declarative language model calls into self-improving pipelines. arXiv preprint365

arXiv:2412.15298, 2023b.366

10

https://github.com/codelion/optillm

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large language367

models are zero-shot reasoners. Advances in Neural Information Processing Systems, 35:22199–22213, 2022.368

Nathan Lambert, Valentina Pyatkin, Jacob Daniel Morrison, Lester James Validad Miranda, Bill Yuchen Lin,369

Khyathi Raghavi Chandu, Nouha Dziri, Sachin Kumar, Tom Zick, Yejin Choi, Noah A. Smith, and Hanna370

Hajishirzi. Rewardbench: Evaluating reward models for language modeling. arXiv preprint arXiv:2403.13787,371

2024.372

Jan Leike, David Krueger, Tom Everitt, Miljan Martic, Vishal Maini, and Shane Legg. Scalable agent alignment373

via reward modeling: a research direction. arXiv preprint arXiv:1811.07871, 2018.374

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan Leike, John375

Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint arXiv:2305.20050, 2023.376

Chen Liu, Kun Zhang, Shuai Sun, Kehan Chen, Qingxing Ye, Yingjun Wu, Chin-Yew Lin, and Ming Zhou.377

Monte carlo tree search boosts reasoning via iterative preference learning. arXiv preprint arXiv:2405.00676,378

2024a.379

Wei Liu, Weihao Zeng, Keqing He, Yong Jiang, and Junxian He. What makes good data for alignment? a380

comprehensive study of automatic data selection in instruction tuning. arXiv preprint arXiv:2312.15685,381

2024b.382

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jianguang Lou, Chongyang Tao, Xiubo Geng, Qingwei Lin,383

Shifeng Chen, and Dongmei Zhang. Wizardmath: Empowering mathematical reasoning for large language384

models via reinforced evol-instruct. arXiv preprint arXiv:2308.09583, 2023.385

Yu Meng, Mengzhou Xia, and Danqi Chen. Simpo: Simple preference optimization with a reference-free reward,386

2024.387

Meta AI. Llama 3.1 8b instruct. https://huggingface.co/meta-llama/Meta-Llama-3.388

1-8B-Instruct, 2024. Accessed: June 2024.389

NVIDIA NeMo Team. Llama-3.1-nemotron-70b-reward-hf. https://huggingface.co/nvidia/Llama-3.390

1-Nemotron-70B-Reward-HF, 2024. Accessed: June 2024.391

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong Zhang,392

Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton, Luke E. Miller,393

Maddie Simens, Amanda Askell, Peter Welinder, Paul Francis Christiano, Jan Leike, and Ryan J. Lowe.394

Training language models to follow instructions with human feedback. Advances in Neural Information395

Processing Systems, 2022.396

Robin L. Plackett. The analysis of permutations. Journal of the Royal Statistical Society. Series C (Applied397

Statistics), 24(2):193–202, 1975. doi: 10.2307/2346567.398

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea Finn. Direct399

preference optimization: Your language model is secretly a reward model. In Thirty-seventh Conference on400

Neural Information Processing Systems, 2023. URL https://openreview.net/forum?id=HPuSIXJaa9.401

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed: System optimizations enable402

training deep learning models with over 100 billion parameters. Proceedings of the 26th ACM SIGKDD403

International Conference on Knowledge Discovery & Data Mining, 2020.404

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization405

algorithms. arXiv preprint arXiv:1707.06347, 2017.406

Yue Shen, Junxian He, Yuhuai Wu, Tsung-Hsien Kuo, and Xiang Lisa Li. Unveiling the secret recipe: A guide407

for supervised fine-tuning small llms. arXiv preprint arXiv:2406.09778, 2024.408

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche, Julian409

Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering the game of go with410

deep neural networks and tree search. Nature, 529(7587):484–489, 2016.411

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford, Dario412

Amodei, and Paul F Christiano. Learning to summarize with human feedback. Advances in Neural Information413

Processing Systems, 33:3008–3021, 2020.414

Wenpin Tang, David D. Yao, Shi-Xiong Zhang, and Sambit Sahu. A survey on human preference learning for415

large language models. arXiv preprint arXiv:2406.11191, 2024. URL https://arxiv.org/abs/2406.416

11191.417

11

https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct
https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct
https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct
https://huggingface.co/nvidia/Llama-3.1-Nemotron-70B-Reward-HF
https://huggingface.co/nvidia/Llama-3.1-Nemotron-70B-Reward-HF
https://huggingface.co/nvidia/Llama-3.1-Nemotron-70B-Reward-HF
https://openreview.net/forum?id=HPuSIXJaa9
https://arxiv.org/abs/2406.11191
https://arxiv.org/abs/2406.11191
https://arxiv.org/abs/2406.11191

Together AI. Llama 3.1 8B Instruct API. https://www.together.ai/models/llama-3-1, 2024. Accessed:418

May 19, 2025.419

Lewis Tunstall, Edward Beeching, Nathan Lambert, Nazneen Rajani, Shengyi Huang, Kashif Rasul, Alexan-420

der M. Rush, and Thomas Wolf. The alignment handbook. https://github.com/huggingface/421

alignment-handbook, 2023.422

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Chi, Quoc Le, and Denny Zhou. Chain-of-423

thought prompting elicits reasoning in large language models. Advances in Neural Information Processing424

Systems, 35:24824–24837, 2022.425

Mengzhou Xia, Sadhika Malladi, Suchin Gururangan, Sanjeev Arora, and Danqi Chen. Less: Selecting influential426

data for targeted instruction tuning. arXiv preprint arXiv:2402.04333, 2024.427

Shusheng Xu, Wei Fu, Jiaxuan Gao, Wenjie Ye, Weilin Liu, Zhiyu Mei, Guangju Wang, Chao Yu, and Yi Wu. Is428

dpo superior to ppo for llm alignment? a comprehensive study. arXiv preprint arXiv:2404.10719, 2024.429

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L Griffiths, Yuan Cao, and Karthik Narasimhan.430

Tree of thoughts: Deliberate problem solving with large language models. arXiv preprint arXiv:2305.10601,431

2023.432

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok, Zhenguo Li,433

Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions for large language434

models. arXiv preprint arXiv:2309.12284, 2023.435

Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping Yu, Lili436

Yu, Susan Zhang, Gargi Ghosh, Mike Lewis, Luke Zettlemoyer, and Omer Levy. Lima: Less is more for437

alignment. Advances in Neural Information Processing Systems, 2023.438

Jeffrey Zhou, Ki Ren Cheong, Alison Wang, and Karthik Narasimhan. Prompt-based monte carlo tree search for439

mitigating hallucinations in large language models. arXiv preprint arXiv:2403.11315, 2024.440

12

https://www.together.ai/models/llama-3-1
https://github.com/huggingface/alignment-handbook
https://github.com/huggingface/alignment-handbook
https://github.com/huggingface/alignment-handbook

A Limitations441

A.1 Benchmark Scope and Generalizability442

Our study demonstrates improvements on GSM8K and MATH benchmarks, which, while representative, capture443

only a subset of mathematical reasoning tasks. The effectiveness of our strategies may vary across different444

mathematical domains, complexity levels, or applications. Future work should evaluate these methods on a445

broader range of mathematical reasoning tasks and real-world applications.446

A.2 Reward Model Dependencies447

Despite our careful selection process (achieving error rates below 3%), our reliance on automated reward models448

introduces potential biases in preference data generation. These models occasionally make incorrect judgments,449

which could impact the quality of preference pairs and subsequent model training. Developing more robust450

mathematical evaluation methods remains an important avenue for future research.451

A.3 Model Scale Considerations452

Our experiments focused on a single model size (8B parameters). The relative effectiveness of different data453

diversification strategies might vary with model scale, potentially yielding different patterns of improvement in454

larger or smaller architectures. Extending this analysis to diverse model scales would provide valuable insights455

into the scalability of our approaches.456

A.4 Computational Efficiency Tradeoffs457

The computational requirements of more sophisticated strategies, particularly MCTS (4.85× baseline compute),458

limit their practical applicability in resource-constrained environments. While our DTS approach achieves an459

excellent balance between performance and efficiency (1.03× baseline compute), further work on optimizing460

data generation pipelines could improve accessibility.461

B Ethical Considerations462

Our research aims to improve mathematical reasoning capabilities in language models, which has broadly463

positive applications in education, scientific research, and various technical domains.464

We have made deliberate efforts to ensure research accessibility by providing comprehensive methodology details465

and implementation guidance. This openness helps democratize advanced mathematical capabilities across the466

research community and prevents the concentration of such capabilities in well-resourced organizations.467

While enhanced mathematical reasoning could potentially enable more sophisticated applications in sensitive468

domains like finance or cryptography, we believe the educational and scientific benefits significantly outweigh469

potential risks. Mathematical reasoning fundamentally supports objective problem-solving rather than inherently470

harmful capabilities.471

Our data generation methods rely on existing language models, which may contain biases. However, we focused472

specifically on mathematical problem-solving, which operates in a relatively objective domain with well-defined473

evaluation criteria, reducing (though not eliminating) the risk of perpetuating harmful biases.474

We view our research as augmenting rather than replacing human mathematical reasoning, with the goal of475

creating more useful tools that complement human capabilities in educational and scientific contexts.476

C Additional Experimental Details477

C.1 Implementation Details478

We implemented all models and training procedures using the HuggingFace Transformers library (version479

4.43.1). For preference optimization, we used the DPO and ORPO implementations from the TRL library480

(version 0.9.6), which provide optimized implementations of these algorithms. All training procedures were481

conducted on a compute cluster with 8 NVIDIA A100 80GB GPUs using mixed-precision training (bfloat16) to482

accelerate training while maintaining numerical stability for mathematical operations.483

For baseline model inference and data generation, we accessed the Llama-3.1-8B-Instruct model through the484

Together AI API Together AI [2024] with consistent generation parameters across experiments (unless otherwise485

specified). All model evaluations on the test sets were performed with greedy decoding (temperature = 0) to486

13

Reward Model Generator Model CL CH IL IH Error (%)

URM-LLama-3.1-8B

Mistral-7B-IT-v0.1 345 222 657 95 7.20%
Gemma-2-9B-IT 313 853 73 80 6.07%
Llama-3.2-3B-IT 691 349 235 44 3.34%
Llama-3.1-8B-IT 735 364 175 45 3.41%

Llama-3.1-Nemotron-70B-Reward-HF
Gemma-2-9B-IT 479 455 322 63 4.78%
Llama-3.2-3B-IT 398 647 233 41 3.11%
Llama-3.1-8B-IT 406 697 173 43 3.26%

Skywork-Reward-Gemma-2-27B Llama-3.2-3B-IT 28 1012 119 160 12.13%
Llama-3.1-8B-IT 32 1048 78 161 12.21%

Skywork-Reward-Gemma-2-27B-v0.2 Llama-3.1-8B-IT 560 545 146 68 5.16%

Table 4: Reward Model Evaluation on the GSM8K Test Set. We evaluate various reward models
against different generator models, tracking: CL (Correct Lower)—model’s correct output received
lower reward than ground truth; CH (Correct Higher)—model’s correct output received higher reward
than ground truth; IL (Incorrect Lower)—model’s incorrect output received lower reward than ground
truth; IH (Incorrect Higher)—model’s incorrect output received higher reward than ground truth.
The Error rate shows the percentage of incorrect outputs receiving higher rewards than ground truth,
calculated as IH/(CL+CH+IL+IH).

ensure deterministic outputs and fair comparisons across methods. For the different data generation strategies,487

we used OptiLLM (version 0.1.8) for MCTS and CoT implementations, and developed our custom DTS pipeline488

using core components from the DSPy framework (version 2.6.16). For reproducibility, we set random seeds489

consistently (42) across all experiments.490

C.2 Reward Model Analysis491

Selecting an appropriate reward model is crucial for effective preference data creation, as it directly affects the492

quality of paired examples used during optimization. An ideal reward model should consistently assign higher493

scores to correct mathematical solutions than to incorrect ones, ensuring that the preference signal aligns with494

mathematical accuracy.495

We conducted a comprehensive evaluation of several reward models using the GSM8K test set. For each problem,496

we generated solutions using various LLMs and compared the reward scores assigned to these solutions against497

those assigned to ground truth solutions. We tracked four key metrics, as defined in Section 4.2: correct_lower498

(CL), correct_higher (CH), incorrect_lower (IL), and incorrect_higher (IH). The most critical metric499

is IH, which represents cases where an incorrect solution received a higher reward than the ground truth—these500

cases directly undermine the preference learning objective.501

As shown in Table 4, Llama-3.1-Nemotron-70B-Reward-HF demonstrated the highest reliability, achieving502

the lowest error rate of 3.11% when evaluating Llama-3.2-3B-IT outputs. The URM-LLama-3.1-8B model503

also performed well with error rates below 3.5% for the Llama-3 series, though it struggled more with Mistral-504

7B outputs. In contrast, the original Skywork-Reward-Gemma-2-27B model showed the highest error rates505

(>12%), frequently assigning higher rewards to incorrect solutions, though its v0.2 iteration showed substantial506

improvement.507

To further validate our reward model selection, we extended our evaluation to the more challenging MetaMathQA508

dataset, sampling 4,919 problems. The Llama-3.1-Nemotron-70B-Reward-HF model maintained consistent509

performance with a 2.76% error rate (136 IH cases out of 4,919 total evaluations), confirming its robustness510

across different mathematical problem distributions. Based on these results, we selected Llama-3.1-Nemotron-511

70B-Reward-HF as our reward model for all preference data generation in our experiments.512

C.3 Judgment and Completion Scoring Setup513

Accurate assessment of mathematical solutions requires a robust scoring mechanism that can evaluate both the514

correctness of final answers and the quality of intermediate reasoning steps. To achieve this, we implemented515

a structured judgment framework using Nvidia’s Llama-3.1-Nemotron-70B-Instruct-HF model as our scoring516

engine.517

14

C.3.1 Scoring Protocol518

We normalized scores on a 0-100 scale, where 100 represents completely correct solutions with high-quality519

reasoning, and 0 indicates entirely incorrect solutions with flawed reasoning paths. To ensure consistent and520

meaningful evaluations, we designed a comprehensive system prompt that instructs the judge model to:521

1. Evaluate correctness relative to reference solutions522

2. Award partial credit for correct reasoning steps (up to 60 points)523

3. Reserve scores of 80+ for completely correct solutions524

4. Provide detailed explanations for point deductions525

The full judgment prompt is structured as follows:526

Here is a math question: {question}527

Here is the gold answer: {gold_answer}528

Here is a student answer: {generated_answer}529

You are a math teacher grading a student’s answer. You need to judge if the student answer530

is correct based on the gold answer. You need to follow the following rubrics: 1. The score531

should be between 0 and 100. 2. If the student answer is not correct based on the gold532

answer, deduct points from the score for each wrong step. Add points to the score for each533

correct step, up to a maximum of 60 points. 3. If the student answer is correct based on the534

gold answer, please give a final score above 80. 4. Please give a detailed explanation in535

bullet points for each point deducted. In the end, the score and explanation should be in the536

following format. Note that the final output should be parsed as a json object.537

<explanation>538

{"correct": true/false, "score": integer}539

C.3.2 Implementation Details540

To ensure scoring consistency and determinism, we set the generation parameters to temperature=0.0 and541

max_tokens=4,096. The structured JSON output format ({correct, score}) facilitated automated extraction542

and processing using regular expressions. In rare cases where the judge model produced malformed outputs543

or failed to follow the required format, we assigned a score of -1 and excluded these samples from subsequent544

analysis to maintain data quality.545

The MetaMathQA dataset provided high-quality reference solutions that served as our gold standard for546

comparison. As noted in our reward model analysis (Table 4), we observed occasional cases where reference547

solutions received lower scores than incorrect model-generated solutions.548

In our preliminary analysis, we found that this judgment approach provided more nuanced and informative scores549

compared to simple binary correctness checks, enabling finer distinctions between solutions with similar final550

answers but different reasoning quality. The detailed explanations produced by the judge model also provided551

valuable insights for qualitative analysis of model performance patterns and failure modes.552

C.4 Preference Optimization Configuration553

Effective preference optimization requires careful configuration of training parameters to balance learning554

dynamics, computational efficiency, and model stability. We implemented a consistent training infrastructure555

across all fine-tuning methods, varying only the specific hyperparameters detailed in our ablation study (Section556

5.2).557

Our training infrastructure leveraged DeepSpeed ZeRO-3 for memory optimization Rasley et al. [2020],558

FlashAttention-2 for efficient attention computation Dao [2024], and mixed-precision training (bfloat16) to559

accelerate training while maintaining numerical stability. We employed gradient checkpointing to reduce memory560

requirements, enabling us to process longer mathematical reasoning sequences without compromising batch561

size.562

For all preference optimization methods (DPO, ORPO, SimPO), we maintained a global batch size of 16,563

configured as per GPU batch size of 1 with 16 gradient accumulation steps. This batch size was selected based564

on prior work Meng et al. [2024] suggesting that moderate batch sizes (16-32) achieve optimal performance for565

preference learning across diverse domains. Each training run was executed for 5 epochs with a cosine learning566

rate schedule and 10% warmup ratio to ensure stable optimization dynamics.567

Figure 4 shows a representative configuration for DPO training. When implementing other methods, we568

maintained this base configuration while adjusting method-specific parameters:569

• DPO: Varying learning rates (1e-7 to 7e-7) and beta values (0.01, 0.05, 0.1)570

15

ACCELERATE_LOG_LEVEL=info accelerate launch \
--config_file deepspeed_zero3.yaml \
--dataset_name dpo_dataset \
--model_name_or_path meta -llama/Llama -3.1-8B-Instruct \
--learning_rate 3.0e-7 \
--beta 0.01 \
--lr_scheduler_type cosine \
--bf16 true \
--num_train_epochs 5 \
--per_device_train_batch_size 1 \
--gradient_accumulation_steps 16 \
--gradient_checkpointing \
--gradient_checkpointing_kwargs ’{" use_reentrant ": false}’ \
--logging_steps 25 \
--eval_strategy ’no’ \
--optim adamw_torch \
--attn_implementation flash_attention_2 \
--save_strategy epoch \
--seed 42 \
--warmup_ratio 0.1 \
--no_remove_unused_columns

Figure 4: Representative DPO training configuration used for fine-tuning. We maintained this
base configuration across all preference optimization methods, adjusting only the method-specific
hyperparameters (e.g., learning rate, beta, gamma) according to our ablation studies.

• ORPO: Varying learning rates (7e-8 to 5e-7) with lambda fixed at 1.0571

• SimPO: Varying learning rates (5e-7 to 1e-6), beta values (2.5, 10), and gamma values (0.3, 0.5, 0.55)572

For each method-strategy combination, we conducted a grid search over these hyperparameters as detailed in573

Section 5.2, totaling 76 distinct training runs. This comprehensive approach enabled us to identify optimal574

configurations for each data generation strategy, revealing important patterns in how hyperparameter sensitivity575

varies with data characteristics.576

C.5 Token Count Estimation for Computational Efficiency Analysis577

To quantify the computational resources required by each data generation strategy, we developed a systematic578

approach for estimating relative compute costs based on token processing requirements. We use a normalized579

compute ratio expressed as:580

Relative Compute =
tp + to

tbase
p + tbase

o

Where tp represents the mean prompt token count for the strategy being measured, to is the mean output token581

count, and the denominator contains the corresponding values for our baseline strategy. This metric captures the582

computational overhead of each strategy relative to the simplest approach.583

C.5.1 Strategy-Specific Token Analysis584

Baseline Strategy: For our reference implementation, we measured an average problem length of 41 tokens,585

a system prompt of 77 tokens, and a mean generation length of 364 tokens, resulting in a total token count of586

41 + 77 + 364 = 482 tokens per problem.587

Chain-of-Thought: Implemented using OptiLLM’s Chain-of-Thought framework3, this approach uses a588

structured thinking template of 258 tokens combined with the problem (41 tokens), totaling 299 input tokens.589

We observed significantly longer generations averaging 661 tokens (due to the explicit reasoning steps and590

occasional verbose output), bringing the total to 960 tokens per problem. This corresponds to a compute ratio of591

960/482 = 1.99×.592

3https://github.com/codelion/optillm/blob/main/optillm/cot_reflection.py

16

https://github.com/codelion/optillm/blob/main/optillm/cot_reflection.py

Base Model (No fine-tuning): 83.9%

Strategy SFT DPO ORPO SimPO
Baseline 84.2% 86.0% 85.1% 85.9%
CoT 84.1% 85.1% 85.5% 85.3%
MCTS 84.8% 84.9% 85.3% 85.1%
DTS 84.8% 85.8% 85.8% 85.0%

Table 5: GSM8K 5-shot accuracy (%) across data generation strategies and optimization methods
using optimal hyperparameter configurations. The highest score for each fine-tuning method is bold
with the best overall result underlined. All models show improvement over the base model’s 83.9%
accuracy.

Monte Carlo Tree Search: Our MCTS implementation uses a simulation depth of 1 and performs 2 simulations.593

Based on the OptiLLM MCTS implementation4, each problem requires a total of 8 model calls: an initial594

expansion, plus 4 LLM calls per simulation (generate_actions(), apply_action(), and evaluation_state()) Zhou595

et al. [2024], Feng et al. [2023]. With an average output of 292 tokens per model call, this strategy consumes596

approximately 292× 8 = 2, 336 tokens, yielding a compute ratio of 2, 336/482 = 4.85×.597

Diversified-ThinkSolve (DTS): This strategy requires two sequential LLM calls per problem:598

• Thought Generation: System prompt (56 tokens) + problem (41 tokens) = 97 input tokens, producing599

an average of 50 output tokens600

• Solution Generation: System prompt (27 tokens) + problem + thought (91 tokens) = 118 input tokens,601

generating an average of 230 output tokens602

The total token count for DTS is (97 + 118) + (50 + 230) = 495 tokens, resulting in a compute ratio of603

495/482 = 1.03× relative to baseline.604

C.5.2 Efficiency Analysis605

This token-based analysis reveals significant differences in computational requirements across strategies. While606

DTS achieves substantially better performance than baseline (as shown in Section 5.1), it does so with only a607

3% increase in computational cost. In contrast, MCTS requires nearly 5 times more compute while delivering608

less impressive results. These efficiency metrics provide crucial context for evaluating the practical utility of609

each strategy, especially in resource-constrained scenarios where computational efficiency is a key consideration610

alongside raw performance.611

D Additional Results612

D.1 GSM8K 5-shot Performance Analysis613

While our main evaluation focused on zero-shot performance, few-shot evaluation provides valuable insights614

into how preference optimization affects model performance when provided with exemplars. Table 5 presents615

the GSM8K 5-shot accuracy results across all strategies and fine-tuning methods.616

D.1.1 Key Findings617

All fine-tuned models demonstrated improvements over the base model’s already strong 5-shot performance618

(83.9%), with gains ranging from modest (+0.2%) to substantial (+2.1%). Several notable patterns emerged from619

our analysis:620

• Strategy-Method Interactions: Unlike the 0-shot scenario where DTS consistently outperformed621

other strategies, the baseline strategy achieved the highest overall 5-shot accuracy (86.0%) when622

combined with DPO. This suggests that the benefits of diverse reasoning paths may be partially623

redundant with the information provided by exemplars.624

• Method-Specific Performance: DTS showed the most consistent performance across different fine-625

tuning methods, scoring strongly with SFT (84.8%), DPO (85.8%), and ORPO (85.8%). However, it626

unexpectedly underperformed with SimPO (85.0%) relative to other strategies, despite SimPO being627

the optimal method in 0-shot evaluations.628

4https://github.com/codelion/optillm/blob/main/optillm/mcts.py

17

https://github.com/codelion/optillm/blob/main/optillm/mcts.py

Strategy Method Epoch 1 Epoch 2 Epoch 3 Epoch 4 Epoch 5

Baseline

SFT 48.4% 47.8% 47.6% 47.4% 47.2%
DPO 47.4% 50.2% 47.8% 50.2% 52.2%
ORPO 48.8% 49.4% 51.8% 47.6% 48.0%
SimPO 46.6% 50.8% 48.4% 47.4% 47.0%

CoT

SFT 48.4% 48.0% 48.0% 50.6% 50.0%
DPO 47.2% 47.2% 48.4% 50.8% 47.0%
ORPO 46.8% 46.4% 49.0% 51.2% 47.6%
SimPO 47.0% 50.4% 47.6% 47.2% 48.2%

MCTS

SFT 47.8% 48.8% 47.4% 47.6% 46.6%
DPO 48.2% 49.2% 39.2% 39.8% 37.8%
ORPO 49.4% 49.8% 48.0% 47.2% 50.8%
SimPO 50.6% 42.8% 9.8% 9.0% 9.0%

DTS

SFT 48.0% 48.6% 49.6% 48.8% 49.2%
DPO 50.4% 52.4% 48.2% 48.4% 51.6%
ORPO 48.0% 50.6% 49.8% 49.4% 50.6%
SimPO 48.8% 51.2% 47.8% 52.0% 48.0%

Table 6: MATH benchmark accuracy (%) progression across training epochs for all data generation
strategies and optimization methods. Results shown represent the best hyperparameter configuration
for each strategy-method pair. The highest score for each combination is highlighted in bold, while
the overall best result is underlined.

• Hyperparameter Consistency: We observed interesting patterns in optimal hyperparameters for629

5-shot performance. For both DPO and ORPO, a learning rate of 5e-7 consistently yielded the best630

results across all data generation strategies, with DPO also favoring β = 0.01. For SimPO, we found631

strategy-dependent optimal configurations: baseline, DTS, and CoT performed best with β = 10,632

γ = 0.3, and learning rates of 5e-7 or 8e-7, while MCTS uniquely benefited from β = 2.5, γ = 0.55,633

and a learning rate of 8e-7.634

D.1.2 Implications635

The differences between 0-shot and 5-shot performance patterns suggest that preference optimization may636

operate differently when exemplars are available. While diverse reasoning paths (as in DTS) appear critical for637

strong 0-shot performance, more conventional approaches like our baseline strategy may be sufficient when638

combined with few-shot prompting.639

D.2 Epoch-wise Analysis of MATH Benchmark Performance640

Understanding how mathematical reasoning capabilities evolve during training provides valuable insights into641

the learning dynamics of different preference optimization approaches. Table 6 presents a comprehensive view642

of MATH benchmark performance across all five training epochs for each strategy-method combination.643

Our epoch-by-epoch analysis reveals distinct training patterns across different approaches:644

Baseline Strategy: While SFT performance gradually declined with additional epochs, preference optimization645

methods showed non-monotonic improvement patterns. Most notably, DPO achieved its peak performance646

(52.2%) at the final epoch, demonstrating continued learning throughout training. Both ORPO and SimPO647

reached their peak performance in earlier epochs (epochs 3 and 2, respectively) before beginning to decline,648

suggesting potential overfitting.649

Chain-of-Thought (CoT): Interestingly, CoT methods consistently reached their peak performance at later650

epochs (typically epoch 4) compared to other strategies. This delayed optimization might suggest that extracting651

useful signals from CoT-generated preferences requires more training time, perhaps due to the additional652

reasoning steps that must be learned.653

Monte Carlo Tree Search (MCTS): MCTS exhibited the most unstable training dynamics, particularly when654

combined with DPO and SimPO. While MCTS+SimPO started strongly (50.6% at epoch 1), it catastrophically655

collapsed to single-digit performance by epoch 3. Similarly, MCTS+DPO declined from 49.2% to below 40%656

in later epochs. This instability suggests that preferences generated through MCTS may contain conflicting or657

inconsistent signals that become increasingly problematic with continued training.658

18

Diversified-ThinkSolve (DTS): The DTS strategy demonstrated remarkable stability across training epochs,659

with all methods maintaining strong performance throughout. The combination of DTS with DPO achieved the660

highest overall MATH accuracy (52.4%) at epoch 2, followed by a temporary decline and subsequent recovery661

in later epochs. SimPO exhibited a similar pattern with its peak (52.0%) at epoch 4. This oscillatory behavior662

might indicate that models trained on diverse reasoning paths explore different regions of the solution space663

during training.664

D.3 ORPO Learning Rate Sensitivity Analysis665

Learning Rate GSM8K 0-shot MATH

8e-6 45.6% 46.4%
2e-6 68.4% 48.2%
7e-7 76.9% 46.8%

Table 7: Impact of learning rate on ORPO performance using the baseline data generation strategy.

While most preference optimization methods are known to be sensitive to learning rate selection, ORPO deserves666

special attention due to the significantly higher learning rates recommended in the original paper (8e-6) compared667

to our optimal findings. We conducted targeted experiments to quantify this sensitivity and determine appropriate668

learning rate ranges for mathematical reasoning tasks.669

As shown in Table 7, ORPO’s performance exhibits extreme sensitivity to learning rate selection when applied to670

mathematical reasoning tasks. Using the originally recommended learning rate of 8e-6 results in catastrophically671

poor performance on GSM8K (45.6%), significantly worse than even the untuned base model (76.1%). Reducing672

the learning rate by approximately an order of magnitude (to 7e-7) restores and slightly enhances performance673

(76.9%).674

This stark difference can be attributed to the unique characteristics of mathematical reasoning tasks compared to675

general instruction-following or conversational benchmarks. Mathematical reasoning typically requires precise676

manipulation of symbols and strict adherence to formal rules, which may be disrupted by aggressive parameter677

updates. The optimal learning rate we identified (7e-7) is approximately 11 times smaller than the originally678

recommended value, highlighting the importance of domain-specific hyperparameter tuning.679

Interestingly, while GSM8K performance was dramatically affected by learning rate selection, MATH benchmark680

results showed more modest variation (46.4% to 48.2%). This differential sensitivity might be explained by the681

higher complexity and diversity of problems in the MATH dataset, which may require more substantial model682

adaptation regardless of learning rate.683

These findings emphasize the critical importance of carefully tuning learning rates when applying preference684

optimization techniques to specialized domains like mathematical reasoning, rather than relying on default685

values established for general-purpose language tasks.686

E Analysis of Generated Solutions687

To provide qualitative insights into how different data generation strategies influence mathematical reasoning688

patterns, we examined solution characteristics across models trained with each approach. This section presents a689

comparative analysis of solutions to an illustrative problem from the MetaMathQA dataset.690

E.1 Example Solutions691

Problem: Diego baked 12 cakes for his sister’s birthday. Donald also baked 4 cakes, but ate692

x while waiting for the party to start. There are 15 cakes left. What is the value of unknown693

variable x?694

Baseline Solution:695

To find the value of the unknown variable x, let’s follow these steps:696

Step 1: Find the total number of cakes initially made by both Diego and Donald.697

We are given that Diego baked 12 cakes, and Donald baked 4 cakes.698

So, total_cakes = cakes_baked_by_Diego + cakes_baked_by_Donald = 12 + 4 = 16699

Step 2: Understand the final number of cakes left.700

19

We know that after Donald ate x cakes, 15 cakes are left.701

So, the initial total number of cakes minus the number eaten is equal to 15:702

total_cakes − x = 15703

Since total_cakes = 16 from Step 1, we substitute 16 for total_cakes:704

16− x = 15705

Step 3: Find the value of the unknown variable x.706

Now we will isolate x by getting x on one side of the equation:707

16− x = 15708

We need to solve for x: x = 16− 15709

Step 4: Perform the operation to isolate x.710

Using simple arithmetic: x = 1711

Final Answer: 1712

Chain-of-Thought (CoT) Solution:713

Thinking:714

Let’s denote the total number of cakes initially as T .715

Donald initially had 4 cakes and ate x cakes. Therefore, Donald had 4− x cakes left.716

Diego initially had 12 cakes, so after Donald ate some, the total number of cakes left is the717

sum of the remaining cakes from both Diego and Donald. The equation can be written as:718

12 + (4− x) = 15.719

First, let’s simplify the equation by combining the constants: 12 + 4− x = 15.720

Combine the constants: 16− x = 15.721

Now, let’s isolate the variable x by subtracting 16 from both sides of the equation. −x = −1.722

To isolate x, multiply both sides of the equation by −1. x = 1.723

Reflection:724

I have simply applied basic algebraic manipulations to the given equation. There are no725

obvious errors in this process, and I have checked the steps for consistency and accuracy.726

However, it’s essential to ensure that all variables are correctly isolated and that the algebraic727

manipulations are accurately performed.728

Output:729

x = 1.730

Monte Carlo Tree Search (MCTS) Solution:731

To find the value of x, we need to determine the total number of cakes initially. Diego baked732

12 cakes and Donald baked 4 cakes. However, since the information about how many cakes733

Donald initially had baked was not required for solving the problem you can just sum up734

Diego and Donald’s initial cakes to determine the total.735

Initial total cakes = Diego’s cakes + Donald’s cakes = 12 + 4 = 16 cakes.736

After waiting for the party to start, there are 15 cakes left.737

We subtract the number of remaining cakes from the total number of cakes to find x. This738

equation would be:739

Initial total cakes − remaining cakes = x.740

16− 15 = x741

x = 1.742

The value of the unknown variable x is 1. Donald ate 1 cake while waiting for the party to743

start.744

Diversified-ThinkSolve (DTS) Solution:745

Thought Output: We can use the concept of inverse operations to isolate x. Subtracting 12746

from both sides of the equation gives us: −x = −5.747

Solution Output: To find the value of x, we need to isolate x by using inverse operations.748

The correct equation is 16− x = 15. Subtracting 16 from both sides of the equation gives749

us −x = −1. Multiplying both sides of the equation by −1 gives us x = 1.750

20

E.2 Qualitative Analysis of Solution Characteristics751

Our examination of solutions generated across different data strategies reveals distinctive patterns in reasoning752

approaches, solution structures, and error patterns.753

Baseline Solutions typically exhibit a highly structured, step-by-step approach with explicit enumeration of each754

reasoning stage. The solution organization appears optimized for instructional clarity, with distinct sections and755

a formal problem-solving framework. While effective, this approach sometimes leads to unnecessarily verbose756

explanations even for straightforward problems.757

CoT Solutions feature extensive explanatory content with distinct thinking and reflection phases. The thinking758

phase often includes variable definitions and elaborate equation formulations, while the reflection phase provides759

meta-analysis of the solution approach. This structure appears to prompt deeper verification and error-checking,760

but sometimes at the cost of parsimony. The explicit verification step may contribute to CoT’s inconsistent761

performance observed in our quantitative results.762

MCTS Solutions exhibit a remarkably consistent structure across problems, typically beginning with a standard-763

ized phrase ("To find the value of x, we need to determine...") that suggests convergence toward optimal response764

templates through the search process. The solutions tend to be direct and focused on the most efficient path765

discovered during tree search. However, this approach occasionally leads to incorrect convergence on harder766

problems when the search depth is insufficient to fully explore the solution space.767

DTS Solutions demonstrate a unique two-phase structure reflecting the strategy’s decomposition approach. The768

initial "thought output" often contains a high-level strategy or alternative solution approach, while the subsequent769

"solution output" provides a direct, efficient solution path. This dual structure appears to enable a balance770

between conciseness and reasoning depth. The example solution illustrates how DTS can derive a more direct771

mathematical approach (using inverse operations) compared to other methods.772

F Diversified-ThinkSolve (DTS) Implementation Details773

DTS was implemented using DSPy framework components, with a modular design that separates thought774

generation from solution execution. Our implementation consists of two primary modules which can be found in775

Figure 5 and Figure 6. The DTS implementation incorporates several key design elements:776

Modularity: By separating thought generation from solution execution, each component can be independently777

optimized.778

Robust Error Handling: Comprehensive fallback mechanisms prevent pipeline failures during batch processing.779

Structured Output Processing: Regex-based parsing extracts individual thoughts from varied model outputs,780

ensuring consistent downstream processing.781

Guaranteed Diversity: The system enforces a minimum of five distinct approaches per problem, even when the782

base model tends toward homogeneity.783

The complete pipeline processes each problem through ThoughtGenerator, passes each generated approach to784

SolutionGenerator, collects the resulting solutions, scores them with the reward model, and creates preference785

pairs for optimization. This architecture maintains computational efficiency (1.03× baseline) while producing786

the diverse, high-quality preference data that enabled DTS’s superior performance.787

21

1 class ThoughtGenerator(dspy.Module):
2 def __init__(self):
3 super().__init__ ()
4 self.gen_thoughts = dspy.ChainOfThought("math_problem ->

thoughts: List[str]")
5
6 def forward(self , math_problem: str) -> List[str]:
7 try:
8 prompt_template = (
9 "Given the math problem: {problem}, provide 5 possible

approaches or "
10 "initial thoughts on how to solve it , including any

relevant mathematical "
11 "concepts , formulas , or techniques that may be applied

. Consider multiple "
12 "perspectives and potential solution paths , and

describe each thought in 1-2 sentences."
13)
14
15 result = self.gen_thoughts(math_problem=prompt_template.

format(problem=math_problem))
16 thoughts = result.reasoning if hasattr(result , ’reasoning ’

) else []
17
18 # process thoughts
19 if isinstance(thoughts , str):
20 import re
21 thoughts = re.split(r’\d+\.|\n\d+\.|\n\d+\)’, thoughts

)
22 thoughts = [t.strip () for t in thoughts if t.strip()]
23
24 # ensure exactly 5 thoughts
25 if len(thoughts) < 5:
26 while len(thoughts) < 5:
27 thoughts.append(f"Alternative approach {len(

thoughts) + 1}: Apply fundamental mathematical
principles to solve step by step.")

28
29 return thoughts
30
31 except Exception as e:
32 print(f"Error in ThoughtGenerator: {str(e)}")
33 return [f"Default approach {i+1}: Solve the problem

systematically using basic mathematical principles."
34 for i in range (5)]

Figure 5: ThoughtGenerator module implementation responsible for generating diverse mathematical
reasoning approaches.

22

1 class SolutionGenerator(dspy.Module):
2 def __init__(self):
3 super().__init__ ()
4 self.gen_solution = dspy.ChainOfThought("math_problem ,

approach -> solution: str")
5
6 def forward(self , math_problem: str , approach: str) -> str:
7 try:
8 prompt_template = (
9 "Given the math problem: {problem }\n"

10 "Using this approach: {approach }\n"
11 "Please provide a detailed solution showing all work

and steps."
12)
13
14 result = self.gen_solution(math_problem=math_problem ,

approach=approach)
15
16 return result.reasoning if hasattr(result , ’reasoning ’)

else "Unable to generate solution."
17
18 except Exception as e:
19 print(f"Error in SolutionGenerator: {str(e)}")
20 return "Error occurred while generating solution."

Figure 6: SolutionGenerator module implementation that produces complete solutions based on
specific reasoning approaches.

23

NeurIPS Paper Checklist788

1. Claims789

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s790

contributions and scope?791

Answer: [Yes]792

Justification: We clearly state our main claims in abstract and introduction.793

Guidelines:794

• The answer NA means that the abstract and introduction do not include the claims made in the795

paper.796

• The abstract and/or introduction should clearly state the claims made, including the contributions797

made in the paper and important assumptions and limitations. A No or NA answer to this798

question will not be perceived well by the reviewers.799

• The claims made should match theoretical and experimental results, and reflect how much the800

results can be expected to generalize to other settings.801

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not802

attained by the paper.803

2. Limitations804

Question: Does the paper discuss the limitations of the work performed by the authors?805

Answer: [Yes]806

Justification: See Limitations in Appendix A.807

Guidelines:808

• The answer NA means that the paper has no limitation while the answer No means that the paper809

has limitations, but those are not discussed in the paper.810

• The authors are encouraged to create a separate "Limitations" section in their paper.811

• The paper should point out any strong assumptions and how robust the results are to violations of812

these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,813

asymptotic approximations only holding locally). The authors should reflect on how these814

assumptions might be violated in practice and what the implications would be.815

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested816

on a few datasets or with a few runs. In general, empirical results often depend on implicit817

assumptions, which should be articulated.818

• The authors should reflect on the factors that influence the performance of the approach. For819

example, a facial recognition algorithm may perform poorly when image resolution is low or820

images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide821

closed captions for online lectures because it fails to handle technical jargon.822

• The authors should discuss the computational efficiency of the proposed algorithms and how823

they scale with dataset size.824

• If applicable, the authors should discuss possible limitations of their approach to address problems825

of privacy and fairness.826

• While the authors might fear that complete honesty about limitations might be used by reviewers827

as grounds for rejection, a worse outcome might be that reviewers discover limitations that828

aren’t acknowledged in the paper. The authors should use their best judgment and recognize829

that individual actions in favor of transparency play an important role in developing norms that830

preserve the integrity of the community. Reviewers will be specifically instructed to not penalize831

honesty concerning limitations.832

3. Theory assumptions and proofs833

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete834

(and correct) proof?835

Answer: [NA]836

Justification: This paper does not introduce any theoretical results or theorems.837

Guidelines:838

• The answer NA means that the paper does not include theoretical results.839

• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.840

• All assumptions should be clearly stated or referenced in the statement of any theorems.841

24

• The proofs can either appear in the main paper or the supplemental material, but if they appear in842

the supplemental material, the authors are encouraged to provide a short proof sketch to provide843

intuition.844

• Inversely, any informal proof provided in the core of the paper should be complemented by845

formal proofs provided in appendix or supplemental material.846

• Theorems and Lemmas that the proof relies upon should be properly referenced.847

4. Experimental result reproducibility848

Question: Does the paper fully disclose all the information needed to reproduce the main experimental849

results of the paper to the extent that it affects the main claims and/or conclusions of the paper850

(regardless of whether the code and data are provided or not)?851

Answer: [Yes]852

Justification: Yes all the main experimental results and reproducibility is visible in Sections 4 and 5.853

Guidelines:854

• The answer NA means that the paper does not include experiments.855

• If the paper includes experiments, a No answer to this question will not be perceived well by the856

reviewers: Making the paper reproducible is important, regardless of whether the code and data857

are provided or not.858

• If the contribution is a dataset and/or model, the authors should describe the steps taken to make859

their results reproducible or verifiable.860

• Depending on the contribution, reproducibility can be accomplished in various ways. For861

example, if the contribution is a novel architecture, describing the architecture fully might suffice,862

or if the contribution is a specific model and empirical evaluation, it may be necessary to either863

make it possible for others to replicate the model with the same dataset, or provide access to864

the model. In general. releasing code and data is often one good way to accomplish this, but865

reproducibility can also be provided via detailed instructions for how to replicate the results,866

access to a hosted model (e.g., in the case of a large language model), releasing of a model867

checkpoint, or other means that are appropriate to the research performed.868

• While NeurIPS does not require releasing code, the conference does require all submissions869

to provide some reasonable avenue for reproducibility, which may depend on the nature of the870

contribution. For example871

(a) If the contribution is primarily a new algorithm, the paper should make it clear how to872

reproduce that algorithm.873

(b) If the contribution is primarily a new model architecture, the paper should describe the874

architecture clearly and fully.875

(c) If the contribution is a new model (e.g., a large language model), then there should either be876

a way to access this model for reproducing the results or a way to reproduce the model (e.g.,877

with an open-source dataset or instructions for how to construct the dataset).878

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are879

welcome to describe the particular way they provide for reproducibility. In the case of880

closed-source models, it may be that access to the model is limited in some way (e.g.,881

to registered users), but it should be possible for other researchers to have some path to882

reproducing or verifying the results.883

5. Open access to data and code884

Question: Does the paper provide open access to the data and code, with sufficient instructions to885

faithfully reproduce the main experimental results, as described in supplemental material?886

Answer: [Yes]887

Justification: All the necessary code for reproducibility can be seen in Appendix F with the already888

open source datasets necessary being discussed in Section 4.889

Guidelines:890

• The answer NA means that paper does not include experiments requiring code.891

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/892

guides/CodeSubmissionPolicy) for more details.893

• While we encourage the release of code and data, we understand that this might not be possible,894

so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless895

this is central to the contribution (e.g., for a new open-source benchmark).896

• The instructions should contain the exact command and environment needed to run to reproduce897

the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/898

guides/CodeSubmissionPolicy) for more details.899

25

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The authors should provide instructions on data access and preparation, including how to access900

the raw data, preprocessed data, intermediate data, and generated data, etc.901

• The authors should provide scripts to reproduce all experimental results for the new proposed902

method and baselines. If only a subset of experiments are reproducible, they should state which903

ones are omitted from the script and why.904

• At submission time, to preserve anonymity, the authors should release anonymized versions (if905

applicable).906

• Providing as much information as possible in supplemental material (appended to the paper) is907

recommended, but including URLs to data and code is permitted.908

6. Experimental setting/details909

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,910

how they were chosen, type of optimizer, etc.) necessary to understand the results?911

Answer: [Yes]912

Justification: Yes, this can be highlighted in Section 5.913

Guidelines:914

• The answer NA means that the paper does not include experiments.915

• The experimental setting should be presented in the core of the paper to a level of detail that is916

necessary to appreciate the results and make sense of them.917

• The full details can be provided either with the code, in appendix, or as supplemental material.918

7. Experiment statistical significance919

Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-920

tion about the statistical significance of the experiments?921

Answer: [No]922

Justification: The paper does not report error bars due to the expensive and large scale training923

necessary to rerun experiments numerous times.924

Guidelines:925

• The answer NA means that the paper does not include experiments.926

• The authors should answer "Yes" if the results are accompanied by error bars, confidence927

intervals, or statistical significance tests, at least for the experiments that support the main claims928

of the paper.929

• The factors of variability that the error bars are capturing should be clearly stated (for example,930

train/test split, initialization, random drawing of some parameter, or overall run with given931

experimental conditions).932

• The method for calculating the error bars should be explained (closed form formula, call to a933

library function, bootstrap, etc.)934

• The assumptions made should be given (e.g., Normally distributed errors).935

• It should be clear whether the error bar is the standard deviation or the standard error of the936

mean.937

• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report938

a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is939

not verified.940

• For asymmetric distributions, the authors should be careful not to show in tables or figures941

symmetric error bars that would yield results that are out of range (e.g. negative error rates).942

• If error bars are reported in tables or plots, The authors should explain in the text how they were943

calculated and reference the corresponding figures or tables in the text.944

8. Experiments compute resources945

Question: For each experiment, does the paper provide sufficient information on the computer946

resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?947

Answer: [Yes]948

Justification: This is highlighted in Section 5.4.949

Guidelines:950

• The answer NA means that the paper does not include experiments.951

• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud952

provider, including relevant memory and storage.953

26

• The paper should provide the amount of compute required for each of the individual experimental954

runs as well as estimate the total compute.955

• The paper should disclose whether the full research project required more compute than the956

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into957

the paper).958

9. Code of ethics959

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code960

of Ethics https://neurips.cc/public/EthicsGuidelines?961

Answer: [Yes]962

Justification: We discuss ethical considerations in Section B.963

Guidelines:964

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.965

• If the authors answer No, they should explain the special circumstances that require a deviation966

from the Code of Ethics.967

• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due968

to laws or regulations in their jurisdiction).969

10. Broader impacts970

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts971

of the work performed?972

Answer: [Yes]973

Justification: We discuss societal impacts in Section B.974

Guidelines:975

• The answer NA means that there is no societal impact of the work performed.976

• If the authors answer NA or No, they should explain why their work has no societal impact or977

why the paper does not address societal impact.978

• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,979

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-980

ment of technologies that could make decisions that unfairly impact specific groups), privacy981

considerations, and security considerations.982

• The conference expects that many papers will be foundational research and not tied to particular983

applications, let alone deployments. However, if there is a direct path to any negative applications,984

the authors should point it out. For example, it is legitimate to point out that an improvement in985

the quality of generative models could be used to generate deepfakes for disinformation. On the986

other hand, it is not needed to point out that a generic algorithm for optimizing neural networks987

could enable people to train models that generate Deepfakes faster.988

• The authors should consider possible harms that could arise when the technology is being used989

as intended and functioning correctly, harms that could arise when the technology is being used990

as intended but gives incorrect results, and harms following from (intentional or unintentional)991

misuse of the technology.992

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies993

(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-994

ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the995

efficiency and accessibility of ML).996

11. Safeguards997

Question: Does the paper describe safeguards that have been put in place for responsible release of998

data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or999

scraped datasets)?1000

Answer: [Yes]1001

Justification: We require the users to follow guidelines of the LLM as discussed in model cards and1002

specifications when using the model.1003

Guidelines:1004

• The answer NA means that the paper poses no such risks.1005

• Released models that have a high risk for misuse or dual-use should be released with necessary1006

safeguards to allow for controlled use of the model, for example by requiring that users adhere to1007

usage guidelines or restrictions to access the model or implementing safety filters.1008

27

https://neurips.cc/public/EthicsGuidelines

• Datasets that have been scraped from the Internet could pose safety risks. The authors should1009

describe how they avoided releasing unsafe images.1010

• We recognize that providing effective safeguards is challenging, and many papers do not require1011

this, but we encourage authors to take this into account and make a best faith effort.1012

12. Licenses for existing assets1013

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,1014

properly credited and are the license and terms of use explicitly mentioned and properly respected?1015

Answer: [Yes]1016

Justification: We properly credited the original owners and followed their license.1017

Guidelines:1018

• The answer NA means that the paper does not use existing assets.1019

• The authors should cite the original paper that produced the code package or dataset.1020

• The authors should state which version of the asset is used and, if possible, include a URL.1021

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.1022

• For scraped data from a particular source (e.g., website), the copyright and terms of service of1023

that source should be provided.1024

• If assets are released, the license, copyright information, and terms of use in the package should1025

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for1026

some datasets. Their licensing guide can help determine the license of a dataset.1027

• For existing datasets that are re-packaged, both the original license and the license of the derived1028

asset (if it has changed) should be provided.1029

• If this information is not available online, the authors are encouraged to reach out to the asset’s1030

creators.1031

13. New assets1032

Question: Are new assets introduced in the paper well documented and is the documentation provided1033

alongside the assets?1034

Answer: [NA]1035

Justification: Not applicable.1036

Guidelines:1037

• The answer NA means that the paper does not release new assets.1038

• Researchers should communicate the details of the dataset/code/model as part of their sub-1039

missions via structured templates. This includes details about training, license, limitations,1040

etc.1041

• The paper should discuss whether and how consent was obtained from people whose asset is1042

used.1043

• At submission time, remember to anonymize your assets (if applicable). You can either create an1044

anonymized URL or include an anonymized zip file.1045

14. Crowdsourcing and research with human subjects1046

Question: For crowdsourcing experiments and research with human subjects, does the paper include1047

the full text of instructions given to participants and screenshots, if applicable, as well as details about1048

compensation (if any)?1049

Answer: [NA]1050

Justification: Not applicable.1051

Guidelines:1052

• The answer NA means that the paper does not involve crowdsourcing nor research with human1053

subjects.1054

• Including this information in the supplemental material is fine, but if the main contribution of the1055

paper involves human subjects, then as much detail as possible should be included in the main1056

paper.1057

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other1058

labor should be paid at least the minimum wage in the country of the data collector.1059

15. Institutional review board (IRB) approvals or equivalent for research with human subjects1060

Question: Does the paper describe potential risks incurred by study participants, whether such1061

risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an1062

equivalent approval/review based on the requirements of your country or institution) were obtained?1063

28

paperswithcode.com/datasets

Answer: [NA]1064

Justification: Not applicable.1065

Guidelines:1066

• The answer NA means that the paper does not involve crowdsourcing nor research with human1067

subjects.1068

• Depending on the country in which research is conducted, IRB approval (or equivalent) may be1069

required for any human subjects research. If you obtained IRB approval, you should clearly state1070

this in the paper.1071

• We recognize that the procedures for this may vary significantly between institutions and1072

locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for1073

their institution.1074

• For initial submissions, do not include any information that would break anonymity (if applica-1075

ble), such as the institution conducting the review.1076

16. Declaration of LLM usage1077

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard1078

component of the core methods in this research? Note that if the LLM is used only for writing,1079

editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or1080

originality of the research, declaration is not required.1081

Answer: [NA]1082

Justification: Not applicable.1083

Guidelines:1084

• The answer NA means that the core method development in this research does not involve LLMs1085

as any important, original, or non-standard components.1086

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what1087

should or should not be described.1088

29

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Background
	Reinforcement Learning from Human Feedback
	Preference Optimization Methods

	Data Diversification Methods
	Baseline Strategy
	Chain-of-Thought Strategy
	MCTS Strategy
	Diversified-ThinkSolve (DTS) Strategy

	Experiment Setup
	Datasets and Models
	Reward Model Selection
	Preference Data Generation and Filtering

	Results
	Analysis of Data Generation Strategies
	Hyperparameter Sensitivity Analysis
	Training Dynamics
	Computational Efficiency Considerations

	Conclusion
	Limitations
	Benchmark Scope and Generalizability
	Reward Model Dependencies
	Model Scale Considerations
	Computational Efficiency Tradeoffs

	Ethical Considerations
	Additional Experimental Details
	Implementation Details
	Reward Model Analysis
	Judgment and Completion Scoring Setup
	Scoring Protocol
	Implementation Details

	Preference Optimization Configuration
	Token Count Estimation for Computational Efficiency Analysis
	Strategy-Specific Token Analysis
	Efficiency Analysis

	Additional Results
	GSM8K 5-shot Performance Analysis
	Key Findings
	Implications

	Epoch-wise Analysis of MATH Benchmark Performance
	ORPO Learning Rate Sensitivity Analysis

	Analysis of Generated Solutions
	Example Solutions
	Qualitative Analysis of Solution Characteristics

	Diversified-ThinkSolve (DTS) Implementation Details

