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Abstract

While recent advances in preference learning have enhanced alignment in human
feedback, mathematical reasoning remains a persistent challenge. We investi-
gate how data diversification strategies in preference optimization can improve
the mathematical reasoning abilities of large language models (LLMs). We eval-
uate three common data generation methods—temperature sampling, Chain-of-
Thought prompting, Monte Carlo Tree Search (MCTS), and introduce Diversified-
ThinkSolve (DTS), a novel structured approach that systematically decomposes
problems into diverse reasoning paths. Our results show that with strategically di-
versified preference data, models can substantially improve mathematical reasoning
performance, with the best approach yielding gains of 7.1% on GSM8K and 4.2%
on MATH over the base model. Despite its strong performance, DTS incurs only a
marginal computational overhead (1.03x) compared to the baseline, while MCTS
is nearly five times more costly with lower returns. These findings demonstrate that
structured exploration of diverse problem-solving methods creates more effective
preference data for mathematical alignment than traditional approaches.

1 Introduction

Large language models (LLMs) have demonstrated remarkable capabilities across a wide range
of tasks, but mathematical reasoning remains a particularly challenging domain|Luo et al.| [2023],
Lightman et al.| [2023]]. While recent work has shown that Reinforcement Learning from Human
Feedback (RLHF) Stiennon et al.|[2020] and preference optimization techniques like Direct Preference
Optimization (DPO) Rafailov et al.|[2023]] can substantially improve LLM performance on general
tasks, their application to mathematical reasoning has received less attention.

In standard preference optimization scenarios, datasets typically consist of unmodified preference
pairs drawn from human annotations or model-generated evaluations. While such datasets can yield
performance improvements |Guo et al.[[2024]], Tunstall et al.| [2023]], Xia et al.[[2024]] in alignment
with human preference, we hypothesize that more structured and diverse preference data can lead to
significantly better performance specifically tailored to mathematical reasoning Liu et al.| [2024Db].

Our work explores how strategically designed data generation and diversification methods can
enhance the effectiveness of preference optimization for mathematical reasoning. We propose
several approaches to generate preference data that incorporate diverse reasoning strategies, problem
reformulations, and solution methodologies. By leveraging techniques such as Chain-of-Thought
(CoT) prompting Wei et al.|[2022], [Kojima et al.[[2022]], Monte Carlo Tree Search (MCTS) |Silver
et al.[[2016]], Feng et al.|[2023]], and specialized thought-reflection mechanisms, we create datasets
that expose LLMs to a richer space of mathematical problem-solving strategies during preference
optimization.
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Among these approaches, we introduce Diversified-ThinkSolve (DTS), a novel structured method
that systematically decomposes problems into diverse problem-solving approaches before generating
solutions. DTS explicitly separates the thought generation process from solution execution, enabling
exploration of multiple problem-solving strategies while maintaining computational efficiency. This
approach addresses a fundamental limitation of traditional sampling methods—their inability to
systematically explore diverse thinking pathways.

We conduct a comprehensive comparative analysis of these strategies across standard mathematics
benchmarks. Our DTS approach yields significant improvements in both GSM8K and MATH over
the base model, while incurring only marginal computational overhead. Our findings highlight that
structured exploration of analytical approaches creates more effective preference data for mathemati-
cal alignment than traditional approaches, and that data quality and diversity can be more crucial than
optimizing algorithmic approaches.

2 Background

In this section, we provide the necessary background and information regarding alignment training for
LLMs. We start by providing a background on the RLHF process and then we discuss post-training
alignment techniques utilized in this paper.

2.1 Reinforcement Learning from Human Feedback

Often after we pre-train a model we want to further adapt it to meet certain needs or specifications
Stiennon et al.|[2020], Bai et al.| [2022a],|Ouyang et al.| [2022]. Reinforcement Learning from Human
Feedback (RLHF) has become a standard approach for aligning large language models with human
preferences and values [Christiano et al.|[2017]], Leike et al.| [2018]]. RLHF emerged as a solution to
the challenge of aligning Al systems with human values and preferences when these values were
difficult to specify mathematically yet easy to judge. While RLHF requires relatively small amounts
of comparison data to be effective compared to other approaches, sourcing high-quality preference
data remains an expensive process. This technique has become particularly crucial for LLMs, where
it helps guide these powerful systems toward producing outputs that humans find helpful, harmless,
and honest Bai et al.|[2022alb]].

The RLHF process typically consists of three stages:

Supervised Fine-Tuning (SFT): The model is first fine-tuned on demonstrations that exemplify
desired behavior, producing a model 75T,

Reward Modeling: Human annotators compare model responses, and these comparisons train a
reward model 4 (z, y) that predicts human preferences. The reward model is trained using maximum
likelihood on preference pairs (, y.,, y;) using the Bradley-Terry Model Bradley and Terry|[|1952],
Plackett [[1975]] to model the preference probability.

RL Optimization: The language model is then optimized further using reinforcement learning,
typically with Proximal Policy Optimization (PPO), to maximize the reward while maintaining
proximity to the reference model|[Jaques et al.| [2017,[2020], Schulman et al.|[2017].

2.2 Preference Optimization Methods

Recent work has introduced more efficient alternatives to the full RLHF pipeline. Direct Preference
Optimization (DPO) Rafailov et al.| [2023]] eliminates the need for an explicit reward model and RL
training by directly optimizing a policy from preference data:

Lppo = —E(zy. .y~ [logo(B(rv —r))]

where r,, and r; are the log probability ratios of the preferred and dispreferred responses relative to
a reference model. This approach has shown comparable or superior performance to RLHF while
being more computationally efficient and stable.

More recent methods include Simple Preference Optimization (SimPO) Meng et al.|[2024], which
eliminates the need for a reference model while maintaining strong performance:
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ESimPO = 7E(m,yw,yl)~D [IOgO' (ﬂ(sw - Sl) - ’7)]

where s,, and s; are length-normalized log probabilities, 3 controls preference signal strength, and ~y
is a target margin.

We also compare with Odds Ratio Preference Optimization (ORPO) [Hong et al.|[2024], which
combines supervised fine-tuning with preference optimization through a log odds ratio term, enabling
effective alignment without a reference model. ORPO’s loss function balances a supervised term for
the preferred completion with a preference term based on log odds ratios.

3 Data Diversification Methods

In this section, we describe our proposed data diversification strategies on creating high-quality
preference data for fine-tuning and preference optimization.

3.1 Baseline Strategy

Our baseline strategy follows standard practice in preference optimization, generating multiple
completions from the base model with only temperature sampling for diversity. During generation,
we set the max_tokens to 1,024, the temperature to 2, top_p to 0.75, and top_k to 50. We
generate 5 completions from the base model 75T using the following system prompt template:

“You will be given a math problem. Provide a step-by-step solution, clearly showing
all calculations and reasoning. Ensure that each step is explained and justified.
After your detailed solution, on a new line, give the final numerical answer in the
format: ‘Final Answer: [number]’. Do not include any units in the final answer.
Double-check your calculations to ensure accuracy.”

3.2 Chain-of-Thought Strategy

Chain-of-Thought (CoT) prompting Wei et al.| [2022], [Kojima et al.| [2022]] encourages LLMs
to generate step-by-step reasoning before producing a final answer. This approach has shown
significant improvements in mathematical problem-solving, particularly for complex multi-step
problems Havrilla et al.|[2024]. For generation, we used OptiLLM’s cot-reflection inference proxy
to illicit chain of thought reasoning for our model during inference timeﬂ This method implements
chain-of-thought reasoning with <thinking>, <reflection>, and <output> section tags in the prompt.
We set our temperature to 0.7 and max_tokens to 1,024 to avoid context length issues with
increased token counts from chain-of-thought.

3.3 MCTS Strategy

Methods incorporating search algorithms like Monte Carlo Tree Search (MCTS) have shown promise
for enhancing mathematical reasoning |[Feng et al.|[2023]], Yao et al.|[2023], Liu et al.|[2024a]]. These
approaches explore multiple solution paths and can identify effective reasoning strategies through
simulation. For this strategy, we leverage MCTS through the OptiLLM inference proxy [codelion
[2024] to systematically explore the solution spaceﬂ For each mathematical problem, we initialize a
dialogue-based MCTS search with the problem as the initial query and a structured solution prompt
as the system prompt. We set our exploration_weight to 0.2, num_simulations to 2, and
our simulation_depth to 1, which is the default configuration for the MCTS approach, and set
temperature to 0.7 and max_tokens to 1,024 for our generation configuration. At the end, the N
(in our case 5) most promising complete solution paths are picked.

This lightweight MCTS approach enables efficient yet effective exploration of the solution space, find-
ing diverse high-quality solutions that may not be discovered through simpler sampling approaches.

"https://github. com/codelion/optillm/blob/main/optillm/cot_reflection.py
https://github.com/codelion/optillm/blob/main/optillm/mcts. py
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Figure 1: Diversified-ThinkSolve (DTS) modular reasoning pipeline for generating diverse mathe-
matical problem solutions. Each math problem is first processed by a ThoughtGenerator to propose

multiple solution approaches. Then utilizing the SolutionGenerator with each approach, we are given
multiple solutions, contributing to a diverse set of preference data.

3.4 Diversified-ThinkSolve (DTS) Strategy

While the previously described strategies offer certain improvements, they exhibit key limitations
in generating truly diverse mathematical reasoning approaches. Temperature sampling produces
variations that often follow similar reasoning patterns, and Chain-of-Thought, despite encouraging
step-by-step reasoning, tends to converge on a single solution path. MCTS explores alternative
branches but incurs substantial computational costs. To address these limitations, we introduce
Diversified-ThinkSolve (DTS), a novel strategy specifically designed to generate diverse, high-quality
mathematical reasoning paths with minimal computational overhead.

DTS leverages DSPy, a declarative programming paradigm for language models, that enables modular
and structured reasoning [Khattab et al| [2023bla]]. Unlike traditional prompting approaches that
produce variations of the same solution or chain-of-thought strategies that follow a single reasoning
flow, DTS explicitly decomposes the mathematical problem-solving process into two distinct phases:
multiple approach generation followed by targeted execution. This decomposition enables systematic
exploration of the solution space while maintaining reasoning coherence.

We implement DTS through two specialized modules. First, a ThoughtGenerator construct gener-
ates [N = 5 distinct reasoning approaches using the following prompt template:

“Given the math problem: {problem}, provide 5 possible approaches or initial
thoughts on how to solve it, including any relevant mathematical concepts, formulas,
or techniques that may be applied. Consider multiple perspectives and potential
solution paths, and describe each thought in 1-2 sentences.”

Then, for each generated approach, a SolutionGenerator module produces a complete solution
following that particular reasoning pathway: “Given the math problem: {problem} Using this
approach: {approach} Please provide a detailed solution showing all work and steps.”

Figure [I]illustrates this process. By decoupling reasoning approach generation from solution im-
plementation, DTS systematically explores diverse problem-solving strategies while ensuring each
solution maintains consistent reasoning flow. The modularity of this approach allows for easy
adjustment of the number and type of reasoning paths without modifying the entire pipeline.

A key advantage of DTS over other strategies is its explicit promotion of strategic diversity—it
doesn’t merely produce different ways to present the same solution, but fundamentally different
problem-solving approaches. This structured diversity creates more informative preference pairs that
expose the model to a richer set of mathematical reasoning patterns during alignment.
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4 Experiment Setup

4.1 Datasets and Models

We conduct our experiments using the MetaMathQA dataset composed of 395k
training examples which are all augmented from the training sets of GSM8K and MATH. Since this
dataset consists of duplicated problems with distinct queries, we decided to use a deduplicated version
containing 13,929 unique mathematical queries and solutions. For evaluation, we use GSM8K’s test
set of 1,319 problems and the MATH-500 test subset.

For training, we use meta-llama/Llama-3.1-8B-Instruct Meta Al|[2024] as our base model for all ex-
jperiments. For scoring completions, we use Nvidia’s Llama-3.1-Nemotron-70B-Reward-HF NVIDIA

[2024]], which demonstrated the highest accuracy in our reward model evaluation
(Section4.2)).

4.2 Reward Model Selection

We evaluated several candidate reward models from the top models on RewardBench
[2024] by having them score both model-generated completions and ground truth solutions on the
GSMBSK test set. We tracked four key metrics: correct_higher (model’s correct output received
higher reward than ground truth), correct_lower (model’s correct output received lower reward
than ground truth), incorrect_higher (model’s incorrect output received higher reward than
ground truth), and incorrect_lower (model’s incorrect output received lower reward than ground
truth). An effective reward model should minimize incorrect_higher cases, which represent
instances where incorrect solutions are scored above correct ones.

Average Reward Model Accuracy Comparison
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Figure 2: Reward Model Accuracy Comparison. Bars represent average counts of prediction outcomes
for different reward models.

As shown in Figure 2] Nvidia’s Llama-3.1-Nemotron-70B-Reward-HF demonstrated the lowest rate
of incorrect_higher judgments, with an average inaccuracy rate of 3.11% on the GSMSK test set.
We further validated this model on a random sample of 4,919 problems from the harder MetaMathQA
dataset, finding a comparable inaccuracy rate of 2.76%. More details can be found in Appendix[C.2]

4.3 Preference Data Generation and Filtering

For each data generation strategy described in Section [3] we generated preference data from the
MetaMathQA dataset. We applied a "mixed correctness" filtering approach, selecting only cases
where 2-3 out of 5 model generations were correct, ensuring the model learns to distinguish between
correct and incorrect reasoning patterns. We then used our reward model to select the highest-scored
correct completion as ¥,, and the highest-scored incorrect completion as y; for preference training.

For each strategy, we created preference datasets of comparable size: Baseline (1,097 samples, 30.4%
filtered rate from 3,610 problems), DTS (1,293 samples, 17.2% from 7,500 problems), Chain-of-
Thought (1,247 samples subsampled from 2,493, 17.9% from the full dataset), and MCTS (1,586
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samples subsampled from 3,172, 22.8% from the full dataset). For training consistency, we used
comparable dataset sizes across all strategies, sampling half of the subsets from the larger CoT and
MCTS datasets.

5 Results

We present results comparing our different data generation strategies across various preference
optimization methods.

5.1 Analysis of Data Generation Strategies

Table 1: Mathematical reasoning accuracy (%) on GSMS8K (0-shot) and MATH-500 across different
data generation strategies and preference optimization methods. We report both the best and average
performance across 5 epochs for the optimal hyperparameter setting for each fine-tuning method and
data generation strategy.

GSMSK MATH
Best Avg Best Avg

Method

Base models

Llama-3.1-8B-IT 76.1% - 48.2% -
Llama-3.1-70B-IT  85.4% - 61.6% -
Llama-3.2-1B-IT 44.9% - 23.4% -
Llama-3.2-3B-IT 73.1% - 44.8% -
Baseline
Baseline+SFT 76.7% 742% 48.4% 47.7%
Baseline+ORPO 77.6% 76.5% 51.8% 49.1%
Baseline+DPO 77.6% 76.8% 522%  49.6%

Baseline+SimPO 80.7%  789%  50.8%  48.0%
Chain-of-Thought (CoT)

CoT+SFT 76.7%  73.7%  50.6%  49.0%
CoT+ORPO 774% 77.1% 512% 48.2%
CoT+DPO 77.6% T745% 50.8%  48.1%
CoT+SimPO 77.6% 53.0% 504% 48.1%
MCTS
MCTS+SFT 76.7%  76.6% 48.8%  47.6%
MCTS+ORPO 79.0% 779% 50.8%  49.0%
MCTS+DPO 778% 713% 492% 42.8%
MCTS+SimPO 78.0% 59.7% 50.6% 24.2%
DTS
DTS+SFT 76.7%  757% 49.6% 48.8%
DTS+ORPO 772% 76.8% 50.6%  49.7%
DTS+DPO 812% 793% 52.4% 50.2%
DTS+SimPO 832% 81.5% 52.0% 49.6%

As shown in Table[T] DTS consistently outperforms other methods, achieving a 7.1% improvement
over the base Llama-3.1-8B-IT model on GSM8K and a 4.2% improvement on MATH. The optimal
fine-tuning method varies by benchmark, with SimPO yielding the best results for GSM8K and DPO
performing best for MATH.

Baseline Strategy: The standard approach of generating completions with temperature sampling
showed moderate improvements over the base model, particularly when combined with SimPO,
achieving 80.7% accuracy on GSM8K. This suggests that even simple diversity through temperature
sampling can enhance performance. However, this strategy was consistently outperformed by more
sophisticated diversification methods except when paired with SimPO, indicating that temperature
sampling alone provides insufficient diversity for optimal mathematical reasoning.

Chain-of-Thought Strategy: CoT showed mixed results with significant stability issues, particularly
with SimPO where average performance dropped to 53.0% on GSM8K despite reasonable best-case
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performance (77.6%). Analysis revealed that incorrect CoT responses often contained repetitive
patterns and low-quality reasoning, creating preference pairs with extremely poor rejected completions
that may have hindered learning.

MCTS Strategy: While MCTS showed promising results with ORPO (79.0% on GSMS8K), it
exhibited considerable instability with SimPO, where performance degraded substantially across
epochs (average 59.7% on GSM8K, 24.2% on MATH). Despite MCTS’s systematic exploration
capabilities, its high computational cost and inconsistent performance make it less practical than
DTS.

DTS Strategy: The DTS thought-based approach demonstrated substantial improvements across all
fine-tuning methods, with the highest scores in both benchmarks. By explicitly generating multiple
solution approaches before solving problems, this method effectively exposes the model to diverse
reasoning paths. The structured exploration of different mathematical strategies appears to provide the
model with a richer learning signal during preference optimization. When combined with SimPO, this
approach achieved the highest average (81.5%) and best (83.2%) GSMS8K scores, while pairing with
DPO yielded the best MATH performance (52.4%). This suggests that decomposing mathematical
reasoning into distinct thought processes creates more effective preference data for alignment.

Interestingly, the baseline strategy with SimPO outperformed both the CoT and MCTS strategies on
average, highlighting that sophisticated data generation methods must be carefully integrated with
the appropriate preference optimization technique. The clear winner across both benchmarks is the
DTS approach, which consistently produced high-quality, diverse preference data that translated to
substantial improvements in mathematical reasoning capabilities.

5.2 Hyperparameter Sensitivity Analysis

Table 2: Unified hyperparameter sweep across fine—tuning methods and data—generation strategies.
For every hyperparameter setting we report the best—epoch accuracy (%) on GSM8K and MATH.
The highest score for each fine-tuning method’s data-generation strategy is bold. Overall best result
for each data-generation strategy is *.

Method Learning Rate [ v  Baseline DTS CoT MCTS

SFT le-5 — — 76.7/484 76.7/49.6 76.7/50.6 76.7/48.8
3e-5 — — 76.7/482 76.77/49.0 76.7/48.0 76.7/48.2
Te-7 001 — 75.8/522 80.5/50.6 76.0/47.8 76.1/48.2
Se-7 001 — 769/51.6 81.2/504 77.6/47.6 77.0/49.2
3e-7 0.01 — 769/50.6 79.2/524 76.8/504 77.0/484

DPO le-7 001 — 77.6/482 77.5/492 775/502 77.8/48.4
3e-7 005 — 76.7/51.6 78.6/512 773/504 76.9/49.0
le-7 005 — 77.6/512 77.7/49.0 77.0/50.8 77.3/48.8
3e-7 0.1 — 77.2/486 782/51.6 76.7/48.8 77.3/48.2
le-7 0.1 — 77.2/508 773/49.0 773/49.2 77.1/48.6

Understanding the impact of hyperparameter choices on model performance is crucial when optimiz-
ing preference learning for mathematical reasoning. While prior work has explored hyperparameter
tuning for general preference learning Tang et al.| [2024], the unique challenges of mathematical
reasoning tasks may require different optimal configurations. Additionally, different data generation
strategies might interact with hyperparameters in unexpected ways, potentially requiring strategy-
specific tuning. We conduct this analysis to identify the most effective hyperparameter configurations
for each data generation method and to provide practical guidance for researchers applying preference
optimization to mathematical domains.

As shown in Table[2} SimPO consistently demonstrates superior performance across most data genera-
tion strategies, particularly with the DTS approach where it achieves remarkable performance (83.2%
on GSMS8K). The performance advantage of SimPO is particularly pronounced with the DTS strategy,
where all hyperparameter configratuions yield strong and stable results, consistently outperforming
other fine-tuning methods. Notably, for both CoT and MCTS strategies, the performance margin is
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Figure 3: Performance progression across training epochs for different data generation strategies
using optimal hyperparameters.

more modest, and in the case of MCTS, ORPO actually provides the best results for both GSM8K
(79.0%) and MATH (50.8%).

SFT: For supervised fine-tuning, we examined learning rates of le-5 and 3e-5, with 2e-5 being the
standard default in most SFT implementations. Our results indicate minimal differences between
these learning rates on GSMS8K performance, with all configurations yielding identical accuracy
(76.7%). However, the lower learning rate of le-5 consistently produced slightly better results on the
more challenging MATH benchmark across all data generation strategies, improving performance by
0.6-2.4%.

ORPO: For ORPO, we found that the standard learning rate of 8e-6 recommended in the original
work was excessive for mathematical reasoning tasks, significantly degrading model performance
(see Appendix [D.3). Our experiments with lower learning rates (5e-7, 2e-7, and 7e-8) revealed
distinct optimal configurations for different data generation strategies. For MCTS, higher learning
rates performed better, while the other strategies benefited from progressively lower learning rates.
The best overall ORPO performance was achieved with MCTS at a learning rate of Se-7, yielding
79.0% on GSMS8K and 50.8% on MATH—the highest scores for any MCTS configuration across
fine-tuning methods. In our ORPO ablations, we set the A weighing parameter by default to 1 which
remained constant.

DPO: Following recent findings that lower learning rates are beneficial for reasoning-intensive
domains|Shen et al.| [2024], we conducted a thorough grid search across learning rates (le-7, 3e-7, Se-
7, Te-T) and beta values (0.01, 0.05, 0.1). Our results show that smaller learning rates (e.g., 5e-7) are
more suitable for mathematical reasoning, with the optimal configuration varying by data generation
strategy. DPO showed particularly strong performance on the MATH benchmark, achieving the
highest overall MATH scores for both baseline (52.2%) and DTS (52.4%) strategies, representing
a 4.2% improvement over the base model. The optimal beta value was consistently 0.01 across
strategies, suggesting that a mild KL constraint is preferable for mathematical reasoning tasks.

SimPO: Recent work has shown that when using online data with a reward model for preference
data creation, increasing beta to 10 can substantially improve performance with the right learning
rate [Meng et al.| [2024]]. Our results strongly support this finding, as the best hyperparameters
for baseline, DTS, and CoT all featured higher beta values (10) combined with carefully tuned
learning rates. We also examined S = 2.5 and v = 0.55, which were found promising in the
original SimPO work for Llama 3 Instruct. Interestingly, while this configuration performed well,
it was consistently outperformed by the higher beta configurations. The most striking result was
achieved with DTS+SimPO at n = 5e — 7, 5 = 10, and v = 0.3, which produced the highest overall
performance on GSM8K (83.2%) while also maintaining strong MATH performance (52.0%).

5.3 Training Dynamics

Figure [3]illustrates performance evolution across training epochs for each data generation strategy.
For GSMS8K, we observe distinct patterns: DTS shows strong and consistent improvement, rising
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sharply after epoch 1 (78.2% to 81.4%) and maintaining growth through epoch 4 (83.2%). In stark
contrast, CoT performance degrades heavily after epoch 1, dropping from 77.6% to 72.6% by epoch
3, indicating significant instability. Baseline and MCTS follow similar trajectories with steady
improvements until epoch 4 followed by slight regression.

For MATH, all strategies exhibit substantial variability. Baseline and MCTS display a "dip-and-
recover” pattern, with performance decreasing in the middle epochs before climbing to their peaks
at epoch 5 (52.2% and 50.8% respectively). DTS shows similar volatility, achieving its highest
performance at epoch 2 (52.4%) before dipping and partially recovering. CoT exhibits the opposite
behavior, with performance increasing until epoch 4 (51.2%) before declining sharply at epoch 5
(47.6%).

These dynamics highlight that DTS offers the most stable improvements for GSM8K, while all strate-
gies demonstrate significant epoch-to-epoch variability on the more challenging MATH benchmark.

5.4 Computational Efficiency Considerations

Each data generation pipeline incurs a distinct token budget that corresponds to GPU hours and cost.
We look at the cost of a strategy given the expected number of generated tokens per problem. The
computation for the relative compute for each data generation strategy can be found in Appendix [C.5]

Despite MCTS requiring significantly more computational resources, it does not yield proportional
performance improvements, failing to match either DTS or even the baseline approach with SimPO.
The DTS strategy offers an exceptional balance between performance and computational efficiency
with only a 1.03x compute overhead compared to baseline, making it highly suitable for resource-
constrained scenarios. Even with minimal additional computation, DTS achieves the best performance
on both GSM8K (83.2%) and MATH (52.4%).

CoT occupies a middle ground at 1.99x baseline compute, but its unstable training dynamics and
inferior performance make it less attractive despite its moderate computational requirements. The
baseline approach, while computationally efficient, cannot match DTS’s performance despite exten-
sive hyperparameter optimization.

Strategy Relative GSMSK MATH

Compute
Baseline 1.00x 80.7% 52.2%
DTS 1.03x 83.2% 52.4%
CoT 1.99x 77.6% 51.2%
MCTS 4.85x 79.0% 50.8%

Table 3: Computational requirements and best performance for different data generation strategies
combined with their respective optimal fine-tuning method.

6 Conclusion

Our findings demonstrate that strategic diversification of preference data can substantially enhance
mathematical reasoning capabilities in LLMs. Several key insights emerge from our experiments:

Diversity of reasoning paths is crucial: Strategies that explore multiple problem-solving approaches
consistently outperformed the baseline, indicating that exposure to diverse reasoning paths develops
more robust mathematical capabilities.

Data quality trumps optimization algorithm: While SimPO and DPO performed best, the differ-
ences between optimization methods were smaller than those between data generation strategies,
suggesting that research should prioritize data quality and diversity over algorithm selection.

Structured exploration outperforms random sampling: DTS’s superior performance highlights
that systematic exploration of the solution space is more effective than random variations through
temperature sampling for generating high-quality preference data.
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A Limitations

A.1 Benchmark Scope and Generalizability

Our study demonstrates improvements on GSM8K and MATH benchmarks, which, while representative, capture
only a subset of mathematical reasoning tasks. The effectiveness of our strategies may vary across different
mathematical domains, complexity levels, or applications. Future work should evaluate these methods on a
broader range of mathematical reasoning tasks and real-world applications.

A.2 Reward Model Dependencies

Despite our careful selection process (achieving error rates below 3%), our reliance on automated reward models
introduces potential biases in preference data generation. These models occasionally make incorrect judgments,
which could impact the quality of preference pairs and subsequent model training. Developing more robust
mathematical evaluation methods remains an important avenue for future research.

A.3 Model Scale Considerations

Our experiments focused on a single model size (8B parameters). The relative effectiveness of different data
diversification strategies might vary with model scale, potentially yielding different patterns of improvement in
larger or smaller architectures. Extending this analysis to diverse model scales would provide valuable insights
into the scalability of our approaches.

A.4 Computational Efficiency Tradeoffs

The computational requirements of more sophisticated strategies, particularly MCTS (4.85x baseline compute),
limit their practical applicability in resource-constrained environments. While our DTS approach achieves an
excellent balance between performance and efficiency (1.03x baseline compute), further work on optimizing
data generation pipelines could improve accessibility.

B Ethical Considerations

Our research aims to improve mathematical reasoning capabilities in language models, which has broadly
positive applications in education, scientific research, and various technical domains.

‘We have made deliberate efforts to ensure research accessibility by providing comprehensive methodology details
and implementation guidance. This openness helps democratize advanced mathematical capabilities across the
research community and prevents the concentration of such capabilities in well-resourced organizations.

While enhanced mathematical reasoning could potentially enable more sophisticated applications in sensitive
domains like finance or cryptography, we believe the educational and scientific benefits significantly outweigh
potential risks. Mathematical reasoning fundamentally supports objective problem-solving rather than inherently
harmful capabilities.

Our data generation methods rely on existing language models, which may contain biases. However, we focused
specifically on mathematical problem-solving, which operates in a relatively objective domain with well-defined
evaluation criteria, reducing (though not eliminating) the risk of perpetuating harmful biases.

We view our research as augmenting rather than replacing human mathematical reasoning, with the goal of
creating more useful tools that complement human capabilities in educational and scientific contexts.

C Additional Experimental Details

C.1 Implementation Details

We implemented all models and training procedures using the HuggingFace Transformers library (version
4.43.1). For preference optimization, we used the DPO and ORPO implementations from the TRL library
(version 0.9.6), which provide optimized implementations of these algorithms. All training procedures were
conducted on a compute cluster with 8 NVIDIA A100 80GB GPUs using mixed-precision training (bfloat16) to
accelerate training while maintaining numerical stability for mathematical operations.

For baseline model inference and data generation, we accessed the Llama-3.1-8B-Instruct model through the
Together Al API Together Al|[2024] with consistent generation parameters across experiments (unless otherwise
specified). All model evaluations on the test sets were performed with greedy decoding (temperature = 0) to

13



487
488
489

491

492
493
494

496
497
498

500
501

502
503
504
505
506
507

508
509
510
511
512

513

514
515
516
517

Reward Model Generator Model CL. CH 1IL IH Error (%)

Mistral-7B-IT-v0.1 345 222 657 95 7.20%
Gemma-2-9B-IT 313 853 73 80 6.07%
Llama-3.2-3B-IT 691 349 235 44  3.34%
Llama-3.1-8B-IT 735 364 175 45 341%

Gemma-2-9B-IT 479 455 322 63 4.78%
Llama-3.1-Nemotron-70B-Reward-HF Llama-3.2-3B-IT 398 647 233 41 3.11%
Llama-3.1-8B-IT 406 697 173 43 3.26%

Llama-3.2-3B-IT 28 1012 119 160 12.13%
Llama-3.1-8B-IT 32 1048 78 161 12.21%

Skywork-Reward-Gemma-2-27B-v0.2 Llama-3.1-8B-IT 560 545 146 68 5.16%

URM-LLama-3.1-8B

Skywork-Reward-Gemma-2-27B

Table 4: Reward Model Evaluation on the GSM8K Test Set. We evaluate various reward models
against different generator models, tracking: CL (Correct Lower)—model’s correct output received
lower reward than ground truth; CH (Correct Higher)—model’s correct output received higher reward
than ground truth; IL (Incorrect Lower)—model’s incorrect output received lower reward than ground
truth; IH (Incorrect Higher)—model’s incorrect output received higher reward than ground truth.
The Error rate shows the percentage of incorrect outputs receiving higher rewards than ground truth,
calculated as IH/(CL+CH+IL+IH).

ensure deterministic outputs and fair comparisons across methods. For the different data generation strategies,
we used OptiLLM (version 0.1.8) for MCTS and CoT implementations, and developed our custom DTS pipeline
using core components from the DSPy framework (version 2.6.16). For reproducibility, we set random seeds
consistently (42) across all experiments.

C.2 Reward Model Analysis

Selecting an appropriate reward model is crucial for effective preference data creation, as it directly affects the
quality of paired examples used during optimization. An ideal reward model should consistently assign higher
scores to correct mathematical solutions than to incorrect ones, ensuring that the preference signal aligns with
mathematical accuracy.

We conducted a comprehensive evaluation of several reward models using the GSMS8K test set. For each problem,
we generated solutions using various LLMs and compared the reward scores assigned to these solutions against
those assigned to ground truth solutions. We tracked four key metrics, as defined in Section[d.2} correct_lower
(CL), correct_higher (CH), incorrect_lower (IL), and incorrect_higher (IH). The most critical metric
is IH, which represents cases where an incorrect solution received a higher reward than the ground truth—these
cases directly undermine the preference learning objective.

As shown in Table ] Llama-3.1-Nemotron-70B-Reward-HF demonstrated the highest reliability, achieving
the lowest error rate of 3.11% when evaluating Llama-3.2-3B-IT outputs. The URM-LLama-3.1-8B model
also performed well with error rates below 3.5% for the Llama-3 series, though it struggled more with Mistral-
7B outputs. In contrast, the original Skywork-Reward-Gemma-2-27B model showed the highest error rates
(>12%), frequently assigning higher rewards to incorrect solutions, though its v0.2 iteration showed substantial
improvement.

To further validate our reward model selection, we extended our evaluation to the more challenging MetaMathQA
dataset, sampling 4,919 problems. The Llama-3.1-Nemotron-70B-Reward-HF model maintained consistent
performance with a 2.76% error rate (136 IH cases out of 4,919 total evaluations), confirming its robustness
across different mathematical problem distributions. Based on these results, we selected Llama-3.1-Nemotron-
70B-Reward-HF as our reward model for all preference data generation in our experiments.

C.3 Judgment and Completion Scoring Setup

Accurate assessment of mathematical solutions requires a robust scoring mechanism that can evaluate both the
correctness of final answers and the quality of intermediate reasoning steps. To achieve this, we implemented
a structured judgment framework using Nvidia’s Llama-3.1-Nemotron-70B-Instruct-HF model as our scoring
engine.
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C.3.1 Scoring Protocol

We normalized scores on a 0-100 scale, where 100 represents completely correct solutions with high-quality
reasoning, and 0 indicates entirely incorrect solutions with flawed reasoning paths. To ensure consistent and
meaningful evaluations, we designed a comprehensive system prompt that instructs the judge model to:

1. Evaluate correctness relative to reference solutions

2. Award partial credit for correct reasoning steps (up to 60 points)
3. Reserve scores of 80+ for completely correct solutions

4. Provide detailed explanations for point deductions

The full judgment prompt is structured as follows:

Here is a math question: {question}

Here is the gold answer: {gold_answer}

Here is a student answer: {generated_answer}

You are a math teacher grading a student’s answer. You need to judge if the student answer
is correct based on the gold answer. You need to follow the following rubrics: 1. The score
should be between 0 and 100. 2. If the student answer is not correct based on the gold
answer, deduct points from the score for each wrong step. Add points to the score for each
correct step, up to a maximum of 60 points. 3. If the student answer is correct based on the
gold answer, please give a final score above 80. 4. Please give a detailed explanation in
bullet points for each point deducted. In the end, the score and explanation should be in the
following format. Note that the final output should be parsed as a json object.
<explanation>

{"correct": true/false, "score": integer}

C.3.2 Implementation Details

To ensure scoring consistency and determinism, we set the generation parameters to temperature=0.0 and
max_tokens=4,096. The structured JSON output format ({correct, score}) facilitated automated extraction
and processing using regular expressions. In rare cases where the judge model produced malformed outputs
or failed to follow the required format, we assigned a score of -1 and excluded these samples from subsequent
analysis to maintain data quality.

The MetaMathQA dataset provided high-quality reference solutions that served as our gold standard for
comparison. As noted in our reward model analysis (Table[d), we observed occasional cases where reference
solutions received lower scores than incorrect model-generated solutions.

In our preliminary analysis, we found that this judgment approach provided more nuanced and informative scores
compared to simple binary correctness checks, enabling finer distinctions between solutions with similar final
answers but different reasoning quality. The detailed explanations produced by the judge model also provided
valuable insights for qualitative analysis of model performance patterns and failure modes.

C.4 Preference Optimization Configuration

Effective preference optimization requires careful configuration of training parameters to balance learning
dynamics, computational efficiency, and model stability. We implemented a consistent training infrastructure
across all fine-tuning methods, varying only the specific hyperparameters detailed in our ablation study (Section

557 [5.2).
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Our training infrastructure leveraged DeepSpeed ZeRO-3 for memory optimization [Rasley et al.| [2020],
FlashAttention-2 for efficient attention computation |Dao| [2024]], and mixed-precision training (bfloat16) to
accelerate training while maintaining numerical stability. We employed gradient checkpointing to reduce memory
requirements, enabling us to process longer mathematical reasoning sequences without compromising batch
size.

For all preference optimization methods (DPO, ORPO, SimPO), we maintained a global batch size of 16,
configured as per GPU batch size of 1 with 16 gradient accumulation steps. This batch size was selected based
on prior work Meng et al.|[2024] suggesting that moderate batch sizes (16-32) achieve optimal performance for
preference learning across diverse domains. Each training run was executed for 5 epochs with a cosine learning
rate schedule and 10% warmup ratio to ensure stable optimization dynamics.

Figure [4] shows a representative configuration for DPO training. When implementing other methods, we
maintained this base configuration while adjusting method-specific parameters:

¢ DPO: Varying learning rates (1e-7 to 7e-7) and beta values (0.01, 0.05, 0.1)

15



571

572

573
574
575
576

577

579
580

581

583

584

585
586
587

588
589
590
591
592

ACCELERATE_LOG_LEVEL=info accelerate launch \
--config_file deepspeed_zero3.yaml \
--dataset_name dpo_dataset \
--model_name_or_path meta-llama/Llama-3.1-8B-Instruct \
--learning_rate 3.0e-7 \

--beta 0.01 \

--1lr_scheduler_type cosine \

--bf16 true \

--num_train_epochs 5 \
--per_device_train_batch_size 1 \
--gradient_accumulation_steps 16 \
--gradient_checkpointing \
--gradient_checkpointing_kwargs ’{"use_reentrant": falsel}’ \
--logging_steps 25 \

--eval_strategy ’no’ \

--optim adamw_torch \
--attn_implementation flash_attention_2 \
--save_strategy epoch \

--seed 42 \

--warmup_ratio 0.1 \
--no_remove_unused_columns

Figure 4: Representative DPO training configuration used for fine-tuning. We maintained this
base configuration across all preference optimization methods, adjusting only the method-specific
hyperparameters (e.g., learning rate, beta, gamma) according to our ablation studies.

¢ ORPO: Varying learning rates (7e-8 to Se-7) with lambda fixed at 1.0
¢ SimPO: Varying learning rates (5e-7 to le-6), beta values (2.5, 10), and gamma values (0.3, 0.5, 0.55)

For each method-strategy combination, we conducted a grid search over these hyperparameters as detailed in
Section [5.2] totaling 76 distinct training runs. This comprehensive approach enabled us to identify optimal
configurations for each data generation strategy, revealing important patterns in how hyperparameter sensitivity
varies with data characteristics.

C.5 Token Count Estimation for Computational Efficiency Analysis

To quantify the computational resources required by each data generation strategy, we developed a systematic
approach for estimating relative compute costs based on token processing requirements. We use a normalized
compute ratio expressed as:

. tp + 1

Relative Compute = —F——2—
thase ¢

Where ¢, represents the mean prompt token count for the strategy being measured, ¢, is the mean output token

count, and the denominator contains the corresponding values for our baseline strategy. This metric captures the

computational overhead of each strategy relative to the simplest approach.

C.5.1 Strategy-Specific Token Analysis

Baseline Strategy: For our reference implementation, we measured an average problem length of 41 tokens,
a system prompt of 77 tokens, and a mean generation length of 364 tokens, resulting in a total token count of
41 + 77 + 364 = 482 tokens per problem.

Chain-of-Thought: Implemented using OptiLLM’s Chain-of-Thought frameworlﬂ this approach uses a
structured thinking template of 258 tokens combined with the problem (41 tokens), totaling 299 input tokens.
We observed significantly longer generations averaging 661 tokens (due to the explicit reasoning steps and
occasional verbose output), bringing the total to 960 tokens per problem. This corresponds to a compute ratio of
960/482 = 1.99x.

*https://github.com/codelion/optillm/blob/main/optillm/cot_reflection.py
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Base Model (No fine-tuning): 83.9%
Strategy SFT DPO ORPO SimPO

Baseline 84.2% 86.0% 85.1% 85.9%
CoT 84.1% 85.1% 85.5% 853%
MCTS  84.8% 84.9% 853% 85.1%
DTS 84.8% 858% 858% 85.0%

Table 5: GSMS8K 5-shot accuracy (%) across data generation strategies and optimization methods
using optimal hyperparameter configurations. The highest score for each fine-tuning method is bold
with the best overall result underlined. All models show improvement over the base model’s 83.9%
accuracy.

Monte Carlo Tree Search: Our MCTS implementation uses a simulation depth of 1 and performs 2 simulations.
Based on the OptiLLM MCTS implementatiorﬂ each problem requires a total of 8 model calls: an initial
expansion, plus 4 LLM calls per simulation (generate_actions(), apply_action(), and evaluation_state()) Zhou
et al.|[2024]], [Feng et al.| [2023]]. With an average output of 292 tokens per model call, this strategy consumes
approximately 292 x 8 = 2, 336 tokens, yielding a compute ratio of 2, 336/482 = 4.85x.

Diversified-ThinkSolve (DTS): This strategy requires two sequential LLM calls per problem:

* Thought Generation: System prompt (56 tokens) + problem (41 tokens) = 97 input tokens, producing
an average of 50 output tokens

* Solution Generation: System prompt (27 tokens) + problem + thought (91 tokens) = 118 input tokens,
generating an average of 230 output tokens

The total token count for DTS is (97 4+ 118) + (50 + 230) = 495 tokens, resulting in a compute ratio of
495/482 = 1.03 x relative to baseline.

C.5.2 Efficiency Analysis

This token-based analysis reveals significant differences in computational requirements across strategies. While
DTS achieves substantially better performance than baseline (as shown in Section[5.1), it does so with only a
3% increase in computational cost. In contrast, MCTS requires nearly 5 times more compute while delivering
less impressive results. These efficiency metrics provide crucial context for evaluating the practical utility of
each strategy, especially in resource-constrained scenarios where computational efficiency is a key consideration
alongside raw performance.

D Additional Results

D.1 GSMSK 5-shot Performance Analysis

While our main evaluation focused on zero-shot performance, few-shot evaluation provides valuable insights
into how preference optimization affects model performance when provided with exemplars. Table [5]presents
the GSMS8K 5-shot accuracy results across all strategies and fine-tuning methods.

D.1.1 Key Findings

All fine-tuned models demonstrated improvements over the base model’s already strong 5-shot performance
(83.9%), with gains ranging from modest (+0.2%) to substantial (+2.1%). Several notable patterns emerged from
our analysis:

* Strategy-Method Interactions: Unlike the O-shot scenario where DTS consistently outperformed
other strategies, the baseline strategy achieved the highest overall 5-shot accuracy (86.0%) when
combined with DPO. This suggests that the benefits of diverse reasoning paths may be partially
redundant with the information provided by exemplars.

* Method-Specific Performance: DTS showed the most consistent performance across different fine-
tuning methods, scoring strongly with SFT (84.8%), DPO (85.8%), and ORPO (85.8%). However, it
unexpectedly underperformed with SimPO (85.0%) relative to other strategies, despite SimPO being
the optimal method in 0-shot evaluations.

*https://github.com/codelion/optillm/blob/main/optillm/mcts. py
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Strategy Method Epoch 1 Epoch 2 Epoch 3 Epoch 4 Epoch 5
SFT 48.4% 47.8% 47.6% 47.4% 47.2%
Baseline DPO 47.4% 50.2% 47.8% 50.2% 52.2%
ORPO 48.8% 49.4% 51.8% 47.6% 48.0%
SimPO 46.6% 50.8% 48.4% 47.4% 47.0%
SFT 48.4% 48.0% 48.0% 50.6% 50.0%
CoT DPO 47.2% 47.2% 48.4% 50.8% 47.0%
© ORPO 46.8% 46.4% 49.0% 51.2% 47.6%
SimPO 47.0% 50.4% 47.6% 47.2% 48.2%
SFT 47.8% 48.8 % 47.4% 47.6% 46.6%
MCTS DPO 48.2% 49.2 % 39.2% 39.8% 37.8%
ORPO 49.4% 49.8% 48.0% 47.2% 50.8%
SimPO 50.6 % 42.8% 9.8% 9.0% 9.0%
SFT 48.0% 48.6% 49.6 % 48.8% 49.2%
DTS DPO 50.4% 52.4% 48.2% 48.4% 51.6%
ORPO 48.0% 50.6 % 49.8% 49.4% 50.6%
SimPO 48.8% 51.2% 47.8% 52.0% 48.0%

Table 6: MATH benchmark accuracy (%) progression across training epochs for all data generation
strategies and optimization methods. Results shown represent the best hyperparameter configuration
for each strategy-method pair. The highest score for each combination is highlighted in bold, while
the overall best result is underlined.

* Hyperparameter Consistency: We observed interesting patterns in optimal hyperparameters for
5-shot performance. For both DPO and ORPO, a learning rate of 5e-7 consistently yielded the best
results across all data generation strategies, with DPO also favoring 8 = 0.01. For SimPO, we found
strategy-dependent optimal configurations: baseline, DTS, and CoT performed best with 8 = 10,
~ = 0.3, and learning rates of Se-7 or 8e-7, while MCTS uniquely benefited from 8 = 2.5, v = 0.55,
and a learning rate of 8e-7.

D.1.2 Implications

The differences between 0-shot and 5-shot performance patterns suggest that preference optimization may
operate differently when exemplars are available. While diverse reasoning paths (as in DTS) appear critical for
strong 0-shot performance, more conventional approaches like our baseline strategy may be sufficient when
combined with few-shot prompting.

D.2 Epoch-wise Analysis of MATH Benchmark Performance

Understanding how mathematical reasoning capabilities evolve during training provides valuable insights into
the learning dynamics of different preference optimization approaches. Table[§] presents a comprehensive view
of MATH benchmark performance across all five training epochs for each strategy-method combination.

Our epoch-by-epoch analysis reveals distinct training patterns across different approaches:

Baseline Strategy: While SFT performance gradually declined with additional epochs, preference optimization
methods showed non-monotonic improvement patterns. Most notably, DPO achieved its peak performance
(52.2%) at the final epoch, demonstrating continued learning throughout training. Both ORPO and SimPO
reached their peak performance in earlier epochs (epochs 3 and 2, respectively) before beginning to decline,
suggesting potential overfitting.

Chain-of-Thought (CoT): Interestingly, CoT methods consistently reached their peak performance at later
epochs (typically epoch 4) compared to other strategies. This delayed optimization might suggest that extracting
useful signals from CoT-generated preferences requires more training time, perhaps due to the additional
reasoning steps that must be learned.

Monte Carlo Tree Search (MCTS): MCTS exhibited the most unstable training dynamics, particularly when
combined with DPO and SimPO. While MCTS+SimPO started strongly (50.6% at epoch 1), it catastrophically
collapsed to single-digit performance by epoch 3. Similarly, MCTS+DPO declined from 49.2% to below 40%
in later epochs. This instability suggests that preferences generated through MCTS may contain conflicting or
inconsistent signals that become increasingly problematic with continued training.
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Diversified-ThinkSolve (DTS): The DTS strategy demonstrated remarkable stability across training epochs,
with all methods maintaining strong performance throughout. The combination of DTS with DPO achieved the
highest overall MATH accuracy (52.4%) at epoch 2, followed by a temporary decline and subsequent recovery
in later epochs. SimPO exhibited a similar pattern with its peak (52.0%) at epoch 4. This oscillatory behavior
might indicate that models trained on diverse reasoning paths explore different regions of the solution space
during training.

D.3 ORPO Learning Rate Sensitivity Analysis

Learning Rate GSMS8K 0-shot MATH

8e-6 45.6% 46.4%
2e-6 68.4% 48.2%
Te-7 76.9 % 46.8%

Table 7: Impact of learning rate on ORPO performance using the baseline data generation strategy.

While most preference optimization methods are known to be sensitive to learning rate selection, ORPO deserves
special attention due to the significantly higher learning rates recommended in the original paper (8e-6) compared
to our optimal findings. We conducted targeted experiments to quantify this sensitivity and determine appropriate
learning rate ranges for mathematical reasoning tasks.

As shown in Table[7] ORPO’s performance exhibits extreme sensitivity to learning rate selection when applied to
mathematical reasoning tasks. Using the originally recommended learning rate of 8e-6 results in catastrophically
poor performance on GSM8K (45.6%), significantly worse than even the untuned base model (76.1%). Reducing
the learning rate by approximately an order of magnitude (to 7e-7) restores and slightly enhances performance
(76.9%).

This stark difference can be attributed to the unique characteristics of mathematical reasoning tasks compared to
general instruction-following or conversational benchmarks. Mathematical reasoning typically requires precise
manipulation of symbols and strict adherence to formal rules, which may be disrupted by aggressive parameter
updates. The optimal learning rate we identified (7e-7) is approximately 11 times smaller than the originally
recommended value, highlighting the importance of domain-specific hyperparameter tuning.

Interestingly, while GSM8K performance was dramatically affected by learning rate selection, MATH benchmark
results showed more modest variation (46.4% to 48.2%). This differential sensitivity might be explained by the
higher complexity and diversity of problems in the MATH dataset, which may require more substantial model
adaptation regardless of learning rate.

These findings emphasize the critical importance of carefully tuning learning rates when applying preference
optimization techniques to specialized domains like mathematical reasoning, rather than relying on default
values established for general-purpose language tasks.

E Analysis of Generated Solutions

To provide qualitative insights into how different data generation strategies influence mathematical reasoning
patterns, we examined solution characteristics across models trained with each approach. This section presents a
comparative analysis of solutions to an illustrative problem from the MetaMathQA dataset.

E.1 Example Solutions

Problem: Diego baked 12 cakes for his sister’s birthday. Donald also baked 4 cakes, but ate
x while waiting for the party to start. There are 15 cakes left. What is the value of unknown
variable x?

Baseline Solution:

To find the value of the unknown variable x, let’s follow these steps:

Step 1: Find the total number of cakes initially made by both Diego and Donald.

We are given that Diego baked 12 cakes, and Donald baked 4 cakes.

So, total_cakes = cakes_baked_by_Diego + cakes_baked_by_Donald = 12 +4 = 16
Step 2: Understand the final number of cakes left.
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‘We know that after Donald ate x cakes, 15 cakes are left.

So, the initial total number of cakes minus the number eaten is equal to 15:
total_cakes — x = 15

Since total_cakes = 16 from Step 1, we substitute 16 for total_cakes:
16 —x =15

Step 3: Find the value of the unknown variable x.

Now we will isolate x by getting « on one side of the equation:

16 —x =15

We need to solve for z: x = 16 — 15

Step 4: Perform the operation to isolate x.

Using simple arithmetic: z = 1

Final Answer: 1

Chain-of-Thought (CoT) Solution:

Thinking:

Let’s denote the total number of cakes initially as 7"

Donald initially had 4 cakes and ate x cakes. Therefore, Donald had 4 — x cakes left.
Diego initially had 12 cakes, so after Donald ate some, the total number of cakes left is the
sum of the remaining cakes from both Diego and Donald. The equation can be written as:
12+ (4 —z) = 15.

First, let’s simplify the equation by combining the constants: 12 + 4 — z = 15.

Combine the constants: 16 — z = 15.

Now, let’s isolate the variable x by subtracting 16 from both sides of the equation. —x = —1.
To isolate x, multiply both sides of the equation by —1. x = 1.

Reflection:

I have simply applied basic algebraic manipulations to the given equation. There are no
obvious errors in this process, and I have checked the steps for consistency and accuracy.
However, it’s essential to ensure that all variables are correctly isolated and that the algebraic
manipulations are accurately performed.

Output:
z =1

Monte Carlo Tree Search (MCTS) Solution:

To find the value of , we need to determine the total number of cakes initially. Diego baked
12 cakes and Donald baked 4 cakes. However, since the information about how many cakes
Donald initially had baked was not required for solving the problem you can just sum up
Diego and Donald’s initial cakes to determine the total.

Initial total cakes = Diego’s cakes + Donald’s cakes = 12 + 4 = 16 cakes.
After waiting for the party to start, there are 15 cakes left.

We subtract the number of remaining cakes from the total number of cakes to find x. This
equation would be:

Initial total cakes — remaining cakes = x.
16 —15 =2
=1

The value of the unknown variable x is 1. Donald ate 1 cake while waiting for the party to
start.

Diversified-ThinkSolve (DTS) Solution:

Thought Output: We can use the concept of inverse operations to isolate x. Subtracting 12
from both sides of the equation gives us: —x = —5.

Solution Output: To find the value of x, we need to isolate x by using inverse operations.
The correct equation is 16 — = = 15. Subtracting 16 from both sides of the equation gives
us —x = —1. Multiplying both sides of the equation by —1 gives us x = 1.
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E.2 Qualitative Analysis of Solution Characteristics

Our examination of solutions generated across different data strategies reveals distinctive patterns in reasoning
approaches, solution structures, and error patterns.

Baseline Solutions typically exhibit a highly structured, step-by-step approach with explicit enumeration of each
reasoning stage. The solution organization appears optimized for instructional clarity, with distinct sections and
a formal problem-solving framework. While effective, this approach sometimes leads to unnecessarily verbose
explanations even for straightforward problems.

CoT Solutions feature extensive explanatory content with distinct thinking and reflection phases. The thinking
phase often includes variable definitions and elaborate equation formulations, while the reflection phase provides
meta-analysis of the solution approach. This structure appears to prompt deeper verification and error-checking,
but sometimes at the cost of parsimony. The explicit verification step may contribute to CoT’s inconsistent
performance observed in our quantitative results.

MCTS Solutions exhibit a remarkably consistent structure across problems, typically beginning with a standard-
ized phrase ("To find the value of X, we need to determine...") that suggests convergence toward optimal response
templates through the search process. The solutions tend to be direct and focused on the most efficient path
discovered during tree search. However, this approach occasionally leads to incorrect convergence on harder
problems when the search depth is insufficient to fully explore the solution space.

DTS Solutions demonstrate a unique two-phase structure reflecting the strategy’s decomposition approach. The
initial "thought output" often contains a high-level strategy or alternative solution approach, while the subsequent
"solution output" provides a direct, efficient solution path. This dual structure appears to enable a balance
between conciseness and reasoning depth. The example solution illustrates how DTS can derive a more direct
mathematical approach (using inverse operations) compared to other methods.

F Diversified-ThinkSolve (DTS) Implementation Details

DTS was implemented using DSPy framework components, with a modular design that separates thought
generation from solution execution. Our implementation consists of two primary modules which can be found in
Figure[5|and Figure[6] The DTS implementation incorporates several key design elements:

Modularity: By separating thought generation from solution execution, each component can be independently
optimized.
Robust Error Handling: Comprehensive fallback mechanisms prevent pipeline failures during batch processing.

Structured Output Processing: Regex-based parsing extracts individual thoughts from varied model outputs,
ensuring consistent downstream processing.

Guaranteed Diversity: The system enforces a minimum of five distinct approaches per problem, even when the
base model tends toward homogeneity.

The complete pipeline processes each problem through ThoughtGenerator, passes each generated approach to
SolutionGenerator, collects the resulting solutions, scores them with the reward model, and creates preference
pairs for optimization. This architecture maintains computational efficiency (1.03x baseline) while producing
the diverse, high-quality preference data that enabled DTS’s superior performance.
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class ThoughtGenerator (dspy.Module):
def __init__(self):
super () . __init__Q)
self.gen_thoughts = dspy.ChainOfThought ("math_problem ->
thoughts: List[strl")

def forward(self, math_problem: str) -> List[str]:
try:
prompt_template = (
"Given the math problem: {problem}, provide 5 possible
approaches or "
"initial thoughts on how to solve it, including any
relevant mathematical "
"concepts, formulas, or techniques that may be applied
Consider multiple "
"perspectives and potential solution paths, and
describe each thought in 1-2 sentences."

)

result = self.gen_thoughts(math_problem=prompt_template.
format (problem=math_problem))

thoughts = result.reasoning if hasattr(result, ’reasoning’
) else []

# process thoughts
if isinstance (thoughts, str):
import re
thoughts = re.split(r’\d+\.[\n\d+\.[\n\d+\)’, thoughts
)
thoughts = [t.strip() for t in thoughts if t.strip()]

# ensure exactly 5 thoughts
if len(thoughts) < 5:
while len(thoughts) < 5:
thoughts.append(f"Alternative approach {len(
thoughts) + 1}: Apply fundamental mathematical
principles to solve step by step.")

return thoughts

except Exception as e:
print (f"Error in ThoughtGenerator: {str(e)l}")
return [f"Default approach {i+1}: Solve the problem
systematically using basic mathematical principles."
for i in range(5)]

Figure 5: ThoughtGenerator module implementation responsible for generating diverse mathematical
reasoning approaches.
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class SolutionGenerator (dspy.Module):
def __init__(self):
super () . __init__()
self.gen_solution = dspy.ChainOfThought("math_problem,

approach -> solution: str")

def forward(self, math_problem: str, approach: str) -> str:

try:

prompt_template = (
"Given the math problem: {problem}\n"
"Using this approach: {approach}\n"
"Please provide a detailed solution showing all work

and steps."

)

result = self.gen_solution(math_problem=math_problem,
approach=approach)

return result.reasoning if hasattr (result, ’reasoning’)

else "Unable to generate solution."

except Exception as e:
print (f"Error in SolutionGenerator: {str(e)l}")
return "Error occurred while generating solution."

Figure 6: SolutionGenerator module implementation that produces complete solutions based on
specific reasoning approaches.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]
Justification: We clearly state our main claims in abstract and introduction.
Guidelines:

* The answer NA means that the abstract and introduction do not include the claims made in the
paper.

 The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

« It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Limitations in Appendix A.
Guidelines:
* The answer NA means that the paper has no limitation while the answer No means that the paper
has limitations, but those are not discussed in the paper.
¢ The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to violations of
these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide
closed captions for online lectures because it fails to handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to address problems
of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete
(and correct) proof?

Answer: [NA]
Justification: This paper does not introduce any theoretical results or theorems.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

¢ All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
¢ All assumptions should be clearly stated or referenced in the statement of any theorems.
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* The proofs can either appear in the main paper or the supplemental material, but if they appear in
the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: Yes all the main experimental results and reproducibility is visible in Sections 4 and 5.
Guidelines:

* The answer NA means that the paper does not include experiments.

« If the paper includes experiments, a No answer to this question will not be perceived well by the
reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

« If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might suffice,
or if the contribution is a specific model and empirical evaluation, it may be necessary to either
make it possible for others to replicate the model with the same dataset, or provide access to
the model. In general. releasing code and data is often one good way to accomplish this, but
reproducibility can also be provided via detailed instructions for how to replicate the results,
access to a hosted model (e.g., in the case of a large language model), releasing of a model
checkpoint, or other means that are appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe the
architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should either be
a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: All the necessary code for reproducibility can be seen in Appendix F with the already
open source datasets necessary being discussed in Section 4.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

¢ The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.
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* The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

* Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]
Justification: Yes, this can be highlighted in Section 5.
Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail that is
necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer:

Justification: The paper does not report error bars due to the expensive and large scale training
necessary to rerun experiments numerous times.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

» The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

* The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

¢ The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error of the
mean.

* Itis OK to report 1-sigma error bars, but one should state it. The authors should preferably report
a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is
not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]
Justification: This is highlighted in Section 5.4.
Guidelines:

¢ The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud
provider, including relevant memory and storage.
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9.

10.

11.

* The paper should provide the amount of compute required for each of the individual experimental
runs as well as estimate the total compute.

¢ The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the Neur[PS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We discuss ethical considerations in Section B.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a deviation
from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consideration due
to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [Yes]
Justification: We discuss societal impacts in Section B.
Guidelines:

¢ The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal impact or
why the paper does not address societal impact.

« Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [Yes]

Justification: We require the users to follow guidelines of the LLM as discussed in model cards and
specifications when using the model.

Guidelines:

* The answer NA means that the paper poses no such risks.

¢ Released models that have a high risk for misuse or dual-use should be released with necessary
safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.
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12.

13.

14.

15.

» Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]
Justification: We properly credited the original owners and followed their license.
Guidelines:

* The answer NA means that the paper does not use existing assets.

¢ The authors should cite the original paper that produced the code package or dataset.

¢ The authors should state which version of the asset is used and, if possible, include a URL.
¢ The name of the license (e.g., CC-BY 4.0) should be included for each asset.

» For scraped data from a particular source (e.g., website), the copyright and terms of service of
that source should be provided.

« If assets are released, the license, copyright information, and terms of use in the package should
be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

 For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [NA]
Justification: Not applicable.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their sub-
missions via structured templates. This includes details about training, license, limitations,
etc.

* The paper should discuss whether and how consent was obtained from people whose asset is
used.

¢ At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA]
Justification: Not applicable.
Guidelines:
¢ The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.
¢ Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main
paper.
* According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?
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Answer: [NA]
Justification: Not applicable.
Guidelines:

¢ The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

¢ We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

¢ For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard
component of the core methods in this research? Note that if the LLM is used only for writing,
editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or
originality of the research, declaration is not required.

Answer: [NA|
Justification: Not applicable.
Guidelines:

* The answer NA means that the core method development in this research does not involve LLMs
as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.
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