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Abstract

Inverse protein folding, which aims to design
amino acid sequences for desired protein struc-
tures, is fundamental to protein engineering
and therapeutic development. While recent
deep-learning approaches have made remarkable
progress, they typically represent biochemical
properties as discrete features associated with in-
dividual residues. Here, we present BC-DESIGN,
a framework that represents biochemical proper-
ties as continuous distributions across protein sur-
faces and interiors. Through contrastive learning,
our model learns to encode essential biochemi-
cal information within structure embeddings, en-
abling sequence prediction using only structural
input during inference—maintaining compatibil-
ity with real-world applications while leveraging
biochemical awareness. BC-DESIGN achieves
88% sequence recovery versus state-of-the-art
methods’ 67% (a 21% absolute improvement)
and reduces perplexity from 2.4 to 1.5 (39.5%
relative improvement) on the CATH 4.2 bench-
mark. Notably, our model exhibits robust gen-
eralization across diverse protein characteristics,
performing consistently well on proteins of vary-
ing sizes (50-500 residues), structural complexity
(measured by contact order), and all major CATH
fold classes. Through ablation studies, we demon-
strate the complementary contributions of struc-
tural and biochemical information to this perfor-
mance. Overall, BC-DESIGN establishes a new
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paradigm for integrating multimodal protein infor-
mation, opening new avenues for computational
protein engineering and drug discovery.

1. Introduction

Inverse protein folding, which aims to determine amino
acid sequences that will adopt a specified three-dimensional
structure, represents a fundamental challenge in computa-
tional biology (Gao et al., 2024; 2022a; McPartlon & Xu,
2023; Hsu et al., 2022; Maus et al., 2023; Krishna et al.,
2024; Jing et al., 2021). This inverse problem is crucial for
advancing our understanding of protein structure-function
relationships and holds immense potential for therapeutic de-
velopment (Jumper et al., 2021; Koehler Leman et al., 2023).
While nature has evolved proteins over billions of years to
perform diverse functions, the ability to rationally design
protein sequences that fold into predetermined structures
would enable the creation of novel enzymes, therapeutic an-
tibodies, and biomaterials with tailored properties (Shanker
et al., 2023; Dreyer et al., 2023; Cutting et al., 2024; Notin
et al., 2024). The successful solution to this inverse problem
could accelerate protein engineering by circumventing the
traditional trial-and-error approaches, potentially leading
to breakthroughs in drug development, vaccine design, and
sustainable catalyst creation.

Traditional methods for inverse folding typically rely on
different network architectures to model protein structures.
Early methods primarily employed MLP-based frameworks
such as SPIN and SPIN2 (Li et al., 2014; O’Connell et al.,
2018), which integrate basic structural features like torsion
angles and backbone angles. Subsequently, CNN-based
models, including ProDCoNN and DenseCPD (Zhang et al.,
2020; Qi & Zhang, 2020), were proposed to extract higher-
dimensional features from distance matrices and atomic
distributions. More recently, the approaches for IPF primar-
ily focus on optimizing network architectures, with methods
like ProteinMPNN (Dauparas et al., 2022), PiFold (Gao
et al., 2022a), and ESM-IF1 (Hsu et al., 2022) achieving
remarkable results. While these structure-based approaches
have shown progress, they do not explicitly account for
the biochemical properties that fundamentally govern pro-
tein folding and stability. Previous attempts to incorporate
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such properties in other protein-related tasks (Renaud et al.,
2021; Lei et al., 2021; Mitra et al., 2024) have typically rep-
resented these features as discrete properties at the atomic
or residue level. These discrete representations, however,
do not fully capture the continuous nature of biochemical
properties across protein surfaces. Physicochemical prop-
erties such as hydrophobicity and charge distributions are
inherently continuous features that define both the protein’s
spatial configuration and its interaction patterns. Despite
numerous efforts, existing methods lack effective ways to
represent biochemical features as continuous distributions
across protein surfaces, limiting their ability to capture the
spatial arrangement of these critical features.

Building upon these observations, we identify two major
challenges in incorporating biochemical properties into IPF:
(1) how to construct appropriate representations of biochem-
ical features as continuous decorations on protein surfaces,
rather than discrete properties at individual residues, and
(2) how to develop a methodology that effectively utilizes
biochemical information during training while maintain-
ing compatibility with real-world applications that require
structure-only inputs. This second challenge is particularly
important for ensuring fair comparisons with existing meth-
ods and practical deployment in protein design workflows.

To address these challenges, we present BC-DESIGN, a
biochemistry-aware framework for highly accurate inverse
protein folding. During training, our approach represents
biochemical properties as continuous distributions through-
out the protein structure using constructed point clouds that
sample both protein surfaces and internal spaces. A key
innovation in our methodology is the use of contrastive
learning to develop biochemistry-aware structural embed-
dings. By employing global and local contrastive learning
between structural and biochemical features during training,
our model learns to encode essential biochemical informa-
tion within the structural representations themselves.

This contrastive learning strategy creates a critical bridge
between the training and inference phases of our model.
During training, the model leverages both structural infor-
mation and biochemical feature distributions to learn rich,
biochemistry-aware embeddings. However, at inference
time—when designing sequences for novel protein struc-
tures—our model requires only the backbone structure as
input, consistent with other structure-only methods and real-
world protein design workflows. The structure embeddings,
having implicitly captured biochemical information during
training, can effectively guide sequence prediction without
requiring explicit biochemical features as input. This ap-
proach offers the best of both worlds: it harnesses the power
of biochemical awareness during training while maintaining
the practical simplicity of structure-only input during appli-
cation. In parallel to this contrastive learning framework,

a STRUCT-ENCODER processes residue-level structural in-
formation through a hierarchical graph transformer, and a
BC-FuSION module enables the framework to make bio-
chemically informed sequence predictions.

The effectiveness of our biochemistry-aware design frame-
work is validated through experiments on the CATH 4.2
dataset (Dawson et al., 2017). With our approach of incorpo-
rating biochemical features derived from protein structures,
BC-DESIGN achieves high sequence prediction accuracy,
with sequence recovery (the percentage of correctly pre-
dicted amino acids) of 88.37% and perplexity (a measure of
prediction uncertainty, with lower values indicating more
confident predictions) of 1.47. While this represents a sub-
stantial improvement over structure-only methods (such as
SPDesign with 67.05% sequence recovery and 2.43 per-
plexity), we note that this performance gain stems from our
novel incorporation of biochemical property distributions
in the prediction process. Through detailed analysis, we
demonstrate that this biochemistry-aware approach enables
consistently accurate sequence prediction across proteins
of different sizes (50-500 residues) and various CATH fold
classes, highlighting the importance of biochemical context
in protein sequence design.

2. Methodology

2.1. Input Representation
2.1.1. STRUCTURAL REPRESENTATION

A protein is a three-dimensional macromolecule containing
one or multiple polypeptide chains, each chain formed by
amino acid residues. Given a protein structure, we represent
it as a graph G(V, £, Fy, Fg) according to the featurizer
in PiFold, where each node in the node-set V represents
a residue centered at its C, atom position. The edge set
& encodes spatial relationships between residues by con-
necting each node to its k£ nearest neighbors (£ = 30 in our
work), forming a k-NN graph that captures local interactions
between nearby residues in the protein structure.

To achieve translational and rotational invariance of our
structural representation, we construct a local coordinate
system () = [X@,¥@,XqQ X Yo for each residue based on
its backbone atoms (C,, C, N, and O). Each feature vector
in the node feature set 7, = {f,,, f.,,...,f,,, } encodes
essential geometric properties of each residue: Distances:
Distances between key backbone atoms (C,, C, N, and O).
Angles: Three bond angles (N; —C,; —C;, C;—1 —N; —C,;,
and C,; — C; — N, ;1) and three dihedral angles (N; — C,y,
C; — Cq;, and C; — N; 1) that define the local backbone
conformation. Orientations: Direction vectors from C, N,
and O atoms to the central C,,.

Each feature in the edge feature set Fg =
{fe fes, - feo } captures the relative spatial ar-
rangements between connected residues: Inter-residue
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Distances: Distances between backbone atoms of con-
nected residues. Inter-residue Rotations: Quaternion
representation 1/}(Q;TFQJ-) of the relative rotation between
local coordinate frames of residues ¢ and j, where
Y R3*3 — R% is a quaternion encoding function.
Inter-residue Orientations: Direction vectors from the
backbone atoms of residue j to the C,, atom of residue 7.

This graph representation captures the local backbone geom-
etry and spatial arrangements essential for protein structure
characterization. Combining these carefully chosen geomet-
ric features ensures our model can learn from conforma-
tional preferences and structural interactions.

2.1.2. BIOCHEMICAL FEATURE CONSTRUCTION

In protein structures, biochemical properties are crucial in
determining protein folding and function. These properties
form distributions throughout the protein structure, which
can be theoretically represented as a function ¢ : R? — R¢
that maps any spatial coordinate x; € R3 to its correspond-
ing biochemical features. To approximate this continuous
distribution in a computationally tractable manner, we de-
velop a discretized feature representation through point sam-
pling and feature assignment, capturing surface and internal
distributions essential for protein sequence design.

Among various biochemical properties, we specifically
choose hydrophobicity and charge to construct our bio-
chemical features, according to SurfPro (Song et al.), which
demonstrated these two properties to be the most informa-
tive for protein sequence design. Our feature construction
process consists of four key stages, which are detailed in
Sec. B in the appendix.

2.2. Model Architecture
2.2.1. STRUCT-ENCODER

To effectively capture both local and global structural infor-
mation, we augment the protein structure graph with aux-
iliary nodes that serve as dedicated feature aggregators at
different spatial scales. Specifically, we introduce two types
of aggregator nodes: (1) a global aggregator that summa-
rizes features of the entire protein structure and (2) several
local aggregators that capture structural patterns within spe-
cific spatial regions. This hierarchical aggregation scheme
is inspired by the [CLS] (classification) token mechanism in
Transformer models, where special tokens accumulate and
summarize information from input sequences.

Formally, we augment the original structure graph G into
an enhanced graph G'(V', &', Fy, Fe) by adding special
aggregator nodes. The augmented node set is defined as
V=V UV U{u}, where V; = {v1,vs,...,1)y,} repre-
sents a set of local aggregator nodes that summarize struc-
tural information from specific regions of the protein, and
1 is a global aggregator node that captures protein-wide

features. In our work, we use |V;| = 8 local aggregator
nodes.

To enable effective feature aggregation, we construct ad-
ditional edges £, to connect these aggregator nodes to
the protein structure: we randomly select |V;| centers
{0k, s Vks, - - -, Uk, } from the original nodes, and each lo-
cal aggregator v; is connected to all nodes within a sphere
region R; of radius 7, centered at its corresponding vy, .
This creates local receptive fields where each aggregator v;
collects and summarizes information from a specific spatial
region of the protein. Meanwhile, the global aggregator p is
connected to all nodes in V to capture protein-level features
without spatial restrictions. The complete edge set is thus
E=EUE..

After constructing G’, the node feature matrix F), =
[fvl,fvz,... f

Uy
Fe € RIVIXIVIxde are processed by feed-forward net-
works (FFNs): Hy = FENy(Fy) € RVIX4 and We =
FFNg(Fg) € RVIXIVI where Feli,j,:] = f(o,0,) if
(vi,vj) € &€ and O otherwise. With structure aggrega-
tor node embeddings initialized with learnable parameters
Hy,uqy € RVIHFDXdy “the node embeddings are con-
catenated as Hy» = [Hy; Hy,]. Wg is extended by adding
[Vi] 4+ 1 additional rows and columns: For each position
corresponding to an edge in &, the value is set to 1, and 0
otherwise, resulting in the weight matrix Wg: € RIVIXIV',
We also apply a heat kernel to the graph Laplacian L to
construct graph positional encoding: H(t) = exp(—tL) is
obtained with diffusion time ¢ = 1 and extended with |V;|+1
zero rows and columns to form the final GPE € RV IXV'I,

.
| € RIVIxd and edge feature tensor

The STRUCT-ENCODER then processes Hy:, Wgs, and
GPFE as input using a specialized Structure Graph Trans-
former: HLi' = StrucGraphTrans(HY,, We/, GPE). For
each Structure Graph Transformer Layer, the input embed-
dings Hy are linearly projected into query (Q), key (K),
and value (V') matrices for each attention head. The atten-
tion score matrix S is computed using scaled dot-product

attention, Q—\/lg. Afterwards, S is modified by Wg: and

GPE: 5 = kS ® Wer + GPE. The modified attention
scores S” are passed through softmax to obtain attention
weights, which are used to compute the attention output for
each attention head. The outputs from all heads are then
concatenated and passed through a final linear projection
to obtain the multi-head attention output. A residual con-
nection is employed around each layer, followed by layer
normalization. Afterward, an FFN is applied, which is also
surrounded by a residual connection.

2.2.2. THE BC-ENCODER
Similar to the introduction of aggregator nodes in Sec.

2.2.1, the local biochemical aggregator points, P; =
{&1,€2,...,&y,|}, and a global biochemical aggregator
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Figure 1. Comparison of traditional IPF and our biochemistry-aware approach. (a) Traditional IPF workflow inputs only the protein
backbone structure and predicts the amino acid sequence. (b) During training, our approach augments the input with biochemical feature
distributions (hydrophobicity and charge) alongside the backbone structure, enabling the model to learn relationships between structure
and biochemical properties. Through contrastive learning, our model develops biochemistry-aware structural embeddings that capture
essential physicochemical information. During inference, the model can perform sequence design using only structural inputs while
benefiting from biochemical awareness, making it comparable to other structure-only methods.

point, 7, are added to the point cloud P together for each
protein. Specifically, we define a local biochemical aggre-
gator point &; in the STRUCT-ENCODER for each spherical
region R; C R3. Denote the augmented point cloud as
P’ =P UP;U{n}. Similar to the structure aggregator
nodes, the embeddings of the biochemical aggregator points
are initialized as learnable parameters Hp, and H,. For
each point P; € P, their features ¢(x;) are passed through
an FFN, resulting in a set of embeddings Hp. We then de-
fine the augmented embeddings as Hp: = [Hp; Hp,; Hy).

The encoder processes the augmented point cloud using a
multi-scale approach. For each point P; € P, we define
its multi-scale neighborhood, NV,-(P;), which consists of all
points within a radius r and the aggregator nodes & and
n: Ne(Pi) = {P; | |Ixi — x| <r}U{& | P € Ryt U
{n}. This neighborhood defines the local context around
point P; at different spatial scales, where each radius r
captures a different level of detail. Meanwhile, for each local
aggregator nodes & and global node 7, their neighborhoods
are defined to contain themselves only: NV,.(&) = {&} and

N:(n) = {n}.

Next, feature aggregation is performed using multi-
head attention (MHA) applied to the embeddings of
the point P/ and its neighborhood N, (P/). The re-
sult of the MHA operation is pooled using mean pool-
ing to obtain the aggregated feature for each scale:
zI = MeanPool(MHA(Hp: [N,.(P/)])). This operation
is repeated for multiple radii, creating a set of aggre-
gated features, each corresponding to a different scale.
To combine these multi-scale features, we concatenate
the aggregated features from different radii: z;, =
()T, (z;>)T, ..., (z]™)T]T. In our work, the number
of scales, m, is set to 4. Finally, the fused feature z; is
passed through an FFN surrounded by a residual connection
and followed by a linear transformation, yielding the final

output: z; = (FFN(z;) + z;)W.

2.2.3. BC-FUSION DECODER AND RESIDUE
CLASSIFICATION

BC-FUSION serves as a specially designed decoder to inte-
grate structural and biochemical information for amino acid
sequence prediction in three steps:

First, it establishes spatial correspondences between struc-
tural and biochemical features through a bipartite graph
structure (BC-GRAPH). Specifically, the BC-GRAPH
Gg—s(Vg, Eg) connects each residue node in V to its kp
nearest points in the biochemical point cloud P, where

kg = max(1, {%J) adapts to protein size. Second, it
performs feature fusion using masked transformer decoder
layers, where the attention mechanism is guided by the BC-
GRAPH’s adjacency matrix. This ensures that each residue
position attends only to its relevant biochemical features dur-
ing decoding. Finally, for each residue position, the fused
features are transformed through an FFN and softmax layer
to predict probabilities over the 20 standard amino acids:
Y = softmax(FFN(HY,)), where H}, represents the fused
embeddings at each residue position. This hierarchical de-
coding process enables the model to leverage both structural
context and spatially aligned biochemical properties when
predicting amino acid identities.

2.3. Contrastive Learning and Training Objectives

The model is trained with a primary objective of accurate
sequence prediction, supplemented by global and local con-
trastive learning to enhance the fusion of structural and
biochemical features. This contrastive learning framework
serves a crucial purpose beyond merely enhancing model
performance - it enables our model to learn biochemistry-
aware structural representations that can function indepen-
dently during inference.

Primary Sequence Prediction Objective The sequence
prediction objective is formulated as a cross-entropy loss:
Lop=—+ 5N 520 y; . log(9i,.), where N is the num-
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Figure 2. Overview of our proposed BC-DESIGN framework. (a) Architecture and workflow: The framework takes protein backbone
structures (PDB files) as input and predicts amino acid sequences (MRLV...LAN) as output. The structure is represented as a graph
G and enhanced with aggregator nodes (green: global structure i, pink: local structure v) to form G’. Similarly, biochemical features
(hydrophobicity and charge) are represented as a point cloud P augmented with aggregator points (green: global biochemical 7, pink: local
biochemical &) to form P’. The STRUCT-ENCODER processes G’ to produce structure embeddings (blue circles), while the BC-ENCODER
processes P’ to generate biochemical embeddings (blue squares). These embeddings are integrated through BC-FUSION using the
bipartite BC-GRAPH (Gp—s) to predict sequences. During training, contrastive learning aligns global structure embeddings with global
biochemical embeddings (left box), and local structure embeddings with local biochemical embeddings (right box), enabling the model to
function with only structural input during inference. (b) The STRUCT-ENCODER utilizes Structure Graph Transformers with attention
mechanisms to process node embeddings (H7,), edge embeddings (W), and positional embeddings (GPE). (¢) The BC-ENCODER
employs multi-scale neighborhood sampling and multi-head attention to capture biochemical property distributions, producing augmented
embeddings Hp/. (d) BC-FUSION combines structure and biochemical embeddings through masked Transformer decoder layers guided
by the BC-GRAPH, ultimately predicting the amino acid sequence through feedforward networks and a softmax layer.

ber of residues, ¥; .. is the ground truth one-hot encoding for ~ where NT-Xent is the normalized temperature-scaled cross
residue ¢ and amino acid class ¢, and §; . is the predicted entropy (NT-Xent) loss function, a contrastive loss used to
probability for residue ¢ being amino acid c. maximize agreement between similar pairs of embeddings
and push dissimilar pairs apart (Sohn, 2016). fl# and z,,
denote the global structure and global biochemical embed-
dings, respectively.

Global Contrastive Learning (GCL) For each protein
structure, we form positive pairs using its global structure
aggregator node and global biochemical aggregator point.
To construct negative pairs, we maintain two continuously
updated queues, Qs and Qp, which store global structure
embeddings and global biochemical embeddings, respec-
tively, from the last Kz proteins (set to 64 in this paper)
during training. The global contrastive loss is defined as:

Local Contrastive Learning (LCL) At the local level,
the non-corresponding node-point pairs within the same
protein are treated as negative pairs. Since biochemical
properties like hydrophobicity and charge are inherent to
amino acids and less variable than structural conformations,

1 . . we encourage the local structure embeddings to learn and
LocL = 3 (NT—Xent(in, h,, Qs) + NT-Xent(h,,, z,, QB)) » reflect essential biochemical information. To adjust the local

5
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structure embeddings to better align with the corresponding
local biochemical embeddings and preserve the local bio-
chemical embeddings as stable representations of biochemi-
cal properties, we design asymmetric contrastive learning
by only using local structure embeddings as anchors in the
NT-Xent losses. flui and z¢, are the local structure and local
biochemical embeddings, respectively, the local contrastive
loss is defined as:

K2

Vil
1 ~ O
LicL = m E NT-Xent <hyi, Z¢,, {Z§1 yZggy -
N5z

Zeiyrs- ,zgm}).

Combined Loss Function The model is trained using a
combined loss function: £ = Lcg + A1 LgeL + Ao LicL,
where Lcg is the cross-entropy loss for sequence prediction,
and A\ = Ao = 1 are the weights for the global and local
contrastive losses. This combined objective ensures that
the model learns to predict amino acid sequences while
maintaining consistency between structural and biochemical
representations at both global and local scales.

Training-Inference Consistency for Real-World Appli-
cations By teaching structural embeddings to implicitly
encode biochemical information through contrastive learn-
ing, our approach creates a bridge between training and
inference that addresses real-world application needs. Dur-
ing training, both structural and biochemical features are
utilized to establish these relationships. However, at infer-
ence time—particularly for novel protein design scenarios
where no native sequence exists—only the protein backbone
structure is required as input.

The structure embeddings, having learned to capture essen-
tial biochemical information during training, can effectively
guide sequence prediction without explicit biochemical fea-
tures. This approach creates a fair comparison with existing
structure-only methods, as our model operates under the
same constraints during evaluation and practical application.
When evaluating on validation and test sets, we follow this
inference protocol, using only structural information as in-
put without biochemical features, ensuring methodological
consistency with other inverse folding techniques.

This strategy aligns with real-world protein design work-
flows where designers specify a target structure and seek
compatible sequences. By encoding biochemical awareness
within structural representations themselves, our model ef-
fectively utilizes the physicochemical context that governs
protein folding while maintaining the practical simplicity of
structure-only input during application.

3. Results: Cross Validation on CATH 4.2
Dataset

To assess the effectiveness of BC-DESIGN in generating
protein sequences from backbone structures and biochemi-
cal feature distributions, we evaluate its performance against
recent state-of-the-art methods on the CATH 4.2 dataset
(Orengo et al., 1997). This comprehensive dataset encom-
passes complete protein chains up to 500 residues in length,
with structures organized at 40% non-redundancy based on
their CATH classification (Class, Architecture, Topology,
Homologous). Following the protocol established in previ-
ous work (Ingraham et al., 2019), we adopt an identical data
split comprising 18,024 training, 608 validation, and 1,120
test proteins, with no CAT overlap across sets.

To comprehensively evaluate BC-DESIGN’s performance,
we conduct both sequence-level and structure-level vali-
dations. At the sequence level, we benchmark against a
wide spectrum of state-of-the-art methods, including tra-
ditional graph-based approaches (GVP (Jing et al., 2020),
StructGNN (Jing et al., 2020), GraphTrans (Ingraham et al.,
2019), GCA (Tan et al., 2022)), recent advanced architec-
tures (ProteinMPNN (Dauparas et al., 2022), PiFold (Gao
et al., 2022a), AlphaDesign (Gao et al., 2022b), SPIN-
CGNN (Zhang et al., 2023), GRADE-IF (Yi et al., 2024),
DIPRoOT (He et al., 2024), SPDesign (Wang et al., 2024),
ProRefiner+ESM-IF1 (Zhou et al., 2023)), and language
model-based methods (ESM-IF1 (Hsu et al., 2022), LM-
Design (Zheng et al., 2023)). We also compare with methods
incorporating external knowledge or multi-modal learning
(Knowledge-Design (Gao et al., 2023), MMDesign (Zheng
& Li, 2024), VEN-IFE (Mao et al., 2023)). For structure-
level assessment, we evaluate against leading approaches,
including ESM-Design (Verkuil et al., 2022), AlphaFold-
Design (AF-Design) (Wang et al., 2022), PiFold, Graph-
Trans, GVP, ByProt (Lin et al., 2022), and ProteinMPNN.

Sequence-level validation. To evaluate BC-DESIGN’s
performance in protein design, we employ three comple-
mentary metrics on the CATH 4.2 test set (Dawson et al.,
2017): sequence recovery, perplexity, and native sequence
similarity recovery (nssr) (Loffler et al., 2017). Sequence
recovery quantifies the model’s accuracy in reproducing
native amino acid sequences by calculating the percentage
of positions where the predicted amino acid matches the
native one. Perplexity, defined as 9~ 1 Xit1log2 P(a]) where
p(a}) is the predicted probability of the native amino acid
a; at position 7 in a sequence of length L, measures the
model’s uncertainty in its predictions. Intuitively, perplexity
represents the effective number of amino acids the model
considers at each position—a perplexity of 2.0 indicates that
the model is as uncertain as if it were randomly choosing
between two equally likely amino acids at each position.
The ideal perplexity is 1.0 (perfect certainty), while higher
values (up to 20 for completely random predictions across



BC-DESIGN: A Biochemistry-Aware Framework for Highly Accurate Inverse Protein Folding

a C
GraphTrans ProteinMPNN
structGNN P L ESMHIFL 4
A aDesign ] {1
61 -eGCA phabesio 75.0 BC-Design (0uff)
oGVP DIPROT ByProt
5 ProteinMPNN 725 L4
o
> oPiFold, | M-Design 0.0 GVP
3 . “GRADE-IF__SPIN-CGNN . 70. ®
24 o Iy o GraphTrans
s MDesign __ Knowledge-Design 3675 oPiFold
®VFN-IFE e
3
, SPDesign 65.0
~ - - O O =z
2 ) eLkz>2 62.5 AF-Desi
BC-Design (Ours) * 3 %' g E o % o AF-Design
20 50 60 70 80 90 c W w s »g 60.01 4 ESM-Design
Sequence Recovery (%) .g + 'QE, 2
k] g o & 0.4 0.5 0.6 0.7 0.8
Qo & < RefTM
(ORI e
B <
[
o a
ISaeguence Recovery (%) Model AF-AOA161CEV4-F1-model_v4
nssr (% Ref-TM: 0.91
d 100 e f
0.016 Dataset
0.014 CATH 4.2
TS50
6 Perplexity 0.012 TS500
AFDB2000
0.010
0.008 Incorrect Prediction
1 0.006
Ref-TM
CATH 4.2 o 0.004
TS50 pLDDT 0.002 Original Predicted
TS500
AFDB2000 0.000 - - H Py
0 500 1000 1500 2000 2500 3000 LR Hydrop y
Protein Size
g wo h 1o j , ? i 1o | / j oo
80 = 80 0.8 80
s
>
60 $ 60 06 60
S S s =
< 9 I [=}
g < 3 %
< 40 g 40 0.4 40
3
]
z
g
20 v 20 0.2 ' 20
° ) N ) S 3\ »N ° N 3\ 3\ S N N 0.0 ) ) 3\ 3 ) N 0 )\ S N N ) N
R NQQ R QQ Q’BQQ QD‘QQ 06)00 ,1,@6‘/ Q'\QQ R ’190 0’500 QD‘QQ Q‘JQQ ,Lb‘b,‘/ . NQQ Q’LB . QQ prb . QQ Q;]’ QQ R 00 0’500 QQ . QQ ’Lb‘b’lz
3 S S S @ < M & S & 3 S N ISR o <$ S S S o
> & 3 b- S > 3 Q S S 3 3 0 S S © Q S
A G ) A O A ) RS
Protein Size Protein Size Protein Size Protein Size

Figure 3. (a) Sequence recovery and perplexity of predictions by BC-DESIGN and baseline models on the CATH 4.2 test set. This plot
demonstrates BC-DESIGN’s superior performance with 88% sequence recovery versus the next best model (SPDesign) at 67%. An
inverse correlation between sequence recovery and perplexity is evident across all models, with BC-DESIGN achieving optimal values in
both metrics. (b) Nssr of predicted sequences by BC-DESIGN and baseline models on the CATH 4.2 test set. BC-DESIGN achieves
93.55% nssr, substantially outperforming ProteinMPNN-C (71.56%), ESM-IF1 (74.11%), and ProRefiner+ESM-IF1 (71.80%). This
indicates BC-DESIGN not only recovers exact amino acids but also produces biochemically similar substitutions when needed, suggesting
better functional preservation. (¢) Ref-TM and pLDDT metrics for predicted structures (folded by ESMFold) on the filtered CATH
4.2 test set. BC-DESIGN maintains high structural quality comparable to ProteinMPNN despite having significantly better sequence
accuracy. Models like ESM-Design and AF-Design show notably poorer structural metrics, highlighting BC-DESIGN’s advantage in
preserving structural integrity while improving sequence accuracy. (d) Performance metrics across multiple datasets. BC-DESIGN shows
consistent results on CATH 4.2, TS50, and TS500, demonstrating strong generalization. Performance on AFDB2000 shows a modest
decrease in sequence metrics while maintaining good structural quality, highlighting the model’s robustness across dataset distributions.
(e) Protein size distribution comparison across datasets. AFDB2000 contains significantly more proteins exceeding 500 amino acids (up
to 3000 residues) compared to CATH 4.2, TS50, and TS500, explaining the performance variation observed in (d) and demonstrating
BC-DESIGN’s ability to handle proteins outside its training distribution. (f) Case study of protein AF-A0A161CEV4-F1-model_v4 (622
amino acids) showing strong structural recovery (Ref-TM score of 0.91) despite exceeding typical training sizes. The hydrophobicity
patterns closely match between original and predicted structures, demonstrating BC-DESIGN’s ability to capture essential biochemical
determinants of protein folding even for larger proteins. (g-j) Performance stratification by protein size in AFDB2000. Sequence metrics
(g,h) remain strong for proteins ;400 amino acids but decline for larger proteins. Structural metrics (i,j) peak for proteins in the [200-300)
range before gradually decreasing. Notably, proteins in [0,100) and [400,500) ranges show similar median Ref-TM values, indicating that
while exact sequence recovery becomes challenging for larger proteins, BC-DESIGN maintains structural accuracy by capturing key
sequence-structure relationships.
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all amino acids) indicate increasing uncertainty. Perplex-
ity is dimensionless and serves as a more sensitive mea-
sure of prediction quality than sequence recovery alone,
as it accounts for the model’s confidence in its predictions
even when they don’t exactly match the native sequence.
The nssr metric extends beyond exact matches by consid-
ering residue similarity based on BLOSUMG62 substitution
scores (Henikoff & Henikoff, 1992), counting positions as
correctly predicted if the model generates an amino acid that
is biochemically similar to the native one, thereby providing
a more functionally relevant evaluation of sequence design
quality. Among these metrics, sequence recovery and per-
plexity are most widely adopted in the field, and we assess
BC-DESIGN in comparison to most of the baselines. We
benchmark BC-DESIGN against leading approaches, includ-
ing ProRefiner+ESM-IF1, ESM-IF1, GVP, ProteinMPNN,
and ProteinMPNN-C, specifically for the nssr metric. As
shown in Fig. 3 (a, b), BC-DESIGN significantly outper-
forms existing methods, achieving 88.37% sequence recov-
ery, 1.47 perplexity, and 93.55% nssr score. These results
demonstrate that our integrated approach of modeling both
backbone structure and biochemical features substantially
enhances protein design accuracy across diverse proteins in
the CATH 4.2 dataset.

Structure-level validation. While sequence-level metrics
provide valuable insights, they cannot fully capture the prac-
tical effectiveness of protein design models. Given that
protein function critically depends on structure, we perform
a structural evaluation of our designs. We utilize ESM-
Fold (Lin et al., 2023) for structure prediction due to its
comparable accuracy to AlphaFold 2 (Jumper et al., 2021)
with improved computational efficiency. Following (Wang
et al., 2023), we use a curated subset of 82 proteins from
the CATH 4.2 test set by selecting one protein from each
CATH family randomly. The structural quality is assessed
using two complementary metrics: Ref-TM (Wang et al.,
2023) for structural similarity to native conformations, and
pLDDT (Jumper et al., 2021) for prediction confidence. As
shown in Fig. 3 (c), BC-DESIGN achieves superior struc-
tural accuracy compared to most baseline methods, with
Ref-TM of 0.77 and pLDDT of 75.79, second only to Pro-
teinMPNN. pLDDT (predicted Local Distance Difference
Test) is a confidence score introduced in AlphaFold2 that
measures the expected accuracy of predicted structural ele-
ments on a per-residue basis, ranging from 0 to 100. Higher
pLDDT values indicate greater confidence in the structural
prediction—scores above 70 generally correspond to high-
confidence regions with reliable atomic positions, while
values below 50 indicate regions of low confidence. The
high average pLDDT of 75.79 achieved by our method
suggests that the proteins designed by BC-DESIGN fold
into well-defined structures with high confidence, indicating
not just sequence recovery but functional structural forma-
tion. These results suggest that BC-DESIGN effectively cap-

tures the complex relationships between sequences, struc-
tures, and biochemical features, rather than merely opti-
mizing sequence similarity. The reliability of these results
is reinforced by (Wang et al., 2023), which demonstrates
consistent performance rankings across different structure
prediction models, including ESMFold, AlphaFold 2, and
OmegaFold (Wu et al., 2022).

4. Conclusion

By representing biochemical properties as continuous distri-
butions and integrating them with protein structures through
contrastive learning, our approach achieves exceptional ac-
curacy in protein sequence design, significantly outperform-
ing current state-of-the-art methods with an 88.37% se-
quence recovery rate. Our comprehensive evaluation demon-
strates robust performance across diverse protein character-
istics and structural classes.

While our current implementation uses biochemical fea-
tures derived from ground-truth sequences during training,
the contrastive learning framework enables our model to
function effectively at inference time using only structural
inputs. This represents a significant advancement in protein
design methodology: our approach harnesses biochemical
awareness during training while maintaining compatibility
with real-world application scenarios where only structure
is available. The ability of our structural embeddings to
implicitly capture biochemical information demonstrates
that protein design can benefit from multi-modal learning
without sacrificing practical applicability.

Future work could further extend this paradigm by explor-
ing user-specified biochemical property distributions, com-
pletely decoupling feature generation from sequence recov-
ery. This would enable targeted design of proteins with
specific biochemical characteristics while maintaining the
same backbone structure. Additionally, our model shows
decreased performance for larger proteins (> 400 residues),
suggesting room for improvement in modeling long-range
interactions. Extending our approach to handle multi-chain
protein complexes and incorporating additional biochemi-
cal properties beyond hydrophobicity and charge represent
promising directions for future research.

The success of BC-Design establishes a new paradigm
for integrating multiple modalities of protein information
through contrastive learning. By bridging the gap between
information-rich training and structure-only inference, our
approach opens new avenues for computational protein engi-
neering and drug discovery that combine deep biochemical
understanding with practical design workflows.
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Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Biochemical Features

Here, we present the biochemical properties of all 20 standard amino acids, specifically their hydrophobicity and charge
values. These values form the foundation for generating biochemical feature distributions in our work. The hydrophobicity
values are derived from the Kyte-Doolittle Hydrophobicity Scale obtained from the ImMunoGeneTics information system.

In this table, hydrophobicity values range from -4.5 to 4.5, where: Positive values indicate hydrophobic amino acids (e.g.,
Isoleucine: 4.5, Valine: 4.2, Leucine: 3.8). Negative values indicate hydrophilic amino acids (e.g., Arginine: -4.5, Lysine:
-3.9).

The charge values are simplified to represent the ionic state at physiological pH: +1 for positively charged amino acids
(Lysine, Arginine). -1 for negatively charged amino acids (Aspartic acid, Glutamic acid) O for neutral amino acids. 0.1 for
Histidine due to its special properties at physiological pH.

These biochemical features play a crucial role in our BC-DESIGN framework, as they help capture the physical and chemical
properties that determine protein folding and stability. By incorporating both hydrophobicity and charge distributions, our
model can better understand and predict the amino acid sequences that would adopt a desired protein structure.

| Amino Acid | Hydrophobicity | Charge |
| I (Isoleucine) | 45 0
| 'V (Valine) | 4.2 0
| L (Leucine) | 3.8 0 |
‘ F (Phenylalanine) ‘ 2.8 ‘ 0 ‘
| C (Cysteine) | 2.5 0
| M (Methionine) | 1.9 0|
| A (Alanine) | 1.8 0|
‘ W (Tryptophan) ‘ -0.9 ‘ 0 ‘
| G (Glycine) | 0.4 0|
‘ T (Threonine) ‘ -0.7 ‘ 0 ‘
| S (Serine) | -0.8 0
| Y (Tyrosine) | -13 0
‘ P (Proline) ‘ -1.6 ‘ 0 ‘
| H (Histidine) \ -3.2 |01 |
| N (Asparagine) | 35 |0
| D (Aspartic acid) | 35 I .
‘ Q (Glutamine) ‘ -3.5 ‘ 0 ‘
| E (Glutamic acid) | 35 S
‘ K (Lysine) ‘ -3.9 ‘ 1 ‘
| R (Arginine) | -4.5 I

Table 1. Hydrophobicity and charge values of amino acids
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B. Detailed Biochemical Feature Construction

(i) Surface Representation: We first generate a simplified-protein surface representation using MSMS (based just on alpha
carbon spheres), which constructs a triangulated mesh based on the solvent-accessible surface area (SASA) model. The
vertices of this mesh form an initial surface point cloud Pg, which undergoes Gaussian smoothing followed by octree-based
compression to ensure high-quality and uniform point distribution along the protein surface. (ii) Internal Space Sampling:
To capture the biochemical environment within the protein core, we construct a bounding box encompassing the protein
structure and uniformly sample 5000 points within this volume. We retain only those points that fall within the protein
interior, as determined by a Delaunay triangulation (and associated Voronoi construction) of Pg, forming the internal point
cloud P;. (iii) Point Cloud Integration: The surface (Pg) and internal (P;) point clouds are merged and subsampled
to create a unified representation of 5000 points that captures both surface and internal biochemical environments. (iv)
Biochemical Feature Assignment: Once the unified point cloud is constructed, we need to associate relevant biochemical
properties with each point to create a meaningful representation of the protein’s chemical environment. For each point in
the unified cloud P; € P, we determine its nearest residue by computing distances to all C, atoms in the protein structure.
Specifically, we identify the residue r; whose C, position c¢; minimizes the Euclidean distance ||x; — c;||2 to point x;.
We then transfer the biochemical properties of this nearest residue to the point. Each point is decorated with two key
biochemical features: hydrophobicity h(x;) and charge ¢(x;) values derived from standardized amino acid property tables
(detailed in Sec. A in the appendix). For example, if a point is nearest to an isoleucine residue, it would be assigned a
high hydrophobicity value of 4.5 and a neutral charge value of 0, whereas a point nearest to an arginine residue would
receive a highly hydrophilic value of -4.5 and a positive charge value of +1. This assignment process creates a continuous
representation of biochemical properties across both the protein surface and interior, where points in spatial proximity to
similar residues will exhibit similar property distributions. The resulting attributed point cloud P = { Py, P, ..., Pso00 }
consists of points P; = {x;, #(x;)}, where x; € R? represents spatial coordinates and ¢(x;) = (h(x;), c(x;)) encodes
the hydrophobicity and charge values. This approach transforms discrete residue-level biochemical properties into a
continuous field distributed throughout the protein’s three-dimensional structure, providing a more natural representation of
the biochemical environment as it exists in the folded protein state.
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C. Generalization

To assess the generalizability of BC-DESIGN, we conduct further experiments on the following three datasets in addition to
the CATH 4.2 test set: (1)TS50. TS50 is a benchmark set of 50 protein chains proposed by (O’Connell et al., 2018). (ii)
TS500. Similar to TS50, the TS500 dataset (O’Connell et al., 2018) contains 500 proteins. (iii)) AFDB2000. The AlphaFold
Database (AFDB) (Varadi et al., 2024) is a public database providing AF-predicted 3D protein structures. To assess
the model’s ability to generalize to new structures, we select the first 2,000 proteins from Swiss-Prot with AF-predicted
structures (ordered alphabetically by their accession numbers, which do not reflect any biological classification or functional
information), resulting in an unbiased dataset AFDB2000. AFDB2000 contains no overlapping structures with other
datasets.

The experimental results are presented in Fig. 3 (d). On both TS50 and TS500 datasets, BC-DESIGN consistently
outperforms or achieves comparable results to the CATH 4.2 test set across all metrics at both the sequence and structure
levels. On the AFDB2000 dataset, while BC-DESIGN still performs well, it shows inferior results compared to the other
test datasets. Specifically, sequence recovery, nsst, Ref-TM, and pLDDT are approximately 0.1 lower on AFDB2000 than
on the CATH 4.2 test set, and the perplexity value is higher. To investigate the reasons behind BC-DESIGN’s reduced
performance on AFDB2000, we analyzed the protein size distributions across the four test datasets, as depicted in Fig. 3 (e).
It is observed that AFDB2000 contains a significantly larger proportion of large proteins compared to the other datasets.

To explore this further, we divided the AFDB2000 dataset into groups based on protein sequence length: [0, 100), [100,
200), [200, 300), [300, 400), [400, 500), and [500, +o0). For each group, we evaluated four key metrics: sequence recovery,
nsstr, Ref-TM, and pLDDT. As shown in Fig. 3 (g, h), at the sequence level, BC-DESIGN performs well for proteins smaller
than 400 amino acids, achieving high sequence recovery and nssr values comparable to those observed in the other test
datasets. However, for proteins in larger size divisions, these values decline significantly. At the structure level (Fig. 3 (i, j)),
the metrics initially increase with protein size but then decrease, with BC-DESIGN showing its best Ref-TM and pLDDT
values for proteins in the [200, 300) and [300, 400) length ranges. Interestingly, the median Ref-TM values for the [0, 100)
and [400, 500) divisions are quite similar. This suggests that, while the model struggles with larger proteins in terms of
sequence recovery, it still manages to achieve comparable structural recovery and foldability. Despite this, BC-DESIGN is
able to achieve good performance on large proteins from a structural perspective, even though their sizes fall outside the
model’s training data distribution. For instance, some proteins in the largest size division (over 500 amino acids) exhibit high
(> 0.8) Ref-TM values. As an illustrative example, we evaluate BC-DESIGN on protein AF-A0A161CEV4-F1-model_v4,
which has a length of 622 amino acids (Fig. 3 (f)). BC-DESIGN achieves a Ref-TM score of 0.91, demonstrating that the
model can generalize to out-of-distribution proteins in terms of size when assessed structurally. In summary, BC-DESIGN
performs best on small to medium-sized proteins (less than 400 amino acids) across datasets with different distributions and
can generalize to predict sequences with appreciable structural accuracy and foldability even for larger proteins.
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Figure 4. (a-d) Sequence and structure recovery of BC-DESIGN predictions for proteins of different sizes in the CATH 4.2 test set. These
violin plots show excellent performance across all protein size ranges, with median sequence recovery > 80%, nssr > 85%, Ref-TM
> 0.8, and pLDDT > 0.75. While sequence recovery slightly decreases for larger proteins, structural metrics remain strong even for
the [400, 500) range, suggesting the model prioritizes maintaining backbone structure over exact sequence matching as complexity
increases. (e-h) Relationship between recovery metrics and structural complexity (measured by contact order). Counterintuitively, all
metrics improve as contact order increases, showing higher median values and reduced variability. This indicates proteins with more
long-range interactions provide more favorable conditions for accurate prediction, likely because these complex topologies offer stronger
biochemical and spatial constraints that guide sequence prediction. LOWESS fit lines confirm this positive correlation across all metrics.
(i) Performance across different CATH Classes. While sequence metrics remain consistently high across all structural classes with minimal
variation, structural metrics show significant differences. Alpha Beta proteins achieve the highest median Ref-TM scores, while Beta and
Other classes exhibit lower structural metrics and higher variability, suggesting mixed alpha-beta elements present favorable prediction
features, while beta-rich and structurally diverse proteins pose greater challenges. (j) Case studies of four proteins with different CATH
Classes and structural complexity. Each example demonstrates robust performance across diverse structural contexts: a Mainly Alpha
protein (94.85% recovery, Ref-TM 0.89, low contact order), an Alpha Beta protein (100% nssr, median contact order), a Mainly Beta
protein (97.84% recovery despite high contact order), and an Other class protein (96.9% recovery, Ref-TM 0.97, median contact order).
The displayed segments highlight both accurate predictions and occasional mismatches.

D. Stratified Validation

As demonstrated, BC-DESIGN’s performance might vary with protein size. To further analyze its strengths and weaknesses
across different protein types, we evaluate BC-DESIGN on subsets of the CATH 4.2 test set using various stratifications.
This allows us to assess the model’s performance across diverse protein characteristics.

Protein size. We evaluate BC-DESIGN on subsets of the CATH 4.2 test set, where the dataset was divided based on
protein size, illustrated in Fig. 4 (a-d). BC-DESIGN demonstrated excellent performance across all groups, with median
sequence recovery > 80%, nssr > 85%, Ref-TM > 0.8, and pLDDT > 0.75. Overall, BC-DESIGN performs relatively
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better on shorter sequences at the sequence level, likely due to the simpler sequence-to-structure relationships in shorter
proteins. However, at the structure level, BC-DESIGN achieves comparable median Ref-TM scores for proteins even in the
[400, 500) length range, similar to shorter sequences. This could be because the model prioritizes structural consistency
over exact sequence recovery, ensuring that the predicted sequences maintain the backbone structure’s fold. Additionally,
longer proteins may have more sequence variability in regions that do not significantly impact the overall fold, which may
explain why sequence recovery declines but structural metrics remain strong.

Structural complexity. We investigate the relationship between BC-DESIGN’s performance and structural complexity of
proteins. To quantify structural complexity, we used contact order, a metric that represents the normalized average sequence
distance between residues that are in contact within the protein structure. As shown in Fig. 4 (e-h), four metrics all show
higher median values and reduced variability as contact order increases in terms of the overall trend. This suggests that
proteins with higher structural complexity, as indicated by higher contact order, provide more favorable conditions for
accurate prediction by the model. The consistent observation across different metrics implies that the model was better
able to handle the biochemical and spatial complexity when the folding topology involved more long-range interactions,
leading to more reliable predictions. Nevertheless, the variations in model performance across different levels of structural
complexity were not very substantial. As shown in Fig. 4 (j) with cases, BC-DESIGN demonstrates consistently high
sequence recovery and structural recovery for proteins representing low, median, and high contact order. This indicates that
the model is robust across a spectrum of structural complexities.

CATH class. To further examine the influence of structural properties, we divide the CATH 4.2 test set according to the
CATH classification system. CATH categorizes protein domains into four main classes based on their overall secondary
structure content: ‘Mainly Alpha,” ‘Mainly Beta,” ‘Alpha Beta,” and ‘Few Secondary Structures.” Approximately 90% of
protein domains are classified into these four categories. For those that do not fit into any of these classes, we denote them
as ‘Other’ in this paper. Additionally, we merge the ‘Few Secondary Structures’ class into the ‘Other’ category. Specifically,
each protein is classified according to its largest domain’s assigned class. As shown in Fig. 4 (i), BC-DESIGN achieves
high median sequence recovery and nssr across all classes, with only slight differences among them. This indicates that
the model is broadly effective at predicting the amino acid sequence regardless of the specific structural characteristics
represented by the CATH classes. However, at the structural level, BC-DESIGN demonstrates variable median performance
and variance across the classes, suggesting that the model’s ability to accurately predict fine structural details might depend
on the protein’s structural characteristics. For the structure-level metrics, Kruskal-Wallis tests followed by Dunn’s tests
indicate significant differences in the median pLDDT of the ‘Mainly Beta’ class compared to the ‘Mainly Alpha’ and
‘Alpha Beta’ classes. Additionally, statistically significant differences were found in median Ref-TM scores, with the ‘Alpha
Beta’ class achieving the highest median score compared to the other classes. This result suggests that the mixed alpha
and beta structural elements may present favorable features for prediction by the model, potentially due to their stabilized
folding patterns involving both types of secondary structures. Conversely, the lower scores for the ‘Other’ class indicate
that irregular or less structured proteins are more challenging for the model to predict accurately. These findings indicate
challenges posed by special topologies, particularly for beta-rich and structurally diverse proteins. Finally, illustrative cases
representing the four classes are shown in Fig. 4 (j).

Protein region. Next, we investigate the accuracy of sequence prediction in different regions of the protein, specifically
focusing on the core versus surface residues. By analyzing the performance separately for buried (core) and exposed (surface)
regions, we find that while BC-DESIGN achieves strong results in both areas, the core residues—typically more conserved
across homologous proteins—have significantly higher sequence recovery and nssr scores (Fig. 5 (a)). This indicates that
our method is more effective in capturing these essential conserved features, which are critical for the structural integrity
and biological function of the protein. These findings align with earlier studies on structure-only inverse folding, suggesting
that the core regions, due to their conserved nature, are easier for the model to predict accurately, thereby potentially aiding
in the retention of the protein’s biological activity.

Amino acid type. In Fig. 5 (b), we examine each amino acid type using metrics including accuracy, precision, recall, and
F1-score. The results demonstrate that accuracy remains consistently high across all amino acid types, highlighting the
robustness of our method. However, for certain residues, including D (Aspartic acid), E (Glutamic acid), N (Asparagine),
and Q (Glutamine), the precision, recall, and F1-score metrics are lower compared to other amino acids. From a biochemical
perspective, D, E, N, and Q are all highly hydrophilic, and they share a similar degree of hydrophilicity. D and E are
both acidic residues with highly similar negative charges at physiological pH, while N and Q are both uncharged. These
similarities imply that D, E, N, and Q tend to exist in comparable biochemical environments within the protein, which
contributes to the challenge of distinguishing them accurately. Structurally, these residues are frequently located in surface-
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Figure 5. (a) Sequence recovery and nssr of BC-DESIGN predictions for surface versus core residues. Core residues show significantly
higher prediction accuracy than surface residues, indicating more effective capture of conserved features critical for structural integrity in
protein interiors. (b) Residue-level evaluation across amino acid types. Despite consistently high accuracy for all residues, negatively
charged (D, E) and polar amide (N, Q) amino acids exhibit lower precision and recall, likely due to biochemical similarities and frequent
occurrence in flexible surface regions. (c¢) Ablation study results quantifying each component’s contribution. Biochemical features show
the greatest impact (=54% drop when removed), followed by the BC-Graph module (=48% drop when replaced), while structure features
provide a smaller but significant improvement (4.57%). (d, e) Relationship between sequence recovery and integrated gradient (I1G)
values for hydrophobicity and charge. Two distinct clusters emerge: low recovery (;60%) with low IG values and high recovery (> 80%)
with higher IG values. LOWESS fits reveal steep positive correlations in the low recovery region but diminishing returns at higher IG
values. (f, g) Contrasting case studies: a well-predicted protein (98.01% recovery, Ref-TM 0.99) versus a poorly predicted one (15.34%
recovery, Ref-TM 0.15). IG distribution heatmaps demonstrate successful predictions correlate with higher magnitude biochemical feature
attribution, while failed predictions show weaker attribution patterns.

exposed and flexible regions, such as loops, which are less ordered compared to core regions. These regions’ inherent
flexibility and variability introduce challenges for the model in predicting based on the structure features. This finding also
explains the previous results that the model has inferior performance in surface regions compared to core regions.

E. Ablation Study and Analysis

We conducted an ablation study to investigate the impact of the BC-FUSION module and different input components. All
models were trained under the same settings described in Sec. 3. The performance results for sequence recovery on the
CATH 4.2 test set are summarized in Fig. 5 (c).

Key findings include: (i) Each input component and the BC-FUSION module makes significant contributions to the model’s
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overall prediction accuracy. (ii) Biochemical features have the greatest effect on performance, resulting in an approximate
54% gain. (iii) The BC-GRAPH-ablated model, which replaces the BC-FUSION module with a general Transformer
Decoder, has approximately 48 % lower sequence recovery compared to the full model, despite using essentially the same
input data. This reinforces the value of the dedicated fusion module for effectively integrating multi-modal inputs. (iv) In
contrast, the sequence recovery improvement (4.57 %) due to the addition of structure features is relatively minor but still
significant. (v) Notably, combining features, such as edge and node features, provides greater performance improvements
than the sum of their individual effects, highlighting the synergistic benefits of feature interactions. Overall, these results
underscore the critical role of each input component and the effectiveness of the STRUCT-ENCODER, BE-Encoder, and
BC-FuUsION module in leveraging structural and biochemical features, and, most importantly, combining them to achieve
substantial performance gains.

BC-DESIGN leverages both biochemical features and structure features. As demonstrated in the ablation study, biochemical
features have a dominant effect on predicting amino acid sequences compared to structural features. To better understand
this observation, we use integrated gradients (IG) (Sundararajan et al., 2017) to quantify the impact of hydrophobicity and
charge on sequence prediction for each protein of AFDB2000.

Integrated gradients (IG) is an attribution method that measures feature importance by accumulating gradients along a
straight-line path from a baseline (typically zero features) to the actual input. Formally, the integrated gradient for a feature ¢
is defined as:

1 / i
1Gi(z) = (a; — ) x/ OF@ +ax(@=2)),, )
a=0 8.%'1

where F is our model, z is the input, 2 is the baseline, and the integral captures the gradients along the path from z’ to x.

Specifically, for each biochemical feature (hydrophobicity and charge), we calculate the IG for each point in the point
cloud representing the biochemical feature distribution with respect to the predicted probabilities of the original amino
acids, resulting in two IG point clouds per protein. For each protein, we then calculate the average magnitude of IG values
for each biochemical feature to obtain a global importance score. Finally, we illustrate the relationship between these IG
values and sequence recovery, as shown in Fig. 5 (d) and (e). Fig. 5 (d) and (e) reveal a clear pattern: proteins with higher
sequence recovery rates consistently exhibit higher IG values for both hydrophobicity and charge features. This indicates
that when our model successfully recovers sequences (e.g., with recovery rates above 80%), the biochemical features
contribute significantly to the prediction, as evidenced by their higher IG scores. Conversely, proteins with low sequence
recovery (below 60%) consistently show lower IG values, suggesting that the model fails to effectively leverage biochemical
information in these cases. This stark contrast demonstrates that the effective utilization of biochemical features is a key
determinant of successful sequence prediction in our model. The consistent correlation between IG values and prediction
success provides strong evidence that our approach of modeling biochemical properties as continuous distributions on
protein surfaces is instrumental to the model’s performance.

Fig. 5 d and e illustrate a significantly stratified relationship between the IG scores and sequence recovery. Specifically,
we observe two distinct clusters: one with low sequence recovery and low IG values (approximately below 0.03 for
hydrophobicity and 0.025 for charge), indicating that the model struggles when these features have a limited impact; and
another cluster with very high sequence recovery and generally higher IG values, demonstrating improved prediction
accuracy as these features become more influential. To gain more accurate insights, we identified two threshold effects for
these biochemical features: the recovery threshold effect and the IG threshold effect.

The recovery threshold effect is characterized by the absence of cases with sequence recovery between 60% and 80%.
Cases with sequence recovery below 60% and those with sequence recovery above 80% show distinct relationships between
IG and recovery. Specifically, for predictions with sequence recovery below 60%, the IG values are consistently low,
suggesting that insufficient contributions from hydrophobicity or charge hinder accurate sequence prediction. In contrast,
for predictions with sequence recovery above 80%, the IG values are generally higher, indicating that strong contributions
from these features facilitate accurate prediction. Further analysis helps solidify these observations: By dividing the data
into clusters based on the recovery threshold, we conducted LOWESS fitting to explore the trends. As shown in Fig. 5 (d, e),
for recovery values below 0.6, there is a steep, significant positive correlation between IG and sequence recovery, indicating
that increasing IG has a substantial effect on improving sequence recovery. This means that, in challenging cases where
sequence recovery is low, biochemical features like hydrophobicity and charge play a critical role, and their enhancement can
significantly boost model performance. However, for recovery values above 0.8, although there is still a positive correlation
between IG and recovery, it becomes much less significant. This suggests that once a sufficient level of recovery is achieved,
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additional IG improvements contribute less towards enhancing recovery, indicating a point of diminishing returns.

As a further verification, we implement linear regression analysis to complement these findings by providing a quantitative
perspective. For the high recovery group, the regression equation for hydrophobicity is Recovery = 0.84IG + 0.91, with
an R? value (coefficient of determination) of 0.046, and a p-value of 3.67 x 10716 for the slope, indicating a statistically
significant but weak correlation. Similarly, for charge, the R? value is 0.014, with a p-value of 8.41 x 10~° for the slope, also
suggesting a weak relationship. These findings highlight the limited impact of biochemical features when recovery is already
high. Conversely, for the low recovery group, the regression for hydrophobicity yields Recovery = 17.371G — 0.09, with
an R? value of 0.333 and a p-value of 1.55 x 10752 for the slope, indicating a strong and significant correlation. For charge,
the equation is Recovery = 21.511G — 0.06, with an R? value of 0.311 and a p-value for the slope of 1.94 x 10~4®, These
results demonstrate a much steeper and stronger relationship between IG and sequence recovery for the low-recovery group,
with high statistical significance. This reinforces the notion that IG has a critical influence when sequence recovery is low,
but its influence diminishes once a certain recovery threshold is crossed. Together, these results emphasize the importance of
biochemical feature contributions in determining sequence recovery. For proteins in the low recovery cluster, increasing IG
can substantially enhance sequence prediction accuracy. However, for proteins already achieving high recovery, further
increasing IG yields only marginal benefits. This differential impact underlines the importance of focusing efforts on
enhancing learning about biochemical feature distribution specifically for challenging cases, where the model has the most
to gain from improved biochemical feature contributions.

The IG threshold effect shows that when IG values are below a certain threshold (approximately 0.02 for hydrophobicity
and 0.013 for charge), sequence recovery consistently remains below 60%. Conversely, when IG values are above a higher
threshold (approximately 0.032 for hydrophobicity and 0.025 for charge), sequence recovery is consistently very high
(above 80%). However, there is also an intermediate region between these two thresholds where sequence recovery can vary
significantly, indicating a transition zone with more variability in prediction accuracy. This suggests that beyond a certain
level of contribution from hydrophobicity or charge, the additional impact becomes less pronounced for enhancing sequence
recovery. The regions with low IG values correspond to more challenging proteins where biochemical features may not be
well-defined or may exhibit higher flexibility, making them harder for the model to predict accurately.

The observation highlights that both hydrophobicity and charge play critical roles in determining accurate sequence
prediction. This further supports the earlier ablation findings that biochemical features are critical to BC-DESIGN’s success.
Importantly, the results imply that capturing sufficient information about these key biochemical properties is crucial for
achieving high sequence recovery. Additionally, the model’s performance is highly predictable based on the impact of
biochemical features. To intuitively illustrate this observation, we visualize two cases, each consisting of the original and
predicted proteins, along with their respective IG distributions for biochemical features (Fig. 5 (f, g)). Fig. 5 (f) shows a
well-predicted case (AF-AOQEZS8-F1-model_v4), achieving 98.01% sequence recovery and a Ref-TM score of 0.99. In
contrast, Fig. 5 (g) represents a poorly predicted case (AF-A0OA131MBU3-F1-model_v4), with only 15.34% sequence
recovery and a Ref-TM score of 0.15. Comparing their biochemical feature IG distributions, it is clear that the well-predicted
case exhibits IGs with consistently larger magnitudes across both biochemical features.
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F. Fairness of Biochemical Feature Introduction

The introduction of biochemical features in our model raises potential concerns about information leakage, particularly
whether these features could unfairly encode sequence information. Here we demonstrate the fairness of our approach from
two key aspects:

F.1. Universality of Biochemical Properties

The biochemical features (hydrophobicity and charge) assigned to point clouds represent universal physicochemical proper-
ties of proteins rather than sequence-specific information. Multiple amino acids share similar biochemical characteristics,
making it impossible to uniquely determine residue types based on these features alone:

1. Hydrophobicity groups:

* Highly hydrophobic: Isoleucine (4.5), Valine (4.2), Leucine (3.8)

* Moderately hydrophobic: Phenylalanine (2.8), Cysteine (2.5)

* Highly hydrophilic: Lysine (—3.9), Arginine (—4.5)

* Moderately hydrophilic: Asparagine (—3.5), Glutamine (—3.5), Aspartic acid (—3.5), Glutamic acid (—3.5)

2. Charge groups:

* Positively charged (+1): Lysine, Arginine
* Negatively charged (—1): Aspartic acid, Glutamic acid
* Neutral (0): Majority of amino acids

This degeneracy in biochemical properties means that multiple amino acid sequences could potentially satisfy the same
biochemical feature distribution, making it impossible to reconstruct the original sequence solely from these features.
F.2. Randomness in Point Cloud Generation

The point cloud generation process incorporates several layers of randomness that further prevent sequence information
leakage:

1. Spatial sampling:

¢ Points are uniformly sampled within the bounding box
* The final point cloud is randomly subsampled to 5000 points

2. Feature assignment: The continuous and random nature of the point cloud representation blurs discrete residue positions
These characteristics ensure that while the biochemical features provide valuable information about the chemical environment
necessary for protein folding, they do not encode or leak sequence information that would make the inverse folding task trivial.

This maintains the fundamental challenge of the task while enriching the model’s understanding of the physicochemical
constraints that guide protein folding.
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G. Implementation Details

Our BC-DESIGN architecture employs a hidden size of 256, featuring a STRUCT-ENCODER with 3 Structure Graph
Transformer Layers and 8 attention heads, complemented by a BC-Encoder with 4 hierarchical levels and a 4-head MHA
block. The fusion component incorporates 3 BC-Fusion blocks, each equipped with 8 attention heads. We train the model
for 20 epochs on NVIDIA A100 GPUs using the AdamW optimizer and OneCycle learning rate scheduler, with a batch size
of 4 and a learning rate of 0.0002. The model training requires a total of 6h 19m for 20 epochs on 4 NVIDIA A100 GPUs.
During inference, evaluated on a single A100 GPU with a batch size of 1, the model achieves an average inference time of
0.0651 seconds per batch, with a standard deviation of 0.1450 seconds.

H. Future Work

Building on our success, several promising research directions could further enhance the approach:

H.1. Experimental Validation through Iterative Design Cycles

Unlike purely language model-based approaches, implementing a Trust Region-based optimization approach with experi-
mental feedback loops could significantly improve real-world applicability. This would involve designing initial peptides,
obtaining experimental effectiveness data, and refining designs through multiple iterations to achieve optimal performance
against specific targets like fungi. The iterative nature of this approach allows for continuous improvement based on real
experimental outcomes, potentially leading to more biologically relevant designs than those created through computational
methods alone.

H.2. Design with Constraints for Functional Modification

A valuable extension would be developing the ability to modify proteins for new functions while maintaining structural
integrity. This could be achieved by incorporating constraints for catalytic triads or active sites that must be preserved during
the design process. Such an approach would enable the transformation of structural proteins into enzymes by ensuring
that critical amino acids necessary for the desired function remain in place. Furthermore, by introducing biases based on
known enzyme properties, the model could generate designs that not only satisfy structural requirements but also possess
the biochemical characteristics essential for the target function. This constrained design paradigm would address real-world
use cases where scientists begin with a protein of known structure but aim to engineer variants with enhanced or novel
functionalities.

H.3. User-specified Biochemical Property Distributions

Currently, BC-DESIGN derives biochemical features from ground-truth sequences during evaluation, which may not fully
reflect real-world design scenarios. Future work could explore methods for protein design with user-specified biochemical
property distributions, effectively decoupling feature generation from sequence recovery. This advancement would enable
designers to directly control the physicochemical environment of the protein, specifying desired hydrophobicity and charge
distributions without relying on existing sequences. Such capability would significantly expand the creative possibilities
for protein engineers, allowing them to explore novel sequence spaces that satisfy specific biochemical criteria while
maintaining structural integrity.

H.4. Enhanced Modeling for Larger Proteins

The current approach shows decreased performance for proteins exceeding 400 residues, suggesting room for improvement
in modeling long-range interactions. Addressing this limitation would require architectural modifications to better capture
dependencies between distant residues in the protein structure. Additionally, extending the framework to handle multi-chain
protein complexes would considerably broaden its application scope, enabling the design of more complex biological
systems such as antibody-antigen interfaces, enzyme-substrate interactions, and protein-protein interaction networks. These
enhancements would make BC-DESIGN applicable to a wider range of biologically relevant targets.
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H.5. Incorporating Additional Biochemical Properties

Expanding beyond hydrophobicity and charge to include properties like hydrogen bonding potential, steric requirements, and
conformational preferences could further enrich the model’s understanding of physicochemical constraints. These additional
properties play crucial roles in determining protein folding, stability, and function, and their inclusion would provide a more
comprehensive representation of the factors governing protein behavior. By capturing these nuanced biochemical features,
future versions of BC-DESIGN could achieve even greater accuracy in sequence prediction while generating proteins with
more precisely tuned functional characteristics.

By addressing these areas, BC-DESIGN could evolve into an even more powerful tool for computational protein engineering
and therapeutic development, bridging the gap between computational design and experimental validation through a more
iterative and constraint-aware approach.

I. Comparison Between GYVP-GNN and BC-DESIGN Approaches

GVP-GNN (Jing et al., 2020) and BC-DESIGN represent two significant advancements in learning from protein structure,
yet they differ in several fundamental aspects. GVP-GNN primarily focuses on augmenting graph neural networks with
geometric vector perceptrons to perform geometric reasoning while maintaining equivariance. It operates on both scalar
and vector features, enabling direct representation of 3D information throughout graph propagation without reducing such
information to scalars that may not fully capture complex geometry. The model learns to encode the 3D geometry through
vector representations that transform appropriately under spatial rotations, creating a global coordinate system across the
structure.

BC-DESIGN, in contrast, introduces an approach that explicitly represents biochemical properties as continuous distributions
throughout the protein structure. Rather than encoding biochemical features as discrete properties of individual residues, it
models hydrophobicity and charge as decorations on randomly sampled points across both exterior surfaces and internally
bound regions. This provides a more natural way to capture the spatial distribution of biochemical properties as they exist in
folded protein states, moving beyond the discrete residue-level representation prevalent in traditional models.

The architectural design of these two approaches also differs significantly. GVP-GNN employs relatively simple geometric
vector perceptrons as its core computational unit, where vector channels directly encode geometric features. BC-DESIGN
implements a more complex architecture comprising a STRUCT-ENCODER that processes residue-level structural infor-
mation through a hierarchical graph transformer, a BC-ENCODER that handles biochemical features, and a BC-FUSION
module that integrates structure and biochemistry through a bipartite graph structure. This multi-component design allows
BC-DESIGN to process and fuse multiple information modalities.

A key innovation in BC-DESIGN not present in GVP-GNN is its use of contrastive learning to bridge training and inference
phases. During training, BC-DESIGN leverages both structural information and biochemical feature distributions to learn
rich, biochemistry-aware embeddings. However, at inference time, it requires only the backbone structure as input, with the
structural embeddings having implicitly captured biochemical information. This creates a model that harnesses biochemical
awareness during training while maintaining practical simplicity during application.

Performance-wise, BC-DESIGN demonstrates significant improvements over existing methods, including GVP-GNN,
particularly in inverse protein folding tasks. BC-DESIGN achieves 88% sequence recovery compared to state-of-the-art
methods’ 67%, representing a 21% absolute improvement, and reduces perplexity from 2.4 to 1.47. These improvements
stem from the model’s ability to capture and leverage biochemical context in protein sequence design, highlighting the
importance of representing biochemical properties as continuous distributions rather than discrete features.

Both approaches maintain rotation invariance in their scalar outputs and equivariance in their vector outputs with respect to
3D transformations, an essential property for learning from protein structure. However, BC-DESIGN’s biochemistry-aware
approach appears to provide a more comprehensive framework for capturing the physical and chemical principles that
govern protein folding and stability, leading to its superior performance on inverse protein folding tasks.

J. Discussion on Atom-Based Sampling for Biochemical Feature Construction

The current BC-DESIGN approach represents biochemical features through point clouds that sample both protein surfaces
and internal spaces, demonstrating significant improvements in inverse protein folding. However, the uniform sampling
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strategy within a bounding box may not optimally capture the complex biochemical environment within proteins. Here, we
explore the potential benefits and challenges of implementing an atom-based sampling approach as an alternative to the
current methodology.

Atom-based sampling would leverage the precise atomic coordinates from the protein structure itself, rather than relying on
geometric approximations. This approach could provide a more biologically accurate representation of the biochemical
environment by directly sampling points based on actual atomic positions. Such sampling would inherently capture the
non-uniform distribution of biochemical properties throughout the protein volume, potentially improving the model’s ability
to learn subtle patterns that influence amino acid preferences at specific positions. Furthermore, by correlating sampling
density with functionally important regions or atoms, the model could develop enhanced sensitivity to critical areas that
determine protein function.

A key advantage of atom-based sampling would be its ability to better represent the discrete nature of protein biochemistry
while maintaining our continuous distribution paradigm. Different atom types contribute distinctly to the overall biochemical
environment—polar atoms create hydrophilic regions, while carbon-rich areas form hydrophobic clusters. By basing our
sampling on these atomic coordinates and types, we could more accurately represent the gradients and boundaries between
different biochemical zones within the protein structure. This could be particularly beneficial for capturing features like
binding pockets, catalytic sites, or stabilizing hydrophobic cores.

Implementation of atom-based sampling would require careful consideration of several factors. First, proteins contain
varying numbers of atoms, necessitating adaptive sampling techniques to maintain consistent representation sizes across
different structures. Second, a weighting scheme would need to be developed to determine sampling density around different
atom types, potentially giving preference to side chain atoms that more strongly influence biochemical properties. Finally,
computational efficiency must be considered, as the increased complexity of atom-based sampling could impact training and
inference times.

Despite these challenges, atom-based sampling presents a promising direction for enhancing the biochemical awareness of
our model. The potential improvements in capturing atomic-level biochemical environments could further refine sequence
predictions, particularly for functionally specialized regions where precise biochemical conditions are essential for protein
activity. Future work will explore hybrid approaches that combine the computational efficiency of uniform sampling with
the biochemical accuracy of atom-based methods, potentially leading to even more accurate and biologically relevant protein
designs.
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