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Abstract
We introduce ResGen, an efficient Residual Vec-
tor Quantization (RVQ)-based generative model
for high-fidelity generation with fast sampling.
RVQ improves data fidelity by increasing the num-
ber of quantization steps, referred to as depth, but
deeper quantization typically increases inference
steps in generative models. To address this, Res-
Gen directly predicts the vector embedding of
collective tokens rather than individual ones, en-
suring that inference steps remain independent
of RVQ depth. Additionally, we formulate to-
ken masking and multi-token prediction within a
probabilistic framework using discrete diffusion
and variational inference. We validate the effi-
cacy and generalizability of the proposed method
on two challenging tasks across different modali-
ties: conditional image generation on ImageNet
256×256 and zero-shot text-to-speech synthesis.
Experimental results demonstrate that ResGen
outperforms autoregressive counterparts in both
tasks, delivering superior performance without
compromising sampling speed. Furthermore, as
we scale the depth of RVQ, our generative models
exhibit enhanced generation fidelity or faster sam-
pling speeds compared to similarly sized baseline
models.

1. Introduction
Recent advancements in deep generative models have shown
significant success in high-quality, realistic data genera-
tion across multiple domains, including language model-
ing (Achiam et al., 2023; Touvron et al., 2023; Reid et al.,
2024), image generation (Rombach et al., 2022; Saharia
et al., 2022; Betker et al., 2023), and audio synthesis (Wang
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et al., 2023; Shen et al., 2024; Rubenstein et al., 2023).
While these models have demonstrated remarkable success,
particularly with the effective scaling with both data and
model sizes (Kaplan et al., 2020; Peebles & Xie, 2023),
challenges remain when aiming for high-fidelity genera-
tion, especially in terms of balancing generation quality
with computational efficiency. The demand for more de-
tailed, high-resolution outputs such as images (Kang et al.,
2023; He et al., 2023), videos (Bar-Tal et al., 2024) and
audio (Evans et al., 2024; Copet et al., 2024) has led to the
exploration of new approaches that can handle long input
sequences and complex data structure effectively (Saharia
et al., 2022; Ding et al., 2023).

One promising approach to address these challenges is
Residual Vector Quantization (RVQ) (Lee et al., 2022),
which improves data reconstruction quality without increas-
ing sequence length. RVQ extends Vector Quantized Vari-
ational Autoencoders (VQ-VAEs) (Van Den Oord et al.,
2017) by iteratively applying vector quantization to the
residuals of previous quantizations. This process results
in token sequences that are shorter in length but deeper in
hierarchy, effectively compressing data while maintaining
high reconstruction fidelity. However, despite the advan-
tages of RVQ in data compression, generative modeling
on RVQ-based token sequences introduces new challenges.
The hierarchical depth of these token sequences complicates
the modeling process, particularly for autoregressive mod-
els whose sampling steps typically scale with the product
of sequence length and depth (Lee et al., 2022). Although
non-autoregressive approaches have been explored along
either sequence length or depth (Borsos et al., 2023; Copet
et al., 2024; Kim et al., 2024), existing methods do not ef-
fectively eliminate the sampling complexity associated with
both dimensions simultaneously.

In this paper, we present ResGen, an efficient RVQ-based
generative modeling designed to achieve high-fidelity sam-
ple quality without compromising sampling speed. Our key
idea lies in the direct prediction of vector embeddings of col-
lective tokens rather than predicting each token individually.
By predicting cumulative embeddings, the model captures
correlations among consecutive tokens across depths. This
approach allows us to decouple inference steps from both
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sequence length and depth, resulting in a model that gen-
erates high-fidelity samples efficiently. Additionally, we
extend our approach involving a token masking strategy
and a multi-token prediction mechanism within a principled
probabilistic framework using a discrete diffusion process
and variational inference.

We validate the efficacy and generalizability of ResGen
across two real-world generative tasks: conditional image
generation on ImageNet 256×256 and zero-shot text-to-
speech synthesis. Experimental results demonstrate superior
performance over autoregressive counterparts in these tasks.
Furthermore, as we scale the depth of RVQ, ResGen ex-
hibits enhanced sampling quality or faster speeds compared
to similar-sized baseline generative models. We also analyze
model characteristics under varying hyperparameters, such
as sampling steps, and examine their impact on generation
quality in our ablation study.

The rest of the paper is organized as follows. In Section 2,
we provide the background for our study to establish the
foundational understanding necessary for the subsequent
discussion of our method. In Section 3, we introduce the
ResGen framework, detailing the formulation of masked
token prediction as a discrete diffusion process and the de-
coupling of generation iteration from token sequence length
and depth. We also compare our approach with previous
methods, highlighting the advantages of our strategy. In Sec-
tion 4, we provide the context for our study with relevant
prior work. In Section 5, we present experimental results
that validate the performance of ResGen, along with an abla-
tion study on model performance with different RVQ depths
and sampling steps. Finally, in Section 6 and Appendix D,
we summarize the key findings of the paper, discuss limita-
tions and directions for future research, respectively.

2. Background
Masked Token Modeling. Masked token modeling, in-
troduced in prior work (Chang et al., 2022), is a generative
framework that operates on token sequences derived from
the quantized encoder outputs of a Vector Quantized Varia-
tional AutoEncoder (VQ-VAE) (Van Den Oord et al., 2017).
The core idea involves randomly masking a subset of in-
put tokens and training the model to predict these masked
tokens using a cross-entropy loss.

Let x = (x1, . . . , xL) be a token sequence in NL and m =
(m1, . . . ,mL) be a corresponding binary mask, where mi ∈
{0, 1}. By definition mi = 0 indicates that token xi is
masked. We construct a masked token sequence x⊙m by
element-wise multiplying x and m. The training objective
is then formulated as:

Lmask(x,m; θ) = −
∑

i∈{i|mi=0}

log pθ(xi|x⊙m),

where θ denotes the model parameters and the summation
over i includes only those positions where the token is
masked, denoted by mi = 0. The masking process in-
volves selecting a number of tokens n to mask, determined
by a masking schedule n = ⌈γ(r) · L⌉. Here, r indicates
the current time step in the unmasking process, normalized
to range from zero to one, and γ(·) is a pre-defined masking
scheduling function that monotonically decreases from one
to zero as r increases. During training, r is sampled from a
uniform distribution.

In the decoding phase, the model employs an iterative pre-
diction process to progressively fill in the masked sequence.
At each iteration, the masking ratio r is updated to linearly
increase from zero to one. Starting with an entirely masked
token sequence, the model predicts the masked tokens, and
a subset of these predicted tokens is selected to be unmasked
based on confidence scores calculated through prediction
probabilities. The number of tokens to unmask at each
iteration is determined by the masking schedule.

Residual Vector Quantization. Residual Vector Quan-
tization (RVQ) (Lee et al., 2022) has been employed as a
more precise alternative to VQ for quantizing latent vectors
in VQ-VAE. While previous VQ-VAEs quantize an input by
replacing each encoded vector with the nearest embedding
from a codebook, RVQ iteratively applies vector quantiza-
tion to the residuals of previous quantizations.

Formally, let the output of the encoder in a VQ-VAE at the
position i be hi,0. The residual vector quantizer maps it to
a sequence of quantized tokens x ∈ NL×D, where D is the
total depth of the RVQ process:

xi,j = argmin
v∈{1,...,V }

∥hi,j−1 − e(v; j)∥2

hi,j = hi,j−1 − e(xi,j ; j) for all j ∈ [1, D],

where e(v; j) is the v-th vector embedding from the code-
book at depth j, and V is the number of embeddings per
depth. Here, xi,j represents the selected embedding index
for the i-th token at depth j, and hi,j denotes the residual
vector after the j-th quantization step.

The final reconstructed vector is obtained by summing the
embeddings across all depths, zi =

∑D
j=1 e(xi,j ; j). This

iterative quantization process enables RVQ to produce a
quantized output that closely approximates the original en-
coder output by increasing the depth D of quantization steps.
As a result, RVQ effectively captures the most significant
features in the lower quantization layers, while finer details
are progressively captured in higher layers.

2



Efficient Generative Modeling with Residual Vector Quantization-Based Tokens

Figure 1. An overview of the forward masking and reverse unmasking processes is shown at the top, with a detailed depiction of the
reverse unmasking process below. In the top figure, forward masking proceeds from right to left, incrementally masking more tokens,
while reverse unmasking progresses from left to right, iteratively revealing the masked tokens. White boxes denote masked tokens and
colored boxes represent tokens that have been uncovered. The bottom figure illustrates the reverse unmasking process in detail. Starting
from masked residual vector quantization (RVQ) tokens, our method first predicts cumulative RVQ embeddings. These embeddings
are then quantized and partially masked again. Through a series of iterations, each round predicts the values of the masked tokens and
replaces them until the entire token sequence is filled.

3. Method
In this section, we introduce our method, ResGen, which
iteratively fills tokens in a coarse-to-fine manner to achieve
efficient and high-fidelity generative modeling with Resid-
ual Vector Quantization (RVQ). We structure our discussion
into three main parts:

• We present a token masking strategy tailored for RVQ
tokens and describe how we model masked token pre-
diction by predicting sum of residual vector embed-
dings to decouple the generation iterations from the
length and depth of token sequences.

• We show that our proposed token masking and multi-
token prediction method can be formulated within a
probabilistic framework using a discrete diffusion pro-
cess and variational inference.

• We detail the training and sampling techniques of Res-
Gen, focusing on the implementation of the mixture
of Gaussians for latent embedding estimation and en-
hanced sampling strategies based on model confidence
scores.

3.1. Masking and Prediction Task Design for RVQ
Tokens

Token Masking for RVQ Tokens. Our masking strategy
progressively masks tokens starting from the highest quanti-
zation layers, capitalizing on the hierarchical nature of RVQ
where tokens at greater depths capture finer details.

Given a token sequence from RVQ, x ∈ NL×D, with se-
quence length L and depth D, we apply a binary mask
m ∈ {0, 1}L×D, where each mi,j indicates whether the
token xi,j is masked (mi,j = 0) or not (mi,j = 1). The
total number of tokens to mask is determined by a masking
schedule, n = ⌈γ(r) · L ·D⌉. Here, r indicates the current
time step in the unmasking process, normalized to range
from zero to one, and γ(·) is a pre-defined masking schedul-
ing function that monotonically decreases from one to zero
as r increases. During training, r is sampled from a uniform
distribution.

To distribute the n masked tokens across the L positions,
the number of tokens to mask at each position i, denoted
by ki, is sampled without replacement from a multinomial
distribution with equal probability across all positions, en-
suring that

∑L
i=1 ki = n. At each position i, ki tokens

are masked starting from the highest depth j = D and
moving towards lower depths. This ensures that finer de-
tails captured at higher depths are masked before coarser
information at lower depths, as illustrated in Figure 1.

Multi-Token Prediction of Masked Tokens. We describe
the training and decoding phases of our multi-token predic-
tion strategy, which efficiently predicts masked tokens by
focusing on predicting the aggregated vector embeddings z
of collective tokens rather than the individual tokens x.

Training: Given the input sequence x and the correspond-
ing mask m, the model predicts the sum of masked embed-
dings z such that zi =

∑
j e(xi,j ; j)⊙ (1−mi,j) rather

3



Efficient Generative Modeling with Residual Vector Quantization-Based Tokens

than the target tokens directly, where e(v; j) denotes the
v-th vector embedding from the RVQ codebook at depth j.
The training objective is to maximize the log-likelihood of
the sum of masked embeddings:

Lmask(x,m; θ) = −
∑

i∈{i|
∑

j mi,j<D}

log pθ(zi|x⊙m),

(1)
where θ represents the model parameters and the summation
over i includes only those positions where at least one token
is masked, denoted by

∑
j mi,j < D. To model the distri-

bution pθ, we employ a mixture of Gaussian distributions.
We modify the training objective to encourage the mixture
component usage of the mixture of Gaussian distributions,
which is described in Appendix A.2.

This method avoids imposing conditional independence of
tokens along the depth, which could harm model perfor-
mance. Instead, it relies on the key idea that accurately
predicting the vector embedding zi is more critical than
predicting the individual tokens xi, as the decoder of a
VQ-VAE operates on vector embeddings.

Sampling: In the decoding phase, the model employs
an iterative prediction process to progressively fill in the
masked sequence. At each iteration, the masking ratio r is
updated to linearly increase from zero to one. Starting with
an entirely masked token sequence, the model progressively
fills in the sequence in a coarse-to-fine manner. At each step,
the model predicts the cumulative masked token embedding
zi. These predicted vectors are then quantized into tokens
via RVQ quantization. A subset of these predicted tokens
is randomly selected to be unmasked, where the number of
tokens to unmask at each step is determined by the masking
schedule. Although the quantization step at each sampling
iteration involves sequential operations to reconstruct tokens
from embeddings, it adds negligible overhead compared to
the model forward pass.

We summarize the training and sampling algorithms for
ResGen in Algorithm 1 and 2 of Appendix.

3.2. Formulation within a Probabilistic Framework

We now cast our masked token prediction procedure into a
probabilistic framework based on a discrete diffusion model
and variational inference. This perspective allows us to view
our method as a likelihood-based generative process and
provides a theoretical foundation for its design.

Forward Discrete Diffusion Process. Consider the token
masking process described in Section 3.1. We can inter-
pret this process as the forward diffusion step of a discrete
diffusion model on token sequences. The idea is to gradu-
ally transform a fully unmasked token sequence x(0) into a
fully masked sequence x(T ) by progressively increasing the

number of masked tokens at each step.

The masking at each step t is governed by a discrete ran-
dom process that determines how many tokens to mask. Let
k
(t+1)
i denote the number of tokens to be newly masked

at the next step t + 1 for the i-th position in a token se-
quence. The total number of tokens to be masked at step
t + 1 is n(t+1) =

∑L
i=1 k

(t+1)
i , where L and D are the

length and the depth of the token sequence. The proba-
bilistic mechanism is that at each step t, we sample the
vector k(t+1) = (k

(t+1)
1 , ..., k

(t+1)
L ) from a multivariate hy-

pergeometric distribution, which corresponds to drawing
n(t+1) tokens without replacement from the pool of cur-
rently unmasked tokens. Formally, if at step t there remain
LD −

∑t
τ=1 n

(τ) unmasked tokens in x(t), then drawing
n(t+1) tokens to mask can be modeled as:

q(k(t+1) | x(t)) =

L∏
i=1

(D−
∑t

τ=1 k
(τ)
i

k
(t+1)
i

)
(LD−

∑t
τ=1 n(τ)

n(t+1)

) .

Once we have sampled k(t+1), we construct x(t+1) from
x(t) by masking out the newly selected tokens. Specifically,
let ϕ denote the masked token. Then, resulting masked
tokens at each sequence position i are defined as:

x
(t+1)
i,j =

{
x
(t)
i,j if j ≤ D −

∑t
τ=1 k

(τ)
i

ϕ otherwise
.

An attractive property of this forward diffusion process is
that we can write closed-form expressions for both the
marginal distributions and conditional distributions at in-
termediate steps. Since the forward process is defined by in-
cremental masking without replacement, we can directly in-
tegrate over all intermediate steps. This yields the marginal
distribution of x(t) given x(0):

q(x(t) | x(0)) =

L∏
i=1

( D∑t
τ=1 k

(τ)
i

)
(

LD∑t
τ=1 n(τ)

) ,

which expresses the probability of having
∑t

τ=1 k
(τ)
i tokens

masked in each segment i, given that a total of
∑t

τ=1 n
(τ)

tokens have been masked overall up to step t.

Similarly, we can write the conditional distribution of x(t)

given x(t+1) and x(0):

q(x(t) | x(t+1),x(0)) =

L∏
i=1

(∑t+1
τ=1 k

(τ)
i

k
(t+1)
i

)
(∑t+1

τ=1 n(τ)

n(t+1)

) ,

reflecting the probability of having arrived at x(t) from
x(t+1) by considering how many tokens were masked in the
last step. In this sense, the forward and backward processes
are fully characterized by the combinatorial structure of
drawing tokens without replacement.
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Reverse Discrete Diffusion Process. The reverse process
aims to reconstruct the original tokens from partially masked
sequences. Given the model’s probability to reconstruct the
original tokens pθ(x(0) | x(t+1)), the probability to reverse
a diffusion step pθ(x

(t) | x(t+1)) is defined as:∑
x(0)

q(x(t) | x(t+1),x(0))pθ(x
(0) | x(t+1)).

This formulation lets us compute the variational lower
bound of the data log-likelihood:

log pθ(x
(0)) ≥ −Eq

[
LT +

∑
t≥1

Lt + L0

]
,

where LT = DKL

(
q(x(T ) | x(0)) ∥ p(x(T ))

)
,

Lt = DKL

(
q(x(t) | x(t+1),x(0)) ∥ pθ(x(t) | x(t+1))

)
,

and L0 = − log pθ(x
(0) | x(1)).

Here, LT is the prior loss, which becomes zero since x(T ) is
fully masked, Lt are the diffusion losses at each step t, and
L0 is the reconstruction loss. By combining the diffusion
and the reconstruction losses while placing equal emphasis
on predicting the original tokens at each step, we can derive
a simplified loss function:

Lsimple(x
(0); θ) = − log pθ(x

(0) | x(t)). (2)

Latent Modeling with Variational Inference. To ef-
ficiently handle dependencies across token depths, we
adopt a multi-token prediction approach inspired by CLaM-
TTS (Kim et al., 2024). Instead of predicting tokens indi-
vidually, we predict their cumulative vector embedding z.
This approach aligns naturally with the RVQ dequantization
process and decouples the generation time complexity from
the token depth.

We use variational inference to derive the upper bound of
the negative log-likelihood − log pθ(x

(0) | x(t)):

Eqz

[
− log p(x(0)|z,x(t))− log

pθ(z | x(t))

q(z | x(0),x(t))

]
.

Assuming p(x(0)|z,x(t)) corresponds to RVQ quantization
and q(z | x(0),x(t)) to RVQ dequantization of the masked
tokens, we focus on the remaining term:

Lmask(x
(0),x(t); θ) = − log pθ(z|x(t)),

which matches the prediction loss in Equation 1.

4. Related Work
In this work, we refer to discrete diffusion models (DDMs)
as a class of generative models that learn to reverse a de-
fined corruption process applied to discrete data, such as

sequences of tokens (Austin et al., 2021). This typically in-
volves iteratively refining corrupted tokens or progressively
unmasking masked tokens. A prominent strategy within
this framework is masked generative modeling, also known
as masked diffusion or masked token modeling, where the
corruption process specifically involves masking portions
of the token sequence, and the model learns to predict the
content of these masked positions (Gu et al., 2022; Chang
et al., 2022). Models such as VQ-Diffusion (Gu et al.,
2022) and, conceptually, MaskGIT (Chang et al., 2022)
exemplify this masked diffusion approach for generating
flat token sequences, leading to improved sampling effi-
ciency over autoregressive models. GIVT (Tschannen et al.,
2024) introduces a method that replaces softmax-based to-
ken prediction with mixture-of-Gaussians-based vector pre-
diction in masked token prediction, progressively filling
masked positions with predicted vectors. Build upon prin-
ciples similar to MaskGIT, MAGVIT-v2 (Yu et al., 2024)
and MaskBit (Weber et al.) have demonstrated strong per-
formance by incorporating innovations such as improved
quantization schemes, notably Lookup-Free Quantization
(LFQ) (Yu et al., 2024), which represents each token as a col-
lection of bits. MaskBit further advances this by grouping
the bits of each token and leveraging the partially unmasked
bits to predict the masked portions.

Separate from the discrete diffusion approaches defined
above, recent works like VAR (Tian et al., 2024), MAR (Li
et al., 2024) and HART (Tang et al., 2024) propose alter-
native paradigms to token-based autoregressive modeling.
VAR introduces a coarse-to-fine next-scale prediction mech-
anism, effectively capturing hierarchical structures in im-
ages; for a detailed discussion of the distinctions between
VAR’s hierarchical modeling and ResGen’s approach, partic-
ularly concerning representation, generation, and adaptabil-
ity, please see Appendix C.1. MAR eliminates the reliance
on discrete tokens by modeling probabilities in continuous-
valued space using a diffusion-based approach, simplifying
the pipeline while maintaining strong performance. HART
proposes a hybrid approach that decomposes the latent space
into discrete tokens, modeled autoregressively, and contin-
uous residuals, modeled with a diffusion process. This
strategy is designed to reduce the number of sampling steps
compared to fully continuous methods like MAR.

However, these methods primarily deal with flat token se-
quences and do not consider the hierarchical depth inherent
in RVQ. RQ-Transformer (Lee et al., 2022) was the first to
demonstrate generative modeling on RVQ tokens using an
autoregressive model over the product of sequence length
and depth, resulting in increased computational complex-
ity. Vall-E (Wang et al., 2023) predicts the tokens at the
first depth autoregressively and then predicts the remaining
tokens at each depth in a single forward pass sequentially.
SoundStorm (Borsos et al., 2023) generates tokens using
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masked token prediction given semantic tokens, but still
has sampling time complexity that increases linearly with
the residual quantization depth. NaturalSpeech 2 (Shen
et al., 2024) employs diffusion-based generative modeling
in the RVQ embedding space instead of token generation.
CLaM-TTS (Kim et al., 2024) employs vector prediction
for multi-token prediction but operates in an autoregressive
manner along the sequence length.

In contrast to these approaches, our method offers a more
efficient solution for generative modeling with RVQ tokens.
We propose a strategy that predicts the vector embedding of
masked tokens, decoupling the sampling time complexity
from both sequence length and token depth. By predicting
cumulative vector embeddings rather than individual tokens,
our method efficiently handles the hierarchical structure
of tokens, offering enhanced sampling efficiency and high-
fidelity generation.

5. Experiments
In this section, we demonstrate the effectiveness of our
approach in both image generation and text-to-speech syn-
thesis, highlighting its generalizability and efficiency.

5.1. Experimental Setting

Experiment Tasks. For the vision domain, we fo-
cus on conditional image generation tasks on Ima-
geNet (Krizhevsky et al., 2017) at a resolution of 256× 256.
In the audio domain, we evaluate our model using two tasks
inspired by Voicebox (Le et al., 2023): 1) continuation:
given a text and a 3-second segment of ground truth speech,
the goal is to generate seamless speech that continues in the
same style as the provided segment; 2) cross-sentence: given
a text, a 3-second speech segment, and its transcript (which
differs from the text), the objective is to generate speech
that reads the text in the style of the provided segment.

Evaluation Metrics. For vision tasks, we employ the
Fréchet Inception Distance (FID) (Heusel et al., 2017) for
comparing it with other state-of-the-art image generative
models. We set the sample size for FID calculation to 50K
in all experiments. For audio tasks, we evaluate the models
using the following objective metrics: Character Error Rate
(CER), Word Error Rate (WER), and Speaker Similarity
(SIM), as described in VALL-E (Wang et al., 2023) and
CLaM-TTS (Kim et al., 2024). CER and WER measure
the intelligibility and robustness. For SIM, we adopt SIM-o
and SIM-r metrics from Voicebox (Le et al., 2023). SIM-o
evaluates the similarity between the generated speech and
the original target speech, while SIM-r assesses the similar-
ity between the target speech and its reconstruction, which
is obtained by processing the original speech through a
pre-trained autoencoder and vocoder.

Baselines and Training Configurations. In the vision
domain, we compare our models with recent generative
model families, including (1) autoregressive models: RQ-
transformer (Lee et al., 2022), VAR (Tian et al., 2024),
MAR (Li et al., 2024); and (2) non-autoregressive models:
MaskGIT (Chang et al., 2022), DiT (Peebles & Xie, 2023).
For the audio task, we benchmark the proposed model
against state-of-the-art TTS models, including (1) autore-
gressive models: VALL-E (Wang et al., 2023), SPEAR-TTS
(Kharitonov et al., 2023), and CLaM-TTS (Kim et al., 2024);
and (2) non-autoregressive models: YourTTS (Casanova
et al., 2022), VoiceBox (Le et al., 2023), and DiTTo-TTS
(Lee et al., 2025). The training configurations for our mod-
els are detailed in Appendix A.1.

5.2. Experimental Results

5.2.1. VISION TASK: ABLATION STUDIES

To validate the effectiveness of our method as a generative
model for RVQ tokens, we compare it with two baseline
models, MaskGIT and RQ-Transformer, using an identical
RVQ representation with depth 16. MaskGIT, originally de-
signed to predict randomly masked tokens at a single depth,
is adapted to a multi-depth setting by autoregressively gen-
erating tokens depth by depth, conditioning each prediction
on the previously generated depths.

We therefore investigate three generation strategies for
8 × 8 × 16 RVQ tokens: (i) fully autoregressive (RQ-
Transformer); (ii) masked sequence + autoregressive depth
(our MaskGIT variant); and (iii) fully masked (ResGen).
To ensure a fair comparison, we configured each model
with comparable parameter counts: ResGen (576 M), RQ-
Transformer (626 M), and MaskGIT (580 M), and trained
them for 2.8 M steps.

As summarized in the left Table 1, ResGen shows higher
generation quality than both baselines while requiring fewer
inference steps than RQ-Transformer. The relatively lower
performance of the depth-wise MaskGIT variant highlights
the difficulty of extending single-depth masked models to
multi-depth RVQ tokens, reinforcing our design choice of
predicting all depths jointly.

Beyond these baseline comparisons, further experiments,
also detailed in the left Table 1, explore key design choices
and the scalability of ResGen. First, we investigate an ar-
chitectural variant of ResGen that predicts discrete tokens
directly and in parallel across all depths at each step, using
the loss function defined in Equation 2. This variant yields
competitive results relative to the baselines but is outper-
formed by the final version of ResGen, highlighting the
effectiveness of the cumulative embedding prediction strat-
egy. Second, to assess model scalability, we increase the
parameters of ResGen from its 576 M version to a 1 B pa-
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Table 1. Ablation study on ResGen (Ours). The left table compares image generation quality and efficiency among ResGen, RQ-
transformer, and MaskGIT, evaluated using the same RVQ tokens. The right table reports efficiency of AR-ResGen using 2, 4, and 8
iterative refinement steps for depth prediction, compared with RQ-Transformer. The boldface indicates the best result. Wall-clock time
results reflect the time required to generate a single sample on an NVIDIA A100 GPU.

Model FID (w/o CFG) ↓ FID (w/ CFG) ↓ Steps

RQ-transformer 15.71 5.50 1024
MaskGIT 28.40 9.83 63
ResGen 8.77 2.43 63

Architectural and Scaling Analysis
ResGen (Direct Token Prediction) 12.79 2.91 63
ResGen (1B Parameters) 8.12 2.26 63

Model FID (w/o CFG) ↓ FID (w/ CFG) ↓ Wallclock Time

RQ-transformer 15.71 5.50 5.35s
AR-ResGen (1 step) 27.45 6.47 1.30s
AR-ResGen (2 step) 24.10 5.33 1.56s
AR-ResGen (4 step) 23.75 5.30 2.00s
AR-ResGen (8 step) 23.48 5.22 3.05s

rameter model. This larger model demonstrates further FID
improvements, confirming that ResGen scales effectively
with increased capacity.

The right of Table 1 summarizes a stricter ablation de-
signed to disentangle the efficiency gains introduced by our
depth modeling strategy from those brought by the masked-
generation paradigm. This ablation features AR-ResGen,
a variant where the spatial sequence is still generated au-
toregressively, identical to RQ-Transformer. Crucially, AR-
ResGen keeps the overall parameter budget comparable (625
M) and differs from the RQ-Transformer only by replacing
its depth transformer with MLP to predict our cumulative
embedding.

The data in the table shows that AR-ResGen attains an FID
of 5.22 with 8 refinement iterations while reducing the de-
coding time from 5.35 to 3.05 s (×1.8 faster). Even with
just two iterations it reaches an FID of 5.33s in 1.56s, yield-
ing a ×3.4 speed-up over RQ-Transformer at comparable
quality. These results isolate and confirm that our depth
prediction strategy alone, independent of the sequence gen-
eration framework, delivers substantial improvements in
both the generation speed and the sample quality. These
results demonstrate that ResGen sets a new benchmark for
both efficiency and quality in generative modeling.

Finally, Appendix B.2 examines the effect of sampling hy-
perparameters, specifically the number of steps and tem-
perature scaling, on generation quality, and Appendix C.3
investigates the sensitivity of ResGen’s performance to al-
ternative masking strategies.

5.2.2. VISION TASK: BENCHMARK COMPARISONS

Next, we assess the effectiveness of our generative modeling
by comparing it to existing vision generative model families.
We train two variants of ResGen, termed ResGen-rvq8 and
ResGen-rvq16, using 8-depth and 16-depth RVQ tokens,
respectively, for up to 7 million steps. The results, shown
in Table 2, compare these models across three key aspects:
generation quality, memory efficiency, and generation speed.
Generation quality is assessed using the FID metric, mem-

ory efficiency is evaluated based on the maximum batch size,
which refers to the maximum number of latent representa-
tions that a generative model can process during inference
on the same device, and generation speed is measured as
the wall-clock time required to generate a single sample.
Detailed sampling hyperparameters can be found in Table 4.

Generation quality. Among models with similar param-
eter counts, and specifically excluding larger models such
as VAR-d30 and MAR-H, ResGen-rvq16 demonstrates
highly competitive performance, which achieves an FID
of 1.93 with classifier-free guidance (CFG). Despite its
slightly higher FID score compared to MAR-L, ResGen
achieves comparable quality with much faster sampling
speed, demonstrating its efficiency in balancing quality and
resource usage. These results highlight the competitive
generation capabilities of ResGen, which closely rivals the
MAR series.

Speed efficiency. As shown in Figure 2, ResGen-rvq16
ranks second only to VAR, making it a practical choice
for scenarios where speed is critical. Unlike certain mod-
els that compromise speed for quality, our method main-
tains a favorable balance, offering both rapid generation and
competitive quality. Compared to the MAR series, which
achieves marginally better FID scores, ResGen’s superior
speed positions it as an efficient solution for real-time or
high-throughput applications.

Memory efficiency. ResGen consistently exhibits supe-
rior efficiency, achieving the largest latent batch size. Specif-
ically, ResGen-rvq16 supports a maximum latent batch size
of 1,915, surpassing MAR-B’s capacity of 1,738. This ef-
ficiency enables large-scale generative tasks and mitigates
computational bottlenecks in production pipelines.

Comparison with recent masked generative models. To
provide a broader context for ResGen’s performance, we
also consider recent state-of-the-art masked generative mod-
els like MAGVIT-v2 (Yu et al., 2024) and MaskBit (Weber
et al.). As detailed in Table 8, these models achieve strong
FID scores (MAGVIT-v2: 1.78, MaskBit: 1.62), which
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Table 2. Comparison of generative models on class-conditional ImageNet at a resolution of 256×256. Boldface denotes the best result
and underline indicates the second best; an asterisk (*) marks scores reported in their original papers. For RQ-Transformers, FID scores
presented in the ‘FID (w/ CFG)’ column are based on results obtained with rejection sampling. ‘Code length’ refers to the sequence
length of the latent representations.

Model Code length Params FID (w/o CFG) ↓ FID (w/ CFG) ↓ Maximum batch size ↑
MaskGIT 256 277M 6.18* - -

DiT-XL/2 256 675M 9.62* 2.27* 1159

VAR-d16 256 310M 12.18 3.30* 247
VAR-d20 256 600M 8.60 2.57* 148
VAR-d24 256 1.0B 6.43 2.09* 102
VAR-d30 256 2.0B 5.31 1.92* 60

MAR-B 256 208M 3.48* 2.31* 1738
MAR-L 256 479M 2.60* 1.78* 1167
MAR-H 256 943M 2.35* 1.55* 812

RQ-Transformer 64 1.4B 8.71* 3.89* 1151
RQ-Transformer 64 3.8B 7.55* 3.80* 390

ResGen-rvq8 64 576M 6.56 2.71 1995
ResGen-rvq16 64 576M 6.04 1.93 1915
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Figure 2. The left figure shows the trade-off between sampling speed and generation quality across various generative models. For ResGen,
dotted lines indicate performance across different sampling steps, highlighting step-dependent performance improvements. For other
models, solid lines connect results corresponding to variations in parameter size. Note that in ResGen-rvq8 and ResGen-rvq16, the number
specifies the depth of RVQ. Both wall-clock time and maximum batch size are measured on an NVIDIA A100 GPU.

are currently lower than that of our ResGen-rvq16 (1.93
with CFG). However, ResGen offers distinct architectural
advantages, including more effective handling of hierarchi-
cal token dependencies and flexible resolution-depth scal-
ing, which enable shorter code lengths. These properties
contribute to its strong overall performance and adaptabil-
ity across diverse settings, as discussed in detail in Ap-
pendix C.4.

Interestingly, ResGen-rvq16, with deeper RVQ quantization,
achieves better sample quality than ResGen-rvq8 at the
same number of sampling steps, with a minimal increase in
inference time. This aligns with Appendix A.4, which shows

that greater RVQ depth enhances both reconstruction and
generation quality. These results demonstrate the scalability
of our approach, showing that deeper RVQ quantization
improves performance while maintaining efficiency.

For qualitative evaluation, Figure 5 presents diverse samples
generated by the baseline models (VAR, MAR, and DiT)
alongside those from ResGen. Additional randomly gener-
ated samples from our model are shown in Figure 6. Finally,
in Appendix C.2, we present a detailed comparison between
ResGen and the faster MAR variant.
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Table 3. Performances for the continuation task (top table) and the cross-sentence task (bottom table). The boldface indicates the best
result, the underline denotes the second best, and the asterisk denotes the score reported in the baseline paper.

Model Params WER ↓ CER ↓ SIM-o ↑ SIM-r ↑ Inference Steps ↓
Ground Truth n/a 2.2* 0.61* 0.754* 0.754* n/a

YourTTS - 7.57 3.06 0.3928 - 1
Vall-E 302M 3.8* - 0.452* 0.508* -
Voicebox 364M 2.0* - 0.593* 0.616* 64
CLaM-TTS 584M 2.36* 0.79* 0.4767* 0.5128* -
DiTTo-en-L 508M 1.85 0.50 0.5596 0.5913 25
DiTTo-en-XL 740M 1.78* 0.48* 0.5773* 0.6075* 25

Melvae-ResGen 457M 1.94 0.53 0.5421 0.5701 25
Rvqvae-ResGen 625M 1.86 0.50 0.5853 0.5886 25

Model WER ↓ CER ↓ SIM-o ↑ SIM-r ↑
YourTTS 7.92 (7.7*) 3.18 0.3755 (0.337*) -
Vall-E 5.9* - - 0.580*
SPEAR-TTS - 1.92* - 0.560*
Voicebox 1.9* - 0.662* 0.681*
CLaM-TTS 5.11* 2.87* 0.4951* 0.5382*
DiTTo-en-L 2.69 0.91 0.6050 0.6355
DiTTo-en-XL 2.56* 0.89* 0.627* 0.6554*

Melvae-ResGen 1.75 0.48 0.5597 0.6061
Rvqvae-ResGen 1.70 0.46 0.6037 0.6307

5.2.3. AUDIO TASK

In our Text-to-Speech (TTS) experiments, we compare our
method to autoregressive models that generate RVQ tokens,
using the same MelVAE module from CLaM-TTS (Kim
et al., 2024). As shown in Table 3, our model achieves lower
word and character error rates (WER and CER) as well as
higher speaker similarity scores (SIM-o and SIM-r) than the
baseline and requires fewer inference steps, demonstrating
its efficiency in token generation. Notably, our method uses
only 25 iterations, which is fewer than the RVQ depth of 32.

We further evaluate our model with deeper RVQ quan-
tization, up to 72 levels, referred to as Rvqvae-ResGen,
and compare its performance against recent TTS models.
While our results do not surpass state-of-the-art methods
such as Voicebox and DiTTo-TTS on every metric, the pro-
posed approach demonstrates substantial advantages in com-
putational efficiency and accuracy. Specifically, ResGen
achieves the lowest WER and CER in the cross-sentence
task, outperforming all baselines. In the continuation task,
ResGen attains competitive WER and CER scores, ranking
second only to DiTTo-en-XL. Furthermore, the use of a
deeper RVQ depth enhances leads to improved reconstruc-
tion quality and enhanced generation performance. Despite
the increased depth, ResGen effectively models these tokens
with only 25 inference steps, demonstrating its ability to

maintain computational efficiency while delivering high-
quality outputs. For qualitative comparison, we present our
generated audio samples in the project page1.

6. Conclusion
In this work, we propose ResGen, an efficient RVQ-based
discrete diffusion model that generates high-fidelity sam-
ples while maintaining fast sampling speeds. By directly
predicting the vector embedding of collective tokens, our
method mitigates the trade-offs between RVQ depth and
inference speed in RVQ-based generative models. We fur-
ther demonstrate the effectiveness of token masking and
multi-token prediction within a probabilistic framework,
employing a discrete diffusion process and variational infer-
ence. Experimental results on conditional image generation
and zero-shot text-to-speech synthesis validate the strong
performance of ResGen, which performs comparably to or
exceeds baseline models in terms of fidelity and sampling
speed. As we scale RVQ depth, our model exhibits im-
provements in generation fidelity or efficiency, showing its
scalability and generalizability across different modalities.

1https://resgen-ai.github.io/
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ments in generation quality and efficiency across challeng-
ing modalities such as image generation and text-to-speech
synthesis. As data resolution and size continue to increase in
real-world applications, our method provides a scalable and
efficient solution, reducing the memory and computational
burden typically associated with high-resolution generative
tasks.

The potential societal benefits of this research are substan-
tial, particularly in areas where efficient and high-quality
generation is critical, such as accessibility technologies,
creative industries, and scientific simulations. For exam-
ple, ResGen can facilitate resource-efficient generation of
synthetic media, enabling small-scale researchers and or-
ganizations to access and utilize state-of-the-art generative
technologies that were previously out of reach.

However, as with all generative models, there are poten-
tial misuse risks, such as the creation of synthetic media
for deceptive purposes or the unauthorized replication of
copyrighted content. To mitigate these risks, we encour-
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policies, including mechanisms to detect and authenticate
synthetic content, and to promote transparency in model
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A. Training details
A.1. Configurations for Training

Vision models We train our method using an architecture similar to DiT (Peebles & Xie, 2023), adopting the XLarge
version while modifying the adaptive layer normalization layers for conditioning by replacing their linear layers with bias
parameters. As shown in Table 1, all generative models are trained for 2.8M iterations under the same RVQ token setting.
The model sizes are as follows: ResGen (576M), AR-ResGen (625M), RQ-Transformer (626M), and MaskGIT (580M).
To maintain fair and consistent evaluation conditions across models, RQ-Transformer is assessed in this experiment using
classifier-free guidance (CFG), rather than the rejection sampling adopted in its original publication.

In Table 2, all variants of ResGen are trained with a batch size of 256 across 4 GPUs for 7M iterations. The masking
scheduling function γ(·) is defined as γ(r) = (1− r2)

1
2 and applied throughout all training.

To increase the depth of RVQ, we warm-start from the 4-depth RQ-VAE checkpoint (Lee et al., 2022), excluding the
attention layers, and reduce the latent dimension from 256 to 64. Each VAE is further trained for an additional 1M steps,
both with and without adversarial training, following the same configuration as prior work. For the RVQ quantizer, we
employ the probabilistic RVQ method from Kim et al. (2024), which updates the RVQ codebook embeddings proportionally
based on how closely the VAE latents match each embedding. The codebook size at each depth is set to 1024. The resulting
token embeddings obtained from the RVQ quantizer are then fed into ResGen, where they are projected to match the hidden
size via a linear layer.

Audio models For the Text-to-Speech task, our model, based on the DiT XLarge architecture as in the vision task, is
trained using the same configuration as in prior work (Kim et al., 2024), utilizing 4 GPUs for 310M iterations. The masking
scheduling function γ(·) is defined as γ(r) = (1− r2)

1
2 and applied throughout all training. We employ 4 transformer layers

to train a linear regression duration predictor for the text inputs, built on top of the pretrained text encoder, ByT5-Large (Xue
et al., 2022). The duration predictor is trained to minimize the L2 loss between the mel-spectrogram and the expanded
hidden representation of text from ByT5, with alignment achieved using the monotonic alignment search algorithm (Kim
et al., 2020). The expanded text hidden representation is downsampled through a strided convolution layer to match the
length of the RVQ token sequence and combined with the embeddings of RVQ tokens obtained from the RVQ quantizer.
These combined representations are then projected to match the model’s hidden size using a linear layer.

To increase the depth of RVQ from 32 in MelVAE to 72, we train a separate autoencoder that directly processes waveforms.
The 44 kHz waveforms are transformed using the Short-Time Fourier Transform (STFT) with a hop length of 8 and a
window size of 32. The real and imaginary parts are concatenated and then encoded through an encoder composed of three
blocks, each consisting of three 1D ConvNeXt layers (Siuzdak, 2024; Liu et al., 2022) followed by a strided convolution
layer with a stride of 8 and a kernel size of 8. This results in a final latent representation of 512 dimensions with a temporal
resolution of 10.7 Hz, matching that of MelVAE. The decoder mirrors the encoder symmetrically, reconstructing STFT
parameters, which are then converted back to waveforms via inverse STFT. The autoencoder is trained with similar training
configurations as DAC, including mel-spectrogram reconstruction loss and adversarial losses. The RVQ codebook size at
each depth is set to 1024, and the entire autoencoder model consists of 185 million parameters.

A.2. Implementation Techniques for Training

Mixture of Gaussians Implementation. Our model utilizes a mixture of Gaussian distributions to represent the distribution
over latent embeddings. Specifically, for each token position i, the model outputs the mixture probabilities πππi = {π(ν)

i }Kν=1,
the mean vectors for each mixture component {µµµ(ν)

i }Kν=1, and additional scale and shift parameters for affine transformations
ai ∈ R and bi ∈ RH , where K is the number of mixture components and H is the embedding dimension. When projecting
the hidden output (size O) to K mixture probabilities, it leads to a projection complexity dominated by O(O ∗K ∗H).

For our vision model (O = 1152,K = 1024, H = 64), this cost is comparable to a standard softmax layer with a ˜64K
vocabulary (V = K ∗H), which is practical. For higher-dimensional embeddings like in audio (H = 512), we use low-rank
projection for the means, reducing the dominant computational term to O(O ∗K ∗ h+H ∗ h), again making the effective
cost similar to a ˜64K vocabulary model (h = 64). This technique, previously used in CLaM-TTS(Kim et al., 2024),
significantly mitigates overhead.
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Training Objective Modification. From Equation 1, the log-likelihood of the target embedding zi is formulated as
log pθ(zi|x⊙m) = − log ai + log

∑
ν π

(ν)
i N (z̃i;µµµ

(ν)
i , I), where z̃i = (zi − bi)/ai. To further encourage the usage of

every mixture component, we modify the objective by decomposing it into a sum of classification and regression losses.
Similar to prior work (Kim et al., 2024), applying Jensen’s inequality, we have:

− log ai − log
∑
ν

π
(ν)
i N (z̃i;µµµ

(ν)
i , I)

≤ − log ai−
∑
ν

q(ν | z̃i,µµµi) logN (z̃i;µµµ
(ν)
i , I)︸ ︷︷ ︸

regression loss

+DKL(q(ν | z̃i,µµµi) ∥ πππi)︸ ︷︷ ︸
classification loss

,

where q(ν | z̃i,µµµi) is an auxiliary distribution defined as q(ν | z̃i,µµµi) ∝ N (z̃i;µµµ
(ν)
i , I). This choice of q ensures

that mixture components with mean vectors closer to z̃i have higher probabilities, while all components retain non-zero
probabilities. Consequently, every mixture component contributes to the training process, promoting higher component
usage and diversity in the model’s predictions.

Low-rank Projection. Increasing the number of mixture components K leads to a substantial growth in the output
dimensionality of the model, as it scales with K × H . To accommodate a high number of mixtures without incurring
excessive computational costs, we adopt a low-rank projection approach following the methodology of the prior work (Kim
et al., 2024).

In this approach, the model outputs low-rank mean vectors {µ̃µµ(ν)
i }Kν=1, which are then transformed using trainable parameters

M (ν) and s(ν): µµµ(ν)
i = M (ν)µ̃µµ

(ν)
i + s(ν). This decomposition allows for efficient computation of the squared distance

∥z̃i −µµµ
(ν)
i ∥2 by expanding it as follows:

∥z̃i −µµµi∥2 = ∥z̃i − (Mµ̃µµi + s)∥2

= z̃T
i z̃i + µ̃µµT

i (M
TM)µ̃µµi + sTs− 2(MT z̃i)

T µ̃µµi − 2z̃T
i s+ 2µ̃µµT

i M
Ts, (3)

where we omit ν for simplicity. This low-rank projection enables the model to handle a large number of mixture components
without significant overhead, thereby enhancing both the scalability and performance of the generative process.
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A.3. Pseudo-code for Training

Algorithm 1 Training

1: procedure BinaryMask(n,L,D)
2: Sample k1:L without replacement with total draws n.
3: for i = 1 to L do
4: mi,1:(D−ki) ← 1

5: mi,(D−ki+1):D ← 0

6: end for
7: return m

8: end procedure
9:

10: repeat
11: x ∼ pdata

12: r ∼ Uniform[0, 1)

13: n← ⌈γ(r) · L ·D⌉
14: m← BinaryMask(n,L,D)
15: z ←

∑
j (e(x:,j ; j)⊙ (1−m:,j))

16: Take a gradient descent step on:
17: ∇θLmask(x,m; θ)

18: until converged

A.4. Scalability of our generative modeling with RVQ depth
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Figure 3. Effect of RVQ depth on both the autoencoder’s reconstruction quality and our method’s generation quality. We compare two
configurations, rvq8 and rvq16, corresponding to RVQ depths of 8 and 16, respectively. As the RVQ depth increases, the autoencoder
achieves better reconstruction quality (lower rFID). Despite the increased number of tokens at deeper depth, our generative models show
better generation quality (lower FID), underscoring its scalability with deeper quantization.

B. Sampling details
B.1. Sampling with Confidence Scores

Inspired by confidence-based sampling with a choice temperature, as proposed in MaskGIT (Chang et al., 2022) and
GIVT (Tschannen et al., 2024), we unmask tokens based on the log probabilities computed for all masked tokens. These log
probabilities are derived from the squared distance between token embeddings and the sampled latent zi at each position i.
The log probability log p(xi,j | zi) is calculated as log p(xi,j | zi) ∝ logN

(
zi −

∑j−1
d=1 e(xi,d; d); e(xi,j ; j), σ

2
j I

)
for all

masked positions i and j. Here, σj denotes the standard deviation of latents at RVQ depth j pre-calculated during RVQ
training. The log probabilities are cumulatively summed across depths, and the confidence score is obtained by adding
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Gumbel noise, scaled by the choice temperature, to them. The choice temperature remains fixed throughout all inference
steps in our settings. Tokens with higher confidence scores are prioritized for unmasking and are filled earlier in the iterative
generation process. In particular, Table 4 lists the exact hyper-parameters used during sampling.

Table 4. Sampling hyper-parameters for the experiments in Figure 2. The cfg schedule indicates a linear scaling of the classifier-free-
guidance weight from the start value at the first step to the end value at the last step. Top-p is the nucleus-sampling threshold and τ is the
temperature.

Variant Steps cfg schedule Top-p τ

ResGen-rvq16 28 0.02→ 2.4 0.94 28.0
48 0.02→ 2.4 0.96 28.0
64 0.02→ 2.2 0.98 28.0

ResGen-rvq8 28 0.02→ 2.4 0.94 28.0
48 0.02→ 2.4 0.96 28.0
64 0.02→ 2.2 0.98 28.0

B.2. Ablation Studies on Sampling

We conducted ablation experiments to analyze the characteristics of our sampling algorithm, focusing on hyperparameters
such as sampling steps, top-p values, and temperature scale, and their impact on generation quality. As illustrated in
Figure 4a, increasing the number of sampling steps improves generation quality in both scenarios: with classifier-free
guidance (CFG) and without it. This demonstrates that additional steps enable the model to refine its outputs more effectively,
resulting in higher-quality generations.

Figure 4b explores the impact of top-p values on generation quality, highlighting different trends depending on the use
of CFG. With CFG, higher top-p values promote greater diversity in sampling, resulting in improved generation quality.
In contrast, without CFG, lower top-p values lead to reliance on the model’s confident predictions, thereby enhancing
generation quality. These findings suggest that adjusting the top-p value can be beneficial, particularly in the absence of
CFG.

Finally, Figure 4c highlights the influence of temperature on generation quality. A moderate temperature introduces
controlled stochasticity during sampling, mitigating the monotonicity inherent in RVQ-token unmasking, where the order is
guided by confidence scores. By adjusting the temperature, we achieve a balance between diversity and fidelity, optimizing
overall generation performance.
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(a) Step search
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(c) Temperature search

Figure 4. Configuration search results for sampling methods with (blue) and without (green) classifier-free guidance (CFG). (a) The
effect of varying the number of sampling steps, (b) the impact of different top-p values, and (c) the influence of temperature scaling on
confidence scores.
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B.3. Pseudo-code for Sampling

Algorithm 2 Sampling

1: procedure BinaryUnmask(n,L,D,m)
2: Compute the number of masked tokens qi =

∑D
j=1(1−mi,j)

3: Sample k1:L from a multivariate hypergeometric distribution with maximum number of selection qi, total draws∑
i qi − n.

4: for i = 1 to L do
5: m[i, (D − qi + 1):(D − qi + ki)]← 1

6: end for
7: return m

8: end procedure
9:

10: Initialize a fully masked sequence x ∈ NL×D

11: Initialize mask m ∈ {0, 1}L×D with zeros.
12: for t = 1, . . . , T do
13: z ∼ pθ(z|x⊙m)

14: Apply residual vector quantization for masked tokens:
15: x← RV Q(z,m)

16: r ← t
T

17: n← ⌈γ(r)× L×D⌉
18: if using random sampling then
19: m← BinaryUnmask(n,L,D,m)
20: else if using confidence-based sampling then
21: Update m by selecting n tokens with the confidence-based sampling from Section B.1.
22: end if
23: end for
24: Return x

C. Additional Analysis
C.1. Elaborating Differences with VAR

While both ResGen and VAR leverage the hierarchical structure of residual vector quantization (RVQ), they differ in how
this hierarchy is applied throughout the model, leading to key distinctions in representation, generation, and adaptability.

In terms of structure and resolution, VAR assigns each RVQ depth to a distinct spatial grid (e.g., 1×1, 2×2, up to the
original resolution), requiring a fixed depth–resolution hierarchy to be specified in advance. In contrast, ResGen applies all
quantization depths to refine a single latent grid whose length matches the VAE encoder’s output sequence. This difference
also induces the generative process. VAR generates tokens sequentially across depths, meaning that depth k can only be
generated after completing depth k − 1, although parallel sampling is possible within each depth. ResGen, on the other
hand, predicts cumulative embeddings that aggregate information from multiple depths in a single masked-generation step,
enabling fully parallel prediction along the sequence-length dimension.

Furthermore, ResGen offers greater flexibility for modeling data across diverse domains. Because VAR’s design depends on a
predefined resolution schedule, adapting it to domains with variable or arbitrary output lengths—such as text-to-speech—can
be non-trivial. In contrast, ResGen employs a length-agnostic tokenization scheme, enabling straightforward application to
such domains without requiring changes to the model structure. Finally, in terms of resolution flexibility, increasing the
quantization depth in RVQ (e.g., to 16) allows ResGen to represent information at lower effective spatial resolutions (e.g.,
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8×8) without extending the sequence length. Achieving comparable resolution is less direct in VAR’s depth-resolution
coupled structure, and it would require redefining the entire depth–resolution mapping.

C.2. Further comparison with faster MAR

To ensure a fair comparison with MAR and to directly address the question of how ResGen performs compared to faster
MAR variants, it is important to clarify a key difference in how the generation speed is reported. MAR evaluates efficiency
using throughput (i.e., seconds per image averaged over a large batch), whereas we report wall-clock time for generating a
single image on one A100 GPU. This discrepancy in measurement protocols largely explains the apparent difference in
reported latency.

Beyond the reporting protocols, fundamental differences in the generative process also distinguish ResGen from MAR.
MAR utilizes multi-token prediction followed by continuous diffusion steps, a process that allows for iterative refinement
of continuous-valued tokens. In contrast, ResGen performs disjoint token unmasking at each step without revising tokens
decided in prior steps. This architectural divergence contributes to differing performance characteristics, particularly
highlighted by the impact of classifier-free guidance (CFG). Furthermore, although MAR-B can perform well without CFG,
achieving its best results, especially with guidance, often requires significantly more sampling steps (e.g., 100+ diffusion
steps) compared to ResGen’s typically more constrained number of effective steps. This presents a trade-off between
MAR-B’s parameter efficiency and ResGen’s inference efficiency, particularly when aiming for high-quality results with
guidance.

To evaluate whether ResGen still outperforms speed-optimized MAR variants under these varied conditions and considering
these modeling differences, we conducted additional experiments in controlled settings. The first set of experiments reduced
the number of auto-regressive (AR) steps in MAR while keeping the diffusion step count fixed at 100. As shown in Table 5,
even with as few as 16 steps - the fastest configuration we tested - MAR-B achieved an FID of 4.11, substantially worse than
ResGen -rvq16 (FID 1.93), even if this MAR-B configuration took roughly 5.6 seconds per image.

Additionally, we reduced the number of diffusion steps in MAR (with AR steps fixed at 256). As shown in Table 6, MAR-B
with only 25 diffusion steps required approximately 22.5 seconds per image, yet still underperformed relative to ResGen,
with an FID of 3.38 compared to 1.93. These results highlight that ResGen consistently achieves better sample quality at
significantly lower latency, even when compared to aggressively optimized MAR configurations.

Table 5. FID (↓) for MAR-B/L when varying AR steps with fixed diffusion steps.

Model AR = 64 AR = 32 AR = 16

MAR-B 2.33 2.44 4.11
MAR-L 1.81 2.10 4.32

Table 6. FID (↓) for MAR-B/L when varying diffusion steps with fixed AR steps.

Model Diff = 100 Diff = 50 Diff = 25

MAR-B 2.31 2.39 3.38
MAR-L 1.78 1.83 2.22

C.3. Sensitivity to Masking Strategies

We investigated the sensitivity of ResGen to different masking schedules during training and sampling. Specifically, we
trained ResGen-rvq16 models (400K iterations) using three distinct masking strategies: cosine, circle, and exponential. At
sampling time, each model was evaluated both under its original training schedule and under a different one, resulting in a
cross-evaluation of masking strategies. All evaluations were conducted with and without classifier-free guidance (CFG),
using exponential moving average (EMA) checkpoints.

Interestingly, as shown in Table 7, the best performance (FID 9.53 at 64 steps with CFG) was achieved when training with
the circle masking strategy but sampling with the exponential strategy. This suggests that the choice of masking schedule
at inference time can have a meaningful impact, even when it differs from the training configuration. The exponential
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schedule, in particular, unmasks fewer tokens in the early stages and progressively increases the unmasking rate, creating a
coarse-to-fine decoding process. This appears to benefit ResGen by allowing it to first establish a stable global structure
before refining finer details. Notably, exponential sampling yielded strong performance even when the model was not trained
with it, highlighting its robustness and potential as a generally effective inference schedule for masked generation with RVQ
tokens.

Table 7. FID scores for ResGen-rvq16 under different combinations of training and sampling masking strategies. Sampling 64, 48, and 28
steps, with and without classifier-free guidance (CFG).

CFG Training Sampling 64 steps 48 steps 28 steps

w/o cosine cosine 28.13 28.01 29.18
w/o cosine exp 32.30 32.70 32.81
w/o circle circle 26.04 26.41 26.73
w/o circle exp 32.44 33.12 33.92
w/o exp exp 41.12 41.67 41.87

w/ cosine cosine 15.46 15.69 17.27
w/ cosine exp 9.66 9.78 10.08
w/ circle circle 10.09 10.35 10.44
w/ circle exp 9.53 9.72 9.98
w/ exp exp 12.63 12.65 12.83

Table 8. Performance of ResGen-rvq16 compared against leading masked generative models, MAGVIT-v2 and MaskBiT, on image
generation. Boldface denotes the best FID score; an asterisk (*) marks scores reported in their original papers.

Model Code length FID (w/ CFG) ↓ Inference Steps

ResGen-rvq16 64 1.93 63
MAGVIT-v2 256 1.78* 64
MaskBiT 256 1.62* 64

C.4. Comparison with Recent Masked Generative Models

We analyze ResGen’s performance against recent leading masked generative models, MAGVIT-v2 (Yu et al., 2024) and
MaskBit (Weber et al.). As shown in Table 8, these models achieve FID scores of 1.78 and 1.62, respectively. Our
ResGen-rvq16 (with CFG) achieves an FID of 1.93 with a comparable number of sampling steps. While their FID scores
are lower than 1.93 of our ResGen-rvq16, ResGen presents distinct advantages stemming from its architectural design and
modeling approach:

Modeling Cross-Depth Token Dependencies. ResGen predicts cumulative embeddings, thereby explicitly modeling
dependencies across the RVQ depth dimension. This contrasts with approaches like MAGVIT-v2 and MaskBit, which
predict independent groups of bits from Lookup-Free Quantization (LFQ). Notably, MaskBit’s own ablation study (Table 3b
in their work (Weber et al.)) indicates that performance can degrade as the number of independent bit groups increases larger
than two, suggesting potential challenges in scaling to very high fidelity (which would necessitate more bits or groups).
ResGen’s strategy of directly modeling these correlations may offer enhanced scalability, particularly for deep quantization
schemes. The benefit of this explicit correlation modeling is further supported by an internal ablation of ResGen (see Section
5.2.1 and Table 1, left): a variant predicting discrete tokens directly in parallel across all depths (instead of cumulative
embeddings) demonstrates strong performance, but slightly underperforms compared to our final ResGen using cumulative
embeddings, underscoring the efficacy of our chosen strategy.

Resolution and Depth Flexibility. ResGen’s proficiency in handling deep RVQ (e.g., 16-depth) facilitates the use of a
lower spatial resolution for the token map (e.g., 8× 8), while maintaining high reconstruction quality, compared to typical
VQ-based methods that use 16× 16 spatial tokens. The efficient RVQ depth handling in ResGen makes this trade-off viable,
offering valuable flexibility in balancing representational capacity and memory footprint.
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These distinctions highlight ResGen’s unique strengths in managing complex token dependencies and architectural flexibil-
ity.

D. Limitations and Future Directions
The proposed method demonstrates favorable memory efficiency alongside competitive sampling speed and generation
quality. One potential avenue for further improvement that is not explored in our work is the utilization of key-value (KV)
caching within the transformer architecture. By progressively filling tokens, positions that have been completely filled can
reuse their precomputed KV values, thereby reducing redundant computations. This strategy can significantly enhance the
sampling speed and reduce overall computational overhead, making it a promising direction for future research.

While our approach is intricately designed around Residual Vector Quantization (RVQ) tokens, recent developments in
quantization methods suggest that Finite Scalar Quantization (FSQ) may offer additional benefits (Mentzer et al., 2024).
Extending our approach to support FSQ, however, is not straightforward, as it involves distinct tokenization and embedding
processes. Nevertheless, exploring this direction could lead to novel quantization strategies and improved generative
performance.

Another key observation is that our approach achieves high-quality generation with a relatively small number of iterations.
We hypothesize that this efficiency, compared to conventional diffusion models, stems from the unmasking process rather
than a denoising process. Since predicting tokens based on completely unmasked tokens is likely easier than predicting
them based on noisy inputs, the model benefits from the simpler prediction task. Despite this empirical success, our work
lacks a theoretical justification for why such a low number of inference steps is sufficient. Providing a formal theoretical and
analytic explanation for this phenomenon represents another promising future direction.
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(a) VAR-d30 (FID=1.92) (b) MAR-H (FID=1.55) (c) DiT-XL/2 (FID=2.27) (d) ResGen, ours (FID=1.95)

Figure 5. Model comparison on ImageNet 256×256 benchmark.
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Figure 6. Randomly generated 256×256 samples by ResGen trained on ImageNet.

22


