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ABSTRACT

Model-based reinforcement learning (RL) often achieves higher sample efficiency
in practice than model-free RL by learning a dynamics model to generate sam-
ples for policy learning. Previous works learn a dynamics model that fits under
the empirical state-action visitation distribution for all historical policies, i.e., the
sample replay buffer. However, in this paper, we observe that fitting the dynamics
model under the distribution for all historical policies does not necessarily ben-
efit model prediction for the current policy since the policy in use is constantly
evolving over time. The evolving policy during training will cause state-action
visitation distribution shifts. We theoretically analyze how this distribution shift
over historical policies affects the model learning and model rollouts. We then pro-
pose a novel dynamics model learning method, named Policy-adapted Dynamics
Model Learning (PDML). PDML dynamically adjusts the historical policy mixture
distribution to ensure the learned model can continually adapt to the state-action
visitation distribution of the evolving policy. Experiments on a range of continuous
control environments in MuJoCo show that PDML achieves significant improve-
ment in sample efficiency and higher asymptotic performance combined with the
state-of-the-art model-based RL methods.

1 INTRODUCTION

Recent years have witnessed great successes of Reinforcement Learning (RL) in many complex
decision-making tasks, such as robotics (Polydoros & Nalpantidis, 2017; Yang et al., 2022) and chess
games (Silver et al., 2016; Schrittwieser et al., 2020). Among RL methods, a wide range of works in
model-free RL (Schulman et al., 2015; Lillicrap et al., 2016; Haarnoja et al., 2018; Fujimoto et al.,
2018; Hu et al., 2021) have shown promising performance. However, model-free methods can be
impractical for real-world scenarios (Dulac-Arnold et al., 2021) since massive samples from the real
environment are required for policy training, resulting in low sample efficiency.

Model-based RL is considered one of the solutions to improve sample efficiency. Most of the
model-based RL algorithms first use supervised learning techniques to learn a dynamics model based
on the samples obtained from the real environment, and then use this learned dynamics model to
generate massive samples to derive a policy (Luo et al., 2018; Janner et al., 2019). Therefore, it is
crucial to learn a dynamics model which can accurately simulate the underlying transition dynamics
of the real environment since the policy is trained based on the model-generated samples. If the
learned dynamics has a high prediction error, the model-generated samples will be biased, and the
policy induced by these samples will be sub-optimal. To reduce the model prediction error and
learn an accurate dynamics model, some advanced architectures such as model ensemble (Kurutach
et al., 2018; Chua et al., 2018) and multi-step model (Asadi et al., 2019) have been proposed to
improve the multi-step prediction accuracy of the learned dynamics model. Besides, the idea of
a generative adversarial network (GAN) (Goodfellow et al., 2014) is used to design the training
process of a dynamics model (Shen et al., 2020; Eysenbach et al., 2021) to reduce the distribution
mismatch between model-generated samples and real samples. Those previous works mentioned
above aim to learn a dynamics model that can fit all historical policies. To be precise, when training
the dynamics model, they randomly select the training data from the real samples obtained by all
historical policies in the replay buffer. This learned dynamics model needs to adapt to the state-action
visitation distribution of all historical policies to obtain a dynamics model that predicts transitions
accurately under different policies.
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However, since we only use the current newest policy to interact with the learned model to generate
samples for policy learning during model rollouts, learning such a dynamics model that fits under
(highly likely sub-optimal) historical policies may be unnecessary. Due to the state-action visitation
distribution shift during policy updating, the state-action pairs visited by historical policies may
not appear in the state-action visitation distribution of the current policy, and vice versa. Thus,
learning these samples may not benefit model rollouts. Besides, in many complex tasks, it is hard to
predict all samples from all historical policies due to limited model capacity (Abbas et al., 2020),
and as shown later in our paper, trying to learn every sample from historical policies can even hurt
the accuracy when predicting the transitions induced by the current policy. Therefore, there is an
objective mismatch between model learning and model rollouts — model learning tries to fit samples
from state-action visitation distribution for all historical policies, whereas model rollouts require
accurate prediction of the transitions induced by the current policy.

In this paper, we investigate how to learn an accurate dynamics model for model rollouts based on
existing samples. (a) To begin with, we confirm through experiments that although the dynamics
model learned by the previous methods has a low overall prediction error on all transitions obtained by
historical policies, its prediction error for the current newest policy can still be very high. This leads to
inaccurate model-generated samples which can hurt the sample efficiency and asymptotic performance
of the policy. (b) We then derive an upper bound of the expected performance gap between the model
rollouts and real environment rollouts. According to this upper bound, we analyze how the distribution
of historical policies affects model learning and model rollouts. The theoretical result suggests that
the historical policy distribution used for model learning should be more inclined towards policies that
are closer to the current policy rather than a uniform distribution over all historical policies to ensure
the model prediction accuracy for model rollouts. (c) Motivated by this insight, we propose a novel
dynamics model learning method named Policy-adapted Dynamics Model Learning (PDML). Instead
of learning a dynamics model that fits under a uniform mixture of all historical policies, PDML
adjusts the historical policy distribution by reducing the total variation distance between the historical
policy mixture and the current policy, then learns a policy-adapted dynamics model according to this
adjusted historical policy distribution. (d) We conduct systematic and extensive experiments on a
range of continuous control benchmark MuJoCo environments (Todorov et al., 2012). Experimental
results show that PDML significantly improves the sample efficiency and asymptotic performance of
the state-of-the-art model-based RL methods.

Summary of contributions: (1) Through detailed experimental results, we establish that learning
a dynamics model that fits a uniform mixture of all historical policies may not be accurate enough
for model rollouts. (2) We propose an upper bound of an expected performance gap between the
model rollouts and the real environment rollouts, and theoretically analyze how the distribution
over historical policies affects model learning and model rollouts. (3) We propose Policy-adapted
Dynamics Model Learning (PDML), which dynamically adjusts the distribution over the historical
policy sequence and allows the learned model to continuously adapt to the evolving policy. (4)
Experimental results on a range of MuJoCo environments demonstrate that PDML can achieve
significant improvement in sample efficiency and higher asymptotic performance combined with the
state-of-the-art model-based RL methods.

2 BACKGROUND

2.1 PRELIMINARIES

Reinforcement learning. Consider a Markov Decision Process (MDP) defined by the tuple
(S,A, T, r, γ), where S is the state space, A is the action space, and T (s′|s, a) is the transition
dynamics in the real world. The reward function is denoted as r(s, a) and γ is the discount factor.
Reinforcement learning aims to find an optimal policy π which can maximize the expected sum of
discounted rewards

π = argmax
π

E st∼T (·|st−1,at−1)

at∼π(a|st)

[ ∞∑
t=0

γtr(st, at)

]
. (1)

In model-based RL, the transition dynamics T in the real world is unknown, and we aim to construct a
model T̂ (s′|s, a) of transition dynamics and use it to improve the policy. In this paper, we concentrate
on the Dyna-style (Sutton, 1990) model-based RL, which uses the learned dynamics model to generate
samples and train the policy.
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Policy mixture. During policy learning, we consider the historical policies at iteration step k as a
historical policy sequence Πk = {π1, π2, ..., πk}. For each policy in the policy sequence, we denote
its state-action visitation distribution as ρπi(s, a), and the policy mixture distribution over the policy
sequence as wk = [wk

1 . . . , w
k
k ]. Then the state-action visitation distribution of the policy mixture

πmix,k = (Πk,wk) is ρπmix,k(s, a) =
∑k

i=1 w
k
i ρ

πi(s, a) (Hazan et al., 2019; Zhang et al., 2021).

2.2 DYNAMICS MODEL LEARNING IN MODEL-BASED RL

Learning a dynamics model is the most crucial part of model-based RL since the ground-truth
transition dynamics is unknown and the policy must be updated based on the samples generated
by the learned dynamics model. Previous works learn the dynamics model by randomly selecting
training data from the samples obtained by the historical policy sequence Πk, which means the
distribution of policy mixture is a random distribution: wk

i = 1
k . The learned dynamics model is

trained based on the following state-action visitation distribution

ρπmix,k(s, a) =

k∑
i=1

1

k
ρπi(s, a). (2)

This model tries to fit all the samples obtained by sampling the state-action visitation distribution
corresponding to all policies in the historical policy sequence, so the learned dynamics model is
(hopefully) able to predict the transition for any state-action input.

However, as shown in Figure 1a and 1b, since the policy is constantly evolving, the state-action
visitation distribution of historical policies may have a huge shift from the current policy. There
is little overlap between the state-action visitation distribution of policies at different environment
steps. The state-action pairs visited by historical policies may not appear in the state-action visitation
distribution of the current policy. During model rollouts, we only use the current policy to interact
with the learned dynamics model to generate samples. Thus, learning these samples may not benefit
model rollouts. When the model capacity is not large enough, learning these samples may even be
detrimental to the learning of the samples collected by the current policy.
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Figure 1: (a) and (b): visualization of the state-action visitation distribution of different historical
policies and the current policy using t-SNE. Env step 130k and env step 100k are the current policy.
More details are shown in Appendix F.2. (c) and (d): the overall error curves and current error curves
of MBPO on HalfCheetah and Hopper, respectively.
We conduct an experiment using a state-of-the-art model-based RL method called MBPO (Janner
et al., 2019) on four MuJoCo (Todorov et al., 2012) environments HalfCheetah, Hopper, Walker2d,
and Ant. MBPO first trains a model based on the real samples and then uses the model to roll out
multiple samples for policy learning. The architecture of the dynamics model is a 4-layer neural
network with a hidden size of 200, which is a very common architecture used in many recent model-
based methods (Yao et al., 2021; Froehlich et al., 2022; Li et al., 2022). We present the overall error
curves and the current error curves during learning steps on HalfCheetah and Hopper in Figure 1c
and 1d. Here the overall error means the model prediction error for all historical policies during
training. It is evaluated on an evaluation dataset which contains 1000 ×N samples from the real
environment. N is the number of historical policies in the historical policy sequence. The current
error is the model prediction error for the current policy, which is evaluated using L2 error on the
1000 samples obtained by the current policy from the real environment. The error curves for more
environments can be found in Appendix F.1.

From Figure 1c and 1d, we observe that there is a gap between the overall error and the current error.
This means although the agent can learn a dynamics model which is good enough for all samples
obtained by historical policies, this is at the expense of the prediction accuracy for the samples
induced by current policy. Since we only use the current policy during model rollouts, this will lead
to inaccurate model-generated samples and misleading policy learning.
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Therefore, learning a dynamics model that adapts the state-action visitation distribution for all
historical policies, in other words, a random historical policy mixture distribution used for model
learning, is not the most efficient way for model-based RL (especially for task-specific problems).
In the next section, we will analyze how the policy mixture distribution affects the performance of
model-based RL.

3 PERFORMANCE GAP INFLUENCED BY POLICY MIXTURE DISTRIBUTION

In this section, we provide a theoretical analysis of how the policy mixture distribution affects the
performance of model-based RL. First, we derive a theorem that upper bounds the performance gap
between the real environment rollouts and the model rollouts under any current policy π.

Theorem 3.1 Given the historical policy mixture πmix,k = (Πk,wk) at iteration step k, we de-
note ξρi

= DTV (ρ
π
T (s, a)||ρ

πi

T (s, a)) as the state-action visitation distribution shift and ξπi
=

Es∼v
πmix
T̂

[DTV (π(a|s)||πi(a|s))] as the policy distribution shift between the historical policy πi and
current policy π respectively, where vπmix

T̂
is the state visitation distribution of the policy mixture

under the learned dynamics model T̂ . rmax is the maximum reward the policy can get from the real
environment, γ is the discount factor, and Vol(S) is the volume of state space. Then the performance
gap between the real environment rollout J(π, T ) and the model rollout J(π, T̂ ) can be bounded as:

J(π, T )− J(π, T̂ ) ≤ 2γrmaxE(s,a)∼ρπ
T
[DTV (T (s

′|s, a)||T̂ (s′|s, a))]

+ rmax

k∑
i=1

wk
i (γVol(S)ξρi

+ 2ξπi
)

+ 2rmaxDTV (ρ
πmix

T̂
(s, a)||ρπ

T̂
(s, a))

(3)

Proof. See Appendix D. □

Remarks.
(1) The first term is about model prediction error. This term suggests that the model needs to adapt
to the state-action visitation distribution of the current policy to reduce the model prediction error,
since this term is the expectation of prediction error of the learned dynamics model T̂ under the
current policy state-action visitation distribution ρπT .
(2) The second term shows the effect of the policy mixture distribution on model rollout. This item
contains two distribution shifts: (2a) state-action visitation distribution shift ξρi

and (2b) policy
distribution shift ξπi

between the historical policy and current policy. It should be noted that ξρi
is

induced by ξπi
, so it is reasonable to believe that a historical policy with a larger ξπi

will have a
larger ξρi

. Both ξρi
and ξπi

are fixed since historical policies and the current policy are immutable
during model learning and model rollout. Therefore, to reduce this term, we can only adjust the
policy mixture distribution wk. Since the distribution shift varies across historical policies and the
current policy, it is obvious that the random distribution wk

i = 1
k is not the best choice.

(3) The last term is related to the model sample buffer, which is used for policy learning. To maximize
sample utilization, the model-generated samples obtained by the historical policies will be maintained
in the model sample buffer until they are replaced by the new samples generated by the current policy.
Therefore, the distribution of simulated samples in the model buffer is not exactly the same as the
simulated sample distribution of the current policy, but is often mixed with the simulated sample
distribution of the historical policies. This makes it necessary to adjust the sample distribution in the
model sample buffer to make it close to the simulated sample distribution of the current policy during
the policy learning process. This has been studied in many model-based and model-free methods
(Schaul et al., 2016; Liu et al., 2021; Huang et al., 2021; Mu et al., 2021) and is out of the scope of
this paper, and we focus on reducing the first two terms related to model learning.

The first two items on the right-hand side of Equation (3) provide useful insights on model learning.
This first term points out the goal of model learning: to make accurate predictions for the current
policy. The second item further demonstrates that to achieve this goal, we should adjust the policy
mixture distribution to reduce the distribution shift between the historical policy mixture and the
current policy. According to the second term, we have the following proposition.

4



Under review as a conference paper at ICLR 2023

Proposition 3.2 The performance gap can be reduced if the weight wk
i of each policy πi in the

historical policy sequence Πk is negatively related to state action visitation distribution shift ξρi
and

the policy distribution shift ξπi
between the historical policy πi and current policy π instead of an

average weight wk
i = 1

k .

The proof is in Appendix E. Proposition 3.2 illustrates how we should adjust the policy distribution
to help the learned dynamics model adapt to the current policy. This naturally motivates our method,
which is described in the next section.

4 POLICY-ADAPTED DYNAMICS MODEL LEARNING

In this section, we introduce our model learning method called Policy-adapted Dynamics Model
Learning (PDML). PDML is designed to reduce the model prediction error during model rollouts,
and it contains two parts. The first part is adjusting the policy mixture distribution into a non-
uniform distribution, and the second part is learning the dynamics model based on this non-uniform
distribution. The pseudo-code is in Algorithm 1.

Algorithm 1 Policy-adapted Dynamics Model Learning (PDML)

Require: current policy proportion hyperparameter α, interaction epochs I
1: Initialize historical policy sequence k ← 0,Πk ← ∅
2: for I epochs do
3: Interact with the environment using current policy πc, add samples into real sample buffer De

4: Add current policy πc into historical policy sequence: πk ← πc, Πk ← {Πk−1, πk}
5: Adjust the historical policy mixture distribution wk = [wk

1 , . . . , w
k
k ] via Equation (4) and (5)

6: Normalize wk ← wk/∥wk∥
7: Sample a training data batch of (sn, an, r, sn+1) from De according to wk

8: Train dynamics model T̂θ via Equation (7), use current policy πc to perform model rollouts
9: k ← k + 1

10: end for

4.1 POLICY MIXTURE DISTRIBUTION ADJUSTMENT

In this section, we introduce a mechanism to adjust the policy mixture distribution. According to
our Theorem 3.1, to minimize the performance gap, one may set the weight of the policy with the
smallest ξρi

and ξπi
to be 1 and the weights of other policies in the historical policy sequence to be

0. However, this is not the best approach in practice since each policy can only interact with the
environment for very few steps in model-based RL. This means each policy can provide very limited
samples for model learning. If we only use a small number of samples from just one policy, it is
difficult to learn accurate transition dynamics for the current policy.

Weights design for historical policies. In order to maximize the use of limited samples to estimate
the transition dynamics, inspired by Proposition 3.2, we design the weight of each policy in the
historical policy sequence Πk = {π1, π2, ..., πk} except for the current policy πc (i.e., πk ∈ Πk) as
follows:

wk
i =

ξπi

−1∑k
n=1 ξπn

−1
, ξπi

= Es∼v
πmix
T̂

[DTV (πc(·|s)||πi(·|s))] , ∀i ∈ [k − 1], (4)

where ξπi
is the policy distribution shift between historical policy πk

i and the current policy πc; it is
also one of the distribution shifts in the second term of Equation (3). We use [k−1] := {1, . . . , k−1}
to denote the integers from 1 to k − 1. We only use the policy distribution shift ξπi

(and not the
state-action visitation distribution shift ξρi ) because estimating the state-action visitation distribution
shift using limited real samples is difficult, and thus the estimation may be inaccurate. Besides, as
mentioned in the remarks of Theorem 3.1, state-action visitation distribution is induced by the policy,
so it is reasonable to believe that a historical policy with a larger ξπi

will have a larger ξρi
.

Weight design for the current policy. In model-based RL, the current policy becomes a historical
policy after interacting with the environment and is added to the historical policy sequence (see
Algorithm 1). The total variation distance between the current policy and itself is 0, so Equation (4)
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cannot be used to calculate the weight of the current policy. For the weight of the current policy wk
k ,

we use the following equation:

wk
k =


α
∑k−1

i=1 wk
i , if α

∑k−1
i=1 wk

i > max
i∈[k−1]

{wk
i }

max
i∈[k−1]

{wk
i }, if α

∑k−1
i=1 wk

i ≤ max
i∈[k−1]

{wk
i }

(5)

where α is a hyperparameter to control the proportion of the weight of the current policy to the total
weight over the historical policy sequence. Equation (5) ensures that the weight of the current policy
wk

k is always the largest in the historical policy sequence. Before each model learning iteration, we
adjust the policy mixture distribution according to Equation (4) and Equation (5) and normalize the
weights wk = [wk

1 , ..., w
k
k ] to make sure they sum to 1. The details are illustrated in Algorithm 1.

Estimation of the policy distribution shift ξπi
∀i ∈ [k− 1]. Given a state sn, we define the output

of policy πi as a multivariate Gaussian distribution N (µπn
i
,Σπn

i
). In order to make the empirical

estimation more accurate, we use each historical policy to traverse all N samples in the real sample
buffer and output the action distribution corresponding to each state. Then we use the inequality
between KL divergence and total variation distance to estimate ξπi :

ξπi
=

1

N

N∑
n=1

DTV (πc(·|sn)||πi(·|sn))

≤ 1

2N

N∑
n=1

√
tr(Σ−1

πn
c
Σπn

i
− I) + (µπn

c
− µπn

i
)TΣ−1

πn
i
(µπn

c
− µπn

i
)− log det(Σ−1

πn
c
Σπn

i
)

(6)

Novelty of PDML compared to prioritized experience replay proposed in model-free RL. In
model-free RL, prioritized experience replay methods only need to consider how to improve the
policy based on existing samples. Therefore, it is only necessary to select the sample that can bring the
greatest improvement to the policy, and a weighting is designed for each sample. In model-based RL,
the policy is learned based on model-generated samples, and the accuracy of these model-generated
samples determines the sub-optimality of the policy. Thus, in the model-learning part, we focus
on the model prediction accuracy. Our theoretical analysis shows that we should consider whether
the state-action visitation distribution that generates the samples is close to the current policy when
reweighting samples. Although a sample can bring a great improvement to the current policy (the
TD value is high), if this sample is not in the state-action visitation distribution of the current policy,
this sample will not be encountered during model rollouts. Then learning this sample will not bring
any benefit to model learning and policy learning. Therefore, we reweight the state-action visitation
distribution that generates a batch of samples according to ξπi

, rather than a single sample as in
model-free RL.

4.2 DYNAMICS MODEL LEARNING

After adjusting the policy mixture distribution, we learn the dynamics model based on this adjusted
distribution. Although our method can be applied to learn any type of dynamic model, here we choose
to use the current state-of-the-art structure probabilistic dynamics model ensemble Chua et al. (2018):
{T̂ 1

θ , ..., T̂
B
θ }. θ is the parameters of each dynamics model in the ensemble, and B is the ensemble size.

Given a (sn, an) pair as an input, the output T̂ b
θ of each network b in the ensemble is the Multivariate

Gaussian Distribution of the next state: T̂ b
θ (sn+1|sn, an) = N (µb

θ(sn, an),Σ
b
θ(sn, an)) Before each

model learning iteration, we sample the training data batch from the real sample buffer according to
the adjusted policy mixture distribution wk, and train the dynamics model using maximum likelihood:

L(θ) =
N∑

n=1

[µb
θ(sn, an)− sn+1]

⊤Σb
θ

−1
(sn, an)[µ

b
θ(sn, an)− sn+1] + log detΣb

θ(sn, an) (7)

During model rollouts, we use the current policy πc as the rollout policy and sample the initial states
from the real sample buffer according to the adjusted policy mixture distribution wk.

5 EXPERIMENT

In this section, we will first compare our method with the previous state-of-the-art (including both
model-free and model-based) baselines. We demonstrate that after combining with SOTA model-
based method, PDML improves SOTA sample efficiency and SOTA asymptotic performance for
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Figure 2: Performance curves for our method (PDML-MBPO) and other baseline methods on four
MuJoCo environments. Our method, AMPO, MBPO and VaGram are model-based methods, while
SAC and REDQ are model-free methods. The dashed line indicates the asymptotic performance
of SAC. The solid lines indicate the mean over 8 seeds and shaded regions correspond to the 95%
confidence interval among seeds. We evaluate the performance every 1k interaction steps.

model-based RL. Then we compare our method with three SOTA prioritized experience replay
methods to indicate the advantage of our distribution adjustment method for model learning. Lastly,
we conduct a systematic ablation study to analyze the model errors of PDML.

5.1 COMPARISON WITH STATE-OF-THE-ARTS

In this section, we compare our method with several previous state-of-the-art (SOTA) baselines.
For model-based methods, we choose MBPO (Janner et al., 2019), AMPO (Shen et al., 2020), and
VaGraM (Voelcker et al., 2022). MBPO is the SOTA model-based method, and our method is
combined with MBPO for the model learning part. We name our method PDML-MBPO and we
provide the pseudo code in Appendix A. AMPO is another SOTA model-based method that uses
unsupervised model adaptation during model learning to reduce the prediction error. VaGraM is a
SOTA value equivalence model-based method. Instead of accurately learning each dimension in
the dynamics, it aims to learn the dimensions which impact policy learning most. In other words,
this method also learns a locally accurate model. Both AMPO and VaGraM are implemented based
on MBPO. PDML-MBPO, AMPO, and VaGraM share the same model architecture and policy
part; only the model learning part is different. For model-free methods, we compare with two
methods. The first one is SAC (Haarnoja et al., 2018), which is the policy part of all model-based
and model-free baselines we used and is one of the SOTA model-free methods. The second one
is REDQ (Chen et al., 2020), which improves the Update-To-Data (UTD) ratio of the model-free
method and achieves higher sample efficiency than SAC. The implementation details of our method
are in Appendix G.1. We conduct experiment on four complex MoJoCo-v2 (Todorov et al., 2012)
environments, the performance curves are shown in Figure 2.

Results: (1) Improving SOTA sample efficiency. PDML-MBPO outperforms all existing state-of-
the-art methods, including model-based and model-free, in sample efficiency in all four environments.
In Hopper, Walker2d, and Humanoid, PDML-MBPO achieves very impressive sample efficiency
improvements, up to a 2× improvement in Hopper and Humanoid compared to the SOTA model-based
methods. For example, our method using only 30k steps to achieve 3000 while other model-based
methods need almost 60k steps. Besides, its sample efficiency is also higher than REDQ which is
modified for sample-efficient model-free RL. (2) Improving SOTA asymptotic performance for
Model-based RL. In addition, PDML-MBPO obtains significantly better asymptotic performance
compared to other state-of-the-art model-based methods. It is worth noting that the asymptotic
performance of PDML-MBPO is very close to SAC in three environments (Hopper, Walker2d, and
Humanoid) and is even better than SAC occasionally. Furthermore, our method achieves impressive
improvement in the most complex environment Humanoid. These indicate the effectiveness of our
proposed model learning method.

Discussion of computational cost. PDML requires saving all historical policies as well as computing
their distances to the current policy for adjusting their weights (as shown in Equation 6). This creates
an additional memory overhead of storing historical policy networks (k×policy network size) and an
additional computational overhead of computing the distances, for each iteration k. In PDML-MBPO,
we observe storing historical policy networks costs a memory overhead of no more than k×1 MB,
compared with the high memory occupied by the model sample buffer, this cost is very small. Besides,
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Compared to MBPO, the training time of PDML-MBPO does not increase significantly, we provide
the training time on four environments in Appendix F.8.

5.2 COMPARISON WITH MODEL-FREE EXPERIENCE REPLAY METHODS

We compare with the other three prioritized experience replay methods in model-free RL to indicate
the advantage of our PDML. The first one is Prioritized Experience Replay (PER) (Schaul et al.,
2016), which weighs the samples according to their TD-error. The second method is RECALL (Goyal
et al., 2018), which chooses the top k highest value sample. They use this to recall the samples that
induce the high-value trajectories and train the policy. We implement this by choosing the top 25%
highest Q value samples to train the model and as model rollout initial states. The third method is
Model-augmented Prioritized Experience Replay (MaPER) (Oh et al., 2022), which is an extension
of PER using both TD-error and model prediction error to weight the samples for model learning.
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Figure 3: The comparison of model-free experi-
ence replay methods on Hopper and Walker2d. The
experiments are run for 8 random seeds.

The experiment results are shown in Figure 3a
and 3b. Our PDML significantly outperforms
all three methods on both sample efficiency and
asymptotic performance. We believe these meth-
ods adjust the weights for each sample in the
training data rather than each policy. This will
cause the samples belonging to the same state-
action visitation distribution to have different
weights, and the samples with higher weights
may not necessarily appear in the state-action
visitation distribution of current policy. There-
fore, the learned model cannot be adapted to current policy’s state-action visitation distribution, and
the model prediction error during model rollouts cannot be reduced. In the model learning process, it
is crucial to adapt to current policy’s state-action visitation distribution according to our theory. This
experiment result indicates our theory’s correctness and our method’s effectiveness.
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Figure 4: (a), (b) and (c) display one-step (model-prediction) error for PDML-MBPO and MBPO.
(d) demonstrates the compounding error (i.e., the difference between the h-step state in the model
rollout trajectory and the real environment rollout trajectory) of PDML-MBPO and MBPO over 20
model rollout trajectories.

5.3 MODEL ERROR ANALYSIS

To further verify the impact of PDML, we compare the one-step prediction error and the compounding
error of the policy-adapted model learned by PDML-MBPO and the original dynamics model learned
by MBPO.

One-step prediction error. As shown in Figure 4a, 4b and 4c, we evaluate the model prediction
error for the current policy on Hopper, HalfCheetah, and Walker2d. We evaluate the learned model
every 1000 environment steps using L2 error on the 1000 samples obtained by the current policy
from the real environment. The error curves show that the one-step prediction error for the current
policy of the policy-adapted model is much smaller than that of the original dynamics model, which
means the model-generated samples of PDML-MBPO are more accurate than MBPO, so the policy
induced by PDML-MBPO can perform better.

Compounding error. We also compare the multi-step model rollouts compounding error of the
policy-adapted model and the original dynamics model. This directly determines the accuracy of
the model-generated samples in each model rollout trajectory. Figure 4d shows the compounding
error curves of the policy-adapted model and the original dynamics model on Hopper. We calculate
the h-step compounding error as the difference between the state at each rollout step h in the model
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rollout trajectory and the real environment rollout trajectory using L2 error. The results demonstrate
that the policy-adapted model has much a smaller compounding error than the original dynamics
model, which means the policy-adapted model has a more robust multi-step planning capability than
the original dynamics model learned by MBPO.

6 RELATED WORK

Model adaptation. Several adaptive control approaches (Sastry & Isidori, 1989; Pastor et al.,
2011; Meier et al., 2016) aim to train a dynamics model that can adapt online. However, scaling such
methods to complex tasks is exponentially difficult. Adaptive learning in the dynamics model has also
been studied in inverse dynamics learning tasks. A drifting Gaussian process (GP) keeps a history of
a constant number of recently observed data points and updates its hyper-parameters at each time
step (Meier & Schaal, 2016). The drifting Gaussian process (GP) predicts the local dynamics errors
to control the learning rate (Meier et al., 2016), resulting in more online hyperparameter learning and
adaptive function approximator robustness. Our method is different from these works that we learn a
forward model which can always adapt to the evolving policy. Some studies focus on an adaptive
model predictive control for constrained linear systems (Tanaskovic et al., 2013) and guaranteeing
safety, robustness, and convergence in a quadrotor helicopter testbed (Aswani et al., 2012). Our
work closely relates to a model adaptation in forward models from Fu et al. (2016); Nagabandi et al.
(2018a;b); Lee et al. (2020); Guo et al. (2022). These methods use meta-learning to train a dynamics
model as a prior and then combine it with recent data to rapidly adapt to the new task. However, these
works are mainly about model transfer under different dynamics. Different from their works, we
study learning an accurate dynamics model for policy learning under a fixed transition dynamics, and
we also provide theoretical analysis to motivate our method. More related works about model-based
RL are provided in Appendix B.

Prioritized experience replay. Another related line of work is prioritized experience replay in
reinforcement learning. This solves a classic issue in model-free RL. Previous work Katharopoulos &
Fleuret (2018) claimed that emphasizing essential samples in the replay buffer can benefit off-policy
RL algorithms. Prioritized Experience Replay (PER) Schaul et al. (2016) measured the importance
of sample by temporal-difference (TD) error. Based on this work, many methods are proposed to
perform prioritized sampling. Some methods (Brittain et al., 2019; Lee et al., 2019; Fujimoto et al.,
2020; Jiang et al., 2021; Liu et al., 2021; Lahire et al., 2021; Oh et al., 2022) extend or explain PER
from different perspectives, and others (Novati & Koumoutsakos, 2019; Fedus et al., 2020) propose
to prioritize samples according to their age. Our work is different from experience replay works in
model-free RL in the following points: (1) In model learning, we re-weight the state-action visitation
distribution that generates a batch of samples, rather than a single sample as in model-free RL. (2)
During weighting, we use the distance between the policy distribution that each sample generated
from and the policy distribution of the current policy as a metric, rather than how much improvement
each sample can bring to the policy. (3) We provide very detailed theoretical result to analyze how to
reweight the samples for model learning.

7 CONCLUSION AND DISCUSSION

In this paper, we introduce a novel dynamics model learning method for model-based RL called
PDML, which learns a policy-adapted dynamics model based on a dynamically adjusted historical
policy mixture distribution. This policy-adapted dynamics model can continually adapt to the state-
action visitation distribution of the evolving policy. This makes it more accurate than the previous
dynamics model when making predictions during model rollouts. We also provide theoretical
analysis and experimental results to motivate our method. After combining with the state-of-the-art
model-based method MBPO, PDML achieves better asymptotic performance and higher sample
efficiency than previous state-of-the-art model-based methods in MuJoCo. We believe our work
takes an important step toward more sample-efficient RL. One limitation of our work is that the
generalization ability of the policy-adapted dynamics model may not be strong enough because we
focus on fitting the samples induced by the evolving policy to improve the convergence speed of the
policy. Therefore, our method is efficient for task-specific problems but may not perform well for
some exploration-oriented tasks. We leave this direction to future work.
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Supplementary Material

A PSEUDO CODE OF PDML-MBPO

In Algorithm 2, we demonstrate the pseudo code of PDML-MBPO.

Algorithm 2 PDML-MBPO

Require: current policy proportion hyperparameter α, interaction epochs I , rollout horizon h
1: Initialize historical policy sequence k ← 0,Πk ← ∅
2: for I epochs do
3: Interact with the environment using current policy πc, add samples into real sample buffer De

4: Add current policy πc into historical policy sequence: πk ← πc, Πk ← {Πk−1, πk}
5: Adjust the historical policy mixture distribution wk = [wk

1 , . . . , w
k
k ] via Equation (4) and (5)

6: Normalize wk ← wk/∥wk∥
7: Sample a training data batch of (sn, an, r, sn+1) from De according to wk

8: Train dynamics model T̂θ via Equation (7)
9: for M model rollouts do

10: Sample initial rollout states from real sample buffer De according to wk

11: Use current policy πc to perform h-step model rollouts, add model-generated samples into
model sample buffer Dm

12: end for
13: for G gradient updates do
14: Update current policy πc using model-generated samples from model sample buffer Dm

15: end for
16: k ← k + 1
17: end for

B ADDITIONAL RELATED WORK

Model-based reinforcement learning. Model-based RL is proposed as a solution to reduce the
sample complexity of model-free RL by learning a dynamics model. Current model-based RL mainly
focuses on better model learning and better model usage. To learn a model with more accuracy, many
model architectures have been proposed, such as linear models Parr et al. (2008); Sutton et al. (2008);
Kumar et al. (2016) and nonparametric Gaussian processes Rasmussen & Kuss (2004); Deisenroth
& Rasmussen (2011). With the rapid development of deep learning, neural networks have become
a popular choice of model architecture in recent years Kurutach et al. (2018); Chua et al. (2018).
Moreover, to reduce the model error, a multi-step model Asadi et al. (2019) was designed to directly
predict the transition of an action sequence input, and Shen et al. (2020) used unsupervised model
adaptation to reduce the potential data distribution mismatch. For better model usage, Janner et al.
(2019) proved that short model rollouts could avoid the model error and improve the quality of model
samples. Based on this, Lai et al. (2020) proposed a bidirectional model rollout scheme to avoid
the model error further. Furthermore, model disagreement was used to decide when to trust the
model Pan et al. (2020) and regularize the model samples Yu et al. (2020). Besides, Luo et al. (2018)
provided a theoretical guarantee of monotone expected reward improvement of model-based RL.
Rajeswaran et al. (2020) cast model-based RL as a game-theoretic framework by formulating the
optimization of model and policy as a two-player game. To save time tuning hyperparameters, Lai
et al. (2021) designed an automatic scheduling framework. Abbas et al. (2020) systematically studied
how the model capacity affects the model-based methods.

Value-equivalence dynamics model. Value-equivalence dynamics model has been noted by several
authors in recent years. Since learning an accurate dynamics model of the world remains challenging
and often requires computationally costly and data-hungry models (Lovatto et al., 2020), Farahmand
et al. (2017) proposed value-aware model learning which aims to learn a value-equivalence model
that induces the same Bellman operator as the real environment, rather than accurately predicting
transitions. However, they replaced the value function with the supremum over a function space, and it
is difficult to find a supremum for a function space parameterized by complex function approximators
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like neural networks. Based on this work, Farahmand (2018) proposed Iterative Value-Aware Model
Learning (IterVAML) which replaced the supremum over a value function space with the value
function at current iteration. Besides, Grimm et al. (2020) introduced value equivalence principle and
analysed how the space of possible solutions on model learning is impacted by the choice of policies
and functions. However, despite very detailed theoretical guarantees, there is still a performance gap
between the value-equivalence dynamics model in the practical implementation and the model trained
by the maximum likelihood estimate (Lovatto et al., 2020). Eysenbach et al. (2021) introduced a novel
objective to jointly train the model and the policy. Voelcker et al. (2022) proposed Value-Gradient
weighted Model loss (VaGraM) which approximated the value-aware model loss function with a
Taylor expansion of value function and achieved SOTA performance across all value-aware model
learning methods. Like our method, VaGraM also tries to learn a locally accurate dynamics model.
The difference is that our method aims to learn the samples that the current policy may encounter as
accurately as possible, while VaGraM is to learn the dimensions in the state that can bring the greatest
improvement to policy learning. Experimental results demonstrate that our method outperforms
VaGraM in practice.

C USEFUL LEMMA

Lemma C.1 Shen et al. (2020) Assume the initial state distributions of the real dynamics T and
the learned dynamics model T̂ are the same. For any state s′, assume Fs′ is a class of real-valued
bounded measurable functions on state-action space, such that T̂ (s′|·, ·) : S × A → R is in Fs′ .
Then the gap between two different state visitation distributions vπ1

T (s′) and vπ2

T̂
(s′) can be bounded

as follows:

|vπ1

T (s′)− vπ2

T̂
(s′)| ≤ γE(s,a)∼ρ

π1
T
|T (s′|s, a)− T̂ (s′|s, a)|+ γdFs′ (ρ

π1

T , ρπ2

T̂
) (8)

Proof. For any state visitation distribution vπT , we have:

vπT (s
′) = (1− γ)v0(s

′) + γ

∫
(s,a)

ρπT (s, a)T (s
′|s, a)dsda, (9)

where v0 is the probability of the initial state being the state s′. Then the gap between two different
state visitation distributions is:

|vπ1

T (s′)− vπ2

T̂
(s′)|

=γ

∣∣∣∣∣
∫
(s,a)

ρπ1

T (s, a)T (s′|s, a)− ρπ2

T̂ (s,a)
T̂ (s′|s, a)dsda

∣∣∣∣∣
=γ

∣∣∣E(s,a)∼ρ
π1
T
[T (s′|s, a)]− E(s,a)∼ρ

π2
T̂

[T̂ (s′|s, a)]
∣∣∣

≤γ
∣∣∣E(s,a)∼ρ

π1
T
[T (s′|s, a)− T̂ (s′|s, a)]

∣∣∣+ γ
∣∣∣E(s,a)∼ρ

π1
T
[T̂ (s′|s, a)]− E(s,a)∼ρ

π2
T̂

[T̂ (s′|s, a)]
∣∣∣

≤γE(s,a)∼ρ
π1
T
|T (s′|s, a)− T̂ (s′|s, a)|+ γdFs′ (ρ

π1

T , ρπ2

T̂
)

(10)

□

D PROOF OF MAIN THEOREM

Theorem D.1 Given the historical policy mixture πmix,k = (Πk,wk) at iteration step k, we denote
ξρi = DTV (ρ

π
T (s, a)||ρ

πi

T (s, a)) and ξπi = Es∼v
πmix
T̂

[DTV (π(a|s)||πi(a|s))] as the state-action
visitation distribution shift and the policy distribution shift between the historical policy πi and
current policy π respectively, where vπmix

T̂
is the state visitation distribution of policy mixture under the

learned dynamics model. rmax is the maximum reward the policy can get from the real environment, γ
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is the discount factor, and Vol(S) is the volume of state space. Then the performance gap between
the real environment rollout J(π, T ) and the model rollout J(π, T̂ ) can be bounded as follows:

J(π, T )− J(π, T̂ ) ≤ 2γrmaxE(s,a)∼ρπ
T
[DTV (T (s

′|s, a)||T̂ (s′|s, a))]

+ rmax

k∑
i=0

wk
i (γVol(S)ξρi + 2ξπi)

+ 2rmaxDTV (ρ
πmix

T̂
(s, a)||ρπ

T̂
(s, a))

(11)

Proof.∣∣∣J(π, T )− J(π, T̂ )
∣∣∣

=
∣∣∣J(π, T )− J(πmix, T̂ ) + J(πmix, T̂ )− J(π, T̂ )

∣∣∣
≤

∣∣∣∣∣
∫
(s,a)

(ρπT (s, a)− ρπmix

T̂
(s, a))r(s, a)dsda

∣∣∣∣∣︸ ︷︷ ︸
term1

+

∣∣∣∣∣
∫
(s,a)

(ρπmix

T̂
(s, a)− ρπ

T̂
(s, a))r(s, a)dsda

∣∣∣∣∣︸ ︷︷ ︸
term2

(12)

For term 1:∣∣∣∣∣
∫
(s,a)

(ρπT (s, a)− ρπmix

T̂
(s, a))r(s, a)dsda

∣∣∣∣∣
=

∣∣∣∣∣
∫
(s,a)

(vπT (s)π(a|s)− vπmix

T̂
(s)πmix(a|s))r(s, a)dsda

∣∣∣∣∣
=

∣∣∣∣∣
∫
(s,a)

(vπT (s)π(a|s)− vπmix

T̂
(s)π(a|s) + vπmix

T̂
(s)π(a|s)− vπmix

T̂
(s)πmix(a|s))r(s, a)dsda

∣∣∣∣∣
≤

∣∣∣∣∣
∫
(s,a)

(vπT (s)− vπmix

T̂
(s))π(a|s)r(s, a)dsda

∣∣∣∣∣+
∣∣∣∣∣
∫
(s,a)

(vπmix

T̂
(s)(π(a|s)− πmix(a|s))r(s, a)dsda

∣∣∣∣∣
≤rmax

∫
s

∣∣∣vπT (s)− vπmix

T̂
(s)

∣∣∣ds+ 2rmaxEs∼v
πmix
T̂

[DTV (π(a|s)||πmix(a|s))]
(13)

For the first term of last inequality in Eq. 13, according to Lemma. C.1 we have:

rmax

∫
s

∣∣∣vπT (s)− vπmix

T̂
(s)

∣∣∣ds
≤rmaxγE(s,a)∼ρπ

T

∫
s′

∣∣∣T (s′|s, a)− T̂ (s′|s, a)
∣∣∣ds′ + rmaxγ

∫
s′
dFs′ (ρ

π
T , ρ

π∗

T̂
)ds′

(14)

We use total variance distance as the Fs′ to measure the distance between ρπT and ρπmix

T̂
. Suppose

we can learn a dynamics model that can perfectly adapt the state-action visitation distribution of
πmix, which means the difference between the model prediction and the environment next state s′

is very small, and the state-action visitation density induced by the learned dynamics model ρπmix

T̂
is approximately equal to ρπmix

T . This assumption is required by many model-based RL methods
Voelcker et al. (2022). Then Eq. 14 can be expressed as:

rmax

∫
s

∣∣∣vπT (s)− vπmix

T̂
(s)

∣∣∣ds
≤rmaxγE(s,a)∼ρπ

T

∫
s′

∣∣∣T (s′|s, a)− T̂ (s′|s, a)
∣∣∣ds′ + rmaxγ

∫
s′
DTV (ρ

π
T ||ρ

πmix
T )ds′

≤2γrmaxE(s,a)∼ρπ
T
[DTV (T (s

′|s, a)||T̂ (s′|s, a))] + γVol(S)rmaxDTV (ρ
π
T ||ρ

πmix
T )

(15)
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Combined Eq. 13 with Eq. 15, we can get:

∣∣∣∣∣
∫
(s,a)

(ρπT (s, a)− ρπmix

T̂
(s, a))r(s, a)dsda

∣∣∣∣∣
≤2γrmaxE(s,a)∼ρπ

T
[DTV (T (s

′|s, a)||T̂ (s′|s, a))] + γVol(S)rmaxDTV (ρ
π
T (s, a)||ρ

πmix
T (s, a))

+ 2rmaxEs∼v
πmix
T̂

[DTV (π(a|s)||πmix(a|s))]

=2γrmaxE(s,a)∼ρπ
T
[DTV (T (s

′|s, a)||T̂ (s′|s, a))] + γVol(S)rmaxDTV (ρ
π
T (s, a)||

k∑
i=0

wiρ
πi

T (s, a))

+ 2rmaxEs∼v
πmix
T̂

[
DTV (π(a|s)||

k∑
i=0

wiπi(a|s))

]

=2γrmaxE(s,a)∼ρπ
T
[DTV (T (s

′|s, a)||T̂ (s′|s, a))] + γVol(S)rmax

k∑
i=0

wiDTV (ρ
π
T (s, a)||ρ

πi

T (s, a))

+ 2rmax

k∑
i=0

wiEs∼v
πmix
T̂

[DTV (π(a|s)||πi(a|s))]

(16)

Finally, based on Eq. 16, we get:

∣∣∣J(π, T )− J(π, T̂ )
∣∣∣

≤2γrmaxE(s,a)∼ρπ
T
[DTV (T (s

′|s, a)||T̂ (s′|s, a))] + γVol(S)rmax

k∑
i=0

wk
i DTV (ρ

π
T (s, a)||ρ

πi

T (s, a))

+ 2rmax

k∑
i=0

wk
i Es∼v

πmix
T̂

[DTV (π(a|s)||πi(a|s))] + 2rmaxDTV (ρ
πmix

T̂
(s, a)||ρπ

T̂
(s, a))

≤2γrmaxE(s,a)∼ρπ
T
[DTV (T (s

′|s, a)||T̂ (s′|s, a))] + rmax

k∑
i=0

wk
i (γVol(S)ξρi

+ 2ξπi
)

+ 2rmaxDTV (ρ
πmix

T̂
(s, a)||ρπ

T̂
(s, a)),

(17)

and the proof is completed. □

E PROOF OF PROPOSITION 3.2

Proposition E.1 The performance gap can be reduced if the weight wk
i of each policy πi in the

historical policy sequence Πk is negatively related to state action visitation distribution shift ξρi
and

the policy distribution shift ξπi
between the historical policy πi and current policy π instead of an

average weight wk
i = 1

k :

k∑
i=1

wk
i (γVol(S)ξρi + 2ξπi) ≤

k∑
i=1

1

k
(γVol(S)ξρi + 2ξπi) (18)

Proof. Each policy πi in the historical policy sequence Πk corresponds to a distribution shift pair
(ξρi

, ξπi
), and these pairs form a distribution shift sequence {(ξρ1

, ξπ1
), (ξρ2

, ξπ2
), ......, (ξρk

, ξπk
)},

assuming that this sequence decreases as i increases (this is a reasonable assumption, because we can
always arrange the historical policy sequence into a distribution shift decreasing sequence according
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to the magnitude of the shift). As the weight of each policy is negatively related to state action
visitation distribution shift ξρi

and the policy distribution shift ξπi
, wk

i increases with k.

Since
k∑

i=1

wk
i =

k∑
i=1

1
k = 1, there exists a k0 that for all i > k0, w

k
i > 1

k .

Then we have:

0 ⩽
k∑

i=k0

(wk
i −

1

k
)(γVol(S)ξρi

+ 2ξπi
)

⩽
k∑

i=k0

(wk
i −

1

k
)(γVol(S)ξρk1

+ 2ξπk1
),

(19)

where k1 ∈ [k0, k]

0 ⩾
k0−1∑
i=1

(wk
i −

1

k
)(γVol(S)ξρk2

+ 2ξπk2
)

⩾
k0−1∑
i=1

(wk
i −

1

k
)(γVol(S)ξρi + 2ξπi),

(20)

where k2 ∈ [0, k0)

Based on these two equations:

k∑
i=1

(wk
i −

1

k
)(γVol(S)ξρi + 2ξπi)

=

k0−1∑
i=1

(wk
i −

1

k
)(γVol(S)ξρi + 2ξπi) +

k∑
i=k0

(wk
i −

1

k
)(γVol(S)ξρi + 2ξπi)

⩽
k0−1∑
i=1

(wk
i −

1

k
)(γVol(S)ξρk2

+ 2ξπk2
) +

k∑
i=k0

(wk
i −

1

k
)(γVol(S)ξρk1

+ 2ξπk1
)

=

k0−1∑
i=1

(wk
i −

1

k
)(γVol(S)ξρk2

+ 2ξπk2
)−

k0−1∑
i=1

(wk
i −

1

k
)(γVol(S)ξρk1

+ 2ξπk1
)

+

k0−1∑
i=1

(wk
i −

1

k
)(γVol(S)ξρk1

+ 2ξπk1
) +

k∑
i=k0

(wk
i −

1

k
)(γVol(S)ξρk1

+ 2ξπk1
)

=

k0−1∑
i=1

(wk
i −

1

k
)[(γVol(S)ξρk2

+ 2ξπk2
)− (γVol(S)ξρk1

+ 2ξπk1
)] +

k∑
i=1

(wk
i −

1

k
)(γVol(S)ξρk1

+ 2ξπk1
)

(21)

Since distribution shift sequence {(ξρ1
, ξπ1

), (ξρ2
, ξπ2

), ......, (ξρk
, ξπk

)} decreases as i increases,
and k2 < k1, the first term will be less than 0. Meanwhile, the second term will be equal to 0 because
k∑

i=1

wk
i =

k∑
i=1

1
k = 1. Therefore, we can get:
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k∑
i=1

(wk
i −

1

k
)(γVol(S)ξρi

+ 2ξπi
)

⩽
k0−1∑
i=1

(wk
i −

1

k
)[(γVol(S)ξρk2

+ 2ξπk2
)− (γVol(S)ξρk1

+ 2ξπk1
)] +

k∑
i=1

(wk
i −

1

k
)(γVol(S)ξρk1

+ 2ξπk1
)

⩽ 0
(22)

The proof is finished. □

Proposition 3.2 illustrate that after adjusting the policy mixture distribution according to the distribu-
tion shifts, the performance bound will be tighter than learning a global dynamics model (wk

i = 1
k ).

This provides a guidance for our proposed method, that the weight wk
i of each policy πi in the

historical policy sequence Πk should be negatively related to its state action visitation distribution
shift ξρi

and the policy distribution shift ξπi
.

F MORE EXPERIMENTS

F.1 MORE ERROR CURVES FOR DYNAMICS MODEL LEARNED BY MBPO

In this section, we provide the local error curves for global dynamics model in four MoJoCo
environments: Hopper, HalfCheetah, Walker2d, and Humanoid. The curves are shown in Figure 5.
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Figure 5: The global error curve and the local error curve of MBPO in four MuJoCo environments.
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F.2 VISUALIZATION OF STATE-ACTION VISITATION DISTRIBUTION OF DIFFERENT
HISTORICAL POLICIES

Due to the limited space of main paper, we provide detailed visualization of the state-action visitation
distribution of policies under different environment steps in this section. We conduct the experiment
on HalfCheetah and Hopper, the results are shown in Figure 6 and Figure 7. (a) in each figure is
the comparison of different policies in the same figure, from (b) to (f) are the figures presenting
the state-action visitation distribution of each policy individually. We can see that the state-action
visitation distribution of policies under different environment steps is very different.

(a) (b) Environment step 10k (c) Environment step 30k

(d) Environment step 50k (e) Environment step 80k (f) Environment step 130k

Figure 6: Visualization of state-action visitation distribution of policies at different environment steps
in HalfCheetah.

(a) (b) Environment step 10k (c) Environment step 30k

(d) Environment step 50k (e) Environment step 70k (f) Environment step 100k

Figure 7: Visualization of state-action visitation distribution of policies at different environment steps
in Hopper.

F.3 VISUALIZATION OF ADJUSTED POLICY MIXTURE DISTRIBUTION

To provide a further understanding of out method, we visualize the adjusted policy mixture distribution
at different training steps on Humanoid in Figure 8. We take Figure 8a as an example to explain
the origin and meaning of the policy ID on the horizontal axis. Each of policies interacts with the
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environment for 250 steps, so a 50k environment step has 200 historical policies. The policy ID of
0 indicates the oldest policy. The larger the ID, the newer the policy. We can see that the policy
mixture distribution is totally different at different training steps. The weight of policy is not a simple
exponentially decay or linearly decay, which indicates our proposed method is non-trivial.
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Figure 8: Visualization of adjusted policy mixture distribution at different training steps on Humanoid.

F.4 MORE BENCHMARK RESULTS

Due to the limited space, we put more results on MuJoCo in this section. Compared with Figure 2,
we add the results on Ant and Pusher in Figure 9. In Ant and Pusher, our method achieves a
significant performance improvement compared with original MBPO. Besides, our method also
achieves comparable or better results than previous sample efficient model-based or model-free
methods.

F.5 COMPARISON WITH SIMPLE EXPONENTIALLY DECAY PRIORITIZATION

To further demonstrate the effectiveness of our method, we compare with an exponentially decay
method. The weight of the historical policy exponentially decays as it lifetime increases. To ensure
a fair comparison, the weight of current policy is also compute using Eq. 5. The hyperparameter
α of exponentially decay method is the same as PDML which is given in Appendix G.1. We
conduct the experiment on three MoJoCo environments: Hopper, Walker2d, and Humanoid. The
experiment results are given in Figure 10. We can see that after using exponentially decay method,
the performance in three environments is slightly improved, but it is much lower than PDML. Besides,
the model error of exponentially decay method is higher than PDML. Combined with the analysis of
distribution visualization in Appendix F.3, this further demonstrates that our method is non-trivial
and effective.

F.6 ABLATION STUDY OF PDML

As we described in Section 4, we use the adjusted policy mixture distribution for both model learning
and sampling initial states for model rollouts. In this section, we provide the ablation study to show
the impact of the adjusted policy mixture distribution in these two parts respectively. We conducted
our experiments in Hopper and Walker2d, and the performance curves are shown in Figures 11a and
11b.
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Figure 9: Benchmark comparison on six MuJoCo environments.

0k 30k 60k 90k 120k

1,000

2,000

3,000

Steps

R
et

ur
ns

PMDL-MBPO
Exponentially Decay-MBPO
MBPO

(a) Hopper

0k 50k 100k 150k 200k
0

1,000

2,000

3,000

4,000

5,000

Steps

R
et

ur
ns

PMDL-MBPO
Exponentially Decay-MBPO
MBPO

(b) Walker2d

0k 75k 150k 225k 300k
0

2,000

4,000

6,000

Steps

R
et

ur
ns

PMDL-MBPO
Exponentially Decay-MBPO
MBPO

(c) Humanoid

0k 20k 40k 60k 80k 100k
0

0.5

1

1.5

2

2.5

Steps

E
rr

or

Exponentially Decay-MBPO
PDML-MBPO

(d) Walker2d one-step error

Figure 10: Comparison with exponentially decay prioritization.
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Figure 11: (a) and (b): Ablation study of adjusted policy mixture distribution on model learning and
sampling initial states for model rollouts. (c): Ablation study of current policy proportion rate.

We find that using the adjusted policy mixture distribution only for model learning or model rollouts
initial states sampling both improves the performance in Hopper and Walker2d compared to MBPO.
However, the improvement of only using the adjusted policy mixture distribution for model rollouts
initial states sampling in Walker2d is not very significant. Besides, the improvement of using the
adjusted policy mixture distribution for model learning is better than using that for model rollouts
initial states sampling, but both of them are worse than PDML. This indicates two things. First,
model learning is more important than model rollouts initial states sampling, because even the initial
state distribution obeys the state-action visitation distribution of current policy, the model-generated
samples will still be inaccurate if the learned dynamics model is not accurate enough for the current
policy. Second, to achieve the best performance, sample distribution for model learning and sample
distribution for model rollouts initial states should be synergistic; that is, the training data for training
the dynamics model and the initial states of model rollouts should obey the same distribution, so that
the model prediction error can be minimized.

F.7 ABLATION STUDY OF CURRENT POLICY PROPORTION RATE

We conducted experiments to explore the impact of current policy proportion rate on the performance
of our method. The α in Eq. 5 equals to current policy proportion rate divided by 1 minus current
policy proportion rate. As shown in Figure 11c, when the current policy proportion rate is small
(0.02 and 0.1), the policy mixture distribution will not be too inclined to the current policy, so the
model can learn a good transition dynamics. When the current policy proportion rate is too large (0.3,
0.5, and 0.7), the learned dynamics capture information about the underlying transition too locally,
resulting in performance decrease. Therefore, we recommend that the selection of the current policy
proportion rate should not be greater than 0.1.

F.8 TRAINING TIME OF PDML-MBPO AND MBPO

In this section, we present the training time of PDML-MBPO and MBPO in four different environ-
ments. As shown in Table 1, after using PDML, the training time doesn’t increase significantly. In
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the most complex environment Humanoid, the training time for 300k steps increases by only one
hour. In other environments, the training time of PDML-MBPO is almost the same as that of MBPO.

Table 1: Training time of PDML-MBPO and MBPO in different environments. The results are
averaged over 8 random seeds.

Walker2d Hopper Humanoid HalfCheetah

MBPO 58.6 h 35.5 h 70.8 h 60.2 h
PDML-MBPO 59.2 h 35.7 h 72.0 h 60.9 h

F.9 ONE-STEP ERROR IN FOUR ENVIRONMENTS

As an extension of Section 5.3, we provide the one-step model prediction error curve in this section.
The results are shown in Figure 12.
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Figure 12: One-step error curves in Hopper, Walker2d, HalfCheetah, and Humanoid.

G IMPLEMENTATION

G.1 IMPLEMENTATION DETAILS

We implement PDML-MBPO based on the PyTorch-version MBPO Liu et al. (2020). We also set
the ensemble size of PDML-MBPO to be the same as MBPO, which is 7. The warm-up samples
are collected through interaction with the real environment for 5000 steps using a randomly chosen
policy. After the warm-up, we train the dynamics model and update the lifetime weight every
250 interaction steps. We set the current policy proportion to be 0.02 and α equals 0.02/0.98.
One thing that needs to be noticed is the rollout horizon setting. As introduced in MBPO Janner
et al. (2019), the rollout horizon should start at a short horizon and increase linearly with the
interaction epoch. [a, b, x, y] denotes a thresholded linear function, i.e. at epoch e, rollout horizon
is h = min(max(x+ e−a

b−a (y − x), x), y). We set the rollout horizon to be the same as used in the
MBPO paper, as shown in Table 2. Other hyper-parameter settings are shown in Table 3. For MBPO1,
AMPO2, VaGraM3 SAC4, and REDQ5, we use their open source implementations. We evaluate
PDML-MBPO and other baselines on four MuJoCo-v2 continuous control environments Todorov
et al. (2012) with a maximum horizon of 1000, including HalfCheetah, Hopper, Walker2d, and
Humanoid. For Humanoid, we use the modified version introduced by MBPO Janner et al. (2019).
All experiments are conducted using a single NVIDIA TITAN X Pascal GPU.

For the experiment of MaPER in Sec 5.2, we use their open-source code in the supplementary material
on openreview 6. However, we find a bug in their code that comes from the PyTorch-version MBPO
implementation, i.e., the same environment is used for policy training and policy evaluation. This

1https://github.com/Xingyu-Lin/mbpo_pytorch
2https://github.com/RockySJ/ampo
3https://github.com/pairlab/vagram
4https://github.com/pranz24/pytorch-soft-actor-critic
5https://github.com/watchernyu/REDQ
6https://openreview.net/forum?id=WuEiafqdy9H
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Table 2: Rollout horizon settings for PDML

Walker2d Hopper Humanoid HalfCheetah

1 [1, 15, 20, 100] [1, 25, 20, 300] 1

Table 3: Hyper-parameter settings for PDML

Parameter Value

Dynamics model ensemble size 7
Dynamics model layers 4
Actor and critic layers 3

Dynamics model hidden units 200
Actor and critic hidden units 256

Learning rate 3 · 10−4

Batch size 256
Optimizer Adam

Activation function ReLU
Real sample buffer size 106

Model sample buffer size 106

Real sample ratio 0.05
Policy updates per environment step 20

Environment steps between model training 250

causes the rollout length to exceed the 1000-step limit during evaluation, resulting in the performance
of the policy being much higher than the 1000-step performance. We fix this bug and conduct the
experiment, so the results of MaPER are lower than those reported in their paper.
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