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Abstract

Transformers have a quadratic scaling of computational complexity with input size,
which limits the input context window size of large language models (LLMs) in
both training and inference. Meanwhile, retrieval-augmented generation (RAG)
besed models can better handle longer contexts by using a retrieval system to filter
out unnecessary information. However, most RAG methods only perform retrieval
based on the initial query, which may not work well with complex questions that
require deeper reasoning. We introduce a novel approach, Inner Loop Memory
Augmented Tree Retrieval (ILM-TR), involving inner-loop queries, based not only
on the query question itself but also on intermediate findings. At inference time, our
model retrieves information from the RAG system, integrating data from lengthy
documents at various levels of abstraction. Based on the information retrieved, the
LLM generates texts stored in an area named Short-Term Memory (STM) which
is then used to formulate the next query. This retrieval process is repeated until
the text in STM converged. Our experiments demonstrate that retrieval with STM
offers improvements over traditional retrieval-augmented LLMs, particularly in
long context tests such as Multi-Needle In A Haystack (M-NIAH) and BABILong.

1 Introduction

Large Language Models (LLMs) have demonstrated a powerful ability to handle almost all kinds
of NLP tasks with impressive performance [7, 1, 29]. As the size of LLMs increases, they tend to
perform better and store more informative knowledge within their parameters [17, 25]. LLMs can also
be further fine-tuned on downstream tasks [34]. However, the length of the input window in LLMs is
constrained by the quadratic computational complexity of the self-attention mechanism, which is a
fundamental structure in these models [31]. An alternative approach to processing longer contexts is
to split large quantities of text into chunks and index these chunks as vectors in a separate information
retrieval system [20, 5, 14]. Since the retrieval system can filter out unnecessary information, the
LLM can handle user questions with long raw data within a limited context window. Additionally,
this approach provides easier interpretability and provenance tracking compared to the opaque and
unexplainable parameters within LLMs [2].

However, existing retrieval-augmented approaches also have shortcomings. The issue we aim to
address is that most existing methods retrieve only a few text chunks that are directly related to user
queries, which limits the ability of LLMs to produce deeper answers to questions. This is particularly
relevant when it comes to fully understanding or integrating knowledge from multiple parts that may
not be directly related to the user’s questions, such as understanding foreshadowing in novels or
inferring the identity of the killer in detective fiction. When humans perform such tasks, we often
have impressions in our minds related to unusual facts that may connect to our questions, indicating
that memory plays a crucial role in advanced comprehension skills [6, 19]. Long-term and short-term
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memory are essential aspects of human-like intelligence, particularly in maintaining an understanding
of long contexts, such as lifelong conversations where recalling past interactions is crucial for rapport
building and long context comprehension. Some interesting works have been explored [32, 37] and
implemented in real products, such as memory in medical applications [36] and ChatGPT’s memory
capabilities [24]. However, these works still rely on a single retrieval query in the memory system
and lack a mechanism that can automatically gather more information based on the current context,
making it difficult to accurately answer user questions.

To address this, we designed an inner-loop mechanism that allows retrieval to be conditioned not only
on the initial query but also on the current information obtained. Our system, Inner Loop Memory
Augmented Tree Retrieval (ILM-TR), leverages the retrieved information to generate intermediate
answers, which are then used to formulate subsequent queries. This inner-loop query continues until
the answer converges or the query limit is reached. This mechanism can effectively answer complex
questions in long context scenarios.

Our main contributions are as follows: 1) We propose a novel summarization method which not
only summarizes the chunked texts but also outputs all surprising facts within the content. 2) We
propose an inner-loop mechanism which refines the retrieval process by conditioning it not only on
the user’s initial query but also on the evolving information gathered during the retrieval process. Our
approach improves comprehension in long-context scenarios by enabling more effective information
retrieval and interpretation. 3) we test the ILM-TR system on standard long-context benchmarks such
as Multi-Needle In A Haystack (M-NIAH) [16], and BABILong [18] with Llama3 as our summary
model and answer model. Experimental results demonstrate that our method outperforms baseline
RAG method and maintains robust performance, with no significant degradation even as the context
length scales up to 500k tokens.

2 Related Work

2.1 Large Language Models (LLMs)

LLMs such as the GPT [7, 1], Gemini [29, 10], and Claude [3] series have made remarkable strides
across a broad spectrum of tasks and have increasingly become daily assistants for many people.
However, the closed-source nature of these models prohibits researchers and companies from studying
the inner mechanisms of LLMs and building domain-adapted applications. Consequently, many
open-source LLMs have emerged in the community, such as Llama [30, 9], ChatGLM [12], and
Mistral [15]. However, these models still have limited context windows, usually capped at 8k tokens,
due to the complexity of self-attention and position encoding. The limited context windows imply
that they lack long-term memory capabilities, which could be enhanced by integrating RAG systems
with memory structures.

2.2 Retrieval-Augmented Generation (RAG)

Retrieval-Augmented Generation (RAG) uses retrieved tokens from long context raw data to extend
the input window size of LLMs. The original RAG [20] integrates pre-trained sequence-to-sequence
models with a neural retriever. [23] introduced the Joint Passage Retrieval (JPR) model, which
employs a tree-decoding algorithm to handle passage diversity and relevance in multi-answer re-
trieval. Dense Hierarchical Retrieval (DHR) and Hybrid Hierarchical Retrieval (HHR) represent
advancements in retrieval accuracy by combining document-level and passage-level retrievals and
integrating sparse and dense retrieval methods, respectively [21, 4]. RAPTOR [27] utilizes clustering
and summarizing of text chunks, constructing a tree with varying levels of summarization from the
bottom up, enabling multiple levels of understanding of long contexts. Nevertheless, these approaches
still depend on a single retrieval query and do not include a mechanism for automatically acquiring
additional information based on the evolving context, which makes it challenging to provide precise
answers to user questions.

2.3 Memory Mechanisms

Efforts have been made to improve the memory capabilities of neural models. Memory-augmented
networks (MANNs) [22], such as Neural Turing Machines (NTMs) [13], enhance the memory capacity
of neural networks by incorporating an external memory matrix, allowing them to manage tasks that
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Figure 1: An Overview of ILM-TR Method. Raw Data consists of tokens from the user, which could
include conversation history, novels, or any other content the user wants the LLMs to process. User’s
Query refers to the tokens provided by the user, such as questions or task descriptions. Retriever
can be any retrieval method, such as sentence-based RAG or tree-structured RAG. Retrieved Info is
the result produced by the retriever. Short-Term Memory is a storage area for a limited number of
tokens, which is overwritten at each iteration of the inner-loop query. Answer Model(LLMs) will
processe information from the retriever, the previous short-term memory, and the user’s query. The
purple circles represents the order of steps in the inner-loop query.

require the storage and manipulation of information over extended periods. [28] demonstrates that
LLMs with external memory can simulate Turing Machines. Although promising, these approaches
have yet to fully address the need for a dependable and adaptable memory function in LLMs. Some
studies have focused on long-range conversations [33, 35], but these are typically limited to a few
conversational rounds, falling short of supporting long-term AI companions. Additionally, these
models often struggle to create detailed user profiles and lack a human-like memory updating
mechanism, both of which are essential for enabling more natural interactions.

3 Method

Our Inner Loop Memory-Augmented Tree Retrieval (ILM-TR) method, as shown in Fig. 1, contains
two parts: retriever and inner-loop query. For the retriever part, we primarily use the RAPTOR’s
tree-build method [27]. The retriever first segments the raw data into short, contiguous text chunks
of a certain length. If a sentence exceeds the length limit, it will be moved to the next chunk.
After splitting, an summary model is used to summarize each chunk. However, unlike typical
summarization methods such as RAPTOR, our model produces two kinds of summaries: one is the
regular summary of the main text in the chunk, while the other includes all surprising facts that differ
from the main text. The retriever architecture is illustrated in Figure 2.

Building upon the idea that the informational value of a communicated message depends on the
degree of surprise in its contents [8], the inclusion of surprising information, distinct from the main
text, will also provide valuable insights to LLMs when handling long contexts. After generating
summary texts and surprising information from each chunk, we group similar texts using Gaussian
Mixture Models, as employed in RAPTOR (refer to [27] for more details). However, we only group
the summaries without the surprising information.

All texts are embedded for searching and clustering using SBERT, a BERT-based encoder (multi-qa-
mpnet-base-cos-v1) [26]. These summarized texts are then re-embedded, and the cycle of embedding,
clustering, and summarization continues until further clustering becomes impractical, resulting in a
structured, multi-layered tree representation of the raw data. For querying within this tree, similar to
RAPTOR, we use a collapsed tree strategy that disregards the tree structure and directly traverses all
the nodes as shown in Figure 2.

For inner-loop query part, as shown in Fig. 1, we use an LLM as the answer model to generate
the final answer. This model can be the same as the summary model or a separate one. We create
an additional area called Short-Term Memory (STM), which stores texts up to the answer model
maximum output length. The STM is initially empty. Each time, the answer model generates an
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Figure 2: The ILM-TR Retriever: The orange square represents the surprising information, the
grey color represents the original text, and other colors represent the summary information. The
summary model will extract information from the provided tokens. During the tree-building process,
the summary information will be grouped using a clustering algorithm, and then each group will be
summarized together to generate a higher-level summary and surprising information. In the query
process, all squares in the tree will be stored in a table, and the best fit will be returned based on
vector distance from the query text.

answer based on the user’s query, information retrieved by the retriever, and the previous texts in the
STM. Then the answer will be stored in the STM. The retriever then uses the contents of the STM
along with the user’s query to retrieve new information from the raw data. Once new information is
retrieved, the answer model generates new texts and stores them in the STM. This process is repeated
in the inner-loop query until the texts in the STM converge and stop changing, or until the query limit
is reached. Finally, the STM texts are returned to the user as the final answer.

4 Experiments

We evaluate ILM-TR’s long-context performance using two benchmarks: M-NIAH [16] and BABI-
Long [18]. For both the summary and answer model inference, we utilize Meta-Llama-3-70B with
llama.cpp [11], quantized using Q4_K_M due to hardware limitations. We do not employ smaller
LLMs, such as the 8B or 7B models, as their instruction-following capabilities were found to be
inadequate in our tests: they consistently failed to follow the summarization prompts correctly. We
also set the maximum number of inner-loop queries to 5. All tests were conducted on a machine
running Ubuntu 22.04, equipped with an Intel Xeon Gold 6242 processor and four NVIDIA Tesla
V100 32GB GPUs. Details of all prompts and parameters are provided in Appendices A.1 and A.3.

In the M-NIAH test, several sentences are inserted into a specific area of a given long context. The
question is related to all the inserted sentences, and the model is expected to retrieve all necessary
information across these sentences. For example, we use three sentences: ‘Figs are one of the secret
ingredients needed to build the perfect pizza’, ‘Prosciutto is one of the secret ingredients needed to
build the perfect pizza’ and ‘Goat cheese is one of the secret ingredients needed to build the perfect
pizza’. The question would then be ‘What is the first letter of each secret ingredient needed to build
the perfect pizza?’. The BABILong test is similar to the M-NIAH test but involves sentences with
more complex logical relationships. For instance, it may include sentences like ‘The apple is in the
bathroom’ and ‘Jack takes the apple to the kitchen’ The question in this case would be: ‘Where is the
apple before kitchen?’.

We present the M-NIAH and BABILong test results in Figure 3 and Figure 4(Appendix A). We tested
RAPTOR as the baseline method, and our ILM-TR method with two settings, with token lengths
ranging from 150k to 500k. There are three inserted sentences for M-NIAH test. Each testcase has
four possible score levels: no keywords found (score 1, red), one keyword found (score 3, orange), two
keywords found (score 7, yellow), and all keywords found (score 10, green). Figure 3 demonstrates
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(a) RAPTOR with Meta-Llama-3-70B (b) ILM-TR without inner-loop query

(c) ILM-TR

Figure 3: M-NIAH test: no keywords found (score 1, red), one keyword found (score 3, orange), two
keywords found (score 7, yellow), and all three keywords found (score 10, green). Token lengths
range from 150k to 500k. Depth percent represents the average positions of the inserted sentences
within the long text, where 0% indicates the beginning of the text and 100% indicates the end.

that incorporating surprising information can significantly improve the model’s performance in the
M-NIAH test. However, there are still some cases where ILM-TR without the inner-loop query cannot
retrieve all the keywords in a single query. The ILM-TR method, with inner-loop query capabilities,
shows its ability to locate all the keywords in the M-NIAH test. In the BABILong test, our ILM-TR
method also shows significant improvements compared to the baseline method. We show an simple
example for BABILong with our ILM-TR model in Appendix A.2.

However, there are some shortcomings with ILM-TR. First, the inner-loop process requires several
iterations, which increases the overall time consumption of query processing. Second, since we
incorporate surprising information during summarization, the summary model must be capable
of following complex instructions, which led us to choose a larger model with slower inference
performance.

5 Conclusion and Future Work

We introduce a novel approach, Inner Loop Memory Augmented Tree Retrieval (ILM-TR), which
incorporates inner-loop queries based not only on the initial query but also on intermediate findings.
During inference, ILM-TR retrieves information from the RAG system. Based on the retrieved
information, ILM-TR generates text that is stored in Short-Term Memory (STM), which is then used
to formulate subsequent queries. This retrieval process is repeated until the text in STM converges.
Our experiments demonstrate that retrieval with STM offers improvements over traditional retrieval-
augmented LLMs in the M-NIAH and BABILong test. And since the answers for M-NIAH tests are
known, in future work, we can explore fine-tuning the answer model output based on the intermediate
results from STM and the reference answer. This could potentially improve model’s active search
capabilities with RAG system.
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(a) RAPTOR with Meta-Llama-3-70B (b) ILM-TR without inner-loop query

(c) ILM-TR

Figure 4: BABILong test: Due to hardware limitations and the size of the LLM model, we only tested
10 testcases for each test setting. In this study, we evaluated tasks qa1 to qa5 with token lengths
ranging from 0k to 128k. We encourage readers to refer to [18] for further details.

A Appendix / supplemental material

A.1 Prompt

A.1.1 Baseline Prompt

Summary Model
[SYSTEM]: You are a reader who can summarize the given text while including
important details. Do not provide any comments, just give the summary.
[USER]: Write a summary of the following context, just including the most impor-
tant details: {context}

Answer Model
[SYSTEM]: You are Question Answering Portal.
[USER]: Given Context: {Retrieved Info} Give the best full answer to question
{User’s Query}

A.1.2 ILM-TR Prompt

Summary Model
[SYSTEM]: I will give you context. Most of it could be about the same things, but
there may be some abnormal information. An surprising sentence is not related to
most of the other content. You should summarize the context with the necessary
information and also include any surprising information you think. Don’t return
any unrelated words.

8



Always and only return your answer with the following format, just list the fact
based on given text, no comments, use different sentences to describe different
facts:
(Summary): Your Summary
(Surprise): Surprising Information
[USER]: {context}

Answer Model without inner-loop
[SYSTEM]: You are Question Answering Portal.
[USER]: Given Context: {Retrieved Info} Give the best full answer to question
{User’s Query}

Answer Model with inner-loop
[SYSTEM]: You will be given some Retrieved Info and memory, and you will use
this information to answer a question. If you can’t answer the question, you can
write something related to the question to help others answer it.
(Retrieved Info):
a2 = 1
(Memory):
a1 = a2+a3
(Question):
What is the value of a1
(Your Output):
a1 = a2 + a3. a2=1. We need to find the value of a3.
Keep your output short and don’t return any unrelated words.
[USER]: {context} (Question): {User’s Query}

A.2 BABILong Example with ILM-TR

A.2.1 Example (qa3, 128k)

[Needles]:
Daniel grabbed the milk.
Mary picked up the apple.
Sandra went back to the hallway.
Daniel journeyed to the hallway.
John moved to the bedroom.
John went to the bathroom.
Daniel discarded the milk there.
Mary moved to the kitchen.
Mary journeyed to the office.
Daniel got the milk.
John moved to the garden.
Sandra travelled to the kitchen.
Mary put down the apple.
John took the football.
[Question]: Where was the apple before the office?
[True Answer]: kitchen

A.2.2 ILM-TR Inner-loop Outputs

We calculate the Longest Common Subsequence (LCS) to determine whether the answer has con-
verged.

[Round 1]:
The apple was at office. We need to find where the apple was before the office.
[Round 2]:
The apple was at office. Mary put down the apple at office. We need to determine
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where Mary was before she placed the apple down.
[Round 3]:
The apple was at office. Mary put down the apple at office, but before that, she was
in the kitchen.
[Round 4]:
Mary put down the apple at office, but before that, she was in the kitchen. The best
answer to the question ""Where was the apple before the office?"" is:
The kitchen.
[Round 5]:
Based on the given context, the best answer to the question ""Where was the apple
before the office?"" is:
The kitchen.

A.3 Model and Retriever Parameters

For parameters not mentioned here, the values are defualt values.

Parameter Category Parameter Value
Answer Model

temperature 0
frequency_penalty 1.2
max_tokens 200

Summary Model
repeat_last_n 256
repeat_penalty 1.18
penalize_nl False
presence_penalty 0
min_p 0.05
n_predict 1055
n_probs 0
mirostat 0
mirostat_eta 0.1
mirostat_tau 5
tfs_z 1
top_k 40
top_p 0.95
typical_p 1
frequency_penalty 0
temperature 0.2

Retriever
tb_max_tokens (each chunk max token) 600
tb_summarization_length (output max token) 300
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