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ABSTRACT

Being uncertain when facing the unknown is key to intelligent decision making.
However, machine learning algorithms lack reliable estimates about their predictive
uncertainty. This leads to wrong and overly-confident decisions when encountering
classes unseen during training. Despite the importance of equipping classifiers
with uncertainty estimates ready for the real world, most prior work focuses on
small datasets with little or no class discrepancy between training and testing
data. To close this gap, we introduce UIMNET: a realistic, ImageNet-scale
test-bed to evaluate predictive uncertainty estimates for deep image classifiers.
Our benchmark provides implementations of ten state-of-the-art algorithms, six
uncertainty measures, four in-domain metrics, three out-domain metrics, and a fully
automated pipeline to train, calibrate, ensemble, select, and evaluate models. Our
test-bed is open-source and all of our results are reproducible from a fixed commit
in our repository. Adding new datasets, algorithms, measures, or metrics is a matter
of a few lines of code—in so hoping that UIMNET becomes a stepping stone
towards realistic, rigorous, and reproducible research in uncertainty estimation.
Our experimental results reveal that, in order to obtain the best possible uncertainty
estimates in large-scale image classification, the practitioner should favor large,
calibrated models. We recommend the use of single ERM models, single MIMO
models, or ensembles of ERM models, in order of increasing performance and
required computational budget.

1 INTRODUCTION

I don’t think I’ve ever seen anything quite like this before
—HAL 9000 in 2001: A Space Odyssey

Deep image classifiers exceed at discriminating the set of in-domain classes observed during training.
However, when confronting test examples from unseen out-domain classes, these classifiers can
only predict in terms of known categories, leading to wrong and overly-confident decisions (Hein
et al., 2019; Ulmer & Cinà, 2020). In short, machine learning systems are unaware of their own
limits, since “they do not know what they do not know”. Since out-domain data cannot be safely
identified and treated accordingly, it is reasonable to fear that, when deployed in-the-wild, the safety
and performance of these classifiers crumbles by leaps and bounds (Ovadia et al., 2019). The
inability of machine learning systems to estimate their uncertainty and abstaining to classify out-
domain classes roadblocks their use in critical applications. These include self-driving (Michelmore
et al., 2018), medicine (Begoli et al., 2019), and the analysis of satellite imagery (Wadoux, 2019).
Good uncertainty estimates are also a key ingredient in anomaly detection (Chalapathy & Chawla,
2019), active learning (Settles, 2009), safe reinforcement learning (Henaff et al., 2019), defending
against adversarial examples (Goodfellow et al., 2014), and model interpretability (Alvarez-Melis &
Jaakkola, 2017). For an extensive literature review on uncertainty estimation and its applications,
we refer the curious reader to the surveys of Abdar et al. (2020) and Ruff et al. (2021). Despite a
research effort spanning multiple decades, machine learning systems still lack trustworthy estimates
of their predictive uncertainty. In our view, one hindrance to this research program is the absence
of realistic benchmarking and evaluation protocols. More specifically, prior attempts are limited in
two fundamental ways. First, these experiment on small datasets such as SVHN and CIFAR-10 (van
Amersfoort et al., 2021). Second, these do not provide a challenging set of out-domain data. Instead,
they construct out-domain classes by using a second dataset (e.g., using MNIST in-domain versus
FashionMNIST out-domain, cf. Van Amersfoort et al. (2020)) or by perturbing the in-domain classes
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Datasets Algorithms Uncertainty In-Domain Out-Domain Ablations
measures metrics metrics

ImageNot ERM Largest ACC@1 AUC Calibration (y/n)
(new) Mixup Gap ACC@5 InAsIn Spectral norm (y/n)

Soft-labeler Entropy ECE OutAsOut Model size (RN18 / RN50)
RBF Jacobian NLL
RND GMM
OCs Native
DeepAE
MC-Dropout
MIMO
DUE
(+ Ensembles)

Table 1: The UIMNET test-bed suite for uncertainty estimation.

using handcrafted transformations (such as Gaussian noise or blur, see ImageNet-C Hendrycks &
Dietterich (2019)). Both approaches result in simplistic benchmarking, and little is learned about
uncertainty estimation for the real world. One exception is the ImageNet-O dataset (Hendrycks et al.,
2021), where out-domain data is selected from ImageNet-22k classes not contained in ImageNet-
1k. However, the images in ImageNet-O are collected adversarially as to maximize the prediction
confidence of ResNet50 ImageNet-1k classifiers, creating what’s possibly an unnecessarily difficult
benchmark. The purpose of this work is to introduce an end-to-end benchmark and evaluation
protocol as realistic as possible. At the time of writing, UIMNET is the most exhaustive benchmark
for uncertainty estimation in the literature.

Formal setup We learn classifiers f using in-domain data from some distribution Pin(X,Y ). After
training, we endow the classifier with a real-valued uncertainty measure u(f, x†). Given a test
example (x†

, y
†) ⇠ P with unobserved label y†, we declare x

† in-domain (hypothesizing P = Pin)
if u(f, x†) is small, whereas we declare x

† out-domain (hypothesizing P 6= Pin) if u(f, x†) is large.
Using these tools, our goal is to abstain from classifying out-domain test examples, and to classify
with calibrated probabilities in-domain test examples. The sequel assumes that the difference between
in- and out-domain resides in that the two groups of data concern disjoint classes.

Contributions We introduce UIMNET, a test-bed for large-scale, realistic evaluation of uncertainty
estimates in deep image classifiers. We build UIMNET as follows (see also Table 1).

(Sec. 2) We construct ImageNot, a perceptual partition of ImageNet into in-domain and out-
domain classes. Unlike most prior work focusing on small datasets like SVHN and
CIFAR-10, ImageNot provides a benchmark for uncertainty estimators at a much larger
scale. Moreover, both in-domain and out-domain categories in ImageNot originate from
the original ImageNet dataset. This provides realistic out-domain data, as opposed to prior
work relying on a second dataset (e.g., MNIST as in-domain versus SVHN as out-domain),
or handcrafted perturbations of in-domain classes (Gaussian noise or blur as out-domain).

(Sec. 3) We re-implement eight state-of-the-art algorithms from scratch, listed in Table 1. This
allows a fair comparison under the exact same experimental conditions (training/validation
splits, hyper-parameter search, neural network architectures and random initializations).
Furthermore, we also study ensembles of multiple training instances for each algorithm.

(Sec. 4) Each algorithm can be endowed with one out of six possible uncertainty measures,
allowing an exhaustive study of what algorithms play well with what measures. Listed
in Table 1, these are the largest softmax score, the gap between the two largest softmax
scores, the softmax entropy, the norm of the Jacobian, a per-class Gaussian density model,
and (for those available) an algorithm-specific measure.

(Sec. 5) For each classifier-measure pair, we study four in-domain metrics (top-1 and top-5
classification accuracy, log-likelihood, expected calibration error) and three out-domain
metrics (the AUC at classifying in-domain versus out-domain samples using the selected

2



Under review as a conference paper at ICLR 2022

uncertainty measure, as well as the confusion matrix at a fixed uncertainty threshold
computed over an in-domain validation set).

(Sec. 6) We explore three popular ablations to understand the impact of model calibration by
temperature scaling, model size, and the use of spectral normalization.

(Sec. 7) UIMNET is entirely hands-off, since the pipeline from zero to LATEX tables is fully
automated: this includes hyper-parameter search, model calibration, model ensembling,
and the production of all the tables included in our experimental results.

(Sec. 8) Our experimental results reveal that, in order to obtain the best possible uncertainty
estimates in large-scale image classification, the practitioner should favor large, calibrated
models. We recommend the use of single ERM models, single MIMO models, or
ensembles of ERM models, in order of increasing performance and required computational
budget.

UIMNET is open sourced at https://github.com/ANONYMOUS. All of the tables presented
in this paper are reproducible by running the main script in the repository at commit 0xANON.

2 CONSTRUCTING THE IMAGENOT BENCHMARK

The ImageNet dataset (Russakovsky et al., 2015) is a gold standard to conduct research in computer
vision pertaining image data of 1000 different classes. Here we use the ImageNet dataset to derive
ImageNot, a large-scale and realistic benchmark for uncertainty estimation. ImageNot partitions
the 1000 classes of the original ImageNet dataset into in-domain classes (used to train and evaluate
algorithms in-distribution) and out-domain classes (used to evaluate algorithms out-of-distribution).

To partition ImageNet into in-domain and out-domain, we featurize the entire dataset to understand
the perceptual similarity between classes. To this end, we use a pre-trained ResNet-18 (He et al., 2016)
to compute the average last-layer representation for each of the classes. Next, we use agglomerative
hierarchical clustering Ward Jr (1963) to construct a tree describing the perceptual similarities
between the 1000 average feature vectors. Such perceptual tree has 1000 leafs, each of them being
a cluster containing one of the classes. During each step of the iterative agglomerative clustering
algorithm the two closest clusters are merged, where the distance between two clusters is computed
using the criterion of Ward Jr (1963). The algorithm halts when there are only two clusters left to
merge, forming the root node of the tree.

At this point, we declare the 266 classes to the left of the root as in-domain, and the first 266 classes to
the right of the root as out-domain. In the sequel, we call “training set” and “validation set” to a 90/10
random split from the original ImageNet “train” set. We call “testing set” to the original ImageNet
“val” split. The exact in-/out-domain class partition as well as the considered train/validation splits are
specified in Appendix D. Our agglomerative clustering procedure ended-up congregating different
types of objects as in-domain classes, while grouping animals as out-domain classes.

While inspired by the BREEDS ImageNet splits (Santurkar et al., 2020), our benchmark ImageNot is
conceived to tackle a different problem. The aim of the BREEDS dataset is to classify ImageNet into
a small number of super-classes, each of them containing a number of perceptually-similar sub-classes.
The BREEDS training and testing distributions differ on the sub-class proportions contributing to
their super-classes. Since the BREEDS task is to classify super-classes, the set of labels remains
constant from training to testing conditions. This is in contrast to ImageNot, where the algorithm
observes only in-domain classes during training, but both in-domain and out-domain classes during
evaluation. While BREEDS studies the important problem of domain generalization (Gulrajani &
Lopez-Paz, 2020), where there is always a right prediction to make within the in-domain classes
during evaluation, here we focus on measuring uncertainty and abstaining from predicting about
those out-domain classes unavailable during training.

ImageNot is also similar to the ImageNet-O dataset of (Hendrycks et al., 2021). However, their out-
domain images are collected adversarially, that is, to maximize the prediction confidence of ResNet50
classifiers. We believe that this drastic change in selection bias from ImageNet to ImageNet-O may
result in an unnecessarily difficult uncertainty estimation benchmark. Thus, here we favor using only
the original ImageNet data, as described above. In contrast, the starting point for both in-domain and
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out-domain classes of our ImageNot is the ImageNet dataset, and thus should maximally overlap in
terms of image statistics, leading to a challenging and realistic benchmark.

3 ALGORITHMS

We benchmark ten supervised learning algorithms commonly applied to tasks involving uncertainty
estimation. Each algorithm consumes one in-domain training set of image-label pairs {(xi, yi)}ni=1

and returns a predictor f(x) = w(�(x)), composed by a featurizer � : R3⇥224⇥224 ! Rk and a
classifier w : Rk ! RC . We consider predictors implemented using deep convolutional neural
networks (LeCun et al., 2015). Given an input image x

†, all predictors return a softmax vector
f(x†) = (f(x†)c)Cc=1 over C classes. The considered algorithms are:

• Empirical Risk Minimization, or ERM (Vapnik, 1992), or vanilla training.
• Mixup (Zhang et al., 2017) chooses a predictor minimizing the empirical risk on mixed examples
(� · xi + (1� �) · xj ,� · yi + (1� �) · yj), where � ⇠ Beta(↵,↵), ↵ is a mixing parameter,
and ((xi, yi), (xj , yj)) is a random pair of training examples. Mixup improves generalization
performance (Zhang et al., 2017) and calibration (Thulasidasan et al., 2019).

• Random Network Distillation, or RND (Burda et al., 2018), finds an ERM predictor f(x) =
w(�(x)), but simultaneously trains an auxiliary classifier wstudent to minimize kwstudent(�(x))�
wteacher(�(x))k22, where wteacher is a fixed classifier with random weights. RND has shown good
performance as a tool for exploration in reinforcement learning.

• Orthogonal Certificates, or OC (Tagasovska & Lopez-Paz, 2018), is analogous to RND for
wteacher(�(x)) = ~0k for all x. That is, the goal of wstudent is to map all the in-domain training ex-
amples to zero in k different ways (or certificates). To ensure diverse and non-trivial certificates,
we regularize each weight matrix W of wstudent to be orthogonal by adding a regularization term
kW>

W � Ik22. OCs have shown good performance at the task of estimating uncertainty across
a variety of classification tasks.

• Autoencoder, or DeepAE (Vincent et al., 2010), is analogous to RND for wteacher(�(x)) = �(x)
and a wstudent with a bottleneck.

• MC-Dropout (Gal & Ghahramani, 2016) trains ERMs with one or more dropout layers (Sri-
vastava et al., 2014). These stochastic dropout layers remain active at test time, allowing the
predictor to produce multiple softmax vectors {f(x†

, dropoutt)}Tt=1 for each test example x
†.

Here, dropoutt is a random dropout mask sampled anew. MCDropout is one of the most popular
baselines to estimate uncertainty.

• MIMO (Havasi et al., 2021) is a variant of ERM over predictors accepting T images and
producing T softmax vectors. For example, MIMO with T = 3 is trained to predict jointly the
label vector (yi, yj , yk) using a predictor h(xi, xj , xk), where ((xt, yt))3i=1 is a random triplet
of training examples. Given a test point x†, we form predictions by replicating and averaging,
that is f(x†) = 1

3

P3
t=1 h(x

†
, x

†
, x

†)t.
• Radial Basis Function, or RBF (Broomhead & Lowe, 1988), is a variant of ERM where we

transform the logit vector z 7! e
�z2

before passing them to the final softmax layer. In such a way,
as the logit norm kzk ! 1, the predicted softmax vector tends to the maximum entropy solution
( 1
C )Cc=1, signaling high uncertainty far away from the training data. RBFs have been proposed

as defense to adversarial examples (Goodfellow et al., 2014), but they remain under-explored
given the difficulties involved in their training.

• Soft labeler (Hinton et al., 2015; Szegedy et al., 2016) is a variant of ERM where the one-hot
vector labels yi are smoothed such that every zero becomes `min > 0 and the solitary one
becomes `max < 1. Using soft labels, we can identify softmax vectors with entries exceeding
`max as “over-shoots”, and regard them as uncertain predictions.

• DUE (van Amersfoort et al., 2021) enforces the smoothness of the featurizer � using spectral
normalization (Miyato et al., 2018), implements the classifier w as a sparse Gaussian Process
(Quinonero-Candela & Rasmussen, 2005), and trains the resulting predictor using variational
inference (Titsias, 2009). Gaussian processes are considered one of the main tools to estimate
predictive uncertainty in machine learning systems.

Ensembles of predictors We also consider ensembles of predictors trained by each of the algo-
rithms above. Ensembles are commonly regarded as the state-of-the-art in uncertainty estimation (Lak-
shminarayanan et al., 2016). In particular, and for each algorithm, we construct bagging ensembles
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by (i) selecting the best K 2 {1, 5} predictors {fk}Kk=1 from all considered random initializations
and hyper-parameters, and (ii) returning the average function f(x†) := 1

K

PM
k=1 f

k(x†).

4 UNCERTAINTY MEASURES

We equip a trained predictor f with six different uncertainty measures. An uncertainty measure is a
real-valued function u(f, x†) designed to return small values for in-domain instances x†, and large
values for out-domain instances x†. To describe the different measures, let {s(1), . . . , s(C)} be the
softmax scores returned by f(x†) sorted in decreasing order.

• Largest (Hendrycks & Gimpel, 2016) returns minus the largest softmax score, �s(1)
• Softmax gap (Tagasovska & Lopez-Paz, 2018) returns s(2) � s(1).
• Entropy (Shannon, 1948) returns �

PC
c=1 s(c)I{s(c) > 0} log s(c).

• Norm of the Jacobian (Novak et al., 2018) returns krxf(x†)k22.
• GMM (Mukhoti et al., 2021) estimates one Gaussian density N (�(x);µc,⌃c) per-class, on

top of the feature vectors �(x) collected from a in-domain validation set. Given a test example
x
†, return �

PC
c=1 �c · N (�(x†);µc,⌃c), where �c is the proportion of in-domain validation

examples from class c.
• Test-time augmentation (Ashukha et al., 2020) returns �maxc(

1
A

PA
a=1 f(x

†
a))c. This is the

measure “Largest” about the average prediction over A random data augmentations {x†
a}Aa=1

of the test instance x
†.

These uncertainty measures are applicable to all the algorithms considered in Section 3. Additionally,
some algorithms provide their Native uncertainty measures, outlined below.

• For Mixup, we return 1
K

PK
k=1 k� · f(x†) + (1� �) · ȳk � f(� · x† + (1� �) · x̄k)k22, where

� ⇠ Beta(↵,↵), and (x̄k, ȳk) is an example saved from the training set. This measures if the
test example x

† violates the Mixup criterion wrt the training dataset average.
• For RND, OC, and DeepAE we return kwstudent(�(x†))�wteacher(�(x†))k22, that is, we consider

a prediction uncertain if the outputs of the student and teacher disagree. We expect this
disagreement to be related predictive uncertainty, as the student did not observe the behaviour of
the teacher at out-domain instances x†.

• For Soft labeler we return (s(1) � `max)2. This measures the discrepancy between the largest
softmax and the positive soft label target, able to signal overly-confident predictions.

• For MC-Dropout and Ensembles, and following (Lakshminarayanan et al., 2016), we return the
Jensen-Shannon divergence between the K members (or stochastic forward passes) f1

, . . . , f
K

of the ensemble, H
⇣

1
K

PK
k=1 f

k(x†)
⌘
� 1

K

PK
k=1 H(fk(x†)).

• For DUE, we return the predictive variance of the Gaussian process classifier.

5 EVALUATION METRICS

For each algorithm-measure pair, we evaluate several metrics both in-domain and out-domain.

Following (Havasi et al., 2021), we implement four in-domain metrics to assess the performance
and calibration of predictors when facing in-domain test examples.

• Top-1 and Top-5 classification accuracy (Russakovsky et al., 2015).
• Expected Calibration Error or ECE (Guo et al., 2017):

1
B

PB
b=1

|Bb|
n |acc(f,Bb)� conf(f,Bb)|, where Bb contains the examples where the al-

gorithm predicts a softmax score of b. The functions acc and conf compute the average
classification accuracy and largest softmax score of f over Bb. ECE is minimized when f is
calibrated, that is, f is wrong p% of the times it predicts a largest softmax score p. Following
(Guo et al., 2017), we discretize b 2 [0, 1] into 15 equally-spaced bins.

• Negative Log Likelihood (NLL) Also known as the cross-entropy loss, this is the objective
minimized during the training process of the algorithms.

We assess the uncertainty estimates of each predictor-measure pair using three out-domain metrics.
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• Area Under the Curve, or AUC (Tagasovska & Lopez-Paz, 2018), describes how well does
the predictor-measure pair distinguish between in-domain and out-domain examples over all
thresholds of the uncertainty measure.

• Confusion matrix at fixed threshold. To reject out-domain examples in real scenarios, one
must fix a threshold ✓ for the selected uncertainty measure. We do so by computing the 95%
quantile of the uncertainty measure, computed over an in-domain validation set. Then, at testing
time, we declare one example out-domain if the uncertainty measure exceeds ✓.1 To understand
where does the uncertainty measure hit or miss, we monitor the metrics InAsIn (percentage of
in-domain examples classified as in-domain) and OutAsOut (percentage of in-domain examples
classified as out-domain).

6 ABLATIONS

We execute our entire test-bed under three popular ablations.

• We study the effect of calibration by temperature scaling (Platt et al., 1999). To this end,
we introduce a temperature scaling ⌧ > 0 before the softmax layer, resulting in predictions
Softmax( z⌧ ) about the logit vector z. We estimate the optimal temperature ⌧̂ by minimizing the
NLL of the predictor across an in-domain validation set. We evaluate all metrics for both the
un-calibrated (⌧ = 1) and calibrated (⌧ = ⌧̂ ) predictors. According to previous literature (Guo
et al., 2017), calibrated models provide better in-domain uncertainty estimates.

• We analyze the impact of spectral normalization to control the behavior of the featurizer �.
More specifically, recent works (Liu et al., 2020; Van Amersfoort et al., 2020; van Amersfoort
et al., 2021; Mukhoti et al., 2021) have highlighted the importance of controlling both the
smoothness and sensitivity of the feature extraction process to avoid feature collapse and achieve
high-quality uncertainty estimates. On the one hand, enforcing smoothness upper bounds the
Lipschitz constant of �, limiting its reaction to changes in the input. Smoothness is often
enforced by normalizing each weight matrix in � by its spectral norm (Miyato et al., 2018). On
the other hand, enforcing sensitivity lower bounds the Lipschitz constant of �, ensuring that
the feature space reacts in some amount when the input changes. Sensitivity is often enforced
by the residual connections of the hereby used ResNet models (He et al., 2016). We apply
one-sided spectral normalization, with a target spectral norm of 5, to the weights and the batch
normalization layers following Miyato et al. (2018) and Gouk et al. (2021) respectively.

• We analyze the impact of the model size (ResNet-18 versus ResNet-50).

7 EXPERIMENTAL PROTOCOL

We now conduct experiments on the ImageNot benchmark (Section 2) for all algorithms (Section 3)
and measures (Section 4), wrt all metrics (Section 5) and ablations (Section 6). Empirical oracle
upper bounds To have a measure of the maximally achievable separation of the in-domain and
out-of-domain partitions, we train a ResNet-18 classifier to discriminate between the In-domain
classes and the out-of-domain partition. The oracle performance is 0.985± 0.002, 0.944± 0.001 and
0.947± 0.002 for the AUC, InAsIn and OutAsOut metrics respectively.

Hyper-parameter search. We train each algorithm using (i) ResNet-18 or ResNet-50 architectures
(ii) spectral normalization or not, (iii) ten hyper-parameter trials, and (iv) three random train/validation
splits of the in-domain data (data seeds). We opt for a random hyper-parameter search (Bergstra &
Bengio, 2012), where the search grid for each algorithm is detailed in Appendix C. More specifically,
while the first trial uses the default hyper-parameter configuration suggested by the authors of each
algorithm, the additional four trials explore random hyper-parameters.

Model selection. After training all instances of a given algorithm, we report the test average and
standard deviation (over data seeds) of all metrics. We report these metrics for (a) the best model

1This strategy is equivalent to the statistical hypothesis test with null “H0: the observed example is in-
domain”.
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(k = 1), and (b) the ensemble containing the best five models (k = 5) in terms of the validation
average (over data seeds) negative log-likelihood2.

Optimization. We use PyTorch (Paszke et al., 2019) and SGD (Bottou, 2012) for 100 epochs using
mini-batches of 256 examples distributed over 8 NVIDIA Tesla V100 GPUs, and a learning rate
decaying by a factor of 10 every 30 epochs.

8 RESULTS

The full experimental results are available in Appendix A (in-domain) and Appendix B (out-domain).
Below, we summarize our findings.

From the in-domain results summarized in Table 2, we identify the following key takeaways:

• No single method out-performs ERM significantly on any in-domain metric, except MIMO
on ECE (-30% ECE).

• No ensemble method outperforms ensembles of ERMs in any in-domain metric.
• Increasing model size is the most effective strategy to improve in-domain metrics (+5%

ACC@1, +2% ACC@5, -17% NLL, -13% ECE).
• Ensembling is the second most effective strategy to improve in-domain metrics (+2.5%

ACC@1, +1% ACC@5, -8.5% NLL, -8% ECE).
• Calibration is an effective strategy to improve test negative log-likelihood and expected

calibration error (-2% NLL, -45% ECE).
• Spectral normalization has little effect to improve in-domain metrics (<1%).
• DUE has a brittle behavior, performing well only for default hyper-parameters and

ResNet18 architectures.

From the out-domain results summarized in Table 3, corresponding to the best performing uncertainty
measure “Entropy”, we identify the following key takeaways:

• No single method outperforms ERM significantly on any out-domain metric, except MIMO
on OutAsOut (+5% OutAsOut).

• No ensemble method outperforms ensembles of ERMs in any out-domain metric.
• Increasing model size is the most effective strategy to improve out-domain metrics (+4%

AUC, +35% OutAsOut).
• Ensembling is the second most effective strategy to improve out-domain metrics (+1%

AUC, +4% OutAsOut).
• Calibration has a small negative effect on out-domain metrics (-1%).
• Spectral normalization has a small positive effect on out-domain metrics (<1%).
• All methods are able to upper-bound their type-I errors to the requested threshold of 5%.
• The best performing uncertainty measure is Entropy; then Largest, and Gap follow. The

worst performing measures are Augmentations, Jacobian, and Native (Appendix B).

Other results We were unable to obtain competitive performances for the algorithm RBF (Broom-
head & Lowe, 1988) and the measure GMM (Mukhoti et al., 2021). We believe that training RBFs at
this large scale are challenging optimization problems that deserve further study in our community.
Furthermore, the large number of classes in our study (266 ImageNet classes instead of the 10
CIFAR-10 classes often considered) poses a difficult problem for the density-based measures GMM.

9 CONCLUSION

To obtain the best possible uncertainty estimates in large-scale image classification, we recom-
mend the use of large and calibrated models. We favor single ERM models (low computational
budget), single MIMO models (medium budget), or ensembles of ERM models (high budget).

2Graphs showing the relationship between validation set negative likelihood and out-of-domain measures on
the test set are show in the appendix.
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algorithm k calibration spectral ACC@1 (") ACC@5 (") NLL (#) ECE (#)

ERM

1
False False 0.767± 0.002 0.930± 0.000 0.939± 0.004 0.053± 0.001

True False 0.767± 0.002 0.930± 0.000 0.918± 0.005 0.031± 0.000
True 0.766± 0.003 0.927± 0.001 0.947± 0.008 0.055± 0.002
True 0.766± 0.003 0.927± 0.001 0.924± 0.008 0.031± 0.002

5
False False 0.780± 0.007 0.933± 0.005 0.865± 0.031 0.030± 0.008

True False 0.780± 0.007 0.933± 0.005 0.863± 0.029 0.021± 0.005
True 0.788± 0.001 0.937± 0.000 0.821± 0.003 0.019± 0.002
True 0.788± 0.001 0.937± 0.000 0.822± 0.003 0.019± 0.003

Mixup

1
False False 0.768± 0.001 0.929± 0.000 0.925± 0.003 0.035± 0.001

True False 0.768± 0.001 0.929± 0.000 0.923± 0.003 0.030± 0.002
True 0.766± 0.003 0.927± 0.001 0.942± 0.005 0.021± 0.004
True 0.766± 0.003 0.927± 0.001 0.940± 0.004 0.029± 0.001

5
False False 0.777± 0.001 0.933± 0.001 0.871± 0.002 0.039± 0.001

True False 0.777± 0.001 0.933± 0.001 0.857± 0.002 0.017± 0.001
True 0.789± 0.000 0.940± 0.000 0.840± 0.001 0.051± 0.002
True 0.789± 0.000 0.940± 0.000 0.814± 0.002 0.019± 0.002

SoftLabeler

1
False False 0.767± 0.003 0.930± 0.001 0.978± 0.009 0.032± 0.001

True False 0.767± 0.003 0.930± 0.001 0.949± 0.010 0.043± 0.003
True 0.767± 0.001 0.928± 0.001 0.984± 0.003 0.030± 0.002
True 0.767± 0.001 0.928± 0.001 0.958± 0.006 0.045± 0.002

5
False False 0.782± 0.006 0.935± 0.003 1.013± 0.073 0.148± 0.040

True False 0.782± 0.006 0.935± 0.003 0.861± 0.025 0.029± 0.003
True 0.790± 0.001 0.940± 0.001 0.906± 0.001 0.089± 0.003
True 0.790± 0.001 0.940± 0.001 0.827± 0.002 0.032± 0.001

DeepAE

1
False False 0.765± 0.001 0.928± 0.001 0.933± 0.004 0.046± 0.003

True False 0.765± 0.001 0.928± 0.001 0.922± 0.003 0.031± 0.001
True 0.765± 0.001 0.928± 0.001 0.934± 0.003 0.046± 0.003
True 0.765± 0.001 0.928± 0.001 0.923± 0.003 0.030± 0.002

5
False False 0.778± 0.008 0.934± 0.004 0.862± 0.036 0.032± 0.009

True False 0.778± 0.008 0.934± 0.004 0.855± 0.031 0.015± 0.001
True 0.789± 0.001 0.940± 0.000 0.811± 0.001 0.020± 0.000
True 0.789± 0.001 0.940± 0.000 0.812± 0.001 0.015± 0.002

RND

1
False False 0.762± 0.001 0.927± 0.001 0.957± 0.008 0.056± 0.001

True False 0.762± 0.001 0.927± 0.001 0.936± 0.007 0.032± 0.002
True 0.764± 0.002 0.926± 0.001 0.955± 0.008 0.055± 0.002
True 0.764± 0.002 0.926± 0.001 0.933± 0.007 0.029± 0.001

5
False False 0.781± 0.007 0.936± 0.004 0.846± 0.031 0.025± 0.008

True False 0.781± 0.007 0.936± 0.004 0.846± 0.027 0.016± 0.001
True 0.788± 0.001 0.938± 0.001 0.824± 0.002 0.019± 0.002
True 0.788± 0.001 0.938± 0.001 0.825± 0.002 0.018± 0.001

OC

1
False False 0.764± 0.001 0.928± 0.001 0.947± 0.002 0.054± 0.001

True False 0.764± 0.001 0.928± 0.001 0.926± 0.002 0.032± 0.001
True 0.765± 0.002 0.927± 0.002 0.948± 0.002 0.054± 0.001
True 0.765± 0.002 0.927± 0.002 0.927± 0.002 0.029± 0.002

5
False False 0.782± 0.008 0.935± 0.005 0.844± 0.034 0.022± 0.008

True False 0.782± 0.008 0.935± 0.005 0.843± 0.031 0.016± 0.002
True 0.788± 0.004 0.937± 0.000 0.824± 0.002 0.020± 0.002
True 0.788± 0.004 0.937± 0.000 0.825± 0.002 0.018± 0.002

MIMO

1
False False 0.768± 0.002 0.929± 0.000 0.929± 0.001 0.048± 0.001

True False 0.768± 0.002 0.929± 0.000 0.906± 0.001 0.022± 0.001
True 0.768± 0.002 0.928± 0.001 0.930± 0.004 0.051± 0.001
True 0.768± 0.002 0.928± 0.001 0.905± 0.004 0.023± 0.000

5
False False 0.769± 0.008 0.928± 0.005 0.918± 0.042 0.048± 0.012

True False 0.769± 0.008 0.928± 0.005 0.905± 0.033 0.015± 0.001
True 0.779± 0.001 0.934± 0.001 0.859± 0.004 0.032± 0.003
True 0.779± 0.001 0.934± 0.001 0.857± 0.004 0.018± 0.002

MCDropout

1
False False 0.766± 0.002 0.928± 0.001 0.944± 0.002 0.054± 0.001

True False 0.766± 0.002 0.928± 0.001 0.923± 0.001 0.031± 0.002
True 0.765± 0.002 0.927± 0.001 0.950± 0.003 0.055± 0.002
True 0.765± 0.002 0.927± 0.001 0.927± 0.002 0.030± 0.001

5
False False 0.777± 0.008 0.934± 0.004 0.867± 0.032 0.029± 0.007

True False 0.777± 0.008 0.934± 0.004 0.865± 0.030 0.015± 0.003
True 0.788± 0.002 0.938± 0.001 0.822± 0.001 0.020± 0.001
True 0.788± 0.002 0.938± 0.001 0.823± 0.001 0.018± 0.001

DUE 1
False False 0.086± 0.002 0.246± 0.005 4.548± 0.016 0.032± 0.003

True False 0.086± 0.003 0.245± 0.005 4.536± 0.019 0.010± 0.002
True 0.653± 0.000 0.830± 0.000 1.575± 0.000 0.068± 0.000
True 0.654± 0.000 0.830± 0.000 1.569± 0.000 0.023± 0.000

Table 2: In-domain results for ResNet50.
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algorithm k calibration spectral AUC (") InAsIn (") OutAsOut (")

ERM

1
False False 0.865± 0.003 0.942± 0.001 0.373± 0.006

True False 0.871± 0.004 0.943± 0.001 0.377± 0.007
True 0.864± 0.003 0.944± 0.001 0.368± 0.012
True 0.871± 0.003 0.944± 0.001 0.374± 0.010

5
False False 0.878± 0.002 0.943± 0.002 0.397± 0.003

True False 0.876± 0.002 0.943± 0.002 0.397± 0.002
True 0.878± 0.001 0.942± 0.001 0.398± 0.003
True 0.877± 0.001 0.942± 0.001 0.397± 0.003

Mixup

1
False False 0.858± 0.002 0.943± 0.000 0.353± 0.004

True False 0.858± 0.002 0.943± 0.000 0.353± 0.005
True 0.855± 0.007 0.940± 0.001 0.348± 0.016
True 0.854± 0.007 0.940± 0.001 0.350± 0.017

5
False False 0.874± 0.001 0.940± 0.001 0.397± 0.007

True False 0.872± 0.002 0.940± 0.001 0.396± 0.008
True 0.876± 0.002 0.939± 0.001 0.399± 0.006
True 0.872± 0.001 0.939± 0.001 0.393± 0.002

SoftLabeler

1
False False 0.832± 0.009 0.941± 0.001 0.305± 0.015

True False 0.835± 0.009 0.942± 0.001 0.313± 0.014
True 0.837± 0.004 0.941± 0.001 0.314± 0.007
True 0.839± 0.004 0.941± 0.001 0.322± 0.008

5
False False 0.858± 0.003 0.939± 0.001 0.348± 0.008

True False 0.858± 0.004 0.940± 0.001 0.355± 0.010
True 0.861± 0.001 0.940± 0.001 0.351± 0.004
True 0.862± 0.001 0.940± 0.001 0.361± 0.004

DeepAE

1
False False 0.863± 0.003 0.942± 0.001 0.376± 0.016

True False 0.867± 0.004 0.942± 0.001 0.379± 0.018
True 0.865± 0.002 0.943± 0.001 0.376± 0.009
True 0.869± 0.002 0.942± 0.000 0.381± 0.009

5
False False 0.881± 0.002 0.942± 0.001 0.414± 0.014

True False 0.875± 0.001 0.941± 0.001 0.406± 0.009
True 0.882± 0.001 0.941± 0.002 0.415± 0.004
True 0.879± 0.001 0.940± 0.002 0.410± 0.001

RND

1
False False 0.859± 0.001 0.942± 0.001 0.354± 0.008

True False 0.864± 0.001 0.943± 0.001 0.357± 0.010
True 0.855± 0.004 0.943± 0.001 0.354± 0.012
True 0.860± 0.004 0.942± 0.001 0.359± 0.012

5
False False 0.878± 0.002 0.941± 0.000 0.398± 0.008

True False 0.875± 0.001 0.940± 0.000 0.395± 0.006
True 0.875± 0.002 0.941± 0.001 0.389± 0.006
True 0.874± 0.002 0.940± 0.001 0.389± 0.005

OC

1
False False 0.861± 0.001 0.938± 0.001 0.371± 0.011

True False 0.867± 0.001 0.939± 0.001 0.373± 0.013
True 0.861± 0.003 0.944± 0.001 0.361± 0.014
True 0.866± 0.003 0.943± 0.001 0.364± 0.014

5
False False 0.878± 0.001 0.943± 0.001 0.395± 0.009

True False 0.875± 0.001 0.943± 0.001 0.393± 0.008
True 0.876± 0.001 0.941± 0.001 0.390± 0.012
True 0.875± 0.001 0.942± 0.001 0.389± 0.011

MIMO

1
False False 0.868± 0.003 0.942± 0.001 0.388± 0.005

True False 0.874± 0.003 0.941± 0.001 0.397± 0.005
True 0.867± 0.003 0.941± 0.001 0.392± 0.009
True 0.874± 0.002 0.942± 0.001 0.398± 0.010

5
False False 0.870± 0.003 0.939± 0.001 0.371± 0.014

True False 0.864± 0.004 0.939± 0.001 0.366± 0.013
True 0.872± 0.001 0.940± 0.001 0.377± 0.005
True 0.868± 0.001 0.940± 0.002 0.375± 0.004

MCDropout

1
False False 0.864± 0.002 0.943± 0.001 0.368± 0.005

True False 0.869± 0.002 0.942± 0.001 0.373± 0.007
True 0.865± 0.005 0.942± 0.002 0.380± 0.010
True 0.871± 0.005 0.942± 0.002 0.385± 0.011

5
False False 0.878± 0.001 0.942± 0.001 0.394± 0.007

True False 0.874± 0.003 0.942± 0.001 0.391± 0.008
True 0.879± 0.001 0.941± 0.000 0.400± 0.003
True 0.878± 0.002 0.941± 0.000 0.400± 0.003

DUE 1
False False 0.553± 0.008 0.950± 0.001 0.038± 0.002

True False 0.553± 0.008 0.950± 0.001 0.038± 0.002
True 0.840± 0.000 0.942± 0.000 0.286± 0.000
True 0.836± 0.000 0.942± 0.000 0.285± 0.000

Table 3: Out-domain results for ResNet50 using measure “Entropy”
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ETHICS STATEMENT

This work does not involve the release of any new data, or the development of any new algorithm.
However, we believe that the development of better uncertainty estimates for our predictive models is
at the core of responsible, fair machine learning. As such, we hope that the UIMNET baseline is a
stepping stone towards advancing the ability of our systems to say “I don’t know”. Also, we hope
that our manuscript and software aids future research to study uncertainty estimates as components
also vulnerable to attacks and with their own set of limitations.

REPRODUCIBILITY

A main focus of this manuscript is reproducibility. To replicate all of our experimental results,
obtain our code from the Supplementary Material and follow the instructions at README.md. Upon
publication, our code will be open-sourced in a GitHub repository, and all of our experimental results
will be replicable from a fixed commit hash.
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