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ABSTRACT

A dataset is a shred of crucial evidence to describe a task. However, each data point
in the dataset does not have the same potential, as some of the data points can be
more representative or informative than others. This unequal importance among the
data points may have a large impact in rehearsal-based continual learning, where
we store a subset of the training examples (coreset) to be replayed later to alleviate
catastrophic forgetting. In continual learning, the quality of the samples stored in
the coreset directly affects the model’s effectiveness and efficiency. The coreset
selection problem becomes even more important under realistic settings, such as
imbalanced continual learning or noisy data scenarios. To tackle this problem,
we propose Online Coreset Selection (OCS), a simple yet effective method that
selects the most representative and informative coreset at each iteration and trains
them in an online manner. Our proposed method maximizes the model’s adaptation
to a current dataset while selecting high-affinity samples to past tasks, which
directly inhibits catastrophic forgetting. We validate the effectiveness of our coreset
selection mechanism over various standard, imbalanced, and noisy datasets against
strong continual learning baselines, demonstrating that it improves task adaptation
and prevents catastrophic forgetting in a sample-efficient manner.

1 INTRODUCTION

Humans possess the ability to learn a large number of tasks by accumulating knowledge and skills
over time. Building a system resembling human learning abilities is a deep-rooted desire since
sustainable learning over a long-term period is essential for general artificial intelligence. In light of
this need, continual learning (CL) (Thrun, 1995), or lifelong learning, tackles a learning scenario
where a model continuously learns over a sequence of tasks (Kumar & Daume III, 2012; Li & Hoiem,
2016) within a broad research area, such as classification (Kirkpatrick et al., 2017; Chaudhry et al.,
2019a), image generation (Zhai et al., 2019), language learning (Li et al., 2019b; Biesialska et al.,
2020), clinical application (Lee & Lee, 2020; Lenga et al., 2020), speech recognition (Sadhu &
Hermansky, 2020), and federated learning (Yoon et al., 2021). A well-known challenge for continual
learning is catastrophic forgetting (McCloskey & Cohen, 1989), where the continual learner loses the
fidelity for past tasks after adapting the previously learned knowledge to future tasks.

Recent rehearsal-based continual learning methods adapt the continual model to the previous tasks by
maintaining and revisiting a small replay buffer (Titsias et al., 2020; Mirzadeh et al., 2020). However,
the majority of these methods store random-sampled instances as a proxy set to mitigate catastrophic
forgetting, limiting their practicality to real-world applications (see Figure 1a) when all the training
instances are not equally useful, as some of them can be more representative or informative for the
current task, and others can lead to performance degeneration for previous tasks. Furthermore, these
unequal potentials could be more severe under practical scenarios containing imbalanced, streaming,
or noisy instances (see Figure 2). This leads to an essential question in continual learning:

How can we obtain a coreset to promote task adaptation for the current task while
minimizing catastrophic forgetting on previously seen tasks?

∗The work was done while the author was a student at KAIST.
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Figure 1: Illustration of existing rehearsal-based CL and Online Coreset Selection (OCS): (a) Existing
rehearsal-based methods train on all the arrived instances and memorize a fraction of them in the replay buffer,
which results in a suboptimal performance due to the outliers (noisy or biased instances). (b) OCS obtains the
coreset by leveraging our three selection strategies, which discard the outliers at each iteration. Consequently,
the selected examples promote generalization and minimize interference with the previous tasks.
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(a) Imbalanced continual learning (b) Noisy continual learning
Figure 2: Realistic continual learning scenarios: (a) Each task consists of class-imbalanced instances.
(b) Each task has uninformative noise instances, which hamper training.

To address this question, we propose Online Coreset Selection (OCS), a novel method for continual
learning that selects representative training instances for the current and previous tasks from arriving
streaming data in an online fashion based on our following three selection strategies: (1) Minibatch
similarity selects samples that are representative to the current task Tt. (2) sample diversity encourages
minimal redundancy among the samples of current task Tt. (3) Coreset affinity promotes minimum
interference between the selected samples and knowledge of the previous tasks Tk, ∀k < t. To this
end, OCS minimizes the catastrophic forgetting on the previous tasks by utilizing the obtained coreset
for future training, and also encourages the current task adaptation by updating the model parameters
on the top-κ selected data instances. The overall concept is illustrated in Figure 1b.

Our method is simple, intuitive, and is generally applicable to any rehearsal-based continual learning
method. We evaluate the performance of OCS on various continual learning scenarios and show
that it outperforms state-of-the-art rehearsal-based techniques on balanced, imbalanced, and noisy
continual learning benchmarks of varying complexity. We also show that OCS is general and exhibits
collaborative learning with the existing rehearsal-based methods, leading to increased task adaptation
and inhibiting catastrophic forgetting. To summarize, our contributions are threefold:

• We address the problem of coreset selection for realistic and challenging continual learning
scenarios, where the data continuum is composed of class-imbalanced or noisy instances that
deteriorate the performance of the continual learner during training.

• We propose Online Coreset Selection (OCS), a simple yet effective online coreset selection method
to obtain a representative and diverse subset that has a high affinity to the previous tasks from
each minibatch during continual learning. Specifically, we present three gradient-based selection
criteria to select the coreset for current task adaptation while mitigating catastrophic forgetting.

• We demonstrate that OCS is applicable to any rehearsal-based continual learning method and exper-
imentally validate it on multiple benchmark scenarios, where it largely improves the performance
of the base algorithms across various performance metrics.

2 RELATED WORK

Continual learning. In the past few years, there has been significant progress in continual learning to
alleviate catastrophic forgetting (McCloskey & Cohen, 1989). The regularization approaches (Kirk-
patrick et al., 2017; Lee et al., 2017; Serrà et al., 2018) modify the model parameters with additional
regularization constraints to prevent catastrophic forgetting. The architecture approaches (Rusu et al.,
2016; Yoon et al., 2018; Xu & Zhu, 2018; Li et al., 2019a; Yoon et al., 2020) utilize network isolation
or expansion during continual learning to improve network performance. Another line of research
uses rehearsal approaches, which memorize or generate a small fraction of data points for previous
tasks and utilizes them to retain the task knowledge (Lopez-Paz & Ranzato, 2017; Chaudhry et al.,
2019a; Aljundi et al., 2019b; Borsos et al., 2020). For example, Gradient-based Sample Selection
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(GSS) (Aljundi et al., 2019b) formulates the selection of the replay buffer as a constraint selection
problem to maximize the variance of gradient direction. ER-MIR (Aljundi et al., 2019a) iteratively
constructs the replay buffer using a loss-based criterion, where the model selects the top-κ instances
that increase the loss between the current and previous iteration. However, the existing rehearsal-
based methods (Rebuffi et al., 2017; Aljundi et al., 2019b;a; Chaudhry et al., 2019a;b) do not select
the coreset before the current task adaptation and update the model on all the arriving data streams,
which makes them susceptible to real-world applications that include noisy and imbalanced data
distributions. In contrast, OCS selects the instances before updating the model using our proposed
selection criteria, which makes it robust to past and current task training across various CL scenarios.

Coreset selection. There exist various directions to obtain a coreset from a large dataset. Importance
sampling (Johnson & Guestrin, 2018; Katharopoulos & Fleuret, 2018; Sinha et al., 2020) strengthens
the loss/gradients of important samples based on influence functions. Kool et al. (2019) connect
stochastic Gumbel-top-k trick and beam search to hierarchically sample sequences without replace-
ment. Rebuffi et al. (2017) propose a herding based strategy for coreset selection. Nguyen et al. (2018)
formulate the coreset summarization in continual learning using online variational inference (Sato,
2001; Broderick et al., 2013). Aljundi et al. (2019b) select the replay buffer to maximize the variance
in the gradient-space. Contrary to these methods, OCS considers the diversity, task informativity and
relevancy to the past tasks. Recently, Borsos et al. (2020) propose a bilevel optimization framework
with cardinality constraints for coreset selection. However, their method is extremely limited in
practice and inapplicable in large-scale settings due to the excessive computational cost incurred
during training. In contrast, our method is simple, and scalable since it can construct the coreset in
the online streaming data continuum without additional optimization constraints.

3 REHEARSAL-BASED CONTINUAL LEARNING

We consider learning a model over a sequence of tasks {T1, . . . , TT } = T , where each task is
composed of independently and identically distributed datapoints and their labels, such that task
Tt includes Dt = {xt,n, yt,n}Ntn=1 ∼ Xt × Yt, where Nt is the total number of data instances, and
Xt × Yt is an unknown data generating distribution. We assume that an arbitrary set of labels for
task Tt, yt = {yt,n}Ntn=1 has unique classes, yt ∩ yk = ∅, ∀t 6= k. In a standard continual learning
scenario, the model learns a corresponding task at each step and t-th task is accessible at step t only.
Let neural network fΘ : X1:T → Y1:T be parameterized by a set of weights Θ = {θl}Ll=1, where L
is the number of layers in the neural network. We define the training objective at step t as follows:

minimize
Θ

Nt∑
n=1

`(fΘ(xt,n), yt,n), (1)

where `(·) is any standard loss function (e.g., cross-entropy loss). The naive CL design where a
simple sequential training on multiple tasks without any means for tackling catastrophic forgetting
cannot retain the knowledge of previous tasks and thus results in catastrophic forgetting. To tackle
this problem, rehearsal-based methods (Nguyen et al., 2018; Chaudhry et al., 2019a; Titsias et al.,
2020) update the model on a randomly sampled replay buffer Ck constructed from the previously
observed tasks, where Ck = {xk,j , yk,j}Jkj=1 ∼ Dk, ∀k < t and Jk � Nk. Consequently, the quality
of selected instances is essential for rehearsal-based continual learning. For example, some data
instances can be more informative and representative than others to describe a task and improve
model performance. In contrast, some data instances can degrade the model’s memorization of past
tasks’ knowledge. Therefore, obtaining the most beneficial examples for the current task is crucial
for the success of rehearsal-based CL methods.
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Figure 3: Per-class accuracy and average forgetting
when a model trained on MNIST (T1) is updated on a
single data point at class c on CIFAR-10 (T2).

To validate our hypothesis, we design a learning
scenario with a sequence of two tasks, MNIST
(T1) → CIFAR-10 (T2) using ResNet-18. Af-
ter the standard single epoch training on T1, we
update the model weights through a single back-
propagation step using a randomly selected data
point from T2, and measure test accuracy of
its corresponding class c and forgetting of the
entire dataset of a past task T1. Results for indi-
vidual impacts on 1000 data points from T2 are
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described in Section 3. The influence of each data point from T2 has a large disparity not only on the
corresponding class accuracy but also on past task’s forgetting that results in a very high standard
deviation. We emphasize that each data point has a different potential impact in terms of forgetting
past tasks. Few data points are much more robust to catastrophic forgetting than others, and this can
be severe when the influences are accumulated during training.

Based on this motivation, our objective is to select the data instances that can promote current task
adaptation while minimizing catastrophic forgetting on the previous tasks. We propose a selection
criterion that selects the subset that maximizes the gradient similarity between the representative
instances and the current task dataset. More formally:

u∗ = maximize
u∈Nκ

S

(
1

Nt
∇fΘ (Dt) ,

1

κ

∑
n∈u
∇fΘ (xt,n, yt,n)

)
, where u = {n : n ∈ N<Nt}, (2)

where S is any arbitrary similarity function and u∗ is an index set that selects top-κ informative
samples without replacement. However, obtaining a representative subset from the entire dataset
is computationally expensive and intractable for online continual learning; therefore, we consider
a minibatch as an approximation of the dataset and select few representative data instances at each
minibatch iteration. We empirically validate that our approximation generally holds across various
datasets, network structures, and minibatch sizes in Appendix B and Figure B.9. Consequently, the
model iteratively updates the parameters to find the optimal local minima of the loss using informative
data points, which obtain similar gradient directions with the averaged gradients of the dataset. In the
next section, we propose OCS which consists of a simple similarity criterion to achieve this objective.
However, similarity criterion is not sufficient to select the representative coreset for online continual
learning; hence, we propose diversity and coreset affinity criteria to mitigate catastrophic forgetting.

4 ONLINE CORESET SELECTION

In this section, we introduce our selection strategies and propose Online Coreset Selection (OCS) to
strengthen current task adaptation and mitigate catastrophic forgetting. Thus far, the rehearsal-based
continual learning methods (Rebuffi et al., 2017; Aljundi et al., 2019b;a; Chaudhry et al., 2019a;b)
populate the replay buffer to preserve the knowledge on the previous tasks. However, we argue
that some instances may be non-informative and inappropriate to construct the replay buffer under
realistic setups (such as video streaming or imbalanced continual learning scenarios), leading to
the degradation of the model’s performance. Moreover, it is critical to select the valuable samples
for current task training since the model can easily overfit to the biased and noisy data stream,
which negatively affects the model generalization. To satisfy these desiderata, we propose minibatch
similarity (S) and sample diversity (V) criteria based on our aforementioned assumption to adaptively
select the useful instances without the influence of outliers.
Definition 1 (Minibatch similarity). Let bt,n = {xt,n, yt,n} ∈ Bt denote n-th pair of data point
with gradient∇fΘ (bt,n) and its corresponding label at task Tt. Let ∇̄fΘ(Bt) denote the averaged
gradient vector of Bt. The minibatch similarity S (bt,n | Bt) between bt,n and Bt is given by

S (bt,n | Bt) =
∇fΘ (bt,n) ∇̄fΘ (Bt)>

‖∇fΘ (bt,n)‖ · ‖∇̄fΘ (Bt)‖
. (3)

Definition 2 (Sample diversity). Let bt,n = {xt,n, yt,n} ∈ Bt denote n-th pair of a data point with
gradient ∇fΘ (bt,n) and its corresponding label at task Tt. The sample diversity V

(
bt,n | Bt\bt,n

)
between bt,n and all other instances in Bt (Bt\bt,n) is given by

V
(

bt,n | Bt\bt,n
)

=
−1

Nt − 1

Nt−1∑
p 6=n

∇fΘ (bt,n)∇fΘ (bt,p)
>

‖∇fΘ (bt,n)‖ · ‖∇fΘ (bt,p)‖
. (4)

In particular, minibatch similarity considers a minibatch as an approximation of the current task
dataset and compares the minibatch-level similarity between the gradient vector of a data point b
and its minibatch B. It measures how well a given data instance describes the current task at each
training step. Note that selecting examples with the largest minibatch similarity is reasonable when
the variance of task instances is low; otherwise, it increases the redundancy among coreset items. In
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contrast, we formulate the sample diversity of each data point b ∈ B as an averaged dissimilarity
(i.e., an average of negative similarities) between a data point itself and other samples in the same
minibatch B, and not as an average similarity. Thus, the measure of sample diversity in Equation (4)
is negative and the range is [−1, 0].

4.1 ONLINE CORESET SELECTION FOR CURRENT TASK ADAPTATION

The model receives a data continuum during training, including noisy or redundant data instances in
real-world scenarios. Consequently, the arriving data instances can interrupt and hurt the performance
of the model. To tackle this problem, we consider an amalgamation of minibatch similarity and
sample diversity to select the most helpful instances for current task training. More formally, our
online coreset selection for the current task adaptation can be defined as follows:

u∗ =
{

argmax
n

(κ) S (bt,n | Bt) + V
(
bt,n | Bt\bt,n

) ∣∣∣ n ∈ {0, . . . , |Bt| − 1}
}
. (5)

We emphasize that we can obtain the top-κ valuable instances for the current task by computing
Equation 5 in an online manner. Once the representative coreset is selected, we optimize the following
objective for the current task training at each iteration:

minimize
Θ

1

κ

κ∑
(x̂,ŷ)∈B̂t

` (fΘ (x̂) , ŷ) , where B̂t = Bt[u∗]. (6)

We consider a selected coreset at each iteration as a candidate for the replay buffer. After the
completion of each task training, we choose a coreset Ct among the collected candidates, or we may
also iteratively update Ct to maintain the bounded buffer size for continual learning.

4.2 ONLINE CORESET SELECTION FOR CONTINUAL LEARNING

We now formulate OCS for online continual learning, where our objective is to obtain the coreset
to retain the knowledge of the previous tasks using our proposed similarity and diversity selection
criteria. However, continual learning is more challenging as the model suffers from catastrophic
forgetting and coreset size is smaller than the size of the arriving data streams. Thus, inspired by
our observation in Section 3, we aim to train the continual learner on the selected instances that are
representative of the current task and prevent the performance degeneration of previous tasks.

We achieve our goal by introducing our Coreset affinity criterion A to Equation 5. In particular, A
computes the gradient vector similarity between a training sample and the coreset for previous tasks
(C). More formally, A can be defined as follows:

Definition 3 (Coreset affinity). Let bt,n = {xt,n, yt,n} ∈ Bt denote the n-th pair of a data point
with gradient ∇fΘ (bt,n) and its corresponding label at task Tt. Further let ∇̄fΘ(BC) be the
averaged gradient vector of BC , which is randomly sampled from the coreset C. The coreset affinity
A (bt,n | BC ∼ C) between bt,n and BC is given by

A (bt,n | BC ∼ C) =
∇fΘ (bt,n) ∇̄fΘ (BC)>

‖∇fΘ (bt,n) ‖ · ‖∇̄fΘ (BC) ‖
. (7)

While the past task is inaccessible after the completion of its training, our selectively populated replay
buffer can be effectively used to describe the knowledge of the previous tasks. The key idea is to
select the examples that minimize the angle between the gradient vector of the coreset containing
previous task examples and the current task examples. Instead of randomly replacing the candidates
in the coreset (Lopez-Paz & Ranzato, 2017; Chaudhry et al., 2019a; Aljundi et al., 2019b; Borsos
et al., 2020), A promotes the selection of examples that do not degenerate the model performance on
previous tasks. To this end, we select the most beneficial training instances which are representative
and diverse for current task adaptation while maintaining the knowledge of past tasks. In summary,
our OCS for training task Tt during CL can be formulated as:

u∗ =
{

argmax
n

(κ) S (bt,n | Bt) + V
(

bt,n | Bt\bt,n
)

+ τA (bt,n | BC)
∣∣∣ n ∈ {0, . . . , |Bt| − 1}

}
. (8)

5



Published as a conference paper at ICLR 2022

τ is a hyperparameter that controls the degree of model plasticity and stability. Note that, during
the first task training, we do not have the interference from previous tasks and we select the top-κ
instances that maximize the minibatch similarity and sample diversity. Given the obtained coreset
B̂t = Bt[u∗], our optimization objective reflecting the coreset C, is as follows:

minimize
Θ

1

κ

κ∑
(x̂,ŷ)∈B̂t

`(fΘ(x̂), ŷ) +
λ

|BC |

|BC|∑
(x,y)∈BC

`(fΘ(x), y), (9)

where BC is a randomly sampled minibatch from the coreset C and λ is a hyperparameter to bal-
ance the adaptation between the current task and past task coreset. Overall training procedure for
Online Coreset Selection (OCS) is described in Algorithm 1. To the best of our knowledge, this
is the first work that utilizes selective online training for the current task training and incorporates
the relationship between the selected coreset and the current task instances to promote current task
adaptation while minimizing the interference with previous tasks.

Algorithm 1 Online Coreset Selection (OCS)

input Dataset {Dt}Tt=1, neural network fΘ, hyperparameters λ, τ , replay buffer C ← {}, buffer size bound J.
1: for task Tt = T1, . . . , TT do
2: Ct ← {} . Initialize coreset for current task
3: for batch Bt ∼ Dt do
4: BC ← SAMPLE(C) . Randomly sample a batch from the replay buffer
5: u∗ = argmax(κ)

n∈{0,...,|Bt|−1}
S (bt,n | Bt) + V

(
bt,n | Bt\bt,n

)
+ τA (bt,n | BC) . Coreset selection

6: Θ← Θ− η∇fΘ(Bt[u∗] ∪ BC) with Equation (9) . Model update with selected instances
7: Ct ← Ct ∪ B̂t
8: end for
9: C ← C ∪ SELECT(Ct, size = J/T ) with Equation (8) . Memorize coreset in the replay buffer

10: end for

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets. We validate OCS on domain-incremental CL for Balanced and Imbalanced Rotated MNIST
using a single-head two-layer MLP with 256 ReLU units in each layer, task-incremental CL for Split
CIFAR-100 and Multiple Datasets (a sequence of five datasets) with a multi-head structured ResNet-
18 following prior works (Chaudhry et al., 2019a; Mirzadeh et al., 2020; 2021). Additionally, we
evaluate on class-incremental CL for Balanced and Imbalanced Split CIFAR-100 with a single-head
structured ResNet-18 in Table B.9. We perform five independent runs for all the experiments and
provide further details on the experimental settings and datasets in Appendix A.

Baselines. We compare OCS with regularization-based CL methods: EWC (Kirkpatrick et al., 2017)
and Stable SGD (Mirzadeh et al., 2020), rehearsal-based CL methods using random replay buffer:
A-GEM (Chaudhry et al., 2019a) and ER-Reservior (Chaudhry et al., 2019b), coreset-based methods
using CL algorithms: Uniform Sampling, k-means Features (Nguyen et al., 2018) and k-means
Embeddings (Sener & Savarese, 2018), and coreset-based CL methods: iCaRL (Rebuffi et al., 2017),
Grad Matching (Campbell & Broderick, 2019), GSS (Aljundi et al., 2019b), ER-MIR (Aljundi et al.,
2019a), and Bilevel Optim (Borsos et al., 2020). We limit the buffer size for the rehearsal-based
methods to one example per class per task. Additionally, we compare with Finetune, a naive CL
method learnt on a sequence of tasks, and Multitask, where the model is trained on the complete data.

Metrics. We evaluate all the methods on two metrics following the CL literature (Chaudhry et al.,
2019a; Mirzadeh et al., 2021).
1. Average Accuracy (At) is the averaged test accuracy of all tasks after the completion of CL at

task Tt. That is, At = 1
t

∑t
i=1 at,i, where at,i is the test accuracy of task Ti after learning task Tt.

2. Average Forgetting (F ) is the averaged disparity between the peak and final task accuracy after
the completion of continual learning. That is, F = 1

T−1

∑T−1
i=1 maxt∈{1,...,T−1}(at,i − aT,i).
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Table 1: Performance comparison of OCS and other baselines on balanced and imbalanced continual learning.
We report the mean and standard-deviation of the average accuracy (Accuracy) and average forgetting (Forgetting)
across five independent runs. The best results are highlighted in bold.

Method Rotated MNIST Split CIFAR-100 Multiple Datasets

Accuracy Forgetting Accuracy Forgetting Accuracy Forgetting

B
al

an
ce

d
C

L

Finetune 46.3 (± 1.37) 0.52 (± 0.01) 40.4 (± 2.83) 0.31 (± 0.02) 49.8 (± 2.14) 0.23 (± 0.03)
EWC (Kirkpatrick et al., 2017) 70.7 (± 1.74) 0.23 (± 0.01) 48.5 (± 1.24) 0.48 (± 0.01) 42.7 (± 1.89) 0.28 (± 0.03)
Stable SGD (Mirzadeh et al., 2020) 70.8 (± 0.78) 0.10 (± 0.02) 57.4 (± 0.91) 0.07 (± 0.01) 53.4 (± 2.66) 0.16 (± 0.03)

A-GEM (Chaudhry et al., 2019a) 55.3 (± 1.47) 0.42 (± 0.01) 50.7 (± 2.32) 0.19 (± 0.04) − −
ER-Reservoir (Chaudhry et al., 2019b) 69.2 (± 1.10) 0.21 (± 0.01) 46.9 (± 0.76) 0.21 (± 0.03) − −
Uniform Sampling 79.9 (± 1.32) 0.14 (± 0.01) 58.8 (± 0.89) 0.05 (± 0.01) 56.0 (± 2.40) 0.11 (± 0.02)
iCaRL (Rebuffi et al., 2017) 80.7 (± 0.44) 0.13 (± 0.00) 60.3 (± 0.91) 0.04 (± 0.00) 59.4 (± 1.43) 0.07 (± 0.02)
k-means Features (Nguyen et al., 2018) 79.1 (± 1.50) 0.14 (± 0.01) 59.3 (± 1.21) 0.06 (± 0.01) 53.6 (± 1.98) 0.14 (± 0.02)
k-means Embedding (Sener & Savarese, 2018) 80.6 (± 0.54) 0.13 (± 0.01) 55.5 (± 0.70) 0.06 (± 0.01) 55.4 (± 1.46) 0.11 (± 0.02)
Grad Matching (Campbell & Broderick, 2019) 78.5 (± 0.86) 0.15 (± 0.01) 60.0 (± 1.24) 0.04 (± 0.01) 57.8 (± 1.35) 0.08 (± 0.02)
GSS (Aljundi et al., 2019b) 76.0 (± 0.58) 0.19 (± 0.01) 59.7 (± 1.22) 0.04 (± 0.01) 60.2 (± 1.00) 0.07 (± 0.01)
ER-MIR (Aljundi et al., 2019a) 80.7 (± 0.72) 0.14 (± 0.01) 60.2 (± 0.72) 0.04 (± 0.00) 56.9 (± 2,25) 0.11 (± 0.03)
Bilevel Optim (Borsos et al., 2020) 80.7 (± 0.44) 0.14 (± 0.00) 60.1 (± 1.07) 0.04 (± 0.01) 58.1 (± 2.26) 0.08 (± 0.02)

OCS (Ours) 82.5 (± 0.32) 0.08 (± 0.00) 60.5 (± 0.55) 0.04 (± 0.01) 61.5 (± 1.34) 0.03 (± 0.01)

Multitask 89.8 (± 0.37) − 71.0 (± 0.21) − 57.4 (± 0.84) −

Im
ba

la
nc

ed
C

L

Finetune 39.8 (± 1.06) 0.54 (± 0.01) 45.3 (± 1.38) 0.17 (± 0.01) 27.6 (± 3.66) 0.22 (± 0.04)
Stable SGD (Mirzadeh et al., 2020) 52.0 (± 0.25) 0.19 (± 0.00) 48.7 (± 0.64) 0.03 (± 0.00) 29.5 (± 4.09) 0.20 (± 0.02)

Uniform Sampling 61.6 (± 1.72) 0.15 (± 0.01) 51.0 (± 0.78) 0.03 (± 0.00) 35.0 (± 3.03) 0.11 (± 0.03)
iCaRL (Rebuffi et al., 2017) 71.7 (± 0.69) 0.09 (± 0.00) 51.2 (± 1.09) 0.02 (± 0.00) 43.6 (± 2.95) 0.05 (± 0.03)
k-means Features (Nguyen et al., 2018) 52.3 (± 1.48) 0.24 (± 0.01) 50.6 (± 1.52) 0.04 (± 0.01) 36.1 (± 1.75) 0.09 (± 0.02)
k-means Embedding (Sener & Savarese, 2018) 63.2 (± 0.90) 0.13 (± 0.02) 50.4 (± 1.39) 0.03 (± 0.01) 35.6 (± 1.35) 0.11 (± 0.02)
Grad Matching (Campbell & Broderick, 2019) 55.6 (± 1.86) 0.18 (± 0.02) 51.1 (± 1.14) 0.02 (± 0.00) 34.6 (± 0.50) 0.12 (± 0.01)
GSS (Aljundi et al., 2019b) 68.7 (± 0.98) 0.18 (± 0.01) 44.5 (± 1.35) 0.04 (± 0.01) 32.9 (± 0.90) 0.13 (± 0.01)
ER-MIR (Aljundi et al., 2019a) 69.3 (± 1.01) 0.16 (± 0.01) 44.8 (± 1.42) 0.03 (± 0.01) 32.3 (± 3.49) 0.15 (± 0.03)
Bilevel Optim (Borsos et al., 2020) 63.2 (± 1.04) 0.22 (± 0.01) 44.0 (± 0.86) 0.03 (± 0.01) 35.1 (± 2.78) 0.12 (± 0.02)

OCS (Ours) 76.5 (± 0.84) 0.08 (± 0.01) 51.4 (± 1.11) 0.02 (± 0.00) 47.5 (± 1.66) 0.03 (± 0.02)

Multitask 81.0 (± 0.95) − 48.2 (± 0.72) − 41.4 (± 0.97) −
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Figure 4: (a) Average accuracy (b) First task accuracy for balanced/imbalanced Rotated MNIST during CL.

5.2 QUANTITATIVE ANALYSIS FOR CONTINUAL LEARNING

Balanced continual learning. Table 1 shows the results on the balanced CL benchmarks. First,
observe that compared to the random replay based methods (A-GEM and ER-Reservoir), OCS
shows 19% relative gain in average accuracy, 62% and 79% reduction in forgetting over the strongest
baseline on Rotated MNIST and Split CIFAR-100, respectively. Second, OCS reduces the forgetting
by 38% and 57% on Rotated MNIST and Multiple Datasets respectively over the coreset-based
techniques, demonstrating that it selects valuable samples from the previous tasks. We further
illustrate this in Figure 4, where OCS consistently exhibits superior average accuracy and first
task accuracy. Third, we show the scalability of OCS with larger episodic memory in Figure 5.
Interestingly, iCaRL shows lower performance than uniform sampling with a larger memory buffer
for Rotated MNIST, while OCS outperforms across all memory sizes on both datasets. Furthermore,
we note that ER-MIR, GSS, and Bilevel Optim require 0.9×, 3.9×, and 4.2× training time than OCS
(see Table 5) on TITAN Xp, showing a clear advantage of OCS for the online streaming scenarios.

Imbalanced continual learning. To demonstrate the effectiveness of OCS in challenging scenarios,
we evaluate on imbalanced CL in Table 1. We emphasize that compared to balanced CL, OCS shows
significant gains over all the baselines for Rotated MNIST and Multiple Datasets. Notably, it leads
to a relative improvement of ∼ 7% and ∼ 9% on the accuracy, ∼ 11% and 40% reduction on the
forgetting compared to the best baseline for each dataset, respectively. The poor performance of
the baselines in this setup is largely attributed to their lack of current task coreset selection, which
results in a biased estimate degenerating model performance (see Figure 8). Moreover, we observe
that OCS outperforms Multitask for complex imbalanced datasets, perhaps due to the bias from the
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Table 2: Performance comparison of OCS and other baselines on varying proportions of noise instances during
noisy continual learning. We report the mean and standard-deviation of the average accuracy (Accuracy) and
average forgetting (Forgetting) across five independent runs. The best results are highlighted in bold.

Method 0% 40% 60%

Accuracy Forgetting Accuracy Forgetting Accuracy Forgetting

Stable SGD (Mirzadeh et al., 2020) 70.8 (± 0.78) 0.10 (± 0.02) 56.2 (± 0.95) 0.40 (± 0.01) 56.1 (± 0.62) 0.40 (± 0.01)
Uniform sampling 79.9 (± 1.32) 0.14 (± 0.01) 74.9 (± 2.45) 0.20 (± 0.03) 68.3 (± 3.68) 0.26 (± 0.03)
iCaRL (Rebuffi et al., 2017) 80.7 (± 0.44) 0.13 (± 0.00) 77.4 (± 0.60) 0.18 (± 0.01) 71.4 (± 2.63) 0.23 (± 0.03)
k-means embedding (Sener & Savarese, 2018) 80.6 (± 0.54) 0.13 (± 0.01) 78.5 (± 0.86) 0.17 (± 0.00) 77.5 (± 1.67) 0.26 (± 0.03)
GSS (Aljundi et al., 2019b) 76.0 (± 0.58) 0.19 (± 0.01) 71.7 (± 0.95) 0.19 (± 0.01) 68.8 (± 1.02) 0.17 (± 0.02)
ER-MIR (Aljundi et al., 2019a) 80.7 (± 0.72) 0.14 (± 0.01) 76.0 (± 1.34) 0.17 (± 0.01) 73.5 (± 0.94) 0.18 (± 0.01)

OCS (Ours) 82.5 (± 0.32) 0.08 (± 0.00) 80.4 (± 0.20) 0.14 (± 0.00) 80.3 (± 0.75) 0.10 (± 0.01)
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Figure 5: Performance comparison on various coreset sizes for balanced/imbalanced continual learning.

dominant classes and the absence of selection criteria in Multitask. Similar to balanced CL, OCS
leads to superior performance for larger episodic memory in imbalanced CL (see Figure 5).

Noisy continual learning. Next, we evaluate on noisy Rotated MNIST dataset, which is constructed
by perturbing a proportion of instances of the original dataset with Gaussian noise N (0, 1). Table 2
shows that the addition of noise significantly degrades the performance on all the baselines. In
contrast, OCS leads to a relative gain of 43% on accuracy, 20% and 35% reduction in forgetting on
40% and 60% proportion of noisy data. Note that the performance gap is more significant for the
higher distribution of noisy examples, supporting our claim that the similarity and diversity across the
training examples in the coreset play an essential role for the task adaptation in continual learning.

5.3 ABLATION STUDIES

Effect of gradients. In Table 3, we empirically justify the utilization of gradients (Grad-OCS)
compared to the raw inputs (Input-OCS) and feature-representations (Feat-OCS). We observe that
Grad-OCS significantly outperforms Input-OCS and Feat-OCS on balanced and imbalanced CL,
demonstrating that the gradients are a better metric to approximate the dataset.

Effect of individual components. We further dissect Minibatch similarity (S), Sample diversity (V)
and Coreset affinity (A) in Table 4. Note that selection using S shows reasonable performance as the
model can select valuable data points; however, it may select redundant samples, which degrades
its performance. In addition, V in isolation is insufficient since it can select non-redundant and
non-representative instances. The combination of S and V improves the average accuracy, but it
shows a marginal improvement on the forgetting. To further gain insight into S and V , we interpolate
between S and V in Figure 6, where we can observe that an optimal balance of S and V (indicated by
the arrows) can further improve the performance of our proposed selection strategy.

Furthermore, A improves the forgetting since the selected candidates have similar gradient direction
to the coreset of the previous tasks maximizing their performance. However, A does not consider
the current task distribution explicitly and depends on the quality of the memorized replay buffer.
We observe that using A in isolation obtains reasonably high performance on simple digit-based
domain-incremental CL problems (e.g., Rotated MNIST) due to its inherent high resemblance among
same class instances. Consequently, suppressing catastrophic forgetting by selective training based
on A shows a relatively high impact rather than selective training based on distinguishing more
informative or diverse samples. In contrast, A in isolation for selection is insufficient for complicated
and realistic CL problems such as imbalanced CL and multiple datasets, and all the three components
(S, V , and A) contribute to the performance of OCS. For Multiple Datasets, selection using only
A (58.1%) obtained worse performance in comparison to S + V +A (61.5%) and S + V (58.6%).
Further, selection using S +A (59.4± 2.0%) and V +A (56.4%± 1.3) also obtained 2.1%p and
5.1%p lower average accuracy than full OCS, respectively.
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Table 3: Ablation study for analyzing the effect of
gradients selection for OCS.

Method Balanced Rotated MNIST Imbalanced Rotated MNIST

Accuracy Forgetting Accuracy Forgetting

Input-OCS 72.7 (± 0.47) 0.13 (± 0.01) 50.6 (± 1.74) 0.04 (± 0.00)

Feat-OCS 71.7 (± 0.62) 0.17 (± 0.01) 30.6 (± 0.40) 0.03 (± 0.01)

Grad-OCS 82.5 (± 0.32) 0.08 (± 0.00) 76.5 (± 0.84) 0.08 (± 0.01)

Table 4: Ablation study to investigate the impact of
selection criteria S,V , and A on OCS.

Method Noisy Rot-MNIST (60%) Multiple Datasets

S V A Accuracy Forgetting Accuracy Forgetting

X − − 64.0 (± 1.18) 0.33 (± 0.01) 56.3 (± 0.97) 0.10 (± 0.02)
− X − 40.1 (± 1.32) 0.06 (± 0.02) 49.8 (± 1.30) 0.12 (± 0.01)
− − X 79.6 (± 0.87) 0.10 (± 0.01) 58.1 (± 0.96) 0.05 (± 0.01)
X X − 66.8 (± 1.39) 0.30 (± 0.01) 58.6 (± 1.91) 0.09 (± 0.02)
X X X 80.3 (± 0.75) 0.10 (± 0.01) 61.5 (± 1.34) 0.03 (± 0.01)

Figure 6: Interpolat-
ion between S and V .

Table 5: Running time on
Balanced Rot-MNIST.

Method Training Time

ER-MIR 0.38 h (×0.87)
GSS 1.71 h (×3.89)
Bilevel 1.83 h (×4.17)
OCS (Ours) 0.44 h (×1.00)

Table 6: Collaborative learning with rehearsal-based
CL on various datasets with 20 tasks each.

MC-SGD (Mirzadeh et al., 2021) MC-SGD + OCS

Dataset Accuracy Forgetting Accuracy Forgetting

Per-MNIST 84.6 (± 0.54) 0.06 (± 0.01) 86.6 (± 0.42) 0.02 (± 0.00)
Rot-MNIST 82.3 (± 0.68) 0.08 (± 0.01) 85.1 (± 0.27) 0.04 (± 0.00)
Split CIFAR 58.4 (± 0.95) 0.02 (± 0.00) 59.1 (± 0.55) 0.00 (± 0.00)
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Figure 7: Randomly picked coreset examples. Top:
Imbalanced Rotated MNIST. Bottom: Noisy Rotated
MNIST with 60% of noisy instances.

Figure 8: T-SNE visualization of the selected samples
on Imbalanced Rotated MNIST.

5.4 FURTHER ANALYSIS

Coreset visualization. Next, we visualize the coreset selected by different methods for imbalanced
and noisy rotated MNIST in Figure 7. We observe that uniform sampling selects highly biased
samples representing the dominant classes for imbalanced CL and noisy instances for noisy CL. In
contrast, iCaRL selects the representative samples per class for imbalanced CL; however, it selects
noisy instances during noisy CL. In comparison, OCS selects the beneficial examples for each class
during imbalanced CL and discards uninformative noisy instances in the noisy CL training regime.

T-SNE visualization. We further compare the T-SNE visualization of the selected coreset by Bilevel
Optim, GSS and OCS in Figure 8. We observe that the samples chosen by OCS are diverse, whereas
Bilevel Optim and GSS select the majority of the samples from the dominant classes. We attribute
the representative clusters and diversity in the samples selected by OCS to our proposed S (selects
the valuable samples) and V (minimizes the redundancy among the selected samples) criteria.

Collaborative learning with MC-SGD. We remark that OCS can be applied to any rehearsal-based
CL method with a replay buffer during training. We empirically demonstrate the effect of collaborative
learning with other CL methods in Table 6. In particular, we use Mode Connectivity SGD (MC-
SGD) (Mirzadeh et al., 2021), which encourages the mode connectivity between model parameters
for continual and multitask loss and approximates the multitask loss through randomly selected
replay buffer. Note that OCS leads to a relative gain of 1.2% to 3.4% on accuracy over MC-SGD on
Permuted MNIST, Rotated MNIST, and Split CIFAR-100 datasets. Furthermore, MC-SGD + OCS
shows considerably lower forgetting, illustrating that OCS prevents the loss of prior task knowledge.

6 CONCLUSION

We propose Online Coreset Selection (OCS), a novel approach for coreset selection during online
continual learning. Our approach is modelled as a gradient-based selection strategy that selects
representative and diverse instances, which are useful for preserving the knowledge of the previous
tasks at each iteration. This paper takes the first step to utilize the coreset for improving the current
task adaptation, while mitigating the catastrophic forgetting on previous tasks. Our experimental
evaluation on the standard balanced continual learning datasets against state-of-the-art rehearsal-based
techniques demonstrates the efficiency of our approach. We also show promising results on various
realistic and challenging imbalanced and noisy continual learning datasets. We further show the
natural extension of our selection strategy to existing rehearsal-based continual learning using a
random-replay buffer. Our future work will focus on improving the selection strategies and exploring
ways to utilize unlabelled data stream during training.
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Organization. The appendix is organized as follows: We first provide the experimental setups,
including the dataset construction for balanced, imbalanced, noisy continual learning, and the
hyperparameter configurations for OCS and all baselines in Appendix A. Next, we evaluate the
selection criteria of the baselines for current task training and provide an additional ablation study
comparing OCS with current task training to uniform selection in Appendix B.

A EXPERIMENTAL DETAILS

Datasets. We evaluate the performance of OCS on the following benchmarks:

1. Balanced and Imbalanced Rotated MNIST. These datasets are MNIST handwritten digits
dataset (LeCun et al., 1998) variants containing 20 tasks, where each task applies a fixed
random image rotation (between 0 and 180 degrees) to the original dataset. The imbalanced
setting contains a different number of training examples for each class in a task, where we
randomly select 8 classes over 10 at each task and each class contains 10% of training instances
for training. The total amount of training instances at each class can be [5900, 670, 590, 610,
580, 5400, 590, 620, 580, 590], where bold fonts denote the reduced number of instances for
selected classes. The size of the replay buffer is 200 for all the rehearsal-based methods.

2. Balanced and Imbalanced Split CIFAR-100. These datasets are CIFAR-100
dataset (Krizhevsky, 2012) variants, where each task consists of five random classes out
of the 100 classes. We use the Long-Tailed CIFAR-100 (Cui et al., 2019) for Imbalanced Split
CIFAR-100 consisting of n = niµ

i samples for each class, where i is the class index, ni is the
original number of training images, and µ = 0.05. It contains 20 tasks of five random classes
out of the 100 classes. The size of the replay buffer is 100 (one example per class) for all the
rehearsal-based methods.

3. Balanced and Imbalanced Multiple Datasets. This dataset contains a sequence of five
benchmark datasets: MNIST (LeCun et al., 1998), fashion-MNIST (Xiao et al., 2017), NotM-
NIST (Bulatov, 2011), Traffic Sign (Stallkamp et al., 2011), and SVHN (Netzer et al., 2011),
where each task contains randomly selected 1000 training instances from each dataset. This
dataset contains five tasks and 83 classes. We use the same strategy as Long-Tailed CIFAR-100
to construct the imbalanced Multiple Datasets with µ = 0.1. The size of the replay buffer is 83
(one example per class) for all rehearsal-based methods.

Network Architectures. We use a MLP with 256 ReLU units in each layer for Rotated MNIST and
a ResNet-18 (He et al., 2016) for Split CIFAR-100 datasets following Mirzadeh et al. (2020). For
Rotated MNIST experiments, we use a single-head architecture, where the final classifier layer is
shared across all the tasks, and the task identity is not provided during inference. In contrast, we use
the multi-head structured ResNet-18 for CIFAR-100 and Multiple Datasets experiments, where the
task identifiers are provided, and each task consists of its individual linear classifier.

Implementations. We follow the design of Mirzadeh et al. (2021) for evaluating all the methods.
We utilize their implementation for Finetune, EWC (Kirkpatrick et al., 2017), Stable SGD (Mirzadeh
et al., 2020), A-GEM (Chaudhry et al., 2019a), ER-Reservoir (Chaudhry et al., 2019b) and MC-
SGD (Mirzadeh et al., 2021). We adapt the implementation released by Borsos et al. (2020) for
Uniform Sampling, iCaRL (Rebuffi et al., 2017), k-means Features (Nguyen et al., 2018), k-means
Embedding (Sener & Savarese, 2018), Grad Matching (Campbell & Broderick, 2019), and Bilevel
Optim (Borsos et al., 2020). Further, we implement GSS (Aljundi et al., 2019b) and ER-MIR (Aljundi
et al., 2019a) following the official code relased by the authors. Following iCaRL (Rebuffi et al.,
2017), we store a balanced coreset Ct (equal number of examples per class) among the collected
coreset candidates.

Memory Capacity. Existing rehearsal-based continual learning methods (Chaudhry et al., 2019a;b;
Aljundi et al., 2019a; Mirzadeh et al., 2020; 2021) adopt two typical strategies to store data points in
the replay buffer at the end of training each task: (1) memorizing a fixed number of data points per
task (|Ci| = J/T ), where an index of the task in a task sequence i ∈ {1, ..., T}, the total number of
task T , and memory capacity J , (2) fully utilizing the memory capacity and randomly discard stored
samples of each task when new data points arrive from next tasks (|Ci| = J/t), where the current task
t and an index of the observed task i ∈ {1, ..., t}. While both strategies are available, we adopt the
latter strategy for all baselines and OCS. The details of this are omitted in Algorithm 1 for simplicity.
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Table B.8: Performance comparison of baselines
for current task adaptation. We report the mean and
standard-deviation of the average accuracy and average
forgetting across five independent runs.

Method Balanced Rotated MNIST Imbalanced Rotated MNIST

Accuracy Forgetting Accuracy Forgetting

Finetune 46.3 (± 1.37) 0.52 (± 0.01) 39.8 (± 1.06) 0.54 (± 0.01)
Stable SGD 70.8 (± 0.78) 0.10 (± 0.02) 52.0 (± 0.25) 0.19 (± 0.00)

Uniform 78.9 (± 1.16) 0.14 (± 0.00) 63.5 (± 1.09) 0.14 (± 0.02)
iCaRL 70.9 (± 0.82) 0.12 (± 0.01) 70.0 (± 0.60) 0.10 (± 0.01)
k-means Feat. 77.9 (± 1.08) 0.15 (± 0.01) 66.6 (± 2.42) 0.12 (± 0.02)
k-means Emb. 78.1 (± 1.53) 0.14 (± 0.01) 67.2 (± 0.16) 0.10 (± 0.01)
Grad Matching 79.0 (± 1.11) 0.15 (± 0.01) 52.4 (± 1.34) 0.19 (± 0.02)

OCS (Ours) 82.5 (± 0.32) 0.08 (± 0.00) 76.5 (± 0.84) 0.08 (± 0.01)

Multitask 89.8 (± 0.37) − 81.0 (± 0.95) −

Table B.9: Performance comparison of Class-
incremental CL on balanced and imbalanced Split
CIFAR-100. We report the mean and standard-
deviation of the average accuracy and average forget-
ting across five independent runs.

Method Balanced Split CIFAR-100 Imbalanced Split CIFAR-100

Accuracy Forgetting Accuracy Forgetting

Finetune 13.0 (± 0.38) 0.33 (± 0.02) 7.3 (± 0.31) 0.15 (± 0.01)

Uniform 16.4 (± 0.32) 0.25 (± 0.01) 8.7 (± 0.41) 0.14 (± 0.01)
iCaRL 18.1 (± 0.55) 0.23 (± 0.01) 8.6 (± 0.37) 0.16 (± 0.01)
k-means Feat. 16.6 (± 0.62) 0.23 (± 0.01) 8.9 (± 0.12) 0.12 (± 0.02)
Grad Matching 18.2 (± 0.70) 0.22 (± 0.01) 8.7 (± 0.36) 0.23 (± 0.02)
ER-MIR. 17.6 (± 0.35) 0.22 (± 0.01) 7.0 (± 0.44) 0.10 (± 0.01)

OCS (Ours) 20.1 (± 0.73) 0.08 (± 0.01) 11.1 (± 0.59) 0.07 (± 0.00)

Multitask 71.0 (± 0.21) − 48.2 (± 0.72) −

Table B.10: Performance comparison between uniform training with OCS coreset and original OCS method.
(a) Balanced Continual Learning

Uniform + OCS OCS
Dataset Accuracy Forgetting Accuracy Forgetting

Rot-MNIST 80.4 (± 0.61) 0.14 (± 0.01) 82.5 (± 0.32) 0.08 (± 0.00)
CIFAR 60.0 (± 1.30) 0.04 (± 0.00) 60.5 (± 0.55) 0.04 (± 0.01)

Mul. Datasets 56.3 (± 1.42) 0.08 (± 0.03) 61.5 (± 1.34) 0.03 (± 0.01)

(b) Imbalanced Continual Learning
Uniform + OCS OCS

Dataset Accuracy Forgetting Accuracy Forgetting

Rot-MNIST 73.6 (± 2.31) 0.11 (± 0.01) 76.5 (± 0.84) 0.08 (± 0.00)
CIFAR 51.3 (± 1.31) 0.03 (± 0.01) 51.4 (± 1.11) 0.02 (± 0.00)

Mul. Datasets 41.4 (± 2.51) 0.05 (± 0.03) 47.5 (± 1.66) 0.03 (± 0.02)

Table A.7: Shared Hyperparameter configu-
rations among our method and baselines for
three datasets.

Parameter Rotated
MNIST

Split
CIFAR-100

Multiple
Datasets

Initial LR 0.005 0.15 0.1
LR decay [0.75, 0.8] 0.875 0.85
Batch size 10 10 10

Hyperparameter configurations. Table A.7 shows the
initial learning rate, learning rate decay, and batch size
for each dataset that are shared among all the meth-
ods. Further, we report the best results obtained for
λ ∈ {0.01, 0.05, 0.1, 1, 10, 50, 100} for all the experi-
ments. For OCS, we use batch size as 100 for Rotated
MNIST and 20 for Split CIFAR-100 and Multiple Dataset.
The running time reported in Table 5 was measured on a
single NVIDIA TITAN Xp. Due to the significant computational cost incurred by the training of
Bilevel Optim (Borsos et al., 2020) for online continual learning, we restrict the bilevel optimization
procedure to construct the replay buffer at the end of each task training.

Choice of hyperparameters for OCS. Note that we use the same value of κ = 10, τ = 1k for all
experiments and analyses, including balanced, imbalanced, and noisy CL scenarios for all datasets,
which shows that a simple selection of the hyperparameters is enough to show impressive performance.
We expect careful tuning would further enhance the performance of OCS.

B ADDITIONAL EXPERIMENTS

Current task adaptation with the baselines. One of our main contributions is the selective online
training that selects the important samples for current task training. Therefore, we investigate the
application of the other baselines for current task training in Table B.8. It is worth noting that all
the rehearsal-based baselines that utilize their coreset selection criteria for current task adaptation
decrease the performance (1.0 - 9.8%p ↓), except Grad Matching (0.5%p ↑) on Balanced Rotated
MNIST. Moreover, for Imbalanced Rotated MNIST, Uniform Sampling, k-means Features, and
k-means Embedding increase the performance 1.9%p, 13.3%p, and 4.0%p compared to Table 1
respectively. In contrast, iCaRL and Grad Matching criteria decrease the performance by 1.7%p and
3.2%p on Imbalanced Rotated MNIST, respectively. On the contrary, OCS improves the performance
for both the balanced and imbalanced scenarios. In light of this, we can conclude that efficient
coreset selection plays a crucial role in imbalanced and noisy continual learning; therefore, the future
rehearsal-based continual learning methods should evaluate their method on realistic settings rather
than the standard balanced continual learning benchmarks.

Class-incremental continual learning. We also evaluate OCS for balanced and imbalanced class-
incremental CL (CIL) setups in Table B.9. We Split CIFAR-100 dataset to five tasks with memory size
of 1K for all methods. While the problem is extremely hard to solve, we want to emphasize that OCS
outperforms the strongest baseline by 10.61% and 63.6% on accuracy and forgetting respectively
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Figure B.9: Empirical validation of `2 distance and cosine similarity between the gradient of the entire
dataset and its minibatch gradient. We report the mean and standard deviation of the metrics across five
independent runs.

for balanced CIFAR-100 dataset, 24.05% and 30% on accuracy and forgetting respectively for
imbalanced CIFAR-100 dataset in the CIL setting. Note that we report the results for all the baselines
using hyperparameter configuration of the main experiments.

Uniform training with OCS coreset. We further analyze the effect of online coreset selection for
current task training in Table B.10a. In particular, we compare uniform sampling for the current task
while utilizing the coreset constructed by OCS for the previous tasks (Uniform + OCS) with our
original selection scheme utilizing OCS for current and previous tasks. First, observe that Uniform
+ OCS shows 2.6% and 9.2% relative decrease in performance on Rotated MNIST and Multiple
datasets respectively compared to our original OCS selection strategy. Second, note that Uniform +
OCS significantly deteriorates the catastrophic forgetting for all datasets since uniformly sampled
examples do not preserve the previous tasks knowledge. Moreover, imbalanced continual learning
shows a similar trend in Table B.10b, where Uniform + OCS leads to a drop in both the accuracy
and forgetting across all benchmarks. This further strengthens our claim that OCS is essential for the
previous tasks and plays a vital role in encouraging current-task adaptation.

Table B.11: Ablation study for analyzing
the selection with partial gradients in OCS.

Used Blocks
for OCS

Average
Accuracy

Average
Forgetting

Gradients
Usage Ratio

[1, ] 35.72 (± 0.57) 5.45 (± 0.55) 1.6
[1, 2, ] 37.42 (± 0.93) 4.70 (± 0.94) 6.3
[1, 2, 3, ] 36.24 (± 1.09) 4.97 (± 0.88) 25.0
[1, 2, 3, 4] 37.06 (± 0.69) 4.32 (± 0.71) 100.0
[ 2, 3, 4] 35.10 (± 0.33) 4.83 (± 0.95) 98.4
[ 3, 4] 35.47 (± 0.65) 4.85 (± 0.54) 93.7
[ 4] 34.75 (± 1.16) 5.20 (± 0.43) 75.0

OCS with partial gradients. While we consider
ResNet-18 as sufficiently deep neural networks, our OCS
also can be utilized in extremely deep networks (e.g.,
ResNet-101) through OCS selection by computing partial
gradients of the neural network to reduce the computa-
tional cost during online training. This simple modifica-
tion is straightforward and to validate its potential, we
have performed an additional ablation study on Split Tiny-
ImageNet in Table B.11. ResNet-18 contains a convolutional layer with a first residual block (we
name it as a block ‘1’) and consecutive three other residual blocks (we name them as a block 2, 3, and
4, respectively). We have evaluated the variants of OCS which select the coreset based on weights
gradients of partial blocks. The first column of the table describes gradients used in OCS selection.
That is, the original OCS uses all gradients of all network components ([1,2,3,4]).

Surprisingly, we observe OCS using earlier two blocks (i.e., [1, 2]) show 0.36%p higher performance
while using only the 6.3% of gradients compared to the original OCS. We expect that this specific
benefit of earlier blocks is due to the different roles of blocks in neural networks. It is well known that
earlier layers relatively focus on capturing generic representations while the latter ones capture class-
discriminative information. Thus, obtaining the coreset that represents the task-general information
and preserves shared knowledge with past tasks is specifically important since generic knowledge is
easy to drift and much more susceptible to catastrophic forgetting.

We believe that further investigation of this observation would definitely provide more useful insights
for future work and enhance the performance of OCS while greatly reducing the computational costs.

Distance between the whole dataset and its minibatch. To verify our conjecture that a minibatch
can approximation of the whole dataset and select few representative data instances at each minibatch
iteration, we empirically validate that the whole dataset and its minibatch have significant semantic
relevancy. More formally, for a given subset Bt, dataset Dt, and ε > 0, we suppose that the neural
network satisfies following equation,

S∗
(

1

Nt
∇fΘ(Dt),

1

|Bt|
∇fΘ(Bt)

)
≤ ε, (10)

15



Published as a conference paper at ICLR 2022

where S∗ is an arbitrary distance function. To this end, we conduct a simple experiment using
two different datasets (MNIST and CIFAR-10) and network architectures (MLP and ResNet-18)
to show that it generally holds on various datasets and network architectures. We use a 2-layered
MLP for MNIST and ResNet-18 for CIFAR-10 following our main experiments. At each iteration
of training,we measure the `2 distance (S∗(·) = `2(·)) and cosine similarity (S∗(·) = 1/(sim(·)))
between the averaged gradient of the training minibatch and averaged gradient of the entire training
dataset. To show that the distance is sufficiently small, we also measure the gradient `2 distance
between the entire dataset and the irrelevant dataset. Note that we recalculated the gradient for the
whole dataset at each iteration for all results to correctly measure the distance at each step. As shown
in Figure B.9, the gradient of larger minibatch shows better approximation to the gradient of the
entire dataset for `2 distance and cosine similarity. Further, note that that even the gradients of an
arbitrary subset with a small-sized minibatch is significantly similar to the whole dataset with a small
ε, and it is more evident when compared to the irrelevant gradients from a different dataset, PMNIST
(Permuted MNIST) (Goodfellow et al., 2013).
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