
Meta Flow Matching:
Integrating Vector Fields on the Wasserstein Manifold

Lazar Atanackovic 1 2 * Xi Zhang 3 4 * Brandon Amos 5 Mathieu Blanchette 3 4 Leo J. Lee 1 2 Yoshua Bengio 3 6 7

Alexander Tong 3 6 Kirill Neklyudov 3 6

Abstract
Numerous biological and physical processes can
be modeled as systems of interacting samples
evolving continuously over time, e.g. the dynam-
ics of communicating cells or physical particles.
Learning the dynamics of such systems is essen-
tial for predicting the temporal evolution of pop-
ulations across novel samples and unseen envi-
ronments. Flow-based models allow for learning
these dynamics at the population level — they
model the evolution of the entire distribution of
samples. However, standard flow-based models
are limited to a single initial population and a set
of predefined conditions which describe differ-
ent dynamics. We propose Meta Flow Matching
(MFM), a practical approach to integrating along
vector fields on the Wasserstein manifold by amor-
tizing the flow model over the initial populations.
We demonstrate that MFM improves the predic-
tion of individual treatment responses on a large
scale multi-patient single-cell drug screen dataset.

1. Introduction
Understanding and modeling the dynamics of many-body
problems is a central challenge across the natural sciences.
In the field of cell biology, a central focus is the understand-
ing of the dynamic processes that cells undergo in response
to their environment, and in particular their response and in-
teraction with other cells. Cells communicate with one other
in close proximity using cell signaling, exerting influence
over each other’s trajectories (Armingol et al., 2020; Good-
enough and Paul, 2009). This signaling presents an obstacle
for modeling, because cell dynamics cannot be modeled

*Joint first authorship 1University of Toronto 2Vector Institute
3Mila - The Quebec AI Institute 4McGill University 5Meta FAIR
6Université de Montréal 7CIFAR Fellow. Correspondence to:
Lazar Atanackovic <l.atanackovic@mail.utoronto.ca>.

International Conference on Machine Learning Workshop on
Geometry-grounded Representation Learning and Generative Mod-
eling, Vienna, Austria. 2024. Copyright 2024 by the author(s).

in isolation, and must take into account the interaction be-
tween populations of cells, but is nonetheless essential for
understanding and eventually controlling cell dynamics dur-
ing development (Gulati et al., 2020; Rizvi et al., 2017), in
diseased states (Molè et al., 2021; Binnewies et al., 2018;
Zeng and Dai, 2019; Chung et al., 2017), and in response to
perturbations (Ji et al., 2021; Peidli et al., 2024).

Single-cell sequencing has been used to great effect to under-
stand the heterogeneity in cell systems, they are also destruc-
tive, making longitudinal measurements—measurements
that track a single cell over time—extremely difficult. In-
stead, most approaches model cell dynamics at the popu-
lation level (Hashimoto et al., 2016; Weinreb et al., 2018;
Schiebinger et al., 2019; Tong et al., 2020; Neklyudov et al.,
2022; Bunne et al., 2023a). These approaches involve the
formalisms of optimal transport (Villani, 2009; Peyré and
Cuturi, 2019) and generative modeling (De Bortoli et al.,
2021; Lipman et al., 2023) methods, which learn a map
between empirical measures. While these methods are able
to model the dynamics of the population, they are funda-
mentally limited in that they model the evolution of cells
as independent particles evolving according to a shared dy-
namical system. Furthermore, these models can be trained
to match any given set of measures, but they are restricted
to modeling of a single population and can at best condition
on a number of different dynamics that is available in the
training data.

To address this we propose Meta Flow Matching (MFM) —
the amortization of the Flow Matching generative modeling
framework (Lipman et al., 2023) over the input measures.
In practice, our method can be used to predict the time-
evolution of distributions from a given dataset of the time-
evolved examples. Namely, we assume that the collected
data undergoes a universal developmental process, which
depends only on the population itself as in the setting of the
interacting particles or communicating cells.

MFM was evaluated on two applications. First on a syn-
thetic task of denoising letters. For this task, MFM is able
to generalize the denoising process to letters in unseen ori-
entations where a standard flow matching approach cannot.
Next, we explore how MFM can be applied to model single-

1

Meta Flow Matching

cell perturbation data (Ji et al., 2021; Peidli et al., 2024).
MFM was evaluated on predicting the response of patient-
derived cells to chemotherapy treatments in a recently pub-
lished large scale single-cell drug screening dataset where
there are known to be patient-specific responses (Ramos Za-
patero et al., 2023). We demonstrate that Meta Flow Match-
ing can successfully predict the development of cell popu-
lations on replicated experiments, and, most importantly, it
generalizes to previously unseen patients, thus, capturing
the patient-specific response to the treatment.

2. Meta Flow Matching
For a detailed description of Flow Matching, Conditional
Flow Matching and related work, see appendix B and C.

In this paper, we propose the amortization of the Flow
Matching framework over the marginal distributions. Our
model is based on the outstanding ability of the Flow Match-
ing framework to learn the push-forward map for any joint
distribution π(x0, x1) given empirically. For the given joint
π(x0, x1), we denote the solution of the Flow Matching op-
timization problem as follows (LGFM defined in appendix
B).

v∗t (·, π) = argmin
vt

LGFM (vt(·), π(x0, x1)) . (1)

Analogously to the amortized optimization (Chen et al.,
2022; Amos et al., 2023), we aim to learn the model that
outputs the solution of Eq. (1) based on the input data sam-
pled from π, i.e.

vt(·, φ(π)) = v∗t (·, π) , (2)

where φ(π) is the embedding model of π and the joint
density π(· | c) is generated using some unknown measure
of the conditional variables c ∼ p(c).

2.1. Modeling Process in Natural Sciences as Vector
Fields on the Wasserstein Manifold

We believe that numerous biological and physical processes
cannot be modeled via the vector field propagating the pop-
ulation samples independently. Thus, we propose to model
these processes as families of conditional vector fields where
we amortize the conditional variable by embedding the pop-
ulation via a Graph Neural Network (GNN).

To provide the reader with the necessary intuition, we are
going to use the geometric formalism developed by Otto
(2001). That is, time-dependent densities pt(xt) define
absolutely-continuous curves on the 2-Wasserstein space
of distributions P2(X) (Ambrosio et al., 2008). The tan-
gent space of this manifold is defined by the gradient flows
St = {∇st | st : X → R} on the state space X . In the
Flow Matching context, we are going to refer to the tangent

vectors as vector fields since one can always project the
vector field onto the tangent space by parameterizing it as a
gradient flow (Neklyudov et al., 2022).

Under the geometric formalism of the 2-Wasserstein man-
ifold, Flow Matching can be considered as learning the
tangent vectors vt(·) along the density curve pt(xt) defined
by the sampling process in Eq. (10) (see the left panel in
Fig. 2). Furthermore, the conditional generation processes
pt(xt | c) would be represented as a finite set of curves if
c is discrete (e.g. class-conditional generation of images)
or as a family of curves if c is continuous (see the middle
panel in Fig. 2).

Finally, one can define a vector field on the 2-Wasserstein
manifold via the continuity equation with the vector field
vt(x, pt(x)) on the state space X that depends on the cur-
rent density pt(x) or its derivatives. Below we give two
examples of processes defined as vector fields on the 2-
Wasserstein manifold.

We believe that using the information about the current
or the initial density is crucial for the modeling of time-
evolution of densities in natural processes, to capture this
type of dependency one can model the change of the density
as the following Cauchy problem

∂pt(x)

∂t
= −⟨∇x, pt(x)vt(x, pt)⟩ , pt=0(x) = p0(x) ,

(3)

where the state-space vector field vt(x, pt) depends on the
density pt.

2.2. Integrating Vector Fields on the Wasserstein
Manifold via Meta Flow Matching

Consider the dataset of joint populations D =
{(π(x0, x1 | i))}i, where, to simplify the notation, we as-
sociate every i-th population with its density π(· | i) and
the conditioning variable here is the index of this popula-
tion in the dataset. We make the following assumptions
regarding the ground truth sampling process (i) we assume
that the starting marginals p0(x0 | i) =

∫
dx1 π(x0, x1 | i)

are sampled from some unknown distribution that can be
parameterized with a large enough number of parameters
(ii) the endpoint marginals p1(x1 | i) =

∫
dx0 π(x0, x1 | i)

are obtained as push-forward densities solving the Cauchy
problem in Eq. (3), (iii) there exists unique solution to this
Cauchy problem.

One can learn a joint model of all the processes from the
dataset D using the conditional version of the Flow Match-
ing algorithm (see Appendix B.2) where the population
index i plays the role of the conditional variable. How-
ever, obviously, such a model will not generalize beyond
the considered data D and unseen indices i. We illustrate
this empirically in Section 3.

2

Meta Flow Matching

To be able to generalize to previously unseen populations,
we propose learning the density-dependent vector field mo-
tivated by Eq. (3). That is, we propose to use an embedding
function φ : P2(X) → Rm to embed the starting marginal
density p0, which we then input into the vector field model
and minimize the following objective over ω

LMFM(ω;φ) = E
∥∥∥∥ ∂

∂t
ft(x0, x1) − vt(ft(x0, x1) |φ(p0);ω)

∥∥∥∥2

. (4)

Where the expectation is taken with respect to
t, i, and π(x0, x1 | i) with t, i being distributed uni-
formly with respect to their support. Note that the initial
density p0 is enough to predict the push-forward density p1
since the Cauchy problem for Eq. (3) has a unique solution.
The embedding function φ(p0) can take different forms,
e.g. it can be the density value φ(p0) = p0(·), which is
then used inside the vector field model to evaluate at the
current point; a kernel density estimator; or a parametric
model taking the samples from this density as an input.

Proposition 1. Meta Flow Matching recovers the Con-
ditional Generation via Flow Matching when the con-
ditional dependence of the marginals p0(x0 | c) =∫
dx1π(x0, x1 | c) and p1(x1 | c) =

∫
dx0π(x0, x1 | c) and

the distribution p(c) are known, i.e. there exist φ :
P2(X) → Rm such that LMFM (ω) = LCGFM (ω).

Proof. Indeed, sampling from the dataset i ∼ D becomes
sampling of the conditional variable c ∼ p(c) and the em-
bedding function becomes φ(p0(· | c)) = c.

Furthermore, for the parametric family of the embedding
models φ(pt, θ), we show that the parameters θ can be
estimated by minimizing the objective in Eq. (4) in the
joint optimization with the vector field parameters ω. We
formalize this statement in the following theorem.
Theorem 1. Consider a dataset of populations D =
{(π(x0, x1 | i))}i generated from some unknown condi-
tional model π(x0, x1 | c)p(c). Then the following objective

L(ω, θ) = Et,p(c),pt(xt | c)
∥∥v∗

t (xt | c) − vt(xt |φ(p0, θ), ω)
∥∥2 (5)

is equivalent to the Meta Flow Matching objective
LMFM(ω, θ)

Et,i,π(x0,x1 | i)

∥∥∥∥ ∂

∂t
ft(x0, x1) − vt(ft(x0, x1) |φ(p0, θ);ω)

∥∥∥∥2

(6)

up to an additive constant.

Proof. We postpone the proof to Appendix E.

2.3. Learning Population Embeddings via Graph
Neural Networks (GNNs)

In many applications, the populations D =
{(π(x0, x1 | i))}Ni=1 are given as empirical distribu-
tions, i.e. they are represented as samples from some

unknown density π

{(xj
0, x

j
1)}

Ni
j=1 , (xj

0, x
j
1) ∼ π(x0, x1 | i) , (7)

where Ni is the size of the i-th population. We use this
model in our synthetic experiments in Section 3.1.

Since the only available information about the populations is
samples, we propose learning the embedding of populations
via a parametric model φ(p0, θ), i.e.

φ(p0, θ) = φ
(
{xj

0}
Ni
j=1, θ

)
, (xj

0, x
j
1) ∼ π(x0, x1 | i) .

(8)

For this purpose, we employ GNNs, which recently have
been successfully applied for simulation of complicated
many-body problems in physics (Sanchez-Gonzalez et al.,
2020). To embed a population {xj

0}
Ni
j=1, we create a k-

nearest neighbour graph Gi based on the metric in the state-
space X , input it into a GNN, which consists of several
message-passing iterations (Gilmer et al., 2017) and the final
average-pooling across nodes to produce the embedding
vector. Finally, we update the parameters of the GNN jointly
with the parameters of the vector field to minimize the loss
function in Eq. (6).

3. Experiments
To show the effectiveness of MFM to generalize under
previously unseen populations for the task population pre-
diction, we consider the following experimental setting:
a synthetic experiment with well defined coupled popula-
tions. To quantify model performance, we consider three
distributional distances metrics: the 1-Wasserstein distance
(W1), 2-Wasserstein (W2) distance, and the radial basis
kernel maximum-mean-discrepancy (MMD) distance (Gret-
ton et al., 2012). We parameterize all vector field mod-
els vt(· |φ(p0);ω) using a Multi-Layer Perceptron (MLP).
For MFM, we additionally parameterize φ(pt; θ, k) using
a Graph Convolutional Network (GCN) with a k-nearest
neighbour graph edge pooling layer. We include details re-
garding model hyperparameters, training/optimization, and
implementation in Appendix F and Appendix F.2. The re-
sults for all the models are averaged over three random
seeds. For more details on datasets, see Appendix D.

3.1. Synthetic Experiment

We trained FM, CGFM and 4 variants of MFM of varying
k for the GCN population embedding model φ(pt; θ, k).
When k = 0, φ(pt; θ, k) becomes identical to the DeepSets
model (Zaheer et al., 2017). We compare MFM to Flow-
Matching (FM) and Conditional Generation via Flow-
Matching (CGFM). FM does not have access to conditional
information; hence will only learn an aggregated lens of the
distribution dynamics and will not be able to fit the training

3

Meta Flow Matching

Table 1: Experimental results on the organoid drug-screen dataset for population prediction of treatment response across patient
populations. Results shown in this table are broken out in Table 3. Results are reported for models trained on data embedded into
10 principle components. We report the the 1-Wasserstein (W1), 2-Wasserstein (W2), and the maximum-mean-discrepancy (MMD)
distributional distances. We consider two settings for MFM with varying nearest-neighbours parameter.

Train Test

W1 W2 MMD (×10−3) W1 W2 MMD (×10−3)

FM 1.995± 0.138 2.246± 0.193 6.87± 2.65 2.607± 0.028 2.947± 0.050 21.58± 1.02
ICNN 2.163± 0.067 2.367± 0.070 192.67± 4.22 2.702± 0.027 2.996± 0.033 452.67± 19.14
CGFM 1.773 ± 0.072 1.954 ± 0.092 3.03 ± 0.69 2.675± 0.019 2.938± 0.020 23.75± 0.61
MFM (k = 0) 1.863± 0.056 2.048± 0.063 5.01± 0.53 2.393± 0.160 2.685± 0.122 16.66± 1.99
MFM (k = 10) 1.881± 0.071 2.074± 0.091 5.25± 0.78 2.326 ± 0.072 2.610 ± 0.073 14.30 ± 2.27

Figure 1: Examples of model-generated samples for synthetic
letters from the source distribution (t = 0) to predicted target
distribution (t = 1). See Fig. 4 in Appendix F.3 for a larger set of
examples.

data, and consequently won’t generalize to the test condi-
tions. For the training data, CGFM vector field model takes
in the distribution index i as a one-hot input condition. On
the test set, since none of these indices is present, we input
the normalized constant vector, which averages the learned
embeddings of the indices. Because of this, CGFM will fit
the training data, however, will not be able to generalize
to the unseen condition in the test dataset. Note that the
CGFM can be viewed as an idealized model for the train
data since it gets perfect information regarding the popula-
tion conditions. We use CGFM to assess if other models are
fitting the data. For MFM, we expect to both fit the training
data and generalize to unseen distributional conditions.

In Fig. 1, we observe that indeed FM fails to adequately
learn to sample from p1(x1 | i) in the training set, and like-
wise fails to generalize, while CGFM is able to effectively
sample from p1(x1 | i) in the training set, but fails to gen-
eralize. We report results for the synthetic experiment in
Table 2. As expected, CGFM fits the training data, however,
fails to generalize beyond its set of training conditions. In
contrast, we see that MFM is able to both fit the training
data (approaching the performance of CGFM) while also
generalizing to the unseen test distributions. FM fails to
fit the train data and fails to generalize under the test con-
ditions. Interestingly, although MFM performs better for
certain values of k versus others, overall performance does

not vary significantly for the range considered.

3.2. Experiments on Organoid Drug-screen Data

We show results for generalization across patients in Table 1.
Similar to the replicates data setting, we observe that CGFM
fits the training data, but does not generalize to the test
replicates. Likewise, the FM and ICNN models fail to fit
the train data, relative to CGFM, and also fail to generalize.
MFM (k = 10) performs best on generalization to unseen
replicates. We include results reported for the separate cell
cultures in Table 3 in Appendix F.3.

Through the biological and synthetic experiments, we have
shown that MFM is able to generalize to unseen distribu-
tions/populations. The implication of our results suggest
that MFM can learn population dynamics in unseen envi-
ronments. This works towards a model where it is possible
to predict and design an individualized treatment regimen
for each patient based on their individual characteristics and
tumor microenvironment.

4. Conclusion
Our paper highlights the significance of modeling dynamics
based on the entire distribution. While flow-based models
offer a promising avenue for learning dynamics at the popu-
lation level, they were previously restricted to a single initial
population and predefined conditions. In this paper, we in-
troduce Meta Flow Matching (MFM) as a practical solution
to address these limitations. MFM leverages graph neural
networks to embed the initial population, enabling the model
to generalize over various initial distributions. MFM opens
up new possibilities for understanding complex phenom-
ena that emerge from interacting systems in biological and
physical systems. In practice, we demonstrate that MFM
learns meaningful embeddings of single-cell populations
along with the developmental model of these populations.
Moreover, our empirical study demonstrates the possibil-
ity of modeling patient-specific response to treatments via
meta-learning.

4

Meta Flow Matching

Acknowledgments
The authors acknowledge funding from UNIQUE, CIFAR,
NSERC, Intel, and Samsung. The research was enabled in
part by by the Province of Ontario and companies sponsor-
ing the Vector Institute (http://vectorinstitute.
ai/partners/), the computational resources provided
by the Digital Research Alliance of Canada (https://
alliancecan.ca), Mila (https://mila.quebec),
and NVIDIA.

References
Albergo, M. S. and Vanden-Eijnden, E. (2022). Building

normalizing flows with stochastic interpolants. arXiv
preprint arXiv:2209.15571.

Ambrosio, L., Gigli, N., and Savaré, G. (2008). Gradient
flows: in metric spaces and in the space of probability
measures. Springer Science & Business Media.

Amos, B., Cohen, S., Luise, G., and Redko, I. (2022). Meta
optimal transport. arXiv preprint arXiv:2206.05262.

Amos, B. et al. (2023). Tutorial on amortized optimiza-
tion. Foundations and Trends® in Machine Learning,
16(5):592–732.

Armingol, E., Officer, A., Harismendy, O., and Lewis, N. E.
(2020). Deciphering cell–cell interactions and communi-
cation from gene expression. Nature Reviews Genetics,
22(2):71–88.

Binnewies, M., Roberts, E. W., Kersten, K., Chan, V.,
Fearon, D. F., Merad, M., Coussens, L. M., Gabrilovich,
D. I., Ostrand-Rosenberg, S., Hedrick, C. C., Vonder-
heide, R. H., Pittet, M. J., Jain, R. K., Zou, W., Howcroft,
T. K., Woodhouse, E. C., Weinberg, R. A., and Krummel,
M. F. (2018). Understanding the tumor immune microen-
vironment (time) for effective therapy. Nature Medicine,
24(5):541–550.

Bunne, C., Krause, A., and Cuturi, M. (2022a). Supervised
training of conditional monge maps. Advances in Neural
Information Processing Systems, 35:6859–6872.

Bunne, C., Krause, A., and Cuturi, M. (2022b). Supervised
training of conditional monge maps.

Bunne, C., Stark, S. G., Gut, G., Del Castillo, J. S.,
Levesque, M., Lehmann, K.-V., Pelkmans, L., Krause,
A., and Rätsch, G. (2023a). Learning single-cell pertur-
bation responses using neural optimal transport. Nature
Methods, 20(11):1759–1768.

Bunne, C., Stark, S. G., Gut, G., del Castillo, J. S., Levesque,
M., Lehmann, K.-V., Pelkmans, L., Krause, A., and
Rätsch, G. (2023b). Learning single-cell perturbation

responses using neural optimal transport. Nature Meth-
ods, 20(11):1759–1768.

Chen, S., Rivaud, P., Park, J. H., Tsou, T., Charles, E.,
Haliburton, J. R., Pichiorri, F., and Thomson, M. (2020).
Dissecting heterogeneous cell populations across drug
and disease conditions with popalign. Proceedings of the
National Academy of Sciences, 117(46):28784–28794.

Chen, T., Chen, X., Chen, W., Heaton, H., Liu, J., Wang, Z.,
and Yin, W. (2022). Learning to optimize: A primer and
a benchmark. Journal of Machine Learning Research,
23(189):1–59.

Chung, W., Eum, H. H., Lee, H.-O., Lee, K.-M., Lee, H.-B.,
Kim, K.-T., Ryu, H. S., Kim, S., Lee, J. E., Park, Y. H.,
Kan, Z., Han, W., and Park, W.-Y. (2017). Single-cell
rna-seq enables comprehensive tumour and immune cell
profiling in primary breast cancer. Nature Communica-
tions, 8(1).

Dao, Q., Phung, H., Nguyen, B., and Tran, A. (2023).
Flow matching in latent space. arXiv preprint
arXiv:2307.08698.

De Bortoli, V., Thornton, J., Heng, J., and Doucet, A. (2021).
Diffusion schrödinger bridge with applications to score-
based generative modeling. Advances in Neural Informa-
tion Processing Systems, 34:17695–17709.

Fey, M. and Lenssen, J. E. (2019). Fast graph representation
learning with PyTorch Geometric. In ICLR Workshop on
Representation Learning on Graphs and Manifolds.

Frangieh, C. J., Melms, J. C., Thakore, P. I., Geiger-Schuller,
K. R., Ho, P., Luoma, A. M., Cleary, B., Jerby-Arnon,
L., Malu, S., Cuoco, M. S., Zhao, M., Ager, C. R.,
Rogava, M., Hovey, L., Rotem, A., Bernatchez, C.,
Wucherpfennig, K. W., Johnson, B. E., Rozenblatt-Rosen,
O., Schadendorf, D., Regev, A., and Izar, B. (2021). Mul-
timodal pooled perturb-cite-seq screens in patient models
define mechanisms of cancer immune evasion. Nature
Genetics, 53(3):332–341.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and
Dahl, G. E. (2017). Neural message passing for quan-
tum chemistry. In International conference on machine
learning, pages 1263–1272. PMLR.

Goodenough, D. A. and Paul, D. L. (2009). Gap junctions.
Cold Spring Harb Perspect Biol, 1(1):a002576.

Gretton, A., Borgwardt, K. M., Rasch, M. J., Schölkopf, B.,
and Smola, A. (2012). A kernel two-sample test. The
Journal of Machine Learning Research, 13(1):723–773.

Gulati, G. S., Sikandar, S. S., Wesche, D. J., Manjunath,
A., Bharadwaj, A., Berger, M. J., Ilagan, F., Kuo, A. H.,

5

http://vectorinstitute.ai/partners/
http://vectorinstitute.ai/partners/
https://alliancecan.ca
https://alliancecan.ca
https://mila.quebec

Meta Flow Matching

Hsieh, R. W., Cai, S., Zabala, M., Scheeren, F. A., Lobo,
N. A., Qian, D., Yu, F. B., Dirbas, F. M., Clarke, M. F.,
and Newman, A. M. (2020). Single-cell transcriptional di-
versity is a hallmark of developmental potential. Science,
367(6476):405–411.

Hashimoto, T. B., Gifford, D. K., and Jaakkola, T. S. (2016).
Learning population-level diffusions with generative re-
current networks. In Proceedings of the 33rd Interna-
tional Conference on Machine Learning, pages 2417–
2426.

Hetzel, L., Boehm, S., Kilbertus, N., Günnemann, S., Lot-
follahi, M., and Theis, F. (2022). Predicting cellular
responses to novel drug perturbations at a single-cell
resolution. In Koyejo, S., Mohamed, S., Agarwal, A.,
Belgrave, D., Cho, K., and Oh, A., editors, Advances
in Neural Information Processing Systems, volume 35,
pages 26711–26722. Curran Associates, Inc.

Hunter, J. D. (2007). Matplotlib: A 2d graphics environment.
Computing in science & engineering, 9(3):90.

Isobe, N., Koyama, M., Hayashi, K., and Fukumizu, K.
(2024). Extended flow matching: a method of conditional
generation with generalized continuity equation. arXiv
preprint arXiv:2402.18839.

Ji, Y., Lotfollahi, M., Wolf, F. A., and Theis, F. J. (2021).
Machine learning for perturbational single-cell omics.
Cell Systems, 12(6):522–537.

Lipman, Y., Chen, R. T. Q., Ben-Hamu, H., Nickel, M., and
Le, M. (2023). Flow matching for generative modeling.
In The Eleventh International Conference on Learning
Representations.

Liu, X., Gong, C., and Liu, Q. (2022). Flow straight and
fast: Learning to generate and transfer data with rectified
flow. arXiv preprint arXiv:2209.03003.

Lopez, R., Regier, J., Cole, M. B., Jordan, M. I., and Yosef,
N. (2018). Deep generative modeling for single-cell tran-
scriptomics. Nature Methods, 15(12):1053–1058.

Lotfollahi, M., Wolf, F. A., and Theis, F. J. (2019). sc-
gen predicts single-cell perturbation responses. Nature
Methods, 16(8):715–721.

Makkuva, A. V., Taghvaei, A., Oh, S., and Lee, J. D. (2020).
Optimal transport mapping via input convex neural net-
works. In ICML.

McKinney, W. (2012). Python for data analysis: Data
wrangling with Pandas, NumPy, and IPython. " O’Reilly
Media, Inc.".

Molè, M. A., Coorens, T. H. H., Shahbazi, M. N., Weberling,
A., Weatherbee, B. A. T., Gantner, C. W., Sancho-Serra,
C., Richardson, L., Drinkwater, A., Syed, N., Engley, S.,
Snell, P., Christie, L., Elder, K., Campbell, A., Fishel,
S., Behjati, S., Vento-Tormo, R., and Zernicka-Goetz,
M. (2021). A single cell characterisation of human em-
bryogenesis identifies pluripotency transitions and puta-
tive anterior hypoblast centre. Nature Communications,
12(1).

Neklyudov, K., Brekelmans, R., Tong, A., Atanackovic,
L., Liu, Q., and Makhzani, A. (2023). A computa-
tional framework for solving wasserstein lagrangian flows.
arXiv preprint arXiv:2310.10649.

Neklyudov, K., Severo, D., and Makhzani, A. (2022). Ac-
tion matching: A variational method for learning stochas-
tic dynamics from samples.

Oliphant, T. E. (2006). A guide to NumPy, volume 1. Trelgol
Publishing USA.

Oliphant, T. E. (2007). Python for scientific computing.
Computing in Science & Engineering, 9(3):10–20.

Otto, F. (2001). The geometry of dissipative evolution equa-
tions: the porous medium equation.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. (2019). Pytorch: An imperative style, high-
performance deep learning library. In Advances in neural
information processing systems, pages 8026–8037.

Peidli, S., Green, T. D., Shen, C., Gross, T., Min, J., Garda,
S., Yuan, B., Schumacher, L. J., Taylor-King, J. P., Marks,
D. S., et al. (2024). scperturb: harmonized single-cell
perturbation data. Nature Methods, pages 1–10.

Peyré, G. and Cuturi, M. (2019). Computational Optimal
Transport. arXiv:1803.00567.

Pooladian, A.-A., Ben-Hamu, H., Domingo-Enrich, C.,
Amos, B., Lipman, Y., and Chen, R. T. (2023). Multisam-
ple flow matching: Straightening flows with minibatch
couplings. arXiv preprint arXiv:2304.14772.

Price, I., Sanchez-Gonzalez, A., Alet, F., Ewalds, T., El-
Kadi, A., Stott, J., Mohamed, S., Battaglia, P., Lam, R.,
and Willson, M. (2023). Gencast: Diffusion-based ensem-
ble forecasting for medium-range weather. arXiv preprint
arXiv:2312.15796.

Ramos Zapatero, M., Tong, A., Opzoomer, J. W.,
O’Sullivan, R., Cardoso Rodriguez, F., Sufi, J., Vlck-
ova, P., Nattress, C., Qin, X., Claus, J., Hochhauser,
D., Krishnaswamy, S., and Tape, C. J. (2023). Trellis

6

Meta Flow Matching

tree-based analysis reveals stromal regulation of patient-
derived organoid drug responses. Cell, 186(25):5606–
5619.e24.

Rizvi, A. H., Camara, P. G., Kandror, E. K., Roberts, T. J.,
Schieren, I., Maniatis, T., and Rabadan, R. (2017). Single-
cell topological rna-seq analysis reveals insights into cel-
lular differentiation and development. Nature Biotechnol-
ogy, 35(6):551–560.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and
Ommer, B. (2022). High-resolution image synthesis with
latent diffusion models. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition,
pages 10684–10695.

Saharia, C., Chan, W., Chang, H., Lee, C., Ho, J., Salimans,
T., Fleet, D., and Norouzi, M. (2022a). Palette: Image-
to-image diffusion models. In ACM SIGGRAPH 2022
conference proceedings, pages 1–10.

Saharia, C., Chan, W., Saxena, S., Li, L., Whang, J., Denton,
E. L., Ghasemipour, K., Gontijo Lopes, R., Karagol Ayan,
B., Salimans, T., et al. (2022b). Photorealistic text-to-
image diffusion models with deep language understand-
ing. Advances in neural information processing systems,
35:36479–36494.

Sanchez-Gonzalez, A., Godwin, J., Pfaff, T., Ying, R.,
Leskovec, J., and Battaglia, P. (2020). Learning to sim-
ulate complex physics with graph networks. In Interna-
tional conference on machine learning, pages 8459–8468.
PMLR.

Schiebinger, G., Shu, J., Tabaka, M., Cleary, B., Subrama-
nian, V., Solomon, A., Gould, J., Liu, S., Lin, S., Berube,
P., et al. (2019). Optimal-transport analysis of single-cell
gene expression identifies developmental trajectories in
reprogramming. Cell, 176(4):928–943.

Tong, A., FATRAS, K., Malkin, N., Huguet, G., Zhang,
Y., Rector-Brooks, J., Wolf, G., and Bengio, Y. (2024).
Improving and generalizing flow-based generative mod-
els with minibatch optimal transport. Transactions on
Machine Learning Research. Expert Certification.

Tong, A., Huang, J., Wolf, G., Van Dijk, D., and Krish-
naswamy, S. (2020). Trajectorynet: A dynamic opti-
mal transport network for modeling cellular dynamics.
In International conference on machine learning, pages
9526–9536. PMLR.

Tong, A., Malkin, N., Fatras, K., Atanackovic, L., Zhang, Y.,
Huguet, G., Wolf, G., and Bengio, Y. (2023). Simulation-
free schr\" odinger bridges via score and flow matching.
arXiv preprint arXiv:2307.03672.

Uscidda, T. and Cuturi, M. (2023). The monge gap: A
regularizer to learn all transport maps. In Krause, A.,
Brunskill, E., Cho, K., Engelhardt, B., Sabato, S., and
Scarlett, J., editors, Proceedings of the 40th International
Conference on Machine Learning, volume 202 of Pro-
ceedings of Machine Learning Research, pages 34709–
34733. PMLR.

Van Der Walt, S., Colbert, S. C., and Varoquaux, G. (2011).
The numpy array: a structure for efficient numerical com-
putation. Computing in Science & Engineering, 13(2):22.

Van Rossum, G. and Drake Jr, F. L. (1995). Python refer-
ence manual. Centrum voor Wiskunde en Informatica
Amsterdam.

Verma, Y., Heinonen, M., and Garg, V. (2024). Climode:
Climate and weather forecasting with physics-informed
neural odes. arXiv preprint arXiv:2404.10024.

Villani, C. (2009). Optimal transport: old and new, volume
338. Springer.

Weinreb, C., Wolock, S., Tusi, B. K., Socolovsky, M., and
Klein, A. M. (2018). Fundamental limits on dynamic
inference from single-cell snapshots. 115(10):E2467–
E2476.

Yadan, O. (2019). Hydra - a framework for elegantly con-
figuring complex applications. Github.

Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B.,
Salakhutdinov, R. R., and Smola, A. J. (2017). Deep
sets. Advances in neural information processing systems,
30.

Zeng, T. and Dai, H. (2019). Single-cell rna sequencing-
based computational analysis to describe disease hetero-
geneity. Frontiers in Genetics, 10.

Zheng, Q., Le, M., Shaul, N., Lipman, Y., Grover, A., and
Chen, R. T. (2023). Guided flows for generative modeling
and decision making. arXiv preprint arXiv:2311.13443.

7

Meta Flow Matching

Flow Matching Conditional Flow Matching Vector Field on P2(X)

Figure 2: Illustration of flow matching methods on the 2-Wasserstein manifold, P2(X), depicted as a two-dimensional sphere. Flow
Matching learns the tangent vectors to a single curve on the manifold. Conditional generation corresponds to learning a finite set of curves
on the manifold, e.g. classes c1 and c2 on the plot. Meta Flow Matching learns to integrate a vector field on P2(X), i.e. for every starting
density p0 Meta Flow Matching defines a push-forward measure that integrates along the underlying vector field.

A. Figures
Here we include schematics comparing Flow Matching, Conditional Flow Matching and Meta Flow Matching, see Figure 2.

B. Background
B.1. Generative Modeling via Flow Matching

Flow Matching is an approach to generative modeling recently proposed independently in different works: Rectified Flows
(Liu et al., 2022), Flow Matching (Lipman et al., 2023), Stochastic Interpolants (Albergo and Vanden-Eijnden, 2022). It
assumes a continuous interpolation between densities p0(x0) and p1(x1) in the sample space. That is, the sample from the
intermediate density pt(xt) is produced as follows

xt = ft(x0, x1), (x0, x1) ∼ π(x0, x1) , (9)

where
∫

dx1 π(x0, x1) = p0(x0) ,

∫
dx0 π(x0, x1) = p1(x1) , (10)

where ft is the time-continuous interpolating function such that ft=0(x0, x1) = x0 and ft=1(x0, x1) = x1 (e.g. linearly
between x0 and x1 with ft(x0, x1) = (1− t) · x0 + t · x1); π(x0, x1) is the density of the joint distribution, which is usually

Figure 3: Organoid drug-screen dataset overview. Left: a given replica consists of a control distribution p0 and corresponding treatment
response distribution p1 for treatment condition ci. Right: train and test data splits for replica (top) and patients (bottom) splits, restively.
For each experiment there are 11 treatments, 10 patients and 3 culture conditions.

8

Meta Flow Matching

taken as a distribution of independent random variables π(x0, x1) = p0(x0)p1(x1), but can also be generalized to formulate
the optimal transport problems (Pooladian et al., 2023; Tong et al., 2024). The corresponding density can be defined then as
the following expectation

pt(x) =

∫
dx0dx1 π(x0, x1)δ(x− ft(x0, x1)) . (11)

The essential part of Flow Matching is the continuity equation that describes the change of this density through the vector
field on the state space, which admits vector field v∗t (x) as a solution

∂pt(x)

∂t
= −⟨∇x, pt(x)v

∗
t (x)⟩ , v∗t (ξ) =

1

pt(ξ)
Eπ(x0,x1)

[
δ(ft(x0, x1)− ξ)

∂ft(x0, x1)

∂t

]
.

Relying on this formula, one can derive the tractable objective for learning v∗t (x), i.e.

LFM(ω) =

∫ 1

0

dt Ept(x)∥v
∗
t (x)− vt(x;ω)∥2 (12)

= Eπ(x0,x1)

∫ 1

0

dt

∥∥∥∥ ∂

∂t
ft(x0, x1)− vt(ft(x0, x1);ω)

∥∥∥∥2 + constant . (13)

Finally, the vector field vt(ξ, ω) ≈ v∗t (ξ) defines the push-forward density that approximately matches pt=1, i.e. T#p0 ≈
pt=1, where T is the flow corresponding to vector field vt(·, ω) with parameters ω.

B.2. Conditional Generative Modeling via Flow Matching

Conditional image generation is one of the most common applications of generative models nowadays; it includes condition-
ing on the text prompts (Saharia et al., 2022b; Rombach et al., 2022) as well as conditioning on other images (Saharia et al.,
2022a). To learn the conditional generative process with diffusion models, one merely has to pass the conditional variable
(sampled jointly with the data point) as an additional input to the parametric model of the vector field. The same applies for
the Flow Matching framework.

Conditional Generative Modeling via Flow Matching is independently introduced in several works (Zheng et al., 2023; Dao
et al., 2023; Isobe et al., 2024) and it operates as follows. Consider a family of time-continuous densities pt(xt | c), which
corresponds to the distribution of the following random variable

xt = ft(x0, x1), (x0, x1) ∼ π(x0, x1 | c) . (14)

For every c, the density pt(xt | c) follows the continuity equation with the following vector field

v∗t (ξ | c) =
1

pt(ξ | c)
Eπ(x0,x1)δ(ft(x0, x1)− ξ)

∂ft(x0, x1)

∂t
, (15)

which depends on c. Thus, the training objective of the conditional model becomes

LCGFM (ω) = Ep(c)Eπ(x0,x1 | c)

∫ 1

0

dt

∥∥∥∥ ∂

∂t
ft(x0, x1)− vt(ft(x0, x1) | c;ω)

∥∥∥∥2 , (16)

where, compared to the original Flow Matching formulation, we first have to sample c, then produce the samples from
pt(xt | c) and pass c as input to the parametric model of the vector field.

C. Related Work
Meta-learning of probability measures. The meta-learning of probability measures was previously studied by Amos et al.
(2022); Bunne et al. (2022a;b) where they demonstrate that the prediction of the optimal transport paths can be efficiently
amortized over the input marginal measures. The main difference with our approach is that we are trying to learn the
push-forward map without embedding the second marginal.

9

Meta Flow Matching

Generative modeling for single cells. Single cell data has expanded to encompass multiple modalities of data profiling cell
state and activities (Frangieh et al., 2021; Bunne et al., 2023b). Single-cell data presents multiple challenges in terms of noise,
non-time resolved, and high dimension, and generative models have been used to counter those problems. Autoencoder
has been used to embed and extrapolate data Out Of Distribution (OOD) with its latent state dimension (Lotfollahi et al.,
2019; Lopez et al., 2018; Hetzel et al., 2022). Orthogonal non-negative matrix factorization (oNMF) has also been used for
dimensionality reduction combined with mixture models for cell state prediction (Chen et al., 2020). Other approaches
have tried to use Flow Matching (FM) (Tong et al., 2023; 2024; Neklyudov et al., 2023) or similar approaches such as the
Monge gap (Uscidda and Cuturi, 2023) to predict cell trajectories. Currently, the state of the art method uses the principle
of Optimal Transport (OT) to predict cell trajectories with Input Convex Neural Network (ICNN) (Makkuva et al., 2020;
Bunne et al., 2023b). What determines the significance of the method is its capability in generalizing out of distribution to a
new population of cells, which may be from different culture or individuals. As of this time, our method is the only method
that takes inter-cellular interactions into account.

Generative modeling for physical processes. The closest approach to ours is the prediction of the many-body interactions
in physics (Sanchez-Gonzalez et al., 2020) via GNNs. However, the problem there is very different since these models use
the information about the individual trajectories of samples, which are not available for the single-cell prediction. Neklyudov
et al. (2022) consider learning the vector field for any continuous time-evolution of a probability measure, however, their
method is restricted to single curves and do not consider generalization to unseen data. Finally, the weather/climate
forecast models generating the next state conditioned on the previous one (Price et al., 2023; Verma et al., 2024) are similar
approaches to ours but operating on a much finer time resolution.

D. Data processing
Synthetic Data. We curate a synthetic dataset of the joint distributions {(p0(x0, | i), p1(x1 | i))}Ni=1 by simulating a
diffusion process applied to a set of pre-defined target distributions p1(x1 | i) for i = 1, . . . , N . To get a paired population
p0(x0 | i) we simulate the forward diffusion process without drift x0 ∼ N (x1, σ). After this setup, for reasonable values of
σ, we assume that one can reverse the diffusion process and learn the push-forward map from p0(x0 | i) to p1(x1 | i) for
every index i. For this task, given the i-th population index we denote p0(x0 | i) as the source population p1(x1 | i) as the
i-th target population.

To construct p1(x1 | i), we discretize samples from a defined silhouette; e.g. an image of a character, where i indexes the
respective character. We use upper case letters as the silhouette and generate the corresponding samples x1 ∼ p1(x1 | i)
from the uniform distribution over the silhouette and run the diffusion process for samples x1 to acquire x0. We construct
the training data using 10 random orientations of 24 letters, while only using the upright orientation for the remaining letters
“X” and “Y”. We construct the test data by using 10 random orientations of “X” and “Y” (validation and test, respectively)
that differ from the upright orientations of the same letters in the training data. We do this to simplify the generalization
task – the model will see the shapes of “X” and “Y” during training, but the same letters under different orientations remain
unseen.

Biological Data. For experiments on biological data, we use the organoid drug-screen dataset from (Ramos Zapatero et al.,
2023). This dataset is a single-cell mass-cytometry dataset collected over 10 patients. Somewhat unique to this dataset,
unlike many prior perturbation-screen datasets which have a single control population, this dataset has matched controls
to each experimental condition. Populations from each patient are treated with 11 different drug treatments of varying
dose concentrations.1 We use the term replicate to define control-treatment population pairs, p0(x0 | ci) and p1(x1 | ci),
respectively (see Fig. 3-left). In each patient, cell population are categorized into 3 cell cultures: (i) cancer associated
Fibroblasts, (ii) patient-derived organoid cancer cells (PDO), and (iii) patient-derived organoid cancer cells co-cultured
fibroblasts (PDOF). We report results averaged over Fibroblast/PDO/PDOF cultures and results for the individual cultures
(this is reported in Appendix F.3).

Pre-processing and data splits. We filter each cell population to contain at least 1000 cells and consider 43 bio-markers.
We consider two data splits for the organoid drug-screen dataset (see Fig. 3-right). (1) Replicate split; here we leave-out
replicates evenly across all patients for testing. (2) Patients split; here we leave-out replicates fully in one patients – in this
setting, we are testing the ability of of model to generalize population prediction of treatment response for unseen patients.
In both settings, we normalize the data and embed it into a lower dimensional principle components (PC) representation. We

1We consider only the highest dosage and leave exploration of dose-dependent response to future work.

10

Meta Flow Matching

do this to reduce the dimensionality of the data and to extract the relevant information from the 43 bio-markers (features) of
the ambient space. We train and evaluate all models in the PC space. For all organoid drug-screen dataset experiments we
use PC=10. Further details regarding data pre-processing and data splits are provided in Appendix F.2.

For the organoid drug-screen experiments, we consider an ICNN architecture in addition to the Flow-matching models. The
ICNN model is based on CellOT (Bunne et al., 2023a); a method for learning cell specific response to treatments. The ICNN
(and likewise CellOT) counterparts our FM model in that it does not take the population index i as a condition. Therefore, it
will neither be able to fit the training data, nor generalize.

E. Proof of Theorem 1
Theorem 1. Consider a dataset of populations D = {(π(x0, x1 | i))}i generated from some unknown conditional model
π(x0, x1 | c)p(c). Then the following objective

L(ω, θ) = Et,p(c),pt(xt | c)
∥∥v∗

t (xt | c) − vt(xt |φ(p0, θ), ω)
∥∥2 (5)

is equivalent to the Meta Flow Matching objective LMFM(ω, θ)

Et,i,π(x0,x1 | i)

∥∥∥∥ ∂

∂t
ft(x0, x1) − vt(ft(x0, x1) |φ(p0, θ);ω)

∥∥∥∥2

(6)

up to an additive constant.

Proof. The loss function

L(ω, θ) = Ep(c)

∫ 1

0

dt Ept(xt | c)∥v
∗
t (xt | c)− vt(xt |φ(pt, θ);ω)∥2 (17)

= − 2Ep(c)

∫
dtdx ⟨pt(x | c)v∗t (x | c), vt(x |φ(pt, θ);ω)⟩+ (18)

+ Ep(c)

∫ 1

0

dt Ept(xt | c)∥vt(xt |φ(pt, θ), ω)∥2+ (19)

+ Ep(c)

∫ 1

0

dt Ept(xt | c)∥v
∗
t (xt | c)∥2 . (20)

The last term does not depend on θ, the second term we can estimate, for the first term, we use the formula for the (from
Eq. (15))

pt(ξ | c)v∗t (ξ | c) = Eπ(x0,x1)δ(ft(x0, x1)− ξ)
∂ft(x0, x1)

∂t
. (21)

Thus, the loss is equivalent (up to a constant) to

L(ω, θ) = − 2Ep(c)Eπ(x0,x1 | c)

∫
dt

〈
∂ft(x0, x1)

∂t
, vt(ft(x0, x1) |φ(pt, θ);ω)

〉
(22)

+ Ep(c)Eπ(x0,x1 | c)

∫ 1

0

dt ∥vt(ft(x0, x1) |φ(pt, θ), ω)∥2 (23)

± Ep(c)Eπ(x0,x1 | c)

∫ 1

0

dt

∥∥∥∥∂ft(x0, x1)

∂t

∥∥∥∥2 (24)

= Ec∼p(c)Eπ(x0,x1 | c)

∫ 1

0

dt

∥∥∥∥ ∂

∂t
ft(x0, x1)− vt(ft(x0, x1) |φ(pt, θ);ω)

∥∥∥∥2 . (25)

Note that in the final expression we do not need access to the probabilistic model of p(c) if the joints π(x0, x1 | c) are already
sampled in the data D. Thus, we have

L(ω, θ) = Ec∼p(c)Eπ(x0,x1 | c)

∫ 1

0

dt

∥∥∥∥ ∂

∂t
ft(x0, x1)− vt(ft(x0, x1) |φ(pt, θ);ω)

∥∥∥∥2 (26)

= Ei∼DEπ(x0,x1 | i)

∫ 1

0

dt

∥∥∥∥ ∂

∂t
ft(x0, x1)− vt(ft(x0, x1) |φ(pt, θ);ω)

∥∥∥∥2 (27)

= LMFM(ω, θ) . (28)

11

Meta Flow Matching

Table 2: Results of the synthetic letters experiment for population prediction on seen train populations and unseen test populations.
We report the the 1-Wasserstein (W1), 2-Wasserstein (W2), and the maximum-mean-discrepancy (MMD) distributional distances. We
consider 4 settings for MFM with varying k.

Train Test

W1 W2 MMD (×10−3) W1 W2 MMD (×10−3)

FM 0.216± 0.000 0.280± 0.000 2.38± 0.00 0.237± 0.000 0.315± 0.000 3.28 ± 0.00
CGFM 0.093 ± 0.000 0.112 ± 0.000 0.34± 0.00 0.317± 0.000 0.397± 0.000 6.67± 0.00

MFM (k = 0) 0.099± 0.000 0.128± 0.000 0.25± 0.00 0.221± 0.000 0.267± 0.000 3.77± 0.00
MFM (k = 1) 0.096 ± 0.003 0.124± 0.004 0.22 ± 0.04 0.217± 0.003 0.261± 0.003 3.80± 0.28
MFM (k = 10) 0.096 ± 0.003 0.124± 0.003 0.23 ± 0.04 0.213 ± 0.008 0.256 ± 0.008 3.68 ± 0.45
MFM (k = 50) 0.099± 0.003 0.127± 0.003 0.25± 0.05 0.226± 0.005 0.270± 0.007 4.38± 0.30

F. Experimental Details
F.1. Synthetic letters data

The synthetic letters dataset contains 242 train populations a 10 test populations. Each population contains roughly between
750 and 2700 samples.

F.2. Organoid drug-screen data

The organoid drug-screen dataset contains a total of 927 replicates (or coupled populations). In the replicates split, we
use 713 populations for training and 103 left-out populations for testing. In the patients split, we use 861 populations for
training and 33 left-out populations for testing.

F.3. Extended Results

Here we include extended results from letter generation, in figure 4. As well, we included the results of all three different
type of cell culture (Fibroblast alone, PDO alone, and PDO co-cultured with fibroblast) 3.

F.4. Model architectures and hyperparameters

ICNN. The ICNN baseline was constructed with two networks ICNN network f(x) and g(x), with non-negative leaky
ReLU activation layers. f(x) is used to minimize the transport distance and g(x) is used to transport from source to target.
It has four hidden units with width of 64, and a latent dimension of 50. Both networks uses Adam optimizer (lr=1e− 4,
β1=0.5, β2=0.9). g(x) is trained with an inner iteration of 10 for every iteration f(x) is trained.

Vector Field Models. All vector field models vt are parameterized 4 linear layers with 512 hidden units and SELU activation
functions. The FM vector field model additionally takes a conditional input for the one-hot treatment encoding. CGFM takes
the conditional input for the one-hot treatment conditions as well as a one-hot encoding for the population index condition i.
The MFM vector field model takes population embedding conditions, that is output from the GCN, as input, as well as the
treatment one-hot encoding. All vector field models use temporal embeddings for time and positional embeddings for the
input samples. We did not sweep the size of this embeddings space and found that a temporal embedding and positional
embeddings sizes of 128 worked sufficiently well.

Graph Neural Network. We considered a GCN model that consists of a k-nearest neighbour graph edge pooling layer and
3 graph convolution layers with 512 hidden units. The final GCN model layer outputs an embedding representation e ∈ Rd.
For the Synthetic experiment, we found that d = 256 performed well, and d = 128 performed well for the biological
experiments. We normalize and project embeddings onto a hyper-sphere, and find that this normalization helps improve
training. Additionally, the GCN takes a one-hot cell-type encoding (encoding for Fibroblast cells or PDO cells) for the
control populations p0. This may be beneficial for PDOF populations where both Fibroblast cells and PDO cells are present.
However, it is important to note that labeling which cells are Fibroblasts versus PDOs withing the PDOF cultures is difficult

12

Meta Flow Matching

and noisy in itself, hence such a cell-type condition may yield no additive information/performance gain.

Optimization. We use the Adam optimizer with a learning rate of 0.0001 for all Flow-matching models (FM, CGFM,
MFM). We also used the Adam optimizer with a learning rate of 0.0001 for the GCN model. To train the MFM (FM+GCN)
models, we alternate between updating the vector field model parameters ω and the GCN model parameters θ. We alternate
between updating the respective model parameters every epoch. FM and CGFM model were trained for 2000 epochs, while
MFM models were trained for 4000 epochs. Due to the alternating optimization, the MFM vector field model receives half
as many updates compared to its counterparts (FM and CGFM). Therefore, training for the double the epochs is necessary
for fair comparison.

The hyperparameters stated in this section were selected from brief and small grid search sweeps. We did not conduct any
thorough hyperparameter optimization.

G. Implementation Details
We implement all our experiments using PyTorch and PyTorch Geometric (Van Rossum and Drake Jr, 1995; Oliphant, 2007;
Paszke et al., 2019; Fey and Lenssen, 2019), with support from Hydra (Yadan, 2019), Matplotlib (Hunter, 2007), numpy
(Oliphant, 2006; Van Der Walt et al., 2011), and pandas (McKinney, 2012).

All experiments were conducted on a HPC cluster primarily on NVIDIA Tesla T4 16GB GPUs. Each individual seed
experiment run required only 1 GPU. Each experiment ran between 3-11 hours and all experiments took approximately 500
GPU hours.

Table 3: Experimental results on the organoid drug-screen dataset for population prediction of treatment response across patient
populations. Results are reported for models trained on data embedded into 10 principle components. We report the the 1-Wasserstein
(W1), 2-Wasserstein (W2), and the maximum-mean-discrepancy (MMD) distributional distances. We consider 2 settings for MFM with
varying nearest-neighbours parameter.

Fibroblasts
Train Test

W1 W2 MMD (×10−3) W1 W2 MMD (×10−3)

FM 1.599± 0.071 1.761± 0.137 2.82± 0.34 1.667± 0.003 1.846± 0.064 7.85± 0.15
ICNN 1.695± 0.08 1.796± 0.09 48.2± 3.412 1.6± 0.009 1.68± 0.013 62.2± 1.32
CGFM 1.496 ± 0.019 1.572 ± 0.016 1.45 ± 0.14 1.566± 0.028 1.652± 0.026 6.46± 0.82

MFM (k = 0) 1.551± 0.037 1.632± 0.042 2.31± 0.71 1.453± 0.200 1.527± 0.022 3.66± 0.67
MFM (k = 10) 1.555± 0.034 1.635± 0.039 2.54± 0.42 1.441 ± 0.003 1.514 ± 0.001 3.37 ± 0.72

PDO
Train Test

W1 W2 MMD (×10−3) W1 W2 MMD (×10−3)

FM 1.996± 0.196 2.171± 0.243 6.79± 3.40 2.128± 0.064 2.312± 0.075 7.88± 1.26
ICNN 2.315± 0.060 2.478± 0.057 236.8± 0.006 2.538± 0.018 2.731± 0.027 232.8± 20.6
CGFM 1.662 ± 0.026 1.760 ± 0.023 1.74 ± 0.16 2.460± 0.018 2.533± 0.023 13.6± 0.25

MFM (k = 0) 1.837± 0.058 1.964± 0.059 3.74± 0.29 2.010± 0.142 2.168± 0.182 6.01± 1.77
MFM (k = 10) 1.838± 0.035 1.957± 0.038 3.75± 0.41 1.971 ± 0.082 2.114 ± 0.101 5.42 ± 1.11

PDOF
Train Test

W1 W2 MMD (×10−3) W1 W2 MMD (×10−3)

FM 2.390± 0.148 2.806± 0.198 11.0± 2.21 4.026± 0.018 4.683± 0.011 49.0± 1.66
ICNN 2.479± 0.06 2.826± 0.063 291± 9.24 3.968± 0.0554 4.579± 0.060 1263± 37.5
CGFM 2.160 ± 0.170 2.530 ± 0.237 7.90 ± 1.79 4.000± 0.010 4.629± 0.012 49.2± 0.76

MFM (k = 0) 2.202± 0.072 2.548± 0.089 8.98± 0.59 3.717± 0.138 4.360± 0.162 40.3± 3.52
MFM (k = 10) 2.251± 0.143 2.631± 0.197 9.45± 1.52 3.565 ± 0.132 4.201 ± 0.119 36.1 ± 4.97

13

Meta Flow Matching

source t=0.50 t=1.00 target

Tr
ai

n

source t=0.50 t=1.00 target source t=0.50 t=1.00 target

source t=0.50 t=1.00 target

Te
st

FM

source t=0.50 t=1.00 target

CGFM

source t=0.50 t=1.00 target

MFM

Figure 4: Model-generated samples for synthetic letters from the source (t = 0) to target (t = 1) distributions.

14

	Introduction
	Meta Flow Matching
	Modeling Process in Natural Sciences as Vector Fields on the Wasserstein Manifold
	Integrating Vector Fields on the Wasserstein Manifold via Meta Flow Matching
	Learning Population Embeddings via Graph Neural Networks (GNNs)

	Experiments
	Synthetic Experiment
	Experiments on Organoid Drug-screen Data

	Conclusion
	Figures
	Background
	Generative Modeling via Flow Matching
	Conditional Generative Modeling via Flow Matching

	Related Work
	Data processing
	Proof of th:mfm
	Experimental Details
	Synthetic letters data
	Organoid drug-screen data
	Extended Results
	Model architectures and hyperparameters

	Implementation Details

