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ABSTRACT

Traditional semi-supervised learning (SSL) has focused on the closed world as-
sumption where all unlabeled samples are task-related. In practice, this assump-
tion is often violated when leveraging data from very large image databases that
contain mostly non-task-relevant samples. While standard self-training and other
established methods fail in this open-world setting, we demonstrate that our out-
distribution-aware self-learning (ODST) with a careful sample selection strategy
can leverage unlabeled datasets with millions of samples, more than 1600 times
larger than the labeled datasets, and which contain only about 2% task-relevant
inputs. Standard and open world SSL techniques degrade in performance when
the ratio of task-relevant sample decreases and show a significant distribution shift
which is problematic regarding AI safety while ODST outperforms them with re-
spect to test performance, corruption robustness and out-of-distribution detection.

1 INTRODUCTION

In past years we have seen tremendous progress in image recognition based on deep learning
(Krizhevsky et al., 2012; He et al., 2016). However, this success required large labeled datasets
that are expensive to generate. On the other hand, large amounts of unlabeled data are broadly
available, in particular in image recognition. The promise of semi-supervised learning (Chapelle
et al., 2006) is to leverage unlabeled data in order to improve prediction performance. However,
the underlying assumption of traditional and modern (Berthelot et al., 2019; Sohn et al., 2020) SSL
algorithms is that the unlabeled data comes from the same distribution or at least contains data from
the same classes (closed world assumption). Oliver et al. (2018) criticized this as being unrealistic
as the assumption is hard to check when retrieving large amounts of unlabeled data from the web.
SSL in an open world setting, where the unlabeled data contains task-relevant but also non-related
out-of-distribution (OOD) images, has recently attracted attention as a more realistic approach to
SSL (Guo et al., 2020; Chen et al., 2020; Yu et al., 2020). While these methods could outperform
standard SSL techniques when the unlabeled data contains out-of-distribution samples, they have
mostly been evaluated in settings where the unlabeled data contains relatively few non-task-related
samples. It is thus an open question whether existing open world SSL methods can scale to large
unlabeled data bases where the ratio of task-relevant to non-related samples is much smaller.

In this paper, we demonstrate that existing methods suffer from severe performance degradations
when the ratio of non-related images in the unlabeled dataset increases. Moreover, even if they
achieve high accuracy, they are not OOD aware, that is they systematically assign high confi-
dence to non-related inputs, e.g. a CIFAR10 model classifies images containing humans as dogs
or horses. Our contributions are: i) we propose our scalable, iterative out-distribution-aware self-
training (ODST) which enforces low-confidence predictions on non-task-related samples and selects
unlabeled samples for the in-distribution task via a novel class-adaptive selection scheme. This con-
fidence based selection scheme allows us to deal with strongly unbalanced in-distribution classes in
the unlabeled dataset, ii) we outperform state-of-the-art SSL techniques (Berthelot et al., 2019; Sohn
et al., 2020), as well as recent open world SSL techniques (Guo et al., 2020; Yu et al., 2020) in terms
of prediction performance and out-of-distribution detection and show that all other approaches suf-
fer from distribution shifts, iii) we show strong performance gains when using ODST with the full
training sets of CIFAR10 and CIFAR100 as labeled data together with the 80 Million Tiny Image
(80MTI) dataset as unlabeled dataset. Thus we show that even with large amounts of labeled data,
ODST can still leverage unlabeled data to improve prediction and OOD performance.
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dog - 1.00 frog - 1.00 bird - 1.00 deer - 1.00 cat - 1.00

plane - 1.00 car - 1.00 cat - 1.00 ship - 1.00 ship - 1.00

(a) ODST

frog - 0.79 cat - 0.43 deer - 0.86 frog - 0.92 cat - 0.65

frog - 0.93 bird - 0.93 deer - 0.90 deer - 0.92 deer - 0.92

(b) MTCF

truck - 1.00 frog - 0.98 bird - 0.98 truck - 1.00 ship - 0.99

cat - 0.98 cat - 0.97 cat - 0.98 deer - 1.00 dog - 1.00

(c) FixMatch

Figure 1: Random unlabeled samples considered to be task-relevant by the SSL method (confidence
above in-distribution thresholds for ODST, above 95% confidence for Fixmatch and above the Otsu
threshold for MTCF) are shown together with their confidence and predicted label (mistakes are
marked red). MTCF and Fixmatch show severe distribution shift and only our ODST is able to
select the correct samples. All methods are trained on CIFAR10 with 4k labeled images and an
unlabeled set consisting of 41k CIFAR10 training images and 1M images from 80MTI.

2 RELATED WORK

Semi-supervised learning (SSL) is an established technique (Zhu, 2005; Zhu & Goldberg, 2009)
for leveraging information from unlabeled data to improve predictive performance. In self-training
(Riloff, 1996; Riloff & Wiebe, 2003; Scudder, 1965), a teacher model is trained in a fully-supervised
fashion on a labeled dataset. The teacher model is then used to label a set of unlabeled examples,
typically drawn from the original data distribution (closed world assumption), which is then used
in combination with the labeled samples to train a new student model. Various extensions of this
protocol have been proposed, including the use of an ensemble of teacher models (Zhou et al., 2018)
and Co-training (Blum & Mitchell, 1998).

Recently, Xie et al. (2020) and Yalniz et al. (2019) used self-training to improve performance on
ImageNet (Russakovsky et al., 2015) by using large image databases consisting of millions of task-
relevant and out-of-distribution samples. On CIFAR10, Carmon et al. (2019) were able to signif-
icantly improve model robustness to adversarial perturbations by adding unlabeled samples from
80 million tiny images (80MTI) (Torralba et al., 2008) using self-training. The distinctive feature
of self-training in comparison to other SSL methods is that the training of the teacher model is
separated from the labeling process. In contrast, in pseudo-labeling (Lee, 2013; Iscen et al., 2019;
Shi et al., 2018) labels are generated during training by the model itself. Similarly, consistency-
based SSL-methods like Π-models (Laine & Aila, 2016; Sajjadi et al., 2016), mean-teacher (Tar-
vainen & Valpola, 2017) and virtual adversarial training (Miyato et al., 2018) enforce an invariance
of the model’s output on the unlabeled data under a specific set of perturbations. Methods like
MixMatch (Berthelot et al., 2019) and FixMatch (Sohn et al., 2020) combine consistency regular-
ization with strong augmentation e.g. RandAugment (Cubuk et al., 2020). A related technique is
entropy-minimization (Grandvalet & Bengio, 2005), which penalizes low-confidence predictions on
unlabeled samples during training. Oliver et al. (2018) found that SSL can improve the model’s
performance in the traditional SSL setting where the unlabeled data is sampled from the same dis-
tribution as the training data (closed world assumption) but can degrade the performance when the
unlabeled data contains non-task-related samples (open world setting).

The open world SSL setting has has been explored only recently, by combining elements of consis-
tency regularization with online OOD detection and sample filtering (Yu et al., 2020; Chen et al.,
2020) or soft per-sample weighting (Guo et al., 2020). While they demonstrate performance im-
provements when the unlabeled data contains non-task-related samples, their evaluation is restricted
to settings where the unlabeled data contains mostly task-related samples. We later demonstrate that
in more challenging settings, where the ratio of task-related samples in the unlabeled data is small,
these methods show severe performance degradations.

Out-of-distribution detection: Deep Neural networks (DNN) have empirically and theoretically
been shown to produce overconfident predictions for inputs not related to the task, e.g. noise or
other classes not contained in the labeled dataset (Nguyen et al., 2015; Hendrycks & Gimpel, 2017;
Hein et al., 2019), i.e. the confidence of a DNN is not reliable for the detection of out-of-distribution
(OOD) samples. Approaches for OOD detection include ODIN (Liang et al., 2018) or using the
Mahalanobis distance of higher-order features (Lee et al., 2018). Hendrycks et al. (2019) introduced
Outlier exposure (OE), see Hein et al. (2019) for the related CEDA, and show that the confidence
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can be used as a reliable OOD detector when enforcing low confidence on an OOD training set,
even when tested on other OOD test datasets. OOD detection is also related to open set recognition
(Boult et al., 2019) which is beyond the scope of this paper.

3 METHOD

In contrast to previous works which focused on problems where the ratio of non-task-related to task-
related images is small, our goal is to show that our ODST in combination with a careful sample
selection strategy yields a self-training scheme that can leverage large unlabeled datasets to improve
performance on the CIFAR10 and CIFAR100 test set over a fully-supervised baseline trained on the
entire training set and additionally has excellent OOD detection performance.

First, we introduce self-training as in the noisy student self-training (NSST) of Xie et al. (2020)
which serves a baseline. Then we introduce our out-distribution aware self-training ODST.

In the following T = (xi, yi)
n
i=1 denotes the set of labeled examples, where xi ∈ Rd and yi ∈

{1, . . . ,K} and U = (zi)
m
i=1 is a collection of unlabeled samples. The traditional SSL literature

makes the assumption that the unlabeled samples U are drawn from the same distribution as the
labeled examples T, or at least belong to the same set of classes which we explicitly do not do in
this paper. Given the logits of a neural network f : Rd → R the predicted probability distribution
for a point x is computed via the softmax as: p̂f (s|x) = efs(x)/

∑K
l=1 e

fl(x). The confidence in the
decision for x is then given by maxs=1,...,K p̂f (s|x), and the cross-entropy loss between (soft)-labels
p ∈ RK (

∑
i pi = 1, pi ≥ 0) and prediction p̂ is defined as: L(p, p̂) = −

∑K
i=1 pi log p̂i.

3.1 NOISY STUDENT SELF-TRAINING (NSST)

In NSST (Xie et al., 2020) the first teacher is a base model f (0) obtained by minimizing the cross-
entropy loss on the labeled set only. The iterative scheme of NSST starting at t = 0 is:

1) pseudo-label all unlabeled samples in U with current teacher f (t)

2) select a subset I ⊂ U of the pseudo-labeled examples by choosing per class the top-k with
highest confidence and which are above a fixed threshold

3) train new model f (t+1) by minimizing the loss on labeled and pseudo-labeled samples in I
with AutoAugment (Cubuk et al., 2019) as data augmentation:

1

n

n∑
i=1

L
(
yi, p̂f(t+1)(xi)

)
+

1

|I|
∑
z∈I

L
(
p̂f(t)(z), p̂f(t+1)(z)

)
4) t← t+ 1 and go back to step 1

Xie et al. (2020) call their self-training noisy due to the very strong data augmentation which avoids
overfitting via noise injection. The main difficulty in self-training in a closed world setting is the
propagation of labeling mistakes which leads to a degradation of prediction performance which is
taken care of by step 2). While Xie et al. (2020) chose a fixed threshold, we choose it according
to the false positive rate on an in-distribution validation set. However, in an open-world setting, an
equally severe problem is that a large fraction of the unlabeled samples is not task-relevant such
that including them leads to a distribution shift which happens for NSST (see Figure 2) and other
SSL methods (see Figure 1). However, more importantly, the classifier is highly confident on unre-
lated classes which is a problem for AI safety and this undesired behavior is even hard to notice as
predictive performance might appear to improve when evaluated only on the test set.

3.2 OUT-DISTRIBUTION AWARE SELF-TRAINING (ODST)

We first provide an overview over our algorithmic scheme and then explain the individual steps in
more detail. The base ODST model is initialized with an out-distribution aware base teacher model
f (0), trained by minimizing:

1

n

n∑
i=1

L
(
yi, p̂f(0)(xi)

)
+

1

|U|
∑
z∈U

L
( 1

K
1, p̂f(0)(z)

)
. (1)
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We then iterate the following steps starting from t = 0:

A) calibrate f (t) on the in-distribution validation set

B) pseudo-label all unlabeled samples in U with current teacher f (t)

C) for each class c: select the top-k unlabeled instances with highest confidence classified as
c that lie above the threshold. The selected samples for all classes are denoted as I

D) determine new pseudo-labels for the unlabeled instances. We use q(z) = p̂f(t)(z) for z ∈ I
(selected samples in step C)) and

v(z) =
1

2

( 1

K
+ p̂f(t)(z)

)
, for z ∈ U\I. (2)

E) train a new model f (t+1) by minimizing the loss on labeled and pseudo-labeled samples
with AutoAugment (Cubuk et al., 2019) as strong data augmentation:

1

n+ |I|

[ n∑
i=1

L
(
yi, p̂f(t+1)(xi)

)
+
∑
z∈I

L
(
q(z), p̂f(t+1)(z)

)]
+

1

|U \ I|
∑

z∈U\I

L
(
v(z), p̂f(t+1)(z)

)
(3)

F) t← t+ 1 and go to step A)

The Base classifier is essentially an Outlier Exposure (OE) model (Hendrycks et al., 2019) (see
also (Hein et al., 2019; Papadopoulos et al., 2019) for related losses) where the unlabeled set U is
our training out-distribution on which we enforce uniform confidence. OE is known to be one of
the best methods for out-of-distribution detection. As in our case, a crucial assumption is that the
unlabeled samples are partially task-related, it might appear odd to enforce uniform confidence on all
of U. However, we show in Section 3.3 that this asymptotically only leads to a down-weighting of
the confidence for task-related samples but preserves the Bayes optimal decision and, in particular,
enforces close-to-uniform confidence for all unrelated samples.

A) Calibration: while normal neural networks are known to be overconfident on in-(Guo et al.,
2017) and out-distribution (Nguyen et al., 2015; Hein et al., 2019), the models resulting from enforc-
ing low confidence on unlabeled points (such as OE) tend to be underconfident on the in-distribution.
As we use the predictions of the teacher f (t) as new pseudo-labels for the unlabeled data, we cali-
brate f (t) by minimizing the expected calibration error using temperature rescaling Guo et al. (2017).
Thus the teacher model assigns the correct uncertainty score to its predictions on in-distribution sam-
ples which improves pseudo-label quality and and stabilizes the training procedure.

C) Sample Selection: The most important problem in self-training is to integrate the right samples
into the pseudo-labeled set I. While our out-distribution aware teacher is better at discriminating
between the in- and out-distribution based on confidence, there are still many samples with highly
confident predictions due to the sheer size of the unlabeled dataset (≥ 106). Note that we select
at most the top-k samples (where k = 5N(t + 1)/K), but this might still be too much if not
sufficiently many task-related examples of a class exist in the unlabeled dataset. We thus need to
determine class-specific confidence thresholds to limit the selection. Class-specific selection has
been neglected in the literature but is particularly important in practice as the number of task-related
examples in the unlabeled dataset typically varies widely between the different classes.

Using the in-distribution validation set, we define the in-distribution threshold for class c as the
smallest predicted probability for class c such that the precision for all images which are above this
threshold is greater than or equal to α (binary classification problem: class c versus all other classes).
An in-distribution precision threshold is especially important if the classification task contains sim-
ilar classes, as learning from wrongly labeled in-distribution images (a dog that is classified as a cat
in CIFAR10) is likely to hurt predictive performance on the in-distribution task even more than the
inclusion of an unrelated out-distribution image.

If there exist less than k samples above the threshold for a particular class, we randomly repeat the
accepted samples above the threshold to maintain a class-balanced training scheme. Note that it is

4



Under review as a conference paper at ICLR 2022

much easier and also more interpretable to fix a precision value rather than the choice of a confidence
threshold (in particular if the model is not calibrated) as done in Xie et al. (2020).

D) Pseudo Labels: for the original labeled dataset we always use one-hot labels. For unlabeled
data points that have been selected in I, we determine pseudo-labels q according to the predicted
probability distribution over the classes by the calibrated teacher model. Due to the calibration, this
should reflect the “correct” uncertainty about these labels. For all remaining images in our unla-
beled dataset U\I, we use a weak form of knowledge distillation by defining pseudo-labels v as the
average of the predicted probability distribution of the teacher model and the uniform distribution,
given in (2). This has two reasons: i) a purely uniform distribution on U\I, which in the first it-
erations might still contain a lot of task-relevant images, leads to a bias as it does not distinguish
between task-relevant and irrelevant images, ii) only using soft-labels from the teacher model leads
to overconfident predictions as one can observe in the non-out-distribution aware NSST method.
Thus a trade-off between these opposing goals is their average which leads to heavy damping of the
confidence (note that the pseudo-labels have a maximal confidence of 1

2 + 1
K on U\I).

E) Training: For the final objective in (3), the selected pseudo-labeled samples in I and the original
samples in T are assigned the same weight. This is quite aggressive as for iteration t we add up to 5t
as much pseudo-labeled data as labeled training data. However, this also enables larger performance
gains given that the sample selection process is successful. Note that the losses on I ∪ T and on
U\I have equal weight as the damping of confidences on U\I is crucial for the sample selection
process. As pseudo-labels are computed on non-augmented images and we use heavy augmentation
during training, our scheme can be regarded as offline consistency learning, where the model is
encouraged to replicate the teacher’s output independent of the randomly selected augmentation.
This allows us to limit the number of passes through the entire unlabeled pool to the number of
self-training iterations, do model calibration and results in more stable targets. The entire scheme is
repeated multiple times until the validation accuracy starts to degrade or a fixed maximum number
of iterations is reached.

ODST+: In addition to ODST, we provide the variant ODST+ for scenarios where AI safety is crit-
ical. It differs from ODST only in step C) where we calculate the final threshold as maximum over
ODST’s in-distribution threshold and an additional out-distribution threshold. This class-specific
out-distribution threshold controls the number of task-irrelevant samples that are falsely added into
our pseudo-labeled sample pool I. This is done using an extra out-distribution validation set, i.e.
a set of natural images that does not contain any class relevant images (we discuss this choice in
Section 4). For each class c, we compute the α-quantile of the predicted probabilities for class c on
the out-distribution images which we define as the out-distribution threshold for class c.

3.3 BAYESIAN DECISION THEORY OF SELF-TRAINING

In this section, we analyze our iterations in the framework of Bayesian decision theory. We show
that the base classifier that enforces uniform confidence on the unlabeled points still leads to opti-
mal decisions on the in-distribution. Moreover, we show that the iterative scheme with soft-labels
ultimately reaches the optimal classifier which is Bayes optimal on the in-distribution task and max-
imally uncertain elsewhere. Proofs can be found in the Appendix A.

In this section we assume that the labeled examples (xi, yi)
n
i=1 are drawn i.i.d. from pin(x, y) (joint

distribution on Rd × {1, . . . ,K}) and the unlabeled data (zi)
m
i=1 are drawn i.i.d. from pall on Rd.

In the open-world setting we think of pall as the marginal distribution of a mixture of a very large
number of classes (much larger than K), including the in-distribution ones (see Appendix) in which
case it naturally holds for the marginal distribution pin(x) that pin(x) > 0 implies pall(x) > 0.

In expectation, the ODST base classifier (Eq. (1)) optimizes (we omit the index 0 in f (0)):

E(X,Y )∼pin

[
L
(
Y, f(X)

)]
+ EZ∼pall

[
L
( 1

K
1, f(Z)

)]
. (4)

Lemma 3.1 Let p̂(k|x) = efk(x)∑K
l=1 efl(x) then the Bayes optimal prediction for the loss (4) is given for

any x with pall(x) + pin(x) > 0 as

p̂(k|x) =
pin(k|x)pin(x) + 1

K pall(x)

pin(x) + pall(x)
, k = 1, . . . ,K.
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We have directly provided the optimal predictive probability distribution instead of expressing it
in terms of the classifier f . Note that p̂(k|x) is a monotonic transformation of pin(k|x) and thus
preserves for each point the ranking of the classes according to pin(k|x) and thus the optimal decision
does not change. However, the ordering of the confidence maxk pin(k|x) across different inputs x is
influenced significantly by the ratio of pin(x) to pall(x). Non-task relevant instances where pall(x) is
larger than pin(x) are significantly down-weighted and thus will not be selected, whereas if pin(x) is
much larger than pall(x) the confidence maxk p̂(k|x) is almost equal to maxk pin(k|x). Note that the
latter case is in particular true for task-relevant images (pin(x) large) as pall is a much more spread
out distribution and thus the density value pall(x) will be small. This justifies our OOD aware base
teacher and also our post-training calibration step A) as p̂ is under-confident on the in-distribution.

The mathematical treatment of our sample selection strategy is difficult, but it is instructive to check
the case where at each iteration t+ 1 we impose on all unlabeled points soft-labels, p̂t(k|x) defined
by the Bayes optimal teacher f (t) at iteration t. Then we get the total expected loss at iteration t+1:

E(X,Y )∼pin

[
L
(
Y, f (t+1)(X)

)]
+ EZ∼pall

[
L
(
p̂t(Z), f (t+1)(Z)

)]
. (5)

Lemma 3.2 The Bayes optimal prediction for (5) at iteration t for t ≥ 0 is given for any x with
pall(x) + pin(x) > 0 and k = 1, . . . ,K as

p̂t(k|x) = pin(k|x) +
( pall(x)

pin(x) + pall(x)

)t+1( 1

K
− pin(k|x)

)
.

In particular, for any x with pin(x) + pall(x) > 0 we get:

lim
t→∞

p̂t(k|x) =

{
pin(k|x) if pin(x) > 0
1
K if pin(x) = 0.

.

This is the perfect out-distribution aware classifier: Bayes optimal for the in-distribution and maxi-
mal uncertain on non-task-related regions (pin(x) = 0). This justifies our approach from a decision-
theoretic perspective. In the finite sample case, neural networks are overconfident on far away
regions (Hein et al., 2019) and thus we damp the pseudo-labels on the unlabeled part in step D).

4 EVALUATION

First, we evaluate ODST/ODST+ on CIFAR10 in the standard SSL setting with 4k labeled images
but now using open world unlabeled data with up to 10M unlabeled images and compare it to ex-
isting (open-world) SSL methods. Then in our main evaluation, we use the full training sets of
CIFAR10/100 together with the full 80 million unlabeled images from 80MTI and show that we can
improve performance in this challenging setting. Moreover, we identify that existing (open-world)
SSL methods show a strong distribution shift, which is problematic when using these methods for
safety-critical applications.

Training of ODST and NSST and (open world) SSL baselines: For the small scale experiments,
we use a WideResNet28x2 for all methods and for the full 80M experiments a standard ResNet50
He et al. (2016) and also the larger PyramidNet272 (Han et al., 2017) with ShakeDrop regularization
(Yamada et al., 2019). In each self-training iteration, due to computational restrictions, we use fine-
tuning to train the PyramidNets and train all other architectures from scratch. We perform three
iterations for the large-scale experiments and five iterations for CIFAR10-4k and always report the
iteration with the best in-distribution validation error.

In the sample selection step of iteration t, we select the top-k predictions on the full unlabeleld
dataset per class as potential candidates for the labeled set, where k = 5tN

K (N is the size of the
labeled set, K the number of classes). Among these points, we select the ones which are above the
in-distribution threshold (NSST and ODST) respectively in- and out-distribution threshold (NSST+
and ODST+). This difference in sample selection is the only difference to the plus version and
we note that NSST and ODST do not need access to any additional data compared to existing
approaches. NSST also serves as ablation study, as ODST only differs in two aspects: i) the OE
base model ii) the train loss (3) instead of (1) (See Appendix B.4 for a detailed discussion).
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No SSL SSL Open World SSL
plain OE MM FM NSST NSST+ MTCF DS3L ODST ODST+

4k L
1M TI

Acc. ↑ 86.62 84.91 81.50 89.03 88.70 87.75 91.86 78.40 93.89 93.41
FPR ↓ 78.48 31.17 84.16 66.71 82.20 80.60 62.17 85.51 10.51 16.71

4k L
10M TI

Acc. ↑ 86.62 86.57 79.92 85.43 88.15 87.88 86.76 - 92.14 92.21
FPR ↓ 78.48 27.13 82.28 82.03 75.23 77.48 73.43 - 19.33 13.78

4k L
1M LSUN

Acc. ↑ 86.62 86.30 81.26 89.53 88.30 87.82 90.39 - 94.31 94.31
FPR ↓ 78.48 43.98 85.27 75.50 77.47 75.73 54.08 - 23.26 25.61

Table 1: CIFAR10-4k: Results for 4k labeled images and an unlabeled dataset containing 41k
CIFAR10 training and 1 million respectively 10 million unlabeled images from 80MTI or 1M
LSUN images. MixMatch (MM) and DS3L perform worse than the “plain” baseline (shown in
red). ODST+ and ODST outperform all methods in terms of accuracy. For out-of-distribution de-
tection, we report the average false positive rate (FPR) at 95% TPR. ODST+ has a FPR more than
30% better than the closest competitors FixMatch (FM) and MTCF.

As standard SSL baselines, we use the state-of-the-art MixMatch (Berthelot et al., 2019) and Fix-
Match (Sohn et al., 2020). For open world SSL we use the recent DS3L (Guo et al., 2020) and
MTCF (Yu et al., 2020). We only compare to existing approaches in the small scale setting as DS3L
and MTCF do not scale to larger unlabeled datasets due to excessive memory consumption (several
terabytes) and MTCF’s domain training requiring 5 days for 10M datapoints. Self-training methods
are superior in this regard as the number of full passes through the unlabeled data is limited by the
number of training iterations and labeling can be parallelized arbitrarily to scale to large datasets.

Unlabeled dataset: We use 80 million tiny images Torralba et al. (2008) (80MTI) as unlabeled
dataset, which has been created by querying 53,464 different nouns from the wordnet hierarchy.
Note that CIFAR10 and CIFAR100 are subsets of 80MTI (Krizhevsky & Hinton, 2009), and we
remove (near)-duplicates from 80MTI, see Appendix B.5 for details. For the small scale experiments
we use randomly selected subsets of 1M and 10M images and additionally a 1M LSUN subset.

Evaluation metrics: In an open-world setting, it is important to not suffer from a distribution
shift. Thus, in addition to test accuracy, we evaluate the out-of-distribution (OOD) detection per-
formance by reporting average false positive rate over several OOD datasets: test set of CIFAR100
or CIFAR10, SVHN, LSUN-CR(Yu et al., 2015) with Flowers(Nilsback & Zisserman, 2008) plus
Food-101(Bossard et al., 2014) for CIFAR10 and FGVC-Aircraft(Maji et al., 2013) for CIFAR100.

4.1 CIFAR10-4K

In the SSL literature(Berthelot et al., 2019; Yu et al., 2020), it is common to use 4000 labeled
CIFAR10 samples as train data and 5000 as validation set. The remaining 41k training images
are used as unlabeled data and we mix them with different out-of-distribution datasets to create a
challenging open-world scenario: i) 1M respectively ii) 10M unlabeled images from 80MTI or iii)
1M LSUN images. Note that 80MTI contains further task relevant samples for CIFAR10.

The class-specific in-distribution threshold is set to α = 0.98 (meaning that we accept maximally
2% false positives per class on the in-distribution validation set) and for ODST+ and NSST+ we
use the same value as out-distribution threshold. For the creation of an out-distribution validation
set for ODST+ and NSST+, there exist two strategies. The first one is to use an existing dataset
with a sufficient variety and remove any potentially task-related samples. For this, we use a subset
of 2k CIFAR100 images as validation set for the 80MTI experiments and remove the classes ”bus”
and ”pickup-truck” as they can be confused with ”car” and ”truck” from CIFAR10. The second
approach is to manually label a sufficient number of unlabeled samples as out-of-distribution. We
simulate this by using a subset of 2k unseen LSUN images in the 1M LSUN experiment.

The results in Table 1 show that our open world setting is challenging due to the low number of
task-relevant samples in the unlabeled set (lower bounded by 4.1% respectively 0.41%). MixMatch
but also the open world adapted method DS3L perform worse (shown in red) than plain training on
the 4k labeled samples. Our ODST and ODST+ outperform all other (open world) SSL methods in
terms of test accuracy and significantly improve over the OE model that was used as base teacher
(Hendrycks et al., 2019). While for 1M unlabeled data points from 80MTI or LSUN, MTCF and
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ResNet50 PyramidNet
plain OE NSST NSST+ ODST ODST+ plain OE NSST NSST+ ODST+

Acc. ↑ 96.11 96.81 96.86 96.93 97.98 98.07 98.49 98.28 98.24 98.13 98.57
FPR ↓ 45.54 4.40 49.72 51.76 4.30 3.84 22.76 2.56 33.51 34.71 2.40

Table 2: CIFAR10-50k: We show test accuracy and FPR@95TPR as out-of-distribution detection
performance. ODST+ has the best improvement (1.26%) and final test error (1.93%) for Resnet50
and is the only method which improves for the Pyramid272 architecture by 0.29% with 1.43% test
error whereas NSST and NSST+ degrade in test performance.

FixMatch perform well, they show severe performance degradation for 10M data points. We believe
that the non-adaptive confidence threshold of FixMatch respectively the Otsu threshold of MTCF are
not sufficient for the accurate selection of task-related images. Even though the prediction perfor-
mance is reasonable for 1M samples, the classifiers show a strong distribution shift as illustrated in
Fig. 1 and Fig. 6, where we visualize unlabeled samples which are considered to be task-relevant by
the different methods. As the failure of MTCF and FixMatch is not noticeable from test accuracy, we
strongly suggest that open world SSL papers should visualize high confidence samples and evaluate
OOD detection performance. In Table 1 we therefore report the average FPR over different OOD
datasets. ODST and ODST+ have a 30% better FPR than any other SSL method. While ODST+
and ODST show similar empirical performance we demonstrate potential advantages of ODST+ re-
garding AI safety in Appendix B.6. In Appendix C.1 we provide details over the full run of ODST+
and ODST and report corruption robustness on CIFAR10-C.

1st Iteration (25k) 2nd Iteration (50k) 3rd Iteration (75k)

N
SS

T

bird - 1.00 horse - 1.00 deer - 1.00 car - 1.00 cat - 1.00

horse - 1.00 dog - 1.00 plane - 1.00 bird - 1.00 ship - 1.00

truck - 1.00 cat - 1.00 horse - 1.00 bird - 1.00 car - 1.00

car - 1.00 horse - 1.00 car - 1.00 car - 1.00 plane - 1.00

cat - 0.99 deer - 0.98 car - 0.98 dog - 0.99 truck - 0.99

truck - 0.99 cat - 0.99 truck - 0.99 plane - 0.99 horse - 0.98

O
D

ST

bird - 1.00 car - 1.00 dog - 1.00 plane - 1.00 car - 1.00

frog - 1.00 cat - 1.00 frog - 1.00 car - 1.00 bird - 1.00

deer - 1.00 car - 1.00 bird - 1.00 deer - 1.00 bird - 1.00

frog - 1.00 horse - 1.00 plane - 1.00 cat - 1.00 car - 1.00

cat - 1.00 car - 1.00 dog - 1.00 car - 1.00 bird - 1.00

ship - 1.00 dog - 1.00 horse - 1.00 frog - 1.00 ship - 1.00

Figure 2: CIFAR10-50k: Plot of randomly chosen, exclusively selected samples from 80MTI for
NSST (top) and ODST (bottom) over all three iterations. False positives are marked red.

4.2 CIFAR10-50k

Up to our knowledge, no SSL method could yet show performance improvements in an open world
setting when using the full training set of CIFAR10 as labeled set. We show that this indeed possible
when using 80MTI as unlabeled dataset. While DS3L and MTCF do not scale to this setting, both
noisy student variants outperform any consistency-based (open world) method in the 10M setting
and act as a strong baseline for our ODST and ODST+ models. For the in-distribution validation set,
we use the recent CIFAR10.1 dataset (Recht et al., 2018) designed to assess the generalization of
classifiers trained on CIFAR10. As out-distribution validation set for ODST+, we use 2k CIFAR100
samples without conflicting classes (See Appendix B.6 for details). As threshold parameter α we
use 99.8% which is conservative but justified by the high accuracy of the base CIFAR10 classifiers.
In Table 2, we report the results for both architectures.

ResNet50: ODST+ improves test accuracy by 1.26% from 96.81% to 98.07% and outperforms
NSST and NSST+ by at least 1.14%. We are not aware that such a high test accuracy has been re-
ported before for a ResNet50 on CIFAR101. Even though NSST and NSST+ improve slightly upon
the baseline, Figure 2 highlights that even with the OD threshold, NSST+ suffers from a distribution

1Concerning other results with the same augmentation, Cubuk et al. (2019) require a much larger
AmoebaNet-B to achieve an error rate of 1.80% and only achieve 2.6% with a WideResNet-28x10, which
typically outperforms a ResNet50 Zagoruyko & Komodakis (2016)
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ResNet50 PyramidNet
plain OE NSST NSST+ ODST ODST+ plain OE NSST NSST+ ODST+

Acc. ↑ 80.69 79.98 82.44 82.03 83.54 84.09 88.07 87.60 87.71 87.53 88.66
FPR ↓ 72.05 43.88 73.47 82.54 35.64 38.72 60.20 27.97 74.90 73.91 29.22

Table 3: CIFAR100-45k: ODST (+) have the best accuracy for both model architectures. SSL-
results in red are worse than using labeled data only.

palm tree - 0.99dinosaur - 0.99 fox - 0.99 woman - 1.00 tiger - 0.96 plate - 0.99

crab - 0.99 shrew - 0.98 sunflower - 0.98 baby - 0.99 wolf - 0.98 bee - 1.00

bridge - 1.00 tulip - 1.00 beetle - 1.00willow_tree - 1.00 raccoon - 1.00 lizard - 1.00

raccoon - 1.00 castle - 1.00 kangaroo - 0.99 bee - 1.00 keyboard - 1.00 boy - 0.99

NSST ODST

Figure 3: CIFAR100-45k: Random selection of 14 samples in the third iteration of self-training for
the ResNet50 architecture. False positives are marked in red.

shift and identifies completely unrelated samples as task-relevant and thus self-training degrades
very early e.g. almost all images containing humans are classified as ”horse” or ”dog”. ODST+
slightly outperforms ODST, most likely due to a better sample selection. But even without the addi-
tional OOD-validation set ODST improves the OOD performance from 4.40% FPR to 4.30%, which
is further improved by ODST+ to 3.89%. We highlight that all other methods show worse FPR than
the base model, which is likely caused by the distribution shift which is concerning regarding AI
safety. This again highlights that just relying on test accuracy can be misleading.

PyramidNet272: As the test error of the baseline OE is already below 2%, further improvements are
much harder to realize and can only be obtained by succeeding in the challenging task of selecting
high-quality, task-relevant samples from the large pool of unlabeled samples. ODST+ achieves this
and is able to improves test accuracy to 98.57% and FPR to 2.40%. In contrast, due to their poor
sample selection, NSST and NSST+ start to degrade in performance after the first iteration and are
thus not able to profit from unlabeled data. We had to skip ODST due to computational constraints.

4.3 CIFAR100-45k

For CIFAR100 we randomly select 50 out of the 500 training samples per class as in-distribution val-
idation set. We use 2k CIFAR10 samples without classes ”car” and ”truck”, as they are ambiguous
wrt to “pickup-truck”, as out-distribution set validation for the Plus methods. In- and out-distribution
thresholds are set to 98%, due to the lower base accuracy on CIFAR100. The results are in Table 3,
where we see that on the ResNet ODST+ improves the test accuracy by 4.11% to 84.09% compared
to the OE model and to 83.54% for ODST. While NSST and NSST+ improve by 1.75% to 82.44%
respectively 1.34 to 82.03%, we again notice a distribution shift which can be observed from a ran-
dom selection of samples that pass the threshold and are thus considered task-relevant (Figure 3).
This is further verified by the very high FPR of 73.47% respectively 74.19% for OOD detection
for the ResNet architecture, whereas both ODST variants improve OOD-performance over the OE
baseline. For the PyramidNet, both NSST variants are worse than the plain baseline in accuracy
and FPR whereas ODST+ clearly improves test accuracy with a small degradation in FPR.

5 Conclusion

We show that ODST can leverage large unlabeled open-world datasets with only a tiny fraction of
task-related samples and consistently improves over the baseline and other SSL methods. The re-
sulting classifiers are more accurate, robust and show better out-distribution detection performance.
Moreover, we observe that all competing methods suffer from a distribution shift, which is problem-
atic regarding AI safety, whereas ODST and in particular ODST+ shows almost no such degradation.
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Reproducibility Statement

We include our entire codebase in the supplementary material of our submission which allows to
easily reproduce our results. This includes indices to any train/validation splits and indices of near-
duplicates in 80MTI such that it is possible to run the experiments on the same data that was used in
the paper. Due to the stochastic nature of neural network training, results can vary slightly.

Ethics Statement

There are no conflicts of interest in this work. A potential danger of semi-supervised learning
methods, in particular self-training, is that they suffer from a distribution shift. This danger is even
more severe in an open-world scenario. As we show in this paper, heavy distribution shifts happen
for other SSL methods but our ODST is very robust to it. Nevertheless, we have introduced ODST+
where an extra out-distribution validation set is used to prevent distribution shifts. While in the
considered classification problems ODST was already very robust, this might seem unnecessary. But
in our opinion this is a too much benchmark-focused point of view. In order to build trustworthy ML
systems using open-world SSL, we thus encourage subsequent work to i) check out-of-distribution
detection performance, ii) check the selected unlabeled samples, and iii) consider an out-distribution
validation set for the construction of the models.
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First, we give an overview over the content of the appendix:

• in Section A we give the missing proofs from the paper.
• Section B contains a more detailed description and hyperparameters for all methods and

datasets. More specifically, we discuss our duplicate removal for 80MTI and the choice of
the out-distribution validation set

• In Section C, we give a more detailed breakthrough of the main results from the paper.
• Section D contains ablations studies in the large scale setting with the full 80 tiny images

setting.

A Proofs for Bayesian Decision Theory of Self-Training

We provide here the missing proofs of Section 3.3 where we have analyzed our iterations of self-
training in the framework of Bayesian decision theory.

We repeat the setting and assumptions so that this section is self-contained.

Assumptions: Let x ∈ Rd be the input and y ∈ {1, . . . ,K} be the class label. We assume that our
labeled examples (xi, yi)

n
i=1 are drawn i.i.d. from pin(x, y) (joint distribution over inputs and labels

on Rd × {1, . . . ,K}) which is our in-distribution. The unlabeled data (zi)
m
i=1 is drawn i.i.d. from

pall (distribution on Rd) where we think of pall in an open world setting as the marginal distribution
of a mixture of a very large number of classes (much larger than K), including the in-distribution
ones. We also assume that pin(x) > 0 implies pall(x) > 0.

An open world setting: We now present a particular way how such a setting could arise even
though this is by no means the only setting under which the above assumptions are realized. How-
ever, the following is a good model for 80MTI as the datasets CIFAR10 and CIFAR100 have been
generated by subsampling from 80MTI and thus the classes of CIFAR10 respectively CIFAR100
are definitely a subset of all classes present in 80MTI. We assume that every class has a spe-
cific distribution p(x|y) and for convenience we assume that they are ordered such that the classes
y ∈ {1, . . . ,K} are our task-relevant classes and the ones y ∈ {K + 1, . . . ,M} are other classes
not part of the task. Then if we assume that there is no distribution shift, that is p(x|y) is the same
for labeled and unlabeled data, then for y ∈ {1, . . . ,K}

pin(x, y) = p(x|y)pin(y),

where pin(y) > 0 is the class probability in the in-distribution task and

K∑
k=1

pin(k) = 1.

Note that

pin(x) =

K∑
k=1

pin(x, k) =

K∑
k=1

p(x|k)pin(k).

The out-distribution is a mixture distribution of all possible classes

pall(x) =

M∑
k=1

p(x|k)pall(k)

where we assume pall(y) > 0 for all y ∈ {1, . . . ,M} (all classes are present in the unlabeled data)
and it has to hold

∑M
k=1 pall(k) = 1. Generally, it holds pin(y) 6= pall(y) for y ∈ {1, . . . ,K}. With

this assumption we immediately see that

pin(x) > 0 =⇒ pall(x) > 0,

as if pin(x) > 0 there exists at least one class s ∈ {1, . . . ,K} such that p(x|s) > 0 which implies
that

pall(x) ≥ p(x|s)pall(s) > 0,
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as we assume that pall(y) > 0 for all y ∈ {1, . . . ,M}. In a closed world setting there would be
no additional classes in the distribution of the unlabeled data pall, that is M = K, whereas in our
open-world setting we have M � K. However, note that this model is more general than assuming
that the unlabeled data is sampled from the marginal distribution pin(x) =

∑K
k=1 p(x|k)pin(k) of

our joint distribution on inputs and labels ,even in a closed-world setting, as our model would allow
that the class probabilities between labeled and unlabeled data could differ which is quite realistic
in a practical setting.

The ODST+ base classifier, see (1), optimizes

1

N

N∑
i=1

L
(
yi, p̂f(0)(xi)

)
+

1

M

M∑
j=1

L
( 1

K
1, p̂f(0)(zj)

)
.

which in expectation (for simplicity we omit the index 0 in f (0)) yields:

E(X,Y )∼pin

[
L
(
Y, p̂f (X)

)]
+ EZ∼pall

[
L
( 1

K
1, p̂f (Z)

)]
. (6)

Note that in the following we overload pin so if we write (X,Y ) ∼ pin then we mean the joint
distribution over inputs times labels on Rd×{1, . . . ,K} and if we writeX ∼ pin then we mean that
X is distributed according to the marginal distribution.

The idea of Bayesian decision theory is to characterize the optimal classifier given that one has full
knowledge about the problem and one could optimize over all measurable functions. Note that feed-
forward neural networks can approximate any function to arbitrary precision (K. Hornik & White,
1989) so that this optimal classifier is in principle achievable. The Bayes optimal prediction f over
all possible measurable functions is characterized in the following lemma in Section 3.3.

Lemma A.1 Let (X,Y ) ∼ pin and Z ∼ pall, L(y, f(x)) is the cross-entropy loss and let p̂(k|x) =
efk(x)∑K
l=1 efl(x) then the Bayes optimal prediction f for the objective in (4) is given for any x with

pall(x) + pin(x) > 0 as

p̂f (k|x) =
pin(k|x)pin(x) + 1

K pall(x)

pin(x) + pall(x)
, k = 1, . . . ,K.

Proof: We can write the expected loss in (6) with the predictive distribution p̂f (k|x) = efk(x)∑K
l=1 efl(x)

and the cross-entropy loss, L(p, p̂) = −
∑

k pk log(p̂k), as

E(X,Y )∼pin

[
L
(
Y, p̂f (X)

)]
+ EZ∼pall

[
L
( 1

K
1, p̂f (Z)

)]
=EX∼pin

[
EY

[
L
(
Y, p̂f (X)

)∣∣X]]+ EZ∼pall

[
L
( 1

K
1, p̂f (Z)

)]
=

∫
Rd

pin(x)

K∑
k=1

pin(k|x)L(ek, p̂f (x))dx+

∫
Rd

pall(z)

K∑
k=1

1

K
L(ek, p̂f (z))dz

=

∫
Rd

L
( K∑

k=1

(
pin(x)pin(k|x) +

1

K
pall(x)

)
ek, p̂f (x)

)
dx

=

∫
Rd

K∑
k=1

(
pin(x)pin(k|x) +

1

K
pall(x)

) (
log(

K∑
l=1

efl(x))− fk(x)
)
dx

where we have used that the cross-entropy loss is linear in the first argument. We optimize pointwise,
that is for every f(x), the above objective. As the cross-entropy loss is convex in f(x) in the second
argument (note that the log-sum-exp function is convex, see Boyd & Vandenberghe (2004)) we thus
get the pointwise objective, φ : Rd → R, for c = f(x) ∈ Rd if we we define

zk = pin(x)pin(k|x) +
1

K
pall(x).
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as

φ(c) =

K∑
k=1

zk

(
log
( K∑

l=1

ecl
)
− ck

)
.

The optimality condition is then given by

∂φ

∂cr
(c) =

K∑
k=1

zk
ecr∑K
l=1 e

cl
− zr = 0.

which yields
ecr∑K
l=1 e

cl
=

zr∑K
l=1 zl

.

and thus we get
efr(x)∑K
l=1 e

fl(x)
=

pin(x)pin(r|x) + 1
K pall(x)

pin(x) + pall(x)
,

where we have used that
K∑
l=1

zl =

K∑
l=1

(
pin(x)pin(l|x) +

1

K
pall(x)

)
= pin(x) + pall(x).

Using that

p̂(k|x) =
efk(x)∑K
l=1 e

fl(x)
,

we get the final result. �

The second result yields the Bayes optimal prediction for an iterated training scheme where the
Bayes optimal predictions p̂t from the previous Lemma A.1 of the Bayes optimal teacher f (t) at
iteration t become the soft-labels for the student model f (t+1).

Then we get the total expected loss for the student model f (t+1) at iteration t+ 1:

E(X,Y )∼pin

[
L
(
Y, f (t+1)(X)

)]
+ EZ∼pall

[
L
(
p̂t(Z), f (t+1)(Z)

)]
.

Lemma A.2 The Bayes optimal prediction for (5) at iteration t for t ≥ 0 is given for any x with
pall(x) + pin(x) > 0 and k = 1, . . . ,K as

p̂t(k|x) = pin(k|x) +
( pall(x)

pin(x) + pall(x)

)t+1( 1

K
− pin(k|x)

)
Proof: We prove this by induction. First we note that for t = 0 (base model) we have shown the
predictive distribution p̂0(k|x) in Lemma A.1 to be

p̂0(k|x) =
efk(x)∑K
l=1 e

fl(x)
=

pin(x)pin(k|x) + 1
K pall(x)

pin(x) + pall(x)
.

Noting that

pin(x)pin(k|x) + 1
K pall(x)

pin(x) + pall(x)
= pin(k|x) +

( pall(x)

pin(x) + pall(x)

)1( 1

K
− pin(k|x)

)
.

we observe that this agrees with the expression in the lemma to prove. Thus the induction start for
t = 0 is verified and we go for the induction step. Repeating the derivation of Lemma A.1 we get

p̂t+1(k|x) =
pin(x)pin(k|x) + pall(x)p̂t(k|x)

pin(x) + pall(x)
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From plugging in the induction hypothesis we get
pin(x)pin(k|x) + pall(x)p̂t(k|x)

pin(x) + pall(x)

=
pin(x)pin(k|x)

pin(x) + pall(x)
+

pall(x)

pin(x) + pall(x)

[
pin(k|x) +

( pall(x)

pin(x) + pall(x)

)t+1( 1

K
− pin(k|x)

) ]
=

pin(x)pin(k|x) + pall(x)pin(k|x)

pin(x) + pall(x)
+
( pall(x)

pin(x) + pall(x)

)t+2( 1

K
− pin(k|x)

)
=pin(k|x) +

( pall(x)

pin(x) + pall(x)

)t+2( 1

K
− pin(k|x)

)
which finishes the proof. �

In particular, for any x with pin(x) + pall(x) > 0 we get :

lim
t→∞

p̂t(k|x) =

{
pin(k|x) if pin(x) > 0
1
K if pin(x) = 0.

Note that this is the perfect out-distribution aware classifier: Bayes optimal for the in-distribution
and maximal uncertainty on all non-task-related regions (pin(x) = 0).

B Implementation and Dataset details

As network architecture, we use a WideResNet28x2 for CIFAR10-4k for all methods. The large
scale experiments on the entire CIFAR10/CIFAR100 training set with 80MTI as unlabeled data use
a ResNet50 respectively a PyramidNet272.

In this section, we present the hyperparameters used to train our ODST+ and the noisy student
selftraining models. Note that we use the same set of hyperparameters for ODST+ and the two
baselines NSST and NSST+ for all experiments.

B.1 WideResNet28x2

For the base model, the only labeled data are the 4k train images. As this yields short epochs,
we train the initial model for 5000 epochs with a piecewise schedule and the learning rate decays
by a factor 10 at epochs 2000, 3000 and 4000. The initial learning rate is set to 0.1. Even with
strong AutoAugment (Cubuk et al., 2019) augmentation (which includes Cutout (DeVries & Taylor,
2017)), due to the small dataset size, the model tends to overfit in the later stages of training. We
thus use early stopping on the validation set. In practice, the model with best validation accuracy
is often achieved right after the first LR drop at epoch 2000. As we add up to fives times as much
unlabeled samples to the “labeled” pool the epochs get significantly longer and thus we reduce to a
limit of 1000 of epochs with a proportional rescaling of the learning rate schedule.

For NSST and NSST+ we use a batchsize of 128 and for both ODST variants, we use a combined
batch size of 256 with 128 in-distribution samples, this includes the labeled training samples as
well as the unlabeleld samples selected by the self-training method to be task-relevant, and 128
samples for the second part of the loss corresponding to the non-selected unlabeled samples (which
are sampled randomly from this set). We use standard SGD with Nesterov momentum of 0.9 and
weight decay set to 0.0005. All CIFAR10-4k experiments use 5 iterations of self training and with 2k
to 10k additional samples (increasing by 2k per iteration, which corresponds to 5 times the number
of train samples - which is the ratio we fix for all experiments).

B.2 ResNet50

Our ResNet50 models are always trained for 250 epochs with piecewise learning rate schedule with
a starting learning rate of 0.1 and decay it by a factor of 10 at epochs 100, 150 and 200. The choice of
the data augmentation, batchsize, the optimizer and weight decay is the same as for the WideResNet.

We evaluate validation set error throughout the last 20% of the epoch and chose the model with the
best validation set performance. For the large scale experiments, we do three iterations and add up
5/10/15 times the number of labeled training samples in the first/second/third iteration.
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B.3 Shakedrop PyramidNet272

For the PyramidNet, the base models are trained for 1000 epochs with a cosine schedule and initial
learning rate of 0.05. The batch size is set to 64 for NSST and NSST+ and a total batch size of
128 for ODST+ (64 for in-distribution and 64 for the unlabeled pool). We use Nesterov SGD with a
weight decay of 0.0001. For the base models we use AutoAugment as data augmentation.

As training large models for 1000 epochs and with up to 16 times the amount of labeled data is ex-
pensive, we use fine-tuning to train the later student models for 55 epochs. We thus always initialize
the new student with the previous teacher model’s weight. Note that although the student model is
initialized with the teacher model that was used to label the unlabeled data, the training loss for the
pseudo-labeled data is not zero due to Shakedrop Yamada et al. (2019) and data augmentation. Due
to large amounts of noise from both heavy data augmentation and Shakedrop, we use a mixed aug-
mentation strategy for fine-tuning. In detail we train each student for N epochs with AutoAugment
and a cosine schedule with initial learning rate of 0.05 that decays to 0 after N epochs. We then do
a warm restart and train for another 55−N epochs using a cosine schedule starting at learning rate
0.01 and only use random cropping and flipping as data augmentation. As data augmentation be-
comes less useful with increasing amounts of data, we set N to 50 for the first iteration and decrease
it to 40 and 30 for the second and third iteration (student). Batch size and weight decay remain at
64/128 and 0.0001 for fine-tuning. Due to computational reasons we only train the ODST+ model
in this large scale scenario.

B.4 Noisy Student Self Training

To make NSST and NSST+ more comparable to ODST(+), we adjusted few details about the orig-
inal noisy-student self-training scheme (Xie et al., 2020) and adapted it to our CIFAR setting, as it
was orignally proposed in a larger ImageNet setting with JFT-300M as unlabeled distribution. First,
we calibrate all models using temperature scaling (Guo et al., 2017) by minimizing the expected
calibration error, whereas Xie et al. (2020) use the non-calibrated classifier outputs. Standard mod-
els are typically overconfident and the calibration will make them less overconfident, which should
result in better SSL performance as the calibrated pseudo-labels are used in the next iteration.

Next, we calculate the in-distribution threshold (for NSST ) and the in- and out-distribution thresh-
olds (for NSST+) on the validation set, whereas Xie et al. (2020) use a fixed threshold of 0.3 for
ImageNet. As can be seen by the FixMatch results in Section C, a fixed threshold is generally not
sufficient for filtering out task-related samples and it is not obvious how one would adapt the Im-
ageNet threshold to CIFAR10. Our new class-specific thresholding makes the NSST and NSST+
baselines more comparable to ODST+ and helps the two baseline methods to select fewer non-
task-related samples. To make the training more comparable to the other SSL methods using a
WideResNet28x2, we do not use any form of stochastic depth as in Xie et al. (2020), however our
strong data augmentation policy still induces a high amount of noise into the training scheme. On
top, the PyramidNet272 with ShakeDrop regularization is even noisier than any architecture used in
Xie et al. (2020), however NSST and NSST+ are still underperforming in comparison to ODST+,
implying that noise alone is not sufficient to make a self-training scheme robust to the open world
setting. In summary, NSST and ODST only differ in two aspects, namely the base model, as ODST
uses an OE model in comparison to the plain teacher of NSST and in the training loss, as ODST
includes the second loss term from equation (3). All other details, including hyperparameters, cali-
bration and threshold selection are chosen to be identical. Thus all performance improvements can
be directly related to the base model and the loss function.

B.5 Duplicate removal

In this section, we explain our approach to duplicate removal of CIFAR test images in the 80MTI
dataset. As both CIFAR10 and CIFAR100 are subsets of 80 million tiny images, it is important to re-
move exact- and near-duplicates of test images from the unlabeled distribution to prevent them from
leaking into our train set. However, after duplicate removal, the unlabeled distribution should still
contain task-relevant images to use for semi-supervised learning. First, we noticed that the duplicate
removal from Hendrycks et al. (2019) did not remove all duplicates from 80MTI, which they use as
out-distribution to enforce uniform confidence (Figure 5a). While this should not improve their test
accuracy, it might influence out-distribution detection when for example calculating the false posi-
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Figure 4: Logarithmic histogram of nearest neighbour distances between CIFAR test set and 80MTI
for image pairs with an l2 distance below 2000/255.

tive rate for the OOD datasets where we use the CIFAR10 and CIFAR100 test sets. Carmon et al.
(2019) follow Recht et al. (2018) and remove all 80MTI images with an l2-distance smaller than
2000/255 to the nearest neighbour in the CIFAR10 test set. While this is likely to remove all dupli-
cates, the approach seems overly strict as after this process, only 65.807.640 out of the 79.302.017
images remain. Thus with their definition of near-duplicate, 80MTI contains nearly 14 million du-
plicates of the 10.000 test images. In Figure 5b, we show that almost all excluded images are no true
duplicates. While we acknowledge that it is important to optimise recall instead of precision when
removing duplicates, their procedure is too aggressive and leads to an exclusion of a large set of im-
ages which have low variation or close to monochrome images. In Figure 4 we show a histogram of
the l2-nearest neighbor distances between the CIFAR test sets and 80MTI. One can see that the vast
majority of images have a nearest neighbor distance above an l2-distance of 3.0. A visual inspection
in Figure 5c also confirms that most images below that threshold are duplicates, thus we first remove
all images from 80MTI with an l2- distance less than 3.0 to one of the CIFAR test images. While
this removes all exact duplicates, there can exist near-duplicates with larger l2-distance. We thus
collect all 80MTI samples with a l2-nearest neighbour to the CIFAR test set smaller than 2000/255
as potential candidates for removal. For each candidate x and nearest neigbhour z in the CIFAR test
sets, we then calculate the perceptual similarity metric LPIPS (Zhang et al., 2018) and SSIM (Wang
et al., 2004) and remove the image if LPIPS(x, z) < 0.025 and 1 − SSIM(x, z) < 0.4. As both
metrics are closer to the visual system, we found them to be more reliable at finding near duplicates
for images with larger l2 distances, see Figure 5d, but they are much too expensive to use them
directly for nearest neighbor search. We highlight that we do not only find exact duplicates but also
degraded versions that for example contain blur, slight translations, color changes and added text or
logos. Note that we still remove some non-duplicates, showing that our thresholds are still chosen
rather conservatively. Overall, we remove 24k CIFAR10 test set duplicates and 60k CIR100 test set
duplicates. Additionally, we also remove all samples selected by Hendrycks et al. (2019), which in
particular includes exact train set duplicates. When training CIFAR10 models, we also remove all
CIFAR10.1 duplicates with the same approach.

B.6 ODST+ and the OOD-validation set

In this section, we briefly explain how the OOD-validation set for the plus variants NSST+ and
ODST+ can be chosen. This method is especially valuable if the unlabeled pool contains lots of
near out-of-distribution samples, for example snakes and lizards can easily be confused with frogs
from CIFAR10, especially in a 32x32 resolution. We note that it is impossible to assess the confi-
dence values of a model on near OOD-samples from in-distribution samples, thus one can not easily
compute a threshold that allows for a highly precise sample selection without such an OOD-dataset.

As discussed in the main paper, there are two possible ways to generate the OOD-validation set. The
first one is to chose a known dataset that covers a large number of classes, for example CIFAR100
or ILSVRC2012 and manually remove the classes that overlap with the train dataset. We use this
approach for all experiments with 80MTI as out-distribution. As it is unrealistic to have an OOD-
validation set multiple times as big as the train set, we use only 2k CIFAR100 samples in the 4k
setting and only use all 50k CIFAR100 images for the PyramidNet in the large scale setting to
achieve the best performance possible. In the additional experiments in Appdendix D we further
demonstrate that the size of the OOD-validation set does not have a strong influence on the final
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(a) 80MTI images after Hendrycks et al. (2019)’s duplicate removal with their nearest CIFAR10 (upper) and
CIFAR100 (bottom) test set neighbours sorted by l2-distance. Note that there are still CIFAR10 test set near-
duplicates with distance larger than 0 and exact CIFAR100 test set duplicates.
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(b) Random selection of 80MTI samples with their respective CIFAR l2-nearest neighbour for sample pairs
with distance smaller than 2000/255 ≈ 7.84. This threshold was used by Carmon et al. (2019) for duplicate
removal but is too aggressive at it removes too many unrelated images.

80
M

TI

l2: 0.05 l2: 1.55 l2: 0.04 l2: 0.00 l2: 2.85 l2: 0.00 l2: 0.00 l2: 0.06 l2: 1.42 l2: 0.03 l2: 0.00 l2: 0.00 l2: 0.00 l2: 0.00 l2: 0.00 l2: 0.04 l2: 0.05 l2: 2.64 l2: 0.07 l2: 0.03

CI
FA

R1
0

80
M

TI

l2: 2.86 l2: 2.74 l2: 2.15 l2: 0.10 l2: 0.00 l2: 0.03 l2: 0.08 l2: 2.86 l2: 0.00 l2: 0.07 l2: 2.65 l2: 2.82 l2: 2.70 l2: 0.04 l2: 0.09 l2: 2.87 l2: 2.72 l2: 0.00 l2: 1.60 l2: 0.98

CI
FA

R1
00

(c) 80MTI samples with their CIFAR l2-nearest neighbour for sample pairs with l2-distance ≤ 3.0 (random
selection). Most pairs are near duplicates and are thus removed in our duplicate removal. Even for this small l2
radius, we find false positives for monochrome images.
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(d) Random selection of samples with l2-distance in [3, 2000/255] that are marked as duplicates wrt to both the
LPIPS and SSIM threshold. We are able to find mostly duplicates even in regimes where the l2 distance starts
to become meaningless. In total our duplicate removal has a low number of false positives while we could not
find any false negative (CIFAR test set image in 80MTI after duplicate removal).

Figure 5: Visualization of various exclusion thresholds for CIFAR10 (above line) and CIFAR100
(below line). The top image shows the sample from 80MTI and the lower one the nearest neighbour
in the test set.

quality. For CIFAR100, we similarly use 2k CIFAR10 samples without classes ”car” and ”truck”
and all 50k samples for the PyramidNet experiments.
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The second approach for generating such an OOD-validation set is to manually label out-of-
distribution samples from the unlabeled pool. This can be done efficiently with a simple interface
that sequentially presents samples from the unlabeled pool to the user to let them mark them as
task-relevant or out-of-distribution. We simulate this by using 2k unseen LSUN images as OOD-
validation set in the 1M LSUN experiments.

C Extended results

C.1 CIFAR10-4k

In this section, we will give some more detailed results on the small scale experiments with only
4000 training images. For MTCF and DS3L we use the official implementations and for FixMatch
we use a Pytorch reimplementation2.

Table 4 contains a breakdown of the 5 iterations making up an entire run for both NSST and ODST.
Additionally to the results in the main paper, we also calculate corruption robustness on CIFAR10-C
(Hendrycks & Dietterich, 2019). While NSST and NSST+ often decrease in validation accuracy
after 2 iterations, ODST is able to increase performance in later iterations and therefore make use of
more data. This can be explained by distribution shifts that happen in the first iterations for the NSST
models that lead to the addition of too many rubbish samples. In terms of corruption robustness,
ODST and ODST+ are able to improve over the OE baseline. In detail, we achieve 78.80% respec-
tively 77.17% for ODST and ODST+ in the 1M TI setting, beating MixMatch (63.41%), FixMatch
(77.08%), MTCF (73.08%), DS3L (59.56%), NSST (67.50%) and NSST+ (69.17%). Similarly, we
beat the closest competitors MTCF (60.45%), FixMatch (66.19%) and NSST (69.44%) with ODST
(74.68%) and ODST+ (74.94%) with 10M TI. With LSUN as out-distribution, we achieve 79.61%
and 80.02%, strongly outperforming MixMatch (59.36%), MTCF (72.43%), FixMatch (73.18%),
NSST (69.08%) and NSST+ (68.43%).
Overall, ODST and ODST+ are able to clearly outperform all other methods in terms of clean accu-
racy, corruption robustness and out-of-distribution detection.

We show a large random sample of unlabled images considered to be task relevant by ODST,
ODST+, FixMatch and MTCF in Figures 6 and 7 for 1M TI and 1M LSUN images respectively.
With 80 million tiny images as out-distribution, both FixMatch and MTCF select too many images
that can clearly be labeled as non-task-relevant. For FixMatch, this failure can easily be explained by
the fact that they use a fixed confidence threshold of 0.95 on a model that is not trained to explicitly
distinguish in- from out-distribution, which results in many OD images with very high confidence
values (> 0.99). This once again highlights the fact that it is important to be out-distribution-aware
during training as well as adapt the confidence threshold to the unlabeled distribution used, for ex-
ample using an in- and out-distribution threshold like ODST+ does. MTCF is out-distribution-aware
as they have an in-versus out-distribution binary classifier which shares the feature representation
with the actual classifier. The actual threshold for the binary classifier to select the task-relevant
samples from the unlabeled dataset is then calculated via Otsu thresholding. In Figure 6, we show
the samples which the final MTCF model considers to be task-relevant when training has finished.
In order to understand this more explicitly, we plot the confidence distribution of the CIFAR10 clas-
sifier over all unlabeled-samples (left) and of the ones above the Otsu threshold for the ID-vs-OD
classifier (right) in Figure 9. It is noticeable that the two classifiers are not perfectly aligned and that
relatively low confident samples are able to pass the threshold of the ID-vs-OD classifier whereas a
lot of highly confident examples are rejected. The generally lower confidence of MTCF compared to
ODST+ and FixMatch seems to be a result of MixMatch training, which MTCF uses for the samples
considered to be task-relevant (the pure MixMatch classifier has an even lower average confidence
on the in-distribution).

While ODST is not perfect and still includes few unrelated images, it clearly outperforms the other
methods by a margin. If an additional OOD-validation set is available, ODST+ can offer a slightly
better sample selection quality, but both methods yield strong results given the low amount of labeled
training samples together with the low number of task-relevant samples in the unlabeled data.

2https://github.com/LeeDoYup/FixMatch-pytorch
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In Figure 8, for each class, we plot the number of unlabeled samples considered to be task-relevant
for ODST+, FixMatch and MTCF. First, we note that all 3 different methods add very distinct class
distributions. MTCF for example adds a large number of frogs, however Figure 6 verifies that most
of them are indeed false positives. The dominant class for FixMatch is dog, however the samples
again show that the method falsely learned to label humans as dogs, resulting in mostly unrelated
samples. ODST+ is the most balanced method and has no strong bias towards any class. The peak
in cars can be explained by the large amount of car images in 80 Tiny Images and the samples again
show that all car samples are indeed cars.

ODST ODST+
Iteration Base 1st 2nd 3rd 4th 5th Base 1st 2nd 3rd 4th 5th
Validation 85.22 91.44 92.52 93.74 94.12 94.62 85.22 91.50 92.70 93.62 93.68 93.96
CIFAR10 84.91 90.62 91.96 92.92 93.57 93.89 84.91 90.93 91.88 92.77 93.13 93.41
CIFAR10-C 67.19 75.43 76.32 75.47 78.38 78.80 67.19 75.29 75.48 77.65 77.05 77.17
OOD-FPR95 31.17 17.24 14.04 11.95 11.34 10.51 31.17 16.84 14.51 14.38 15.45 16.71

NSST NSST+
Iteration Base 1st 2nd 3rd 4th 5th Base 1st 2nd 3rd 4th 5th
Validation 86.50 88.06 89.04 89.20 87.08 87.92 86.50 88.62 88.62 88.64 88.34 88.28
CIFAR10 86.62 87.78 88.18 88.70 87.46 87.63 86.62 87.74 88.19 87.75 87.60 87.62
CIFAR10-C 69.04 69.65 68.69 67.50 65.46 65.40 69.04 69.24 69.38 69.17 66.71 66.38
OOD-FPR95 78.48 79.10 80.13 82.20 86.71 86.57 78.48 77.45 79.75 80.60 84.50 83.71

Table 4: CIFAR10-4k + 1M TI: Breakdown of the individual iterations of self-training schemes
in the CIFAR10-4k setting with an unlabeled pool diluted with 1M samples from 80MTI. The final
model is chosen based on validation accuracy and marked in black.

ODST ODST+
Iteration Base 1st 2nd 3rd 4th 5th Base 1st 2nd 3rd 4th 5th
Validation 86.78 91.40 92.98 93.00 93.28 92.88 86.78 91.72 92.46 93.06 92.90 92.76
CIFAR10 86.57 91.05 92.02 92.37 92.14 91.96 86.57 90.95 92.07 92.21 92.48 92.35
CIFAR10-C 68.10 74.21 75.35 75.40 74.68 74.22 68.10 73.88 75.14 74.94 74.43 74.26
OOD-FPR95 27.13 14.29 12.68 16.97 19.33 22.52 27.13 14.06 13.19 13.78 16.98 20.52

NSST NSST+
Iteration Base 1st 2nd 3rd 4th 5th Base 1st 2nd 3rd 4th 5th
Validation 86.50 87.92 88.74 88.16 87.74 86.78 86.50 87.52 88.64 88.62 88.16 87.56
CIFAR10 86.62 87.44 88.15 87.73 87.71 86.56 86.62 86.81 87.88 88.19 87.27 86.37
CIFAR10-C 69.04 68.65 69.44 67.91 67.30 65.20 69.04 68.50 69.08 69.25 66.33 63.80
OOD-FPR95 78.48 75.76 75.23 79.67 81.03 80.91 78.48 78.92 77.48 78.52 83.47 80.54

Table 5: CIFAR10-4k + 10M TI: Breakdown of the individual iterations of self-training schemes
in the CIFAR10-4k setting with an unlabeled pool diluted with 10M samples from 80MTI. The final
model is chosen based on validation accuracy and marked in black.
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ODST ODST+
Iteration Base 1st 2nd 3rd 4th 5th Base 1st 2nd 3rd 4th 5th
Validation 86.80 92.16 93.82 94.38 94.98 95.04 86.80 91.94 94.06 94.54 94.82 94.88
CIFAR10 86.30 91.43 93.47 93.95 94.36 94.31 86.30 91.61 93.68 94.11 94.00 94.31
CIFAR10-C 67.70 75.67 79.74 80.12 80.14 79.61 67.70 74.95 79.07 80.09 79.67 80.02
OOD-FPR95 43.98 27.98 23.42 22.83 24.55 23.26 43.98 31.49 26.17 25.16 23.03 25.61

NSST NSST+
Iteration Base 1st 2nd 3rd 4th 5th Base 1st 2nd 3rd 4th 5th
Validation 86.50 88.32 88.76 88.04 87.54 87.92 86.50 88.52 89.32 88.54 88.50 88.52
CIFAR10 86.62 87.62 88.30 87.75 86.91 86.66 86.62 87.75 87.82 87.85 87.44 87.69
CIFAR10-C 69.04 68.66 69.08 66.82 65.02 64.43 69.04 68.48 68.43 67.41 66.84 66.79
OOD-FPR95 78.48 77.61 77.47 78.73 81.58 80.43 78.48 76.47 75.73 78.22 80.36 78.95

Table 6: CIFAR10-4k + 1M LSUN: Breakdown of the individual iterations of self-training schemes
in the CIFAR10-4k setting with an unlabeled pool diluted with 1M samples from LSUN. The final
model is chosen based on validation accuracy and marked in black.
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cat - 1.00 cat - 1.00 deer - 0.95 truck - 1.00 ship - 1.00 bird - 1.00 truck - 1.00

ship - 0.95 horse - 0.93 car - 1.00 ship - 0.99 cat - 1.00 ship - 1.00 bird - 0.99

frog - 0.92 horse - 1.00 frog - 0.99 deer - 1.00 plane - 0.95 truck - 1.00 bird - 1.00

horse - 0.75 frog - 0.90 car - 1.00 truck - 1.00 ship - 0.99 bird - 1.00 plane - 1.00

ship - 0.99 cat - 1.00 horse - 1.00 truck - 0.70 truck - 0.99 truck - 1.00 deer - 0.92

car - 1.00 deer - 1.00 car - 1.00 car - 1.00 plane - 0.95 horse - 0.90 horse - 1.00

bird - 1.00 plane - 1.00 plane - 1.00 ship - 1.00 plane - 1.00 dog - 1.00 deer - 1.00

ship - 1.00 truck - 0.92 deer - 0.93 frog - 0.99 cat - 1.00 dog - 1.00 dog - 0.99

truck - 1.00 bird - 1.00 deer - 1.00 plane - 1.00 frog - 0.97 frog - 1.00 deer - 1.00

cat - 1.00 frog - 1.00 car - 1.00 deer - 0.98 bird - 1.00 frog - 1.00 dog - 1.00

cat - 1.00 plane - 1.00 cat - 1.00 cat - 0.99 truck - 1.00 dog - 1.00 bird - 1.00

dog - 1.00 frog - 1.00 frog - 1.00 dog - 0.99 truck - 1.00 frog - 1.00 frog - 1.00

ODST ODST+
frog - 1.00 truck - 0.99 deer - 1.00 plane - 0.98 frog - 0.99 ship - 0.97 truck - 0.99

horse - 0.97 plane - 0.99 car - 0.94 truck - 0.99 deer - 0.99 bird - 0.99 frog - 0.99

dog - 1.00 deer - 0.99 deer - 0.98 truck - 0.99 bird - 0.98 ship - 0.96 horse - 0.98

plane - 0.99 horse - 0.97 car - 0.99 horse - 0.99 frog - 0.99 frog - 0.99 bird - 0.98

car - 0.95 deer - 0.99 frog - 0.99 horse - 0.98 truck - 0.99 frog - 0.99 ship - 0.98

ship - 0.97 plane - 0.98 car - 0.95 ship - 0.97 ship - 0.98 car - 0.93 frog - 0.98

dog - 1.00 bird - 1.00 horse - 0.99 dog - 0.99 horse - 0.98 horse - 0.98 dog - 0.99

truck - 1.00 truck - 0.99 bird - 0.99 dog - 1.00 deer - 0.99 dog - 1.00 horse - 0.98

dog - 1.00 ship - 0.99 dog - 0.99 dog - 1.00 ship - 1.00 deer - 1.00 dog - 1.00

cat - 1.00 cat - 1.00 car - 0.97 cat - 1.00 frog - 1.00 plane - 0.99 bird - 1.00

cat - 1.00 car - 0.97 deer - 0.99 truck - 1.00 dog - 1.00 dog - 1.00 cat - 1.00

cat - 1.00 truck - 1.00 bird - 1.00 cat - 1.00 dog - 1.00 horse - 0.98 deer - 1.00

NSST NSST+
deer - 1.00 frog - 0.98 truck - 1.00 ship - 1.00 dog - 1.00 dog - 0.99 frog - 0.96

frog - 0.98 bird - 0.99 dog - 0.98 plane - 0.96 frog - 1.00 frog - 0.98 dog - 1.00

cat - 0.95 cat - 0.96 dog - 1.00 dog - 0.98 dog - 0.99 plane - 1.00 cat - 0.97

dog - 0.99 frog - 0.97 truck - 1.00 truck - 1.00 plane - 0.99 dog - 0.99 horse - 1.00

dog - 1.00 truck - 0.96 truck - 1.00 deer - 1.00 dog - 1.00 truck - 0.98 ship - 1.00

dog - 1.00 dog - 1.00 frog - 0.98 frog - 1.00 cat - 1.00 ship - 0.96 cat - 0.98

frog - 0.47 deer - 0.82 deer - 0.87 plane - 0.80 frog - 0.55 deer - 0.93 dog - 0.87

ship - 0.48 cat - 0.88 frog - 0.77 frog - 0.89 frog - 0.50 frog - 0.91 deer - 0.83

frog - 0.89 ship - 0.47 frog - 0.75 cat - 0.61 frog - 0.62 deer - 0.43 frog - 0.77

deer - 0.90 ship - 0.89 cat - 0.45 frog - 0.88 frog - 0.91 plane - 0.90 ship - 0.92

frog - 0.91 dog - 0.51 frog - 0.27 deer - 0.65 deer - 0.92 frog - 0.67 horse - 0.89

plane - 0.90 bird - 0.92 plane - 0.89 bird - 0.81 frog - 0.92 dog - 0.77 cat - 0.63

FixMatch MTCF

Figure 6: CIFAR10-4k + 1M TI: Visualisation of 42 randomly drawn samples considered to be
task-relevant for various methods. For ODST and NSST , those are all samples above the in-
distribution threshold in the 5th training iteration and above both the in- and out-distribution thresh-
old for ODST+ and NSST+. FixMatch uses a fixed confidence threshold (95%) and MTCF Otsu
thresholding to determine which samples are from in- and out-of-distribution. Both variants of
ODST are the only methods where almost all selected samples are indeed task relevant and ODST+
achieves slightly higher precision due to the additional OD-threshold. FixMatch and MTCF are able
to select task-relevant samples, however both show a high false-positive rate and make systematic
errors, for example FixMatch and to some extent MTCF as well learns to label Humans as Dog.
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car - 1.00 deer - 0.99 bird - 0.99 horse - 0.96 cat - 1.00 dog - 1.00 cat - 1.00

dog - 0.99 bird - 1.00 plane - 0.99 ship - 0.98 frog - 0.99 horse - 0.99 dog - 1.00

cat - 1.00 car - 1.00 deer - 1.00 car - 0.99 horse - 0.94 dog - 0.99 horse - 0.99

car - 0.76 plane - 0.98 deer - 1.00 dog - 1.00 ship - 0.98 horse - 0.98 ship - 0.98

deer - 1.00 bird - 1.00 ship - 1.00 cat - 1.00 horse - 0.92 truck - 0.99 plane - 1.00

cat - 1.00 truck - 0.99 ship - 0.99 dog - 0.99 horse - 1.00 plane - 0.99 car - 0.99

truck - 1.00 cat - 0.99 deer - 1.00 frog - 1.00 horse - 1.00 deer - 1.00 car - 0.99

ship - 0.98 car - 1.00 truck - 0.99 plane - 0.98 car - 0.64 frog - 0.99 truck - 1.00

deer - 0.99 frog - 0.99 deer - 0.99 plane - 0.97 truck - 0.99 bird - 0.99 deer - 0.99

frog - 0.94 bird - 0.99 truck - 0.99 cat - 1.00 truck - 1.00 ship - 1.00 deer - 0.99

dog - 1.00 frog - 1.00 deer - 1.00 frog - 1.00 truck - 0.97 plane - 0.99 bird - 1.00

ship - 0.83 deer - 0.99 plane - 0.98 horse - 0.98 cat - 1.00 frog - 0.99 deer - 0.85

ODST ODST+
frog - 0.90 bird - 1.00 plane - 1.00 truck - 1.00 frog - 0.94 deer - 1.00 deer - 1.00

car - 0.97 dog - 1.00 ship - 1.00 bird - 0.99 truck - 1.00 plane - 1.00 frog - 0.91

car - 0.98 deer - 1.00 deer - 1.00 truck - 1.00 plane - 1.00 car - 0.97 plane - 1.00

deer - 1.00 deer - 1.00 ship - 1.00 plane - 1.00 car - 0.98 plane - 1.00 truck - 1.00

car - 0.97 dog - 1.00 ship - 1.00 car - 0.96 cat - 1.00 plane - 1.00 truck - 1.00

truck - 1.00 dog - 1.00 cat - 1.00 cat - 1.00 deer - 1.00 ship - 1.00 deer - 1.00

bird - 1.00 dog - 1.00 cat - 1.00 dog - 1.00 horse - 0.97 horse - 0.98 ship - 1.00

frog - 0.96 dog - 1.00 truck - 1.00 cat - 1.00 bird - 1.00 bird - 1.00 horse - 0.96

ship - 1.00 frog - 0.96 horse - 0.95 ship - 1.00 ship - 1.00 horse - 0.98 frog - 0.95

horse - 0.98 frog - 0.95 frog - 0.95 horse - 0.98 frog - 0.96 horse - 0.95 cat - 1.00

plane - 1.00 frog - 0.94 plane - 1.00 cat - 1.00 ship - 1.00 horse - 0.97 cat - 1.00

cat - 1.00 plane - 1.00 cat - 1.00 cat - 1.00 ship - 1.00 ship - 1.00 ship - 1.00

NSST NSST+
ship - 1.00 cat - 1.00 ship - 1.00 cat - 1.00 cat - 1.00 cat - 1.00 ship - 1.00

dog - 1.00 cat - 1.00 cat - 1.00 ship - 1.00 cat - 1.00 cat - 1.00 ship - 1.00

cat - 1.00 cat - 1.00 ship - 1.00 ship - 1.00 cat - 0.99 cat - 1.00 ship - 1.00

ship - 1.00 cat - 1.00 cat - 1.00 ship - 1.00 cat - 1.00 cat - 0.99 cat - 1.00

cat - 1.00 ship - 1.00 cat - 0.99 cat - 1.00 cat - 1.00 cat - 1.00 ship - 1.00

cat - 1.00 cat - 1.00 cat - 1.00 ship - 1.00 dog - 1.00 cat - 1.00 ship - 1.00

horse - 0.89 dog - 0.88 horse - 0.90 plane - 0.88 frog - 0.92 truck - 0.90 cat - 0.94

deer - 0.89 horse - 0.91 car - 0.90 plane - 0.90 plane - 0.91 bird - 0.95 car - 0.92

car - 0.91 deer - 0.89 horse - 0.87 car - 0.87 bird - 0.95 plane - 0.90 dog - 0.93

plane - 0.88 deer - 0.89 dog - 0.91 car - 0.90 deer - 0.90 truck - 0.90 plane - 0.92

car - 0.92 cat - 0.91 car - 0.89 deer - 0.92 car - 0.90 ship - 0.92 deer - 0.92

truck - 0.90 cat - 0.92 bird - 0.95 frog - 0.92 bird - 0.96 cat - 0.91 car - 0.92

FixMatch MTCF

Figure 7: CIFAR10-4k + 1M LSUN: Similar to Figure 6, we plot accepted samples for various
methods. In this scenario, FixMatch, NSST and NSST+ do once again not show the desired be-
haviour. On the other hand, ODST, ODST+ and MTCF show nearly perfect sample selection. While
MTCF has a great precision (99.70%), we note that it suffers from poor recall (18.47%) and thus
does not make use of a majority of available in-distribution samples. ODST and ODST+ on the other
hand have a comparable precision (99.26%,98.67%) with a much higher recall (92.81%,92.50%).
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(a) ODST
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(b) ODST+
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(c) FixMatch
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(d) MTCF

Figure 8: CIFAR10-4k+1M TI: Number of samples per class from the unlabeled data selected
as task-relevant for ODST, ODST+, FixMatch and MTCF with a logarithmic y-axis scaling. The
blue bar corresponds to the absolute number of added samples and the orange bar only shows the
samples which come from the unlabeled train data (remember that 41k CIFAR10 samples are in
the unlabeled dataset). We note the very uneven selection of MTCF with almost no cars but a lot
of frogs (of which most are wrong, see Figure 6), while the selection of ODST+ and FixMatch
is more evenly distributed even though FixMatch selects far too many as task-relevant (428k out of
1041k possible). As 80MTI contains some task relevant samples, a perfection selection will have the
blue bar slightly higher than the orange one, i.e. it will add the relevant samples out of the 1M tiny
images. However, the disparity between the two should not be too large (FixMatch) as this implies
that unrelated rubbish images are added. Also, the orange bars should not be too low (MTCF) as
this implies that a lot of available in-distribution samples are not used.
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Figure 9: CIFAR10-4k+1M TI - Analysis of MTCF: We show the histogram of confidence values
of the CIFAR10-classifier of MTCF for all unlabeled samples (left) and of the ones which are for
the ID-OD-classifier of MTCF above the Otsu-threshold and thus considered task-relevant by MTCF
(right). Note that MTCF considers a lot of samples task-relevant for which the classifier is quite
low-confident and discards the majority of samples for which the classifier is highly confident. This
in strong contrast to ODST+ where only unlabeled samples are selected for which the classifier is
highly confident (above the in-and out-distribution threshold).
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C.2 CIFAR10-50k

In the CIFAR10-50k setting, we use the full CIFAR10 training set as labeled data and all 80 million
tiny images as unlabeled data. For CIFAR10, we use the CIFAR10.1 set of 2k images as validation
set. The OOD-validation set for the Plus variants are 2k CIFAR100 samples. In Table 7, we include
CIFAR10-C accuracies on top of our standard evaluation metrics test set accuracy and OOD-FPR95
and additionally report which of the three self-training iterations is chosen. Note that our selection
criterion is validation accuracy on CIFAR10.1.

On the smaller ResNet50 architecture, ODST and ODST+ can clearly improve performance over the
Outlier Exposure (OE) base model in all metrics and also beat the two NSST baselines by a margin.
Especially in terms of CIFAR10-C accuracy, we are able to improve from 83.14% achieved by the
best labeled-data only model (OE) to 85.09% and 85.97% for ODST and ODST+ respectively. It
is noteworthy that both ODST variants are able to improve performance up until the last iteration
and therefore make use of the maximum amount of unlabeled data. This is only possible due to
a strict sample selection that prevents distribution shifts. NSST suffers from a strong distribution
shift in iteration 1 and the resulting model is no longer suitable for passing knowledge to the student
model, therefore validation accuracy decreases after the first iteration and we have to select the
first iteration model for NSST . NSST+ has the opposite problem and adds too few samples as it
is not trained to distinguish in- from out-of-distribution samples but can improve up until the third
iteration. However even with the additional threshold, NSST+ is not able to have good precision
when it comes to sample selection as can be seen in Figure 10. ODST and ODST+ are the only
methods that are able to select mostly task-relevant samples. In this large scale task, ODST+ is also
able to beat ODST due to even better sample selection, which is especially important when working
with an unlabeled pool that contains 80 million samples.

With the larger PyramidNet architecture, it is even harder to increase performance over the base
models (plain and OE) that both already achieve over 98% test set accuracy. Both noisy student vari-
ants fail in this setting and are not able to improve performance in any metric and instead show quite
significant drops in accuracy and OOD-detection performance over the plain base model. ODST+
is able to improve test accuracy up to 98.57% in the last iteration (starting from 98.28% for the OE
teacher model) while not only maintaining but improving FPR.

ResNet50 PyramidNet
plain OE NSST NSST+ ODST ODST+ plain OE NSST NSST+ ODST+

Acc. ↑ 96.11 96.81 96.86 96.93 97.98 98.07 98.49 98.28 98.24 98.13 98.57
C10-C ↑ 83.03 83.14 83.59 81.02 85.09 85.95 87.79 86.40 85.28 85.97 86.95
FPR ↓ 45.54 4.40 49.72 51.76 4.30 3.84 22.76 2.56 33.51 34.71 2.40
Iteration - - 1 3 3 3 - - 1 1 3

Table 7: CIFAR10-50k: Additionally to the results from the main paper, we include robustness to
common corruptions evaluated on CIFAR10-C (C10-C). The last row ”Iteration” refers to which of
the 3 self-training iterations is chosen based on validation set accuracy.
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car - 1.00 ship - 1.00 car - 1.00 dog - 1.00 dog - 1.00 deer - 1.00 frog - 0.99

car - 1.00 truck - 1.00 bird - 1.00 horse - 1.00 plane - 1.00 ship - 1.00 bird - 1.00

ship - 1.00 deer - 1.00 plane - 1.00 bird - 1.00 cat - 1.00 deer - 1.00 frog - 1.00

bird - 1.00 cat - 1.00 deer - 1.00 frog - 1.00 dog - 1.00 frog - 1.00 ship - 1.00

frog - 1.00 frog - 1.00 ship - 1.00 ship - 1.00 truck - 1.00 frog - 0.99 cat - 1.00

dog - 1.00 frog - 1.00 horse - 1.00 frog - 1.00 truck - 1.00 plane - 1.00 bird - 1.00

deer - 1.00 cat - 1.00 cat - 1.00 bird - 1.00 ship - 1.00 plane - 1.00 dog - 1.00

dog - 1.00 ship - 1.00 ship - 1.00 cat - 1.00 bird - 1.00 horse - 1.00 plane - 1.00

car - 1.00 truck - 1.00 dog - 1.00 bird - 1.00 plane - 1.00 bird - 1.00 horse - 1.00

plane - 1.00 bird - 1.00 ship - 1.00 horse - 1.00 bird - 1.00 truck - 1.00 truck - 1.00

bird - 1.00 horse - 1.00 bird - 1.00 truck - 1.00 bird - 1.00 car - 1.00 ship - 1.00

dog - 1.00 ship - 1.00 bird - 1.00 bird - 1.00 bird - 1.00 car - 1.00 car - 1.00

dog - 1.00 horse - 1.00 plane - 1.00 ship - 1.00 horse - 1.00 ship - 1.00 horse - 1.00

cat - 1.00 horse - 1.00 plane - 1.00 car - 1.00 car - 1.00 plane - 1.00 bird - 1.00

ODST ODST+
bird - 0.98 cat - 0.99 plane - 0.99 cat - 0.99 dog - 0.99 bird - 0.98 ship - 0.99

truck - 0.99 ship - 0.99 truck - 0.99 horse - 0.98 horse - 0.98 horse - 0.99 plane - 0.99

truck - 0.99 cat - 0.99 ship - 0.99 bird - 0.98 cat - 0.99 horse - 0.99 horse - 0.98

dog - 0.99 plane - 0.99 plane - 0.99 car - 0.98 car - 0.98 frog - 0.99 plane - 0.99

dog - 0.99 frog - 0.99 frog - 0.99 car - 0.98 horse - 0.98 plane - 0.99 bird - 0.98

plane - 0.99 dog - 0.99 deer - 0.98 cat - 0.99 ship - 0.99 truck - 0.99 plane - 0.99

frog - 0.99 cat - 1.00 bird - 0.98 car - 0.98 truck - 0.99 deer - 0.98 frog - 0.99

bird - 0.99 dog - 0.99 horse - 0.99 horse - 0.99 dog - 0.99 horse - 0.99 car - 0.99

dog - 0.99 car - 0.99 horse - 0.99 dog - 0.99 plane - 0.99 truck - 1.00 truck - 0.99

dog - 0.99 plane - 0.99 cat - 1.00 truck - 1.00 deer - 0.99 car - 0.99 ship - 0.99

car - 0.99 dog - 0.99 horse - 0.99 cat - 1.00 truck - 1.00 truck - 0.99 cat - 0.99

truck - 1.00 plane - 0.99 car - 0.99 car - 0.99 plane - 1.00 plane - 1.00 cat - 1.00

cat - 1.00 truck - 0.99 truck - 0.99 cat - 1.00 cat - 1.00 bird - 1.00 car - 0.99

truck - 0.99 deer - 0.99 bird - 0.99 cat - 0.99 dog - 0.99 horse - 0.99 deer - 0.99

NSST NSST+

Figure 10: CIFAR10-50k: We visualize the selected samples that are over the in-distribution thresh-
old for ODST and NSST and above both the in- and out-distribution threshold for ODST+ in NSST+
in the third iteration of self-training. Note that both NSST variants suffer from a strong distribution
shift and start making systematic mistakes, like labeling humans as ”dog”. Both ODST variants on
the other hand are able to select mostly task-relevant samples
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C.3 CIFAR100-45k:

Similar to the CIFAR10-50k setting, we use the full CIFAR100 training set in this setting, however
as there is no validation set available we split it into 45k train and 5k validation images. We again
use all 80 million tiny images as unlabeled data. The OOD-validation set for the Plus variants are 2k
CIFAR10 samples with classes ”car” and ”truck” removed. In Table 8, we again report corruption
robustness measured on CIFAR100-C as well as test set accuracy and OOD-FPR95. Again we also
give the chosen self-training iteration based on validation accuracy.

Clearly, ODST+ and ODST outperform all other methods on the smaller ResNet50 architecture. In
detail we achieve up to 84.09% test accuracy and 64.02% corruption robustness beating the next
best performing methods by a margin (82.44% and 61.45%). In terms of OOD-detection, our FPR
values are able to improve significantly over the base outlier exposure model and beat both NSST+
models by more than 30%. In Figure 11 we also show a random selection of samples accepted
by the various methods and demonstrate thatODST clearly outperforms the NSST baselines in
terms of sample selection. The NSST models include many rubbish images that contain diagrams
or computer generated graphics that are not even natural images, although the labeled distribution
CIFAR100 does not contain such synthetic images. ODST+ and ODST are not perfect, which is to
be expected considering that we only see 450 labeled samples per class.

On the larger PyramidNet, ODST+ is the only method that is able to increase test accuracy and
achieves 88.66% whereas NSST and NSST+ decrease performance in terms of accuracy, corrup-
tion robustness and OOD-detection. ODST+ is able to improve corruption robustness over it’s OE
base model but beaten by the plain baseline and slightly degrades in OOD detection performance.
However the FPR increase from OE to ODST+ is a lot smaller than it is from plain to NSST and
NSST+.

ResNet50 PyramidNet
plain OE NSST NSST+ ODST ODST+ plain OE NSST NSST+ ODST+

Acc. ↑ 80.69 79.98 82.44 82.03 83.54 84.09 88.07 87.60 87.71 87.53 88.66
C100-C ↑ 57.49 56.61 60.08 61.45 64.02 62.71 67.16 66.44 65.63 65.55 67.03
FPR ↓ 72.05 43.88 73.47 82.54 35.64 38.72 60.20 27.97 74.90 73.91 29.22
Iteration - - 1 1 1 1 - - 1 1 2

Table 8: CIFAR100-45k: Additionally to the results from the main paper, we include robustness to
common corruptions evaluated on CIFAR100-C (C100-C). The last row ”Iteration” refers to which
of the 3 self-training iterations is chosen based on validation set accuracy.

C.4 SVHN

In addition to the previous CIFAR experiments, we present an additional experiment on the
SVHN dataset. Following the CIFAR10-4k setting, we split the original SVHN train set into
train/validation/unlabeled splits. We again use 4k labeled train samples, 5k validation samples and
the remaining 64k samples as unlabeled data. To simulate an open-world SSL setting, we add 1 mil-
lion images from 80MTI to the unlabeled set. As baseline methods, we use FixMatch, MixMatch
and MTCF and compare it to our ODST. Hyerparameters are the same as in the CIFAR10-4k setting.
To evaluate OOD-FPR, we use CIFAR10, CIFAR100, LSUN classrooms and and Flowers.

No SSL SSL Open World SSL
SVHN plain OE MixMatch FixMatch MTCF ODST
Acc. ↑ 94.89 94.18 93.64 96.31 96.60 96.94
FPR ↓ 41.64 12.20 42.31 93.89 0.1 1.1

While the task at hand is significantly easier, as distinguishing house numbers from real images is
generally a lot easier, ODST is still able to outperform the baseline methods. While FixMatch is
able to narrow the gap between ODST and itself in this setting, we want to highlight the catastrophic
OOD detection performance that results in an FPR of 94.75.
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kangaroo - 1.00 train - 1.00 television - 1.00 cattle - 1.00 spider - 1.00 bottle - 1.00

mouse - 1.00 bicycle - 1.00 possum - 1.00 tractor - 1.00 tractor - 1.00 skyscraper - 1.00

crab - 1.00 rose - 1.00 leopard - 1.00 man - 1.00 train - 1.00 dinosaur - 1.00crocodile - 1.00

cattle - 1.00 lion - 1.00 rose - 1.00 orange - 1.00 rocket - 1.00 beaver - 0.99 snake - 1.00

hamster - 1.00 leopard - 1.00 road - 1.00 house - 1.00 forest - 1.00 forest - 1.00

flatfish - 1.00 dinosaur - 1.00 fox - 1.00 tank - 1.00 orchid - 1.00

rocket - 1.00 skunk - 1.00 table - 1.00 can - 1.00 skyscraper - 1.00 plain - 1.00 bicycle - 1.00

pine tree-1.00

willow tr.-1.00

chimpanzee-1.

aq. fish-1.0 willow tree-1.0

tiger - 1.00 lizard - 1.00 keyboard - 1.00 chair - 1.00 bee - 1.00 lion - 1.00 rabbit - 1.00

can - 1.00 road - 1.00 tiger - 1.00 turtle - 1.00 house - 1.00 pear - 1.00 dinosaur - 1.00

cockroach - 1.00dolphin - 1.00 train - 1.00 plain - 1.00 elephant - 1.00 bottle - 1.00 snail - 1.00

pickup_truck - 1.00poppy - 1.00 wolf - 1.00 beetle - 1.00 bus - 1.00 bear - 1.00 telephone - 1.00

tank - 1.00 dolphin - 1.00 apple - 1.00 cockroach - 1.00 bed - 1.00 bicycle - 1.00

mushroom - 1.00 wolf - 1.00 mushroom - 1.00 lawn_mower - 1.00 plain - 1.00

dolphin - 1.00 fox - 1.00 shark - 1.00 shark - 1.00caterpillar - 1.00kangaroo - 1.00 lion - 1.00

palm tree-1.

    oak-1.0 willow - 1.00

ODST ODST+
orchid - 1.00 tulip - 1.00 butterfly - 1.00 poppy - 1.00 man - 1.00 cup - 1.00 rose - 1.00

tank - 1.00 rabbit - 1.00 skunk - 0.99 possum - 0.98 orange - 0.99 couch - 1.00 spider - 0.99

plate - 0.99 sunflower - 1.00 wolf - 0.99 beetle - 0.98 squirrel - 1.00 rabbit - 1.00

wardrobe - 1.00 bear - 1.00 bottle - 1.00 apple - 0.99 woman - 1.00 cup - 0.99 bottle - 1.00

rocket - 0.99 mushroom - 0.99 couch - 1.00 wardrobe - 0.99 rabbit - 1.00telephone - 1.00chimpanzee- 1.

cockroach - 0.97 tractor - 0.99 caterpillar - 1.00 forest - 1.00 cattle - 1.00

worm - 1.00 television - 1.00hamster - 0.97 couch - 1.00 orange - 0.99 oak_tree - 0.96 skunk - 0.97

mushroom-1. lawn mower-1.

pickup truck-1.

orchid - 0.99 clock - 1.00 pine_tree - 1.00 plate - 1.00 butterfly - 1.00 bus - 1.00 man - 1.00

beaver - 0.96 bowl - 1.00 spider - 0.98 bear - 0.99 keyboard - 1.00 poppy - 1.00 streetcar - 1.00

train - 1.00 beetle - 1.00 mouse - 0.98 streetcar - 0.99 apple - 0.98 caterpillar - 1.00 shark - 0.98

porcupine - 0.94 rose - 1.00 porcupine - 0.97possum - 0.98 man - 1.00 lobster - 1.00 beetle - 0.99

turtle - 0.99 raccoon - 1.00 orchid - 0.99 sunflower - 0.99 bus - 0.99 boy - 1.00 cup - 1.00

caterpillar - 1.00 squirrel - 0.99 bus - 0.99 porcupine - 0.89 motorcycle - 1.

forest - 1.00 seal - 0.99 whale - 0.99 trout - 0.98 chair - 0.99 bicycle - 0.99 can - 1.00

lawn mow.-1.0aqu. fish - 0.98

NSST NSST+

Figure 11: CIFAR100-45k: We visualize the selected samples that are over the in-distribution
threshold for ODST and NSST and above both the in- and out-distribution threshold for ODST+
AND NSST+ by the first iteration model (Top 50k).

D Ablation

In this section, we present various ablation studies to motivate our design choices. All ablation
studies use the ResNet50 architecture and are done on CIFAR10-50k with the entire 80 million tiny
images as unlabeled distribution.

D.1 OOD-validation set size

First, in Table 9 we demonstrate that relatively few OOD samples are required to achieve a good
performance with ODST+. Both ODST+ variants slightly beat the ODST baseline and perform
extremely similar even with a relatiely small OOD-validation set that only contains 2k images. For
the rest of this section, we always use the full 50k samples as OOD-validation set.
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D.2 Choice of peudo-labels on U \ I

While Xie et al. (2020) demonstrated that soft-labels on selected samples can improve performance,
it remains an open question whether one should use soft-labels for the remaining unlabeled samples
in U \ I. In principle, one could keep enforcing uniform confidence on U \ I, that is

v(z)i =
1

K
, i = 1, . . . ,K for z ∈ U\I,

like we did for training the baseline model. Thus instead of training the students with the loss
presented in (3), one would minimize the loss:

1

n+ |I|

[ n∑
i=1

L
(
yi, p̂f(t+1)(xi)

)
+
∑
z∈I

L
(
q(z), p̂f(t+1)(z)

)]
+

1

|U \ I|
∑

z∈U\I

L
(
1/K, p̂f(t+1)(z)

)
. (7)

The other alternative is that we use soft-labels on U\I:

v(z) = p̂f(t)(z) for z ∈ U\I. (8)

In Table 10 we compare these alternative choices to the one of ODST+ (the mean of both) given
in Equation (2) which shows that our chosen pseudo-labels in ODST+ are the right compromise
between these two extremes.

Using hard-labels on U\I decreases performance in comparison to ODST+. There are two possible
explanations for this. First, due to our strict thresholding, it is possible that U \ I contains task-
relevant examples that are correctly classified but not accepted into I. In this case, the soft-label
is a better target for the next student than strict uniform confidence. Second, even for unrelated
images that contain certain features that correlate with a specific class, soft-labels might be a more
meaningful target. Soft-labels without label smoothing clearly outperform hard labels in terms of
test accuracy but are slightly worse than ODST+.

D.3 Comparison with 500k-Ti

In this section, we compare our ODST+ scheme with the 500k-Ti dataset Carmon et al. (2019).
500k-Ti was originally designed to help improve adversarial robustness on CIFAR10 by leveraging
data from 80MTI. 500k-Ti is generated by training an 11 class classifier and selecting the highest
scoring 50k datapoints per-class from the entire 80MTI database. As training data for the 11th back-
ground class, Carmon et al. (2019) sample 1M images from 80MTI with keywords not appearing in
CIFAR10. Note that their training procedure therefore uses weak labels (the keywords), whereas we
do not use this information.

In the experiment, we train a standard classifier by minimizing the cross entropy on the 50k la-
beled train samples plus 500k-Ti which can thus be seen as the first iteration of a self-training
procedure with their selected samples and compare it to ODST+. We use the same hyperpameters
as for ODST+, in particular we train a ResNet50 with AutoAugment + Cutout. Table 11 shows
that ODST+ clearly outperforms the self-training with 500k-Ti in terms of test accuracy (97.99%
vs. 96.82%), corruption robustness (84.98% vs 82.65% and FPR95 for OOD detection 3.25% vs.
39.09%).

Method ODST ODST+ 2k ODST+ 50k
Acc. ↑ 97.98 98.07 98.12
FPR ↓ 4.30 3.84 3.89

Table 9: Ablation: Influence of the size of the OOD-validation set on test accuracy and out-of-
distribution detection performance. ODST does not use any additional OOD-dataset and for ODST+
we use 2k and 50k additional OOD samples from CIFAR100.
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Base ODST+ Hard labels U \ I No label smoothing
CIFAR10 0th 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd

Test accuracy 96.81 97.85 97.99 98.12 97.48 97.17 97.27 97.82 97.78 97.60
Validation accuracy 93.00 94.60 95.45 95.30 93.60 93.35 93.40 95.10 95.25 94.60

CIFAR10-C 83.14 85.81 84.98 84.54 84.61 85.51 86.04 85.38 84.85 84.00
OOD-FPR95 4.40 3.50 3.25 3.89 3.53 3.41 3.43 3.86 5.60 8.11

Table 10: Ablation: Comparison of different choices for the labels of non-selected images in U \ I.
ODST+ uses soft-labels with label smoothing factor 0.5, hard labels enforces 1/K on all samples
and no label-smoothing is equivalent to ODST+ but without any smoothing. All models are trained
using the same base model. We again highlight the model with best validation accuracy in black.

CIFAR10 ODST+ 500k-Ti Carmon et al. (2019)
Test accuracy 97.99 96.82
CIFAR10-C 84.98 82.65
OOD-FPR95 3.25 39.09

Table 11: Ablation: We compare our ODST+ method to a model trained with the 500k-Ti dataset
from Carmon et al. (2019). 500k-Ti was created by sampling 50k images per class from 80MTI
with the goal of improving adversarial robustness. However, we show that a ResNet50 classifier
trained with the same parameters is not able to match the performance of ODST+ in terms of test
set accuracy, corruption robustness or out-of-distribution detection.
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