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Abstract
In large-scale recommendation systems like the LinkedIn
Feed, the retrieval stage is critical for narrowing hundreds of
millions of potential candidates to a manageable subset for
ranking. LinkedIn’s Feed serves suggested content from out-
side of the member’s network (based on the member’s topical
interests), where 2000 candidates are retrieved from a pool
of hundreds of millions candidate with a latency budget of a
few milliseconds and inbound QPS of several thousand per
second. This paper presents a novel retrieval approach that
fine-tunes a large causal language model (Meta’s LLaMA 3)
as a dual encoder to generate high quality embeddings for
both users (members) and content (items), using only textual
input. We describe the end-to-end pipeline, including prompt
design for embedding generation, techniques for fine-tuning
at LinkedIn’s scale, and infrastructure for low latency, cost ef-
fective online serving. We share our findings on how quantiz-
ing numerical features in the prompt enables the information
to get properly encoded in the embedding, facilitating greater
alignment between the retrieval and ranking layer. The sys-
tem was evaluated using offline metrics and an online A/B
test, which showed substantial improvements in member en-
gagement. We observed significant gains among newer mem-
bers, who often lack strong network connections, indicating
that high-quality suggested content aids retention. This work
demonstrates how generative language models can be effec-
tively adapted for real time, high throughput retrieval in in-
dustrial applications.

1 Introduction
Modern content recommendation systems rely heavily on
fast, scalable retrieval techniques to surface relevant items
from large candidate pools. At LinkedIn, the Feed retrieval
stack has evolved into a highly complex ecosystem com-
prising multiple index types, including inverted indices of
chronologically ordered member activities (Swapnil Ghike
2016), trending sources, collaborative filtering and two-
tower embedding-based retrieval (EBR) systems (Borisyuk
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et al. 2024) for surfacing content from unconnected mem-
bers. While this multi-index architecture has enabled tar-
geted and personalized Feed experiences, it has also intro-
duced significant engineering complexity and operational
overhead, particularly when integrating heterogeneous re-
trieval signals at scale. Recent advancements in large lan-
guage models (LLMs) present a compelling opportunity to
re-imagine retrieval architectures (Zhai 2024). LLMs pre-
trained on massive corpora have demonstrated strong ca-
pabilities in representation learning and semantic under-
standing, making them increasingly attractive for retrieval
tasks. However, these models are typically not optimized
for platform-specific engagement objectives or constrained
retrieval latency requirements. In this work, we propose a
novel LLM-based approach to retrieval for the LinkedIn
Feed. Our method builds upon an off-the-shelf pretrained
LLM, which we further fine-tune using large-scale engage-
ment data specific to LinkedIn. The goal is to directly op-
timize the model to generate semantically rich query and
item representations that capture the nuanced preferences
of our member base. We then use these representations
in a dense retrieval setup to replace our existing retrieval
pipelines (see Figure 1 for the current list of sources in the
suggested content model). A key benefit of this approach is
the consolidation of disparate retrieval pathways into a uni-
fied, embedding-based system. By leveraging a single EBR
framework fine-tuned with engagement-supervised LLMs,
we can simplify system architecture, reduce maintenance
overhead, and enable more coherent ranking stages down-
stream. Empirical results demonstrate that our approach
not only improves relevance compared to multiple retrieval
sources with different index structures, but also improves
upon latency and throughput.

1.1 Key Contributions
• We present a practical method for fine-tuning a large lan-

guage model using real-world engagement signals to en-
hance retrieval performance in a production-scale feed
retrieval setting.
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Figure 1: Architecture of the current Suggested Content
Ranking and Retrieval Set up. Five sources are shown as ex-
amples to illustrate retrieval from multiple sources. In prac-
tice, the system has around many more sources

• We provide extensive offline and online evaluation to
show the effectiveness of our approach in improving rel-
evance and retrieval efficiency for the LinkedIn Feed.

• We share our learnings on practical techniques to ensure
the important features we added to the prompt are effec-
tively encoded into embeddings.

2 Related Work
Modern content recommendation systems are typically built
upon a multi-stage architecture, commonly involving a re-
trieval stage followed by a ranking stage. Our work con-
tributes to the evolving landscape of retrieval in recom-
mendation systems, particularly at the intersection of tradi-
tional multi-index approaches and the emerging capabilities
of Large Language Models (LLMs).

Traditional Retrieval Architectures in Recommendation
Systems Early recommendation systems often relied on
simpler retrieval mechanisms, such as collaborative filtering
(CF) based on user-item interaction histories (Sarwar et al.
2001; Koren, Bell, and Volinsky 2009) or content-based fil-
tering using item metadata. As content platforms scaled, the
need for faster and more efficient retrieval led to the adoption
of inverted indices for keyword-based search and chrono-
logical retrieval for feeds, as seen in social media platforms
(Wang, Li, and Li 2018). LinkedIn’s Feed retrieval stack
exemplifies this evolution, employing a combination of in-
verted indices for chronologically ordered activities (Swap-
nil Ghike 2016), trending sources, and collaborative filter-
ing. This heterogeneous approach allows for diverse signals
to contribute to candidate generation, addressing various as-
pects of user interest (e.g., recency, popularity, similarity
to past interactions). More recently, Embedding-Based Re-
trieval (EBR) systems, particularly two-tower models, have
become a cornerstone of large-scale retrieval (Covington,
Adams, and Weinberger 2016; Ying et al. 2018). These
models learn dense vector representations (embeddings) for
both queries (users or contexts) and items, enabling efficient
nearest-neighbor search in a high-dimensional space. The
”two-tower” architecture separates the embedding computa-
tion for queries and items, allowing for pre-computation of
item embeddings and real-time query embedding, facilitat-

ing fast approximate nearest neighbor (ANN) search using
techniques like FAISS (Johnson, Douze, and Jégou 2019)
or ScaNN (Andoni et al. 2020). LinkedIn’s adoption of
two-tower EBR systems (Borisyuk et al. 2024) for surfacing
content from unconnected members aligns with this industry
trend.

Large Language Models in Recommendation and Re-
trieval The advent of Large Language Models (LLMs)
has marked a significant paradigm shift across various NLP
tasks, and their application to recommendation systems is a
rapidly growing area of research (Covington, Adams, and
Weinberger 2016; Huang et al. 2023). LLMs, pre-trained
on vast text corpora, possess remarkable capabilities in se-
mantic understanding, contextual reasoning, and representa-
tion learning. This has led to their exploration in recommen-
dation for tasks such as generative recommendation (Gao
et al. 2023; Liu et al. 2024), LLM based feature extraction
from text associated with user profiles, item descriptions,
and interaction history for retrieval and ranking models (Yan
2024), and integrating LLM for multi-turn dialogues based
recommendations (Feng, Zhang, and Ji 2023). For retrieval,
LLMs offer the potential to create semantically richer em-
beddings that capture nuanced relationships between users
and items, moving beyond simple keyword matching or ex-
plicit collaborative signals. Models like BERT (Devlin et al.
2019) and more recent LLMs have been used as powerful
encoders for text, enabling highly effective dense retrieval,
where the relevance is determined by the similarity of dense
vectors (Karpukhin et al. 2020).

Fine-tuning LLMs for Recommendation To address the
limitations of off-the-shelf LLMs, a growing body of work
focuses on fine-tuning these models for specific recommen-
dation tasks and leveraging domain-specific data. This often
involves:

• Supervised Fine-tuning (SFT) Training the LLM on la-
beled datasets of user-item interactions, where the goal is
to optimize for explicit engagement signals (e.g., positive
vs. negative interactions) (Casalegno 2025). This aligns
the LLM’s representations with the actual behaviors and
preferences observed on the platform.

• Continued Pre-training Further pre-training LLMs on
large-scale unlabeled domain-specific data (e.g., a plat-
form’s entire content corpus or user-generated text) to
enhance their understanding of the particular domain’s
vocabulary and concepts (Prasad 2025).

• Reinforcement Learning from Human Feedback
(RLHF) While more commonly applied to text gener-
ation, RLHF principles can be adapted to align LLM-
based recommenders with human preferences for rele-
vance, diversity, and quality (Ouyang et al. 2022).

3 Datasets And Prompt Construction for
Finetuning

Our overall optimization target is to increase the number of
daily unique ”Professional Interactors”, which is defined as
the number of unique members who take one or ”profession



interaction” (PI) actions (e.g., long dwell, react, comment,
repost, etc.) that contribute to the LinkedIn Feed’s Knowl-
edge Marketplace. Our training data comes from historical
Feed interaction logs, and each row in our training dataset
is a tuple of (target post features, member features, label),
where the member and target post features are feature dic-
tionaries and label is a binary label indicating whether the
member took a PI on that post or not.

For the target post, we have the following features:

• type of the post (original post, group post, like/comment
on a previous post)

• what is being shared (text, image, video, job change, etc.)
• author information (author name, profile headline, com-

pany, industry, title)
• post popularity features (# of times the post has been

liked, viewed for more than T secs, etc.)
• article title/source (if the post contains an article link)
• text of the post

The member features include the following: name, pro-
file headline & summary, industry, skill(s), location, job and
education history, certifications, and languages spoken. For
each member, we also have their “activity history sequence”
– a time-ordered list of Feed posts on which the member has
previously taken a PI. Note that we did perform several abla-
tion studies for what posts to include in this history sequence
(Firooz et al. 2025):

• All posts (i.e., both positive and negative engagements)
• Only positive PI engagements
• No history (i.e., only include member profile informa-

tion)

These ablation study results will be presented in the Results
section. In the end, including only positive PI engagement in
the activity history sequence performed the best, and is the
method that we used.

A “prompt library” is used to convert these features into a
target post prompt and member prompt, respectively.

The text of the target post prompt looks like:

<ST_P1>Post feature 1
<ST_P2>Post feature 2
...
<ST_PN>Post feature N

The text of the member prompt looks like:

<ST_M0>System prompt
<ST_M1>Member feature 1
<ST_M2>Member feature 2
...
<ST_MN>Member feature N
<ST_history>

<ST_history_post><post 1 text>
<ST_history_post><post 2 text>
...
<ST_history_post><post H text>

Large Language Model: LLaMA3
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Figure 2: Dual encoder architecture utilizing a shared LLM
for text-based retrieval. Member and item texts are pro-
cessed separately through the LLM, generating token-level
hidden representations. A pooling layer aggregates these
representations into embeddings, which are then compared
using a similarity function.

The <post 1 text>, ..., <post H text> in-
side of the member prompt are generated similarly to the tar-
get post’s prompt. The number of history posts that fit into
the prompt is dynamic based on the total maximum context
length (20,480 in our experiments) and the tokenized length
of each post.

The system prompt is the following: “You are provided
with a member’s profile information, along with a set of his-
torical feed posts that the member engaged with. Your task
is to analyze the historical engagement data along with the
member profile.”

Note that the <ST_...> strings above are special token
strings that are added to the tokenizer’s vocabulary so that
they get tokenized as a single token, in order to reduce the
size of the prompts. The strings shown above are just ex-
amples for explanatory purposes – the actual strings are not
shared here for security purposes to discourage any prompt
injection attacks.

As shown in Figure 2, the target post prompt and the
member prompt are fed as input to an LLM in order to gen-
erate the target post and member embedding, respectively.

4 Modeling Architecture
We leverage a pre-trained, decoder-only transformer-based
causal language model as our initial base model (Meta
LLaMA-3 (Dubey et al. 2024)). We optimize the base LLM
for embedding-based retrieval (EBR) through fine-tuning
using a dual-encoder architecture (with a single shared
LLM) that is used to encode both members and items into
a shared embedding space. Figure 2 depicts a high level il-
lustration of the architecture.



Embedding Generation Both member and item texts un-
dergo tokenization before being processed by the LLM.
Given a tokenized sequence t of length L, the LLM produces
a sequence of hidden states, H ∈ RL×d where d denotes the
dimensionality of the hidden states. A pooling function is
subsequently applied to generate a fixed-dimensional, dense
representation. Specifically, the embedding for a member to-
ken sequence tm is computed as: em = pool(Hm). An anal-
ogous process is used to generate an item embedding ei. We
discuss pooling functions further in subsection 4.1.

Measuring Member-Item Similarity The similarity be-
tween member and item embeddings is quantified using a
similarity function, s(em, ei). In this study, cosine similarity
is employed: s(em, ei) = em·ei

||em||·||ei|| . This similarity score
serves as the primary retrieval ranking metric, enabling ef-
ficient identification of the most relevant items for a given
member.

4.1 Pooling
The pooling function aggregates the token-level hidden
states into the fixed-dimensional, dense embeddings.

Mean Pooling: Given an input sequence consisting of L
tokens with hidden states H ∈ RL×d (with Hi as the i-th
token), the pooled embedding is

e =
1

L

L∑
i=1

Hi.

This method yields a holistic representation by averaging
over tokens. In this work, we considered mean pooling var-
ious sequence lengths to land on the best performing model
and results are discussed in subsection 8.5

4.2 Training objectives
When fine-tuning for the retrieval task, we wish to opti-
mize an objective where embeddings of positive member-
item pairs are drawn closer together, while negative pairs
are pushed apart in the embedding space. For training, we
leverage binary data that captures whether a positive or neg-
ative action was taken between a member and an item. In
this setting, each member–item pair is assigned a binary la-
bel y ∈ {0, 1}. We explore the following loss functions
that leverage the labelled data to effectively learn embed-
ding similarities.

Binary Cross-Entropy (BCE): In this formulation, the
similarity score s(em, ei) is scaled by the temperature τ and
interpreted as a logit. The corresponding probability is com-
puted using the sigmoid function σ(·):

P (y = 1 | em, ei) = σ

(
s(em, ei)

τ

)
.

The BCE loss is then expressed as:

LBCE = −
[
y log σ

(
s(em, ei)

τ

)
+(1− y) log

(
1− σ

(
s(em, ei)

τ

))] (1)

InfoNCE: For a given member embedding em and a cor-
responding positive item embedding e+i , along with a set of
negative item embeddings {e−i }, the InfoNCE loss (Oord,
Li, and Vinyals 2018) is defined as:

LInfoNCE = − log
exp

(
s(em,e+i )

τ

)
exp

(
s(em,e+i )

τ

)
+
∑

j exp

(
s(em,e−ij

)

τ

)
(2)

where s(·, ·) denotes the similarity function used, and τ is a
temperature parameter. This loss encourages the similarity
of positive pairs to be higher than that of negative pairs by
emphasizing relative ranking. InfoNce is more commonly
used for retrieval and we expected this to perform better.
Binary Cross Entropy Loss served as a good baseline for us
to compare the performance of the model with the infoNce
loss.

4.3 Easy and Hard Negative Mining
The negatives used for the InfoNCE loss described in Equa-
tion 2 are a combination of easy and hard negatives. Fol-
lowing Google’s two-tower retrieval literature (Yang et al.
2020), we mix easy and hard negatives. Mixed Negative
Sampling (MNS) combines batch (in-batch) negatives with
uniformly sampled corpus negatives to reduce selection bias
in implicit feedback data and has shown offline and on-
line gains in large-scale production (e.g., Google Play). Our
setup extends this idea by adding per-member hard-negative
mining on top of in-batch sampling.

In each training step, in-batch negatives are sampled from
the global mini-batch (as opposed to the local mini-batch on
each individual GPU). These examples provide weak neg-
ative pairs, artificially creating impressions with no action,
improving training stability and increasing the number of
training examples seen by a factor of batch size2.
We also built tunable parameters to dynamically sam-
ple hard negatives per batch for each individual member,
in addition to the aforementioned easy negatives. Opera-
tionally, our sampler mirrors triplet training: for each an-
chor–positive, we mine K hard negatives (near-miss im-
pressions for that member) and sample J easy negatives
(global in-batch). Triplet loss maximizes a margin between
the anchor–positive and anchor–negative; InfoNCE replaces
the margin with a softmax over the pooled negatives,
which often yields smoother optimization at scale (Schroff,
Kalenichenko, and Philbin 2015).

• Easy Negatives Negatives sampled from the global batch
(across all GPUs)

• Hard Negatives Items which were impressed by a mem-
ber without an engagement action. We create this map
offline and store it in memory for sampling required num-
ber of hard negatives at training time.

4.4 Matryoshka Embeddings
As part of our training procedure, we also employ Ma-
tryoshka Representation Learning (MRL) (Kusupati et al.



2022), a framework that learns nested, size-adaptive rep-
resentations by optimizing multiple sub-representations si-
multaneously. At each level, progressively larger subsets of
the embedding are encouraged to capture increasingly rich
and informative features. This property is advantageous in
production environments, where models must often oper-
ate under varying computational or memory constraints. By
ensuring that smaller sub-representations remain effective
for the downstream task, MRL enables flexible, efficient
deployment without the need for retraining or architecture
modifications. The learning process is guided by the Ma-
tryoshka Loss, defined as:

LMRL =

K∑
k=1

λk · Lk (3)

where K denotes the total number of representation sizes,
λk are weighting coefficients, and Lk is the task-specific loss
computed using only the first k dimensions of the represen-
tation. In our use case, we average the infoNce loss that is
computed for each of first ’k’ dimensions.

5 Offline Evaluation
5.1 Offline Evaluation
We evaluate our retrieval model using Recall@k, treating
the final ranking model as the oracle. The evaluation pro-
ceeds as follows:

1. Randomly sample a set of unique members who have had
engagement in the LinkedIn Feed.

2. For each member, rank all N items from their aggregated
sessions using the final ranking model, and save the top
n suggested content items in Set1.

3. Rank the top n items per member using similarity scores
from the retrieval model (e.g., cosine similarity between
query and item embeddings), and save the top k items in
Set2.

4. Compute Recall@k as:

Recall@k =
|Set1 ∩ Set2|

|Set1|
where Set1 contains the top-n items according to the
ranking model, and Set2 contains the top-k items accord-
ing to the retrieval model.

5. Average the Recall@k values across all members to ob-
tain the final metric.

We computed recall at the member level rather than the
session level because the number of suggested content items
viewed within a single session is typically very small. This
limited interaction scope may not provide a comprehen-
sive assessment of the performance of the retrieval model.
By evaluating recall over all suggested content items that a
member has engaged with within a defined time period (e.g.,
one week), we obtain a more holistic measure of the model’s
ability to retrieve relevant content across multiple interac-
tions. This approach aligns with our objective of developing
a retrieval model that effectively serves the interests of our
members.
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Figure 3: Online System for the Retrieval and Ranking
Model

6 Online System
For running online retrieval for serving member queries, we
built multiple workflows, as we detail next.

Nearline Item & Member activity log generation When
items or member profiles are created or updated on
LinkedIn, we capture those triggers into an item and member
activity log. When members interact with items (e.g. like,
comment, share, etc.), we capture those interactions too by
processing tracking data from clients into the item and mem-
ber activity logs. We minimize the latency in capturing these
interactions by using direct RPC calls for service-to-service
communication, where possible, over nearline stream pro-
cessing.

Nearline Item & Member prompt generation Next, we
process the item and member activity logs into correspond-
ing item and member prompts using pre-defined prompt
templates where data such as item text, member profile in-
formation, and item popularity counts are fetched and pop-
ulated into the templates to construct prompts that include
interaction history. This ensures freshness of prompt data.
Finally, we push these fully decorated prompts to a key-
value store for online access during retrieval and to a near-
line stream processor for generating embeddings.

Nearline Item & Member embedding generation using
online LLM inference We feed updated item prompts for
each item creation and item update into a LLM inference
server hosting our fine-tuned LLM to generate embeddings
as described in Section 4. We ingest the generated item em-
beddings into a GPU index for online kNN (k nearest neigh-
bor) retrieval (Borisyuk et al. 2024). The GPU index cur-
rently lets us define a custom pytorch model in order to do
the kNN operation. For this specific use case, we use a sim-
ple cosine similarity model and the top ’k’ documents with
the highest cosine similarity scores with the member embed-
ding are retrieved from the index. We refer to this as a ”GPU



Retrieval as Ranking” (GPU-RAR) index. Similarly, we feed
updated member prompts for each member profile creation
and member interaction activity to the LLM inference server
to generate embeddings and ingest them into an online key-
value store for access during online retrieval. This embed-
ding generation process is done using nearline stream pro-
cessing to control the LLM inference rate by batching up-
dates in configurable window sizes because our scale results
in thousands of input prompt updates per second. We trade-
off GPU compute used against embedding freshness by us-
ing shorter window sizes for increased freshness which helps
capture evolving member interests and item popularity. We
ensure that newly created items are indexed in the GPU-
RAR index within a minute of creation and interactions on
existing items result in an update of their embeddings within
30 minutes. Similarly, newly added member profiles are cap-
tured in their member query embeddings within a minute
and activities by existing members result in an update of
their embeddings within 30 minutes.

Online GPU-RAR kNN retrieval with attribute-based
matching To serve an online LinkedIn feed query for a
member, we fetch member query embeddings and run on-
line kNN against the GPU-RAR item embeddings index to
retrieve top K items, while applying business logic filter-
ing and privacy rules, that are then sent to the ranker layer.
We apply filters as part of the kNN query to ensure that the
selected items are approved by our trust classifiers, match
the languages understood by the viewer, not authored by
members blocked by the viewer, and not already seen by
the viewer. The pre-computation of embeddings allows us to
achieve sub-50ms retrieval latency for serving tens of thou-
sands of queries per second on a corpus of hundreds of mil-
lions of items while maintaining embedding freshness of a
few minutes.

7 Implementation Details
We used 5M member-item pairs from public engagement in
the LinkedIn Feed as our training samples. We used 8 H100
GPUs for each training run with a per-GPU batch size of 4.
We experimented with both Meta-LLaMA 3B and 1B pa-
rameter models with various combinations of Matryoshka
Embeddings.

In the online stack, we used a cluster of 48 H100 GPUs for
nearline item and member embedding inference. This cluster
also handled the embedding inference traffic generated for
back-filling the embeddings for new experimental models
for the entire item and member corpus. We used a cluster of
24 GPUs for indexing item embeddings and for performing
online GPU-RAR kNN retrieval with attribute-based match-
ing. We used a retrieval model that employed cosine similar-
ity between member and item candidates to get the top 1000
candidates to feed to subsequent layers of the ranking stack.

8 Results
The Meta LLaMA-3 model with 3B parameters was lever-
aged as the base model for further fine-tuning to get all the
results discussed in this section. This model by default has
an output dimension of 3072 unless specified otherwise.

8.1 Dual Encoder Results

Loss Recall@10
Random 0.0700
Llama-3 Without Finetuning 0.2434
BCE 0.3944
InfoNCE 0.4238
InfoNCE with Matryoshka Loss
(full 3072 dim)

0.4242

Table 1: Results for the Dual Encoder architecture under dif-
ferent training objectives and using all dimensions

From Table 1, we observe that the InfoNCE loss is able
to outperform BCE loss. We also observe that using Ma-
tryoshka Representation Learning to learn multiple dimen-
sionalities together does not hurt overall performance.

8.2 Dual Encoder Results with Matryoshka
Learning

One of the key motivations to do Matryoshka learning was to
reduce the dimensionality of the final embedding. This en-
ables us to reduce the storage cost in the GPU index from
which documents are retrieved in the online system. We
trained a model with the method described in subsection 4.4
and evaluated multiple embedding dimensions in parallel.

Embedding Dimensions Recall@10
3072 (all dims) 0.4242
2048 0.4248
1024 0.4237
512 0.4225
50 0.3716

Table 2: Evaluating performance on reducing embedding
size after training with Matryoshka Loss.

Figure 4: Results for Recall@10 versus Embedding Dimen-
sion when training using MRL.

The plot in Figure 4 demonstrates that lowering the di-
mension to 512 does not significantly impact the recall num-
bers and offers a lot of potential to reduce the storage size of
the final embeddings.



Comparison of Matryoshka Learning against directly
lowering dimension using MLPs As illustrated in Table
3, it is possible to fine-tune a model with lower dimensional
embeddings by adding MLPs to the final layer. We experi-
mented with 2 methods: 1) pooling and then using an MLP
to reduce the dimension, and 2) reducing the dimension be-
fore pooling. From the results(recall@10), we observed that
MRL outperformed pooling to a specific dimension using
MLPs.

Dimension Pre-pool Post-pool MRL
2048 -3.2% -2.7% +0.1%
1024 -2.7% -2.3% -0.2%
512 -1.1% -1.0% -0.8%

Table 3: Percentage difference in Recall@10 for different
embedding dimension sizes compared to using the full 3072
dimensions. We consider a pre-pooling projection (project
to desired dimension then pool embeddings), post-pooling
projection (pool embeddings and then project to desired di-
mension) and applying MRL.

8.3 Effect of Hard Negatives on Recall Metrics

Hard Negatives Recall@10
Easy negatives only Baseline
Easy negatives + 1 hard negative/member +2.0%
Easy negatives + 2 hard negatives/member +3.6%

Table 4: Effect of adding per-member hard negatives on Re-
call@10.

Our experiment results clearly demonstrate that adding
hard negatives helps to improve recall metrics. We are ex-
ploring ways to introduce more hard negatives without hurt-
ing recall metrics too much. Some ideas currently being
worked on are progressively increasing number of hard neg-
atives during training, curriculum learning by bumping hard
negatives in an iterative way

8.4 Effect of Filtering for positives in interaction
history

Loss Full History Recall@10 Pos-Only History Re-
call@10

BCE 0.307 0.3944
InfoNCE 0.398 0.4238

Table 5: Recall@10 using different member history strate-
gies.

When we removed all negative engagements from the
prompt history and instead extended more positive items that
were engaged on, we saw a significant improvement in re-
call metrics (Table 5). In all subsequent iterations, negative
interactions were removed from the member prompt.

8.5 Effect of Last n pooling
We share our findings on pooling different set of last ’n’
tokens and compare it against pooling all tokens in the last
layer in this section:

Last n tokens used Percent
All Baseline
500 -7.0603%
250 -5.0040%
50 -11.2637%
1 -12.3594%

Table 6: Percent change across different Last n values.

From Table 6, we noticed that the baseline (pooling the
embeddings of all the tokens) performed the best. Pooling
any other subset resulted in recall@10 drops.

8.6 Can LLMs capture count features that are
important for Ranking

In the course of our work, we came up with a framework
with which we could enable the final embeddings to en-
code important count-based features that are used in the fi-
nal ranking model. This was critical for the overall success
of the retriever and we will share some of our learnings in
this section. One of the most important metrics for the re-
triever is how well it aligns with the ranking model. Hence,
if some of the important features for the ranking model can-
not be captured in the embedding space, this would result
in subpar candidates sent to the ranking model resulting in
engagement drops.

Results of adding engagement rate to input text and
truncating feed post length One of the key lessons we
learned was that quantizing the count features and passing
them to the input prompt ensured better correlation between
the final cosine similarity score and the feature value. We
demonstrate this with a simple study we did using the item
popularity counts, which is an important feature for the final
ranking model using a smaller dataset.

• For the Baseline in Table 7, inputs had the entire post
text and the raw popularity counts of the posts in the en-
gagement history of members (query side) and in the post
text (candidate side). Popularity counts could go to pretty
large values (tens of thousands).

• For the Candidate Model in Table 7 all post texts in the
query and item side were truncated to the first 60 tokens
instead of considering the whole post and popularity rates
(range of 1-100 percent) were added as features on top of
raw counts.

The column titled Correlation in Table 7 refers to corre-
lation between item popularity counts and cosine similarity
score between the embeddings. From the results in Table 7,
there is evidence (improved correlation and recall improve-
ments by 15%)that adding count-based features important
for the ranking model in a quantized manner to the input
prompt can be captured by the embeddings we generate for
retrieval. This aligns with the fact that the Llama-3 tokenizer



Model Correlation
between
popularity
counts
and cosine
similarity
scores

Recall@10

Baseline -0.0037 0.158
Candidate Model 0.1156 0.1839

Table 7: Results for measuring correlation between retrieval
scores and popularity percentages

groups 3 digits together as a single token (Arnett 2024).
Since the counts were now captured by a single token, this
could be an added factor in the feature correlation getting
better.

8.7 Online Ramp Results
We used all the learnings from the offline experimentation

and used the following set of hyperparameters to prepare a
model for the online ramp:

• Llama 3B base model with 3072 dimensions in last layer

• Use only positive interactions in member prompt history

• Mean pool embeddings of all tokens

• Employed 2 hard negatives for a per GPU batch size of 4

• Quantized popularity features to percentages

We A/B tested the new LLM-based retriever against the
existing suggested content retrieval model (Figure 1) and the
final ranking stages were identical for both setups.

We observed significantly improved suggested content
recommendations, which were served to our members, and
as expected we impacted members with few connections and
new members to LinkedIn substantially more in addition to
overall metric improvements online.

• Revenue Increased by +0.8% (pval of 0.03) as a result
of increased scroll depth and member interaction in the
LinkedIn Feed

• Daily Unique Professional Interactors Increased by
+0.2% (pval of 0.005) in the LinkedIn feed

Inspecting the metrics among member cohorts with lower
liquidity of candidate posts and fewer connections to other
members, we observed the following metric impacts:

• Daily Active Unique Users Increased by +0.23% (pval
of 0.05)

• Daily Unique Professional Interactions Increased by
+1.17% (pval less than 0.0001)

• Revenue Increased by +3.29% (pval of 0.03) for this
user group, indicating that the majority of platform-
wide impact came from infrequent members and mem-
bers with fewer connections, for whom suggested content
plays a much more vital role.

9 Conclusion
In this paper, we presented the redesign and implementation
of a modern retrieval system for the LinkedIn feed. We ex-
plored modeling choices, loss functions, and pooling strate-
gies, and demonstrated through offline experiments and on-
line A/B tests that fine-tuning large language models can
substantially improve the quality of recommended content
for our members.

Looking ahead, we plan to improve handling of unim-
pressed content at the retrieval stage to encourage explo-
ration, and to investigate more effective distillation strate-
gies for deriving dual encoders from cross encoders. Build-
ing on the efficacy of matryoshka learning, we are work-
ing on reducing embedding dimensionality to lower storage
costs. We are also exploring LLM-powered embeddings for
content generated by members’ connections, which repre-
sents the bulk of impressed items in the LinkedIn feed.

On the efficiency side, we are investigating methods to
shorten input sequences to improve GPU throughput in our
nearline system. Finally, we have begun prototyping user-
prompt–driven feed recommendation as a re-ranking layer,
which is already showing promising early results.
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