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Abstract

The concern that Artificial Intelligence (AI) and Machine Learning (ML) are entering a
“reproducibility crisis” has spurred significant research in the past few years. Yet with each
paper, it is often unclear what someone means by “reproducibility” and where it fits in the
larger scope of what we will call the “scientific rigor” literature. Ultimately, the lack of
clear rigor standards can affect the manner in which businesses seeking to adopt AI/ML
implement such capabilities. In this survey, we will use 66 papers published since 2017 to
construct a proposed set of 8 high-level categories of scientific rigor, what they are, and
the history of work conducted in each. Our proposal is that these eight rigor types are not
mutually exclusive and present a model for how they influence each other. To encourage
more to study these questions, we map these rigors to the adoption process in real-world
business use cases. In doing so, we can quantify gaps in the literature that suggest an under
focus on the issues necessary for scientific rigor research to transition to practice.

1 Introduction

The Artificial Intelligence (AI) and Machine Learning (ML) communities are becoming increasingly concerned
with the “reproducibility” of their fields. This has come on the heels of a reproducibility crisis noted in many
others. We will refer to this overarching concern, that the science of research is being done with some error
rate, as a generic “scientific rigor” concern. This concern is justified, and increasingly it is challenging to
evaluate the state of research around scientific rigor due to confused and incompatible usage of the same few
terms like “reproducibility” (Plesser, 2018).

Due to confusing and often inconsistently used terminology in the literature, it is challenging to understand
precisely what issues of scientific rigor the community is tackling, and how these issues may affect businesses
seeking to integrate AI/ML into their operational capabilities. In light of these issues, we propose a new
formulation of current scientific rigor research by surveying the current papers by the topics they cover.
Further, we recognize AI and ML are increasingly used by other fields and becoming critical to many
business operations. For this reason, we will further ground the discussion of our results in the context of
adoption by a business process to solve some real-world problem. We find that this conjoint analysis allows
us to better describe the scope of scientific rigor research and identify critically under-served areas that will
have practical and real-world benefits in easier and faster adoption into practice. We hope this provides a
tangible incentive for others to justify research in scientific rigor as having a real-world downstream purpose
and impact.

In this survey, we will expand the ACM’s proposed terminology of Repeatability, Reproducibility, and Repli-
cability which we find useful, although still insufficient to capture the breadth of works done to date. Our
contribution categorized current AI/ML research on scientific rigor into eight aspects we label as repeata-
bility, reproducibility, replicability, adaptability, model selection, label/data quality, meta & incentive, and
maintainability. These eight aspects are defined in Table 1. We propose these aspects based on our review of
66 papers published since 2017 and reflect the focus of the community at large. Table 1 also shows for each
aspect the proportion of papers focused primarily on that aspect (though many papers touch on multiple
aspects).

The rest of this article is organized as follows. First, we will detail the procedure we used to generate a
set of 66 articles for analysis in section 2. The eight topics are derived from the exhaustive reading of the
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Table 1: Eight primary topics that have been collectively described as “reproducibility” in the literature,
determined by our manual review. The first three are based on the ACM’s guidelines, the rest are informed
by surveying and categorizing the themes of existing literature.

Topics Main Concern % of papers
Repeatability Can the results be obtained by the original authors using their orig-

inal code and data.
16.9

Reproducibility Can a different team obtain the results using the code and data
provided by the original authors

15.4

Replicability Can a different team, using different code and/or data, obtain the
same results or results congruent with the original publication.

6.2

Adaptability Can the original authors using the original code obtain qualitatively
similar results on new/different data.

4.6

Model Selection Given a set of two or more models, what process can be used to
meaningfully and reliably determine which model to select for use.

27.7

Label/Data Quality Given a process for labeling data, how can we ensure that the process
results in meaningfully same labels over time and that the process
of labeling has minimal errors.

6.2

Meta & Incentive What are the motivators, or lack thereof, for scientific rigor. 9.2
Maintainability What are the issues and remediations in running the same AI/ML

solution as the people, code, and data are all altered in their nature
over time.

13.8

articles selected and inferred from themes and consistencies observed over the selected papers. Next, we
will summarize the eight major topic areas of scientific rigor in section 3, with sub-areas included based on
our literature review. Based on this survey of the literature we propose relationships for how these rigors
interact in section 4, that we find informative as a macro-level picture of the scope of scientific rigor. In
performing this survey, we find that it is often repeated that work of this type is not sufficiently rewarded or
incentivized. For this reason we propose a stylized analysis of how new AI/ML methods come to be adopted
in industry in section 5. This analysis suggests both motivation and justification for each type of rigor, as
well as gaps between the amount of research done today and the importance with respect to the adoption
process. Finally, we conclude in section 6.

2 Developing the Scope

Scientific rigor as a target of study is new within the machine learning field, and as of today, there are no
dedicated venues to the topic. This makes it challenging to perform a collection of the literature to survey
and summarize. For this reason, we will detail how we came to a list of works to survey as the core papers
to summarize into distinct topics.

First, we started with a list of seminal papers known to us within the AI and ML fields broadly. Other notable
works on reproducibility that are outside the field of machine learning are, such as (Ioannidis, 2005a), were
excluded from this list because we are focused on machine learning specifically. Our starting list of papers
was thus:

1. Odd Erik Gundersen and Sigbjørn Kjensmo. State of the Art: Reproducibility in Artificial In-
telligence. Proceedings of the 32nd AAAI Conference on Artificial Intelligence (AAAI-18), pp.
1644–1651, 2018

2. Edward Raff. A Step Toward Quantifying Independently Reproducible Machine Learning Research.
In NeurIPS, 2019. URL http://arxiv.org/abs/1909.06674. arXiv: 1909.06674

3. Xavier Bouthillier, César Laurent, and Pascal Vincent. Unreproducible Research is Reproducible.
In Proceedings of the 36th International Conference on Machine Learning, volume 97, pp. 725–734.
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PMLR, 2019. URL http://proceedings.mlr.press/v97/bouthillier19a.html. Series Title:
Proceedings of Machine Learning Research

4. D Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Dietmar Ebner, Vinay Chaud-
hary, Michael Young, Jean-Francois Crespo, and Dan Dennison. Hidden Technical Debt in Machine
Learning Systems. In Proceedings of the 28th International Conference on Neural Information Pro-
cessing Systems - Volume 2, pp. 2503–2511, Cambridge, MA, USA, 2015. MIT Press. Series Title:
NIPS’15

5. Joelle Pineau, Philippe Vincent-Lamarre, Koustuv Sinha, Vincent Larivière, Alina Beygelzimer,
Florence D’Alché-Buc, Emily Fox, and Hugo Larochelle. Improving Reproducibility in Machine
Learning Research (A Report from the NeurIPS 2019 Reproducibility Program). arXiv, 2020. URL
http://arxiv.org/abs/2003.12206. arXiv: 2003.12206

6. Chris Drummond. Replicability is not reproducibility: nor is it good science. In Proceedings of
the Evaluation Methods for Machine Learning Workshop at the 26th ICML, Montreal, Canada,2009,
2009. Series Title: Evaluation Methods for Machine Learning Workshop, the 26th ICML, June 14-18,
2009, Montreal, Canada

From this initial seed set of papers, we reviewed all citations to each paper, as noted by Google Scholar, to
identify any paper that seemed to be relevant to machine-learning and scientific rigor by subjective exhaustive
review. Each paper that was identified as being relevant to scientific rigor was used to repeat the search for
citations to/from the paper, and the Google Scholar profile of the lead author was reviewed for additional
papers of relevance. Any venue that was discovered in the survey process that was focused on scientific rigor
of some form (i.e., workshops) was also reviewed.

The cumulative citations of this article represent all of the found works we deemed relevant to the question of
scientific rigor. However, the final list we used to read in exhaustive detail to synthesize core topics required
further refinement to keep the scope reasonable. Thus the following filters were applied:

1. The paper had to be put on arXiv or published between 2017 and 2022, so that the survey would
reflect what current researchers are focusing on.

2. The paper had to present itself as being about “reproducibility” or scientific rigor as a core
theme/concept of the paper. Papers that tackled the same issue, but from other motivations, were
excluded. This choice was made to try and have the survey reflect what those focusing on scientific
rigor are considering.

The final set of 66 papers can be found in Appendix A.

3 The Current Scope of Work

Our literature survey identifies at least eight primary aspects of scientific rigor studied in the AI/ML lit-
erature. Each major sub-section will repeat one of the eight rigors defined in Table 1, and include further
delineation for nuanced sub-categories that are present or noteworthy in the literature.

Before we detail these aspects, it is worth noting that many extant articles are best summarized as opinion
pieces with varying degrees of formalization of their arguments. Most of these articles propose strategies
or arguments on how to obtain “reproducibility”, without evidence of effect (Gundersen & Kjensmo, 2018;
Matsui & Goya, 2022; Publio et al., 2018; Tatman et al., 2018). Others have provided opinion pieces on the
merits of focusing on Reproducibility (Lin, 2022) vs Replicability (Drummond, 2009; 2018; Raff & Farris,
2022) as the target goal of the AI/ML communities from a scientific perspective. The contents of this survey
are focused on works that study issues, incentives, or interventions to rigor issues in AI/ML In surveying the
current literature, and so does not include these opinion articles. However, we find this and the preceding
section 4 informative to a broader scope understanding that it is not a choice between Reproducibility or
Replicability, but a larger collective that must support all aspects of the study.
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3.1 Repeatability

Repeatability is concerned with the authors obtaining the same results using the original source code and
data. Interesting questions in repeatability include how to develop code and systems that make it easy
for the developer to keep track of how they came to their experimental results from an experimental design
perspective (Gardner et al., 2018; Paganini & Forde, 2020). In Human-Computer Interaction (HCI) research,
there has been significant study on the iterative development nature of computational notebooks (e.g.,
Jupyter) that are widely used in AI/ML development processes. These notebooks can be prone to many
subtle code errors/issues due to their fluidity and out-of-order execution. Enhanced tools can ensure the
exact execution sequence to generate a result (Head et al., 2019; Kery & Myers, 2018). Many simple factors
like using a random-number seed (i.e., for a Pseudo-Random-Number-Generator (PRNG)) are important for
obtaining instantaneous repeatability.

Other factors like software version conflicts are often thought to be factors of repeatability but often lead
to conflation. For example, does capture software versioning via a container system lead to repeatability,
or reproducibility? We argue it would be reproducibility as a higher-level concept in our categorization,
which we will detail further in section 4. A second distinction we make is that of instantaneous repeatability,
vs. repeatability over time. In this immediate section we consider instantaneous repeatability, where the
question is how to ensure repeatable results as the software/algorithm is being developed, and we find that
there is surprisingly little beyond the work noted in the prior paragraph. When time is added as a factor,
we consider this to be distinguishable as the maintainability rigor that we will detail in subsection 3.9.

3.2 Reproducibility

Reproducibility alters repeatability by imposing that a different individual/team be able to produce the same
results using the original source code and data. This is a high focus of the AI/ML community and incentiviza-
tion of Open Source Software (OSS) by major conferences and paper submission questionnaires/guidelines.
Current work can be divided into those that explore surface-level issues such as unquantified proposals or
exact procedure reproductions, vs those that attempt to quantify or better understand why a reproduction
does(not) work.

3.2.1 Surface Reproducibility

Surface-level studies of reproducibility report on the scale of the reproducibility challenge without examining
whether their attempts at improving Reproducibility work. The only study we are aware of found that 74%
of code released by the broader scientific community (beyond AI/ML) ran without issue (Trisovic et al.,
2022). Toward remediating this in machine learning, many have proposed techniques like Docker to try and
capture the exact conditions to re-run the experiments (Forde et al., 2018a;b).

3.2.2 Reproducibility In Depth

A major factor in Reproducibility, and the discovery of non-reproducible work, is errors in the original
comparisons being made. A seminal example from Metric Learning it was found that papers had multiple
changes occurring simultaneously in comparison to prior baselines (new layers like Batch-Norm, optimizers,
etc.) beyond just the proposed metric learning changes, which produced misleadingly large effect sizes
(Musgrave et al., 2020). Broadly, many other works have identified similar issues nuanced to the sub-domain
being studied (Lu et al., 2023; Liu et al., 2020).

The lessons from Musgrave et al. (2020) have re-occurred in many works since, especially in the Information
Retrieval (IR) community. Such work includes studies using similar baseline errors/lack of tuning (Rao et al.,
2022), studies expanding the set of baselines against an overly broad prior conclusion (Huang et al., 2022;
Wang et al., 2022), and studies demonstrating that decades-old methods are still competitive when given
the chance to run on larger modern datasets (Liu et al., 2022).
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3.3 Replicability

Replicability is concerned with a different person/team being able to produce qualitatively similar results
from the original article by writing their own code, and potentially different data. The aspect of replicability is
highly under-studied, likely due to the challenges this aspect presents. Replicability requires re-implementing
a target method’s code from scratch, which is a labor-intensive process. Notable work in this direction was
done by (Raff, 2019), who attempted to re-implement 255 papers, and computed features to quantify what
properties correlated with a replicable paper. A volunteer effort by ReproducedPapers.org is collecting some
Replicability attempts (Yildiz et al., 2021) based on which a thorough study in IR has been performed
(Wang et al., 2022). Lastly, a unique approach to the Replicability question was studied by (Ahn et al.,
2022), which focuses on the difference between computational floating point precision and the underlying
symbolic math. From this perspective, they are able to suggest conditions about what statements can be
rigorously tested and concluded about the math based on floating-point errors that would accumulate and
cause issues otherwise.

We are not aware of other work within AI/ML on replicability. This state of affairs is common to other
(relatively) code-free disciplines such as medicine (Ioannidis, 2005b) economics (Camerer et al., 2016) social
sciences (Camerer et al., 2018). In these disciplines, replication studies are necessary and representative
because it is the least costly way to evaluate a result. Other aspects of scientific rigor have a significantly
lower barrier to entry, largely because AI/ML has a large open-source culture.

3.4 Model Selection

Model selection deals with the common task of AI/ML papers: given two competing methods (one of which
may be the paper’s own proposal), how do we conclude which method is better? As the AI/ML literature
has advanced significantly through the presentation of empirically “better” algorithms, it is not surprising
that the majority of historical and current work has focused on the model selection question. This includes
how to pick and evaluate criteria for deciding “better”, how to build benchmarks for a problem, and the
process for determining “better” given criteria in a statistically sound way.

3.5 Evaluation Criteria & Methodology

Before one can select the “better” of one or more methods, it is first necessary to determine how the quality
of a method is determined. The scope of evaluation metrics and scores is larger than that of scientific rigor,
and this survey is concerned with cases where an invalid or errant procedure was identified and remediated.
The literature in this direction is old, starting in the late 90s on the various pros-and-cons of metrics like
Area Under the Curve (AUC) for evaluation (Bradley, 1997; Hand, 2009; Lobo et al., 2008). Likewise, work
has addressed issues in scoring from leaderboards (Blum & Hardt, 2015), and subtle issues in using cross-
validation to produce test-scores (Varma & Simon, 2006; Bergmeir et al., 2018; Varoquaux, 2018; Bates et al.,
2021). Niche examples of the evaluation concern also exist. For example, three decades of malware detection
performed subtle train/test leakage by adjusting for a target false-positive rate incorrectly (Nguyen et al.,
2021) and time series anomaly detection scores being overly generous to “near hits” (Kim et al., 2022).

3.5.1 Building Problem-Specific Benchmark Suites

It is becoming increasingly popular to build Benchmarks of multiple datasets, pre-prepared evaluation code,
and methodology for specific problem domains (Blalock et al., 2020; Eggensperger et al., 2021; Sun et al.,
2020). Such benchmark construction is popular, though yet has little agreed-upon practice with limited
study at a macro level (Koch et al., 2021).

3.5.2 Selection Determination

Much of the ML literature presents raw results and makes a non-scientifically rigorous statement of being
“better” by some metric. There are two approaches to developing improved comparisons.
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One is to devise better statistical tests to compare two methods when a single test-set is available, first
seriously studied by Dietterich (1998) with many follow-up works shortly after (Alpaydin, 1999; Bouckaert,
2003; Bouckaert & Frank, 2004). Different perspectives on this include using one test run to make a conclusion
(Dror et al., 2019), or including sources of variation in model performance (e.g., hyper-parameter values) and
comparing the distribution of model results (Bouthillier et al., 2019; 2021; Cooper et al., 2021). Others have
introduced computational budget for training and parameter tuning as a conditional factor that impacts the
conclusion of “best” (Dodge et al., 2019).

The second option is to use multiple datasets to perform a single test of whether one algorithm is better
than another (Guerrero Vázquez et al., 2001; Hull, 1994; Pizarro et al., 2002). The use of a non-parametric
Wilcoxon test has been found to be efficacious in multiple studies (Demšar, 2006; Benavoli et al., 2016). Dror
et al. (2017) extended this to make a conclusion about how many datasets, and which, a method performs
better on. Other recent work has proposed the use of meta-analysis methods to make conclusions of a single
method tested under multiple conditions (Soboroff, 2018). It is noteworthy that work using multiple datasets
to make decisions based on a single evaluation metric implicitly contributes to the Adaptability question,
which we explore next.

3.6 Adaptability and its Second-Class Status

Adaptability is the study of a different person/team, using the original code, but applying it to their own
and different data. Very little work focused on scientific rigor in AI/ML focus on Adaptability. To be clear,
many prior works have studied the question of generalization in machine learning – of which there is recent
evolution due to the advance of deep learning (Zhang et al., 2017). However generalization assumes some form
of intrinsic relationship (usually I.I.D.) between the training and testing distribution. Under Adaptability,
there is no direct train/test split to compare. Instead, it is a question of the methodology’s effectiveness on
an entirely different statistical distribution. Thus our concern is more focused on the practical real-world
issues that enable or inhibit a method to generalize.

The work we have found can broadly be described as including Adaptability to new datasets, or specialized
sub-sets, to better understand the overall behavior and utility of a set of algorithms (Marchesin et al., 2020;
Rahmani et al., 2022). The other work that tackles Adaptability is from an HCI perspective in validating a
method’s utility as population preferences evolve (Roy et al., 2022).

Though it has not been presented as a part of the literature on scientific rigor, considerable effort in the
Adaptability question has been advanced by Decision Trees based literature. In particular, the long-standing
effectiveness of tree ensembles has led to numerous studies investigating the persistent efficacy of tree en-
sembles (Grinsztajn et al., 2022; Wainberg et al., 2016). Despite little work on the adaptability question, we
make note that many works in Model Selection make use of the adaptability argument as a component of
their study or an otherwise latent concern.

3.7 Label & Data Quality

Label & Data Quality is focused with the reliability of data and label acquisition, error rates, and working
to understand how they occur, detect them, or work around them. Many works today are identifying these
issues long after dataset construction, in part due to the high accuracies now being achieved making the
errors more pronounced. For example, the process for deriving labels of ImageNet had rules incongruent
with the data’s nature (e.g., assuming only one class is present) and error-prone steps in the labeling pipeline
(Beyer et al., 2020). The issues of label quality also include train/test set leakage (Barz & Denzler, 2020).

Some of the most interesting and insightful research results have come from replicating dataset construction
and labeling processes for prior datasets, and then characterizing and discovering why differences in results
occur. This includes detection cases where a recreation is implicitly made more challenging than the original
dataset (Engstrom et al., 2020).

While there is a long history of research in inferring a single correct label from multiple labelers (Whitehill
et al., 2009; Lin et al., 2014; Ratner et al., 2016; Yoshimura et al., 2017; Ratner et al., 2020), this literature
is not generally framed as a scientific rigor issue. While these methods have been leveraged in work coming
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from a rigor perspective (Beyer et al., 2020), we are not aware of work that bridges a longitudinal study of
the replicability of these various label inference procedures.

3.8 Meta and Incentives

Very few papers have studied the incentives for scientific rigor. The study of the scientific process itself
is often termed meta-science, and when applied to AI/ML research would fall into this category. Such
research could include basic studies of incentives, drivers of scientific rigor, and surveys across various
AI/ML research domains. Sample studies focused on such drivers as the rate of data and code sharing over
Computational Linguistics (Wieling et al., 2018) and the use of statistical testing (Dror et al., 2018). Related
work has found that sharing code and producing Replicable research correlate with higher citations (Raff,
2022). Another study focuses on how evaluation and comparison practices evolve throughout the Machine
Translation community (Marie et al., 2021). The last work we are aware of challenged the treatment of
replicability as a binary “yes/no” question and instead suggests a survival model, where replicability is a
function of time/effort (Raff, 2021).

3.9 Maintainability

Maintainability is similar to Repeatability, in that we are considered with producing the same results with
the original authors (though new users could also occur) using the original code and data. The key difference
that distinguishes Maintainability is that time is a factor, as the ability to repeat results degrades over time as
nuances of code or software versions change1. Maintainability can also deal with the code itself changing over
time. The focus on the aspect of maintainability within AI/ML was started by the seminal work of (Sculley
et al., 2015). One key area of maintainability deals with adapting known “code-smells” while considering
ML-specific concerns and factors that practitioner surveys deem most important (Gesi et al., 2022). Another
key area of maintainability is the quality of the results as code itself changes. It has well known that scientific
algorithms may produce different results by different, seemingly equivalent, implementations (Hatton, 1993).
Multiple studies have found AI/ML is no exception to this history, with large and statistically significant
changes in accuracy when using allegedly equivalent algorithms and changing just the implementation, or
runtime platform (e.g., GPU hardware) (Coakley et al., 2022; Gundersen et al., 2022; Pham et al., 2020;
Zhuang et al., 2021).

4 Connections between Rigor Types

Having defined a set of eight rigor types that are being worked on, we further elaborate on our perception
of connections between these rigors. In particular, there are direct and indirect relationships, which are
summarized in Figure 1 with solid and dashed lines respectively.

4.1 Direct Relationships

The most obvious, and intuitive, connections are from Repeatability to Reproducibility to Replicability, as
each requires a progressive step of difficulty from the prior. If a single person/team cannot repeat their own
experiments, there is no reason to believe a different person with the same code would be able to reproduce
those results. Extended further, if they cannot reproduce the results with the original code, there is no special
reason to believe that by writing their own code or using different data they would be able to replicate the
results.

Less obvious are the interactions between maintainability and repeatability and replicability. First is the
two-way relationship between repeatability and maintainability. If an AI/ML system is not repeatable, it
cannot be maintainable, as repeatability is the property that we want to maintain. Similarly, if it cannot be
maintained it may not be repeatable over time. A simple case is the use of Docker to gain repeatability, which
is predicated on the repeatability of Docker containers. This assumption is true on short time horizons, but
changes in software dependencies, hardware requirements, and eventually deprecation of tools like Docker

1In software development this notion is often termed “bit rot”.
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Repeatability Reproducibility Replicability

Adaptability

Model Selection

Data Quality

Meta/Incentives: influence all other parts.

Maintainability

Interact With
Eachother

Is a precodition
for the target

Strongly
Influences

Figure 1: Connections on how rigor types influence each other. Solid lines indicate hard dependencies, while
dashed lines show influencing effects.

itself do not make it true in perpetuity. The time-based evolution that maintainability requires then directly
implies the replicability of a method. If a system is replicable, meaning the code or data can change as
well as the people, it is satisfying the requirement of maintainability over a single point in time. Thus,
maintainability involves iterated replicability over time, and instantaneous repeatability at any point in
time.

4.2 Indirect Relationships

Beyond the general influence of meta and incentives-based rigor having a relationship to all parts of scientific
rigor, we can further draw other connections that are of particular note. The most straightforward of these is
that of model selection on repeatability, reproducibility, and replicability, each of which will often incorporate
the model selection task as part of the motivation for why the proposed work should be used (i.e., it was
demonstrated to “be better” than something prior). Thus, by its nature, different approaches to model
selection will influence each. For example, the use of Random Search as a hyper-parameter tuning method
(Bergstra & Bengio, 2012) is potentially a hindrance to replicability due to higher variance, even if it is easily
repeatable and reproducible given the original code with initial seed values for the pseudo-random number
generator.

Upstream from this concern is then label and data quality, which will influence what features are selected.
This is particularly notable as many datasets reach high accuracies where “errors” in the model’s predictions
are discovered to be either 1) correct, and that the test data was mislabeled or 2) that the test instance
was inherently ambiguous (Barz & Denzler, 2020). This creates a new kind of noise in the selection process
and can thus alter conclusions on the merits of what is considered. This is particularly true for the eventual
downstream model selection under replicability, where the data in use may be different.

Finally, we note that a method that is adaptable is more likely to be maintainable. The nature of one
method being efficacious on many others is the observation that many small details on the implementation
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1. Existing problem identified, and
“good enough” data to validate
feasibility / pilot study.

2. Encouraging results received,
expansion of effort to build a pro-
duction ready model.

3. Outcomes satisfice, transition to
production.

Replicability

Repeatability

Quarterly model updates to main-
tain performance. Scope expan-
sion to other problems.

Staff on/off boarding and organi-
zational re-structing as functional
groups transition to new tasks.

Meeting uptime requirements,
Maintainability regular mainte-
nance & infrastructure

Reproducibility

Maintainability

Adaptability,
Repro-

ducibility

Selecting a better ML
algorithm to improve Key
Performance Indicators

Improving data quality,
curation, labeling, collection

Meeting uptime requirements,
Maintainability regular mainte-
nance &
infrastructure

Label/Data
Quality

Maintainability

Model
Selection

Adoption Process: Organizational Process: Improvement Process:

Figure 2: Stylized sketch of how AI/ML may be adopted by an enterprise and involves three overarching
processes: adoption, Organizational, and Improvement. Steps in each process relate to different factors
of scientific rigor. Businesses begin with an adoption process that determines a satisfactory solution, from
which it transitions to being a normal part of the organization’s total process. Organization processes may be
improved, but are always continuous until deprecated. Maintainability concerns occur in both later stages,
Numbered items occur in order, and others are any order.

can vary, while still producing quantitatively similar results, an often observed phenomenon in decision tree
literature (Quinlan, 1993; Breiman et al., 1984; Quinlan, 2006; Raff, 2017). This provides some inherent
“robustness” to issues that often cause maintainability problems such as changes in low-level libraries like
BLAS/LAPACK or new hardware.

5 Mismatch Between Academia and Industry

It is important to note the importance (and differences) of scientific rigor for researchers in the scientific
community and practitioners in businesses. Within the scientific community, the key goals of reproducing
models and experiments are to help (1) build upon existing AI/ML models, (2) compare the proposed
model against well-established baselines, and (3) advance knowledge in a particular knowledge base. In
contrast, businesses are often concerned with replicating existing (often manual) processes to help establish
consistency and reduce costs or gain capability. Thus, for a company to adopt an ML solution to their
own problems and data, the approach must be Replicable because, fundamentally, they are taking existing
research and applying it to a new or existing business problem. If an ML method is not Replicable, it thus
will not be adopted, and the other issues become unimportant. For this reason we consider Replicability an
under-studied issue in the literature given its practical importance.

To highlight this, we sketch a common business lifecycle for the use of machine learning in Figure 2. This
can be broken up into three processes:

1. The Adoption process that validates and determines an AI/ML method is valuable and worth using.

2. The Organization processes that constitute the regular and ongoing operations of an enterprise

3. The Improvement process by which a competitive advantage is built. strengthened.

For applications of ML where none existed before (i.e., replacing/augmenting a manual process), issues of
reproducibility occur sequentially through these three stages with cycles through the Organizational process.
Each scientific rigor question corresponds directly to a real-world need in its own right but may be predicated
on other stages having succeeded first. We expand upon these markings below.

The way academia and industry consider Model Selection is also important. Current academic research is
focused on what is best. But in many cases, a company does not care about what is best, but what satisfices.
Testing an algorithm on many datasets is often used to pick “best”, but from a business perspective, they
are indirectly demonstrating Adaptability. The distinction is often minor academically, but important
practically. Any ML method that satisfices by “solving” the business problem is acceptable to the business
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and can be adopted. As touched upon in section 3.4, this gives special value to determining best on a single
specific dataset. This is where a company would potentially derive a competitive advantage, but there are
few techniques for robustly selecting a single model with respect to a single dataset beyond the conventional
train/test split.

Once a model has been selected, then Repeatability and Reproducibility come into play. The business
unit needs to be able to run the model again, make small tweaks, or transition the solution from IR&D to
production and/or service teams. Over time, this becomes more complicated and enters Maintainability.
The business must plan for multiple years, which also means planning for key personnel turnover. When
key people who developed the model in the context of the larger business leave, the ability of new hires to
maintain the system in the larger environment may be significantly hampered.

We note as well that in the broader picture of an organization (distinct from the more micro-intrinsic level of
the previous section), Adaptability, Maintainability, and Model Selection are all intertwined. Selecting the
best model from an accuracy perspective for each problem may lead to some form of competitive advantage,
but also produces a maintainability burden: requiring increased documentation of how and why each model
was selected, potentially additional and varied hardware and software for inferences, and thus internal
overhead. A satisficing model that works for many problems, in turn, reduces this maintenance cost, but
at a potential cost to accuracy. Thus, model selection has additional micro and macro-level concerns, of
which we are not aware of any formal study. We do note that the XGBoost algorithm is potentially a strong
candidate for the study of the macro-level concern due to its support for a wide range of problem types
and features (e.g., regression, survival analysis, interpretability, training and inference speed, and broadly
its demonstrated adaptability) (Chen & Guestrin, 2016).

In the context of improving a business process, the Label/Data Quality factor is likely to be the most
important for successful organizations on a regular basis. The value of acquiring more data has long been
recognized to produce greater gains than developing new algorithms (Halevy et al., 2009; Banko & Brill,
2001; Domingos, 2012).

6 Conclusions

We have synthesized eight current directions in the literature of scientific rigor for machine learning, dis-
entangling them from the commonly repeated moniker of “reproducibility” and thus quantified the pro-
portion of each type as studied today. These rigor types have been further characterized by their inter-
actions/dependencies with each other, and how each is individually important to some part of a business
lifecycle in the deployment of AI/ML in the real world.
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