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ABSTRACT

The widespread application of Large Language Models (LLMs) imposes increasing
demands on safety, such as reducing harmful content and fake information, and
avoiding certain forbidden tokens due to rules and laws. While there have been
several recent works studying safe alignment of LLMs, these works either require
the training of reward and cost models and incur high memory and computational
costs, or need prior knowledge of the optimal Lagrange multiplier. Motivated by
this fact, we study the problem of constrained alignment in LLMs, i.e., maximizing
the output reward while restricting the cost due to potentially unsafe content to
stay below a threshold. For this problem, we propose a novel primal-dual DPO
approach, which first trains a model using standard DPO on reward preference
data to provide reward information, and then adopts a rearranged Lagrangian DPO
objective utilizing the provided reward information to fine-tune LLMs on cost
preference data. (Reviewer kvKV) Our approach only needs to train two models
rather than three as in prior works that need trained reward and cost models, which
significantly saves memory costs, and does not require extra prior knowledge.
Moreover, we establish rigorous theoretical guarantees on the suboptimality and
constraint violation of the output policy. We also extend our approach to an online
data setting by incorporating exploration bonuses, which enables exploration in the
uncovered prompt-response space, and provide theoretical results that get rid of the
dependence on preference data coverage. Experimental results on the widely-used
preference dataset PKU-SafeRLHF demonstrate the effectiveness of our approach.

1 INTRODUCTION

Large Language Models (LLMs) (Achiam et al., 2023; Touvron et al., 2023a;b) have achieved a
remarkable success in dialogues, summarization, instruction following, etc. Despite the huge success
of LLMs, LLMs may also output fabricated information and harmful content, such as texts involving
discrimination, crimes and moral issues (Gehman et al., 2020; Lin et al., 2021; Wei et al., 2023). With
the extensive application of LLMs, how to align them to enhance safety or impose constraints has
become a crucial problem. For example, we want to prevent LLMs from generating content that may
have negative societal impacts or ethical concerns. In Agentic Al or Al education applications, we
need to avoid certain tokens due to some rules and laws, or course content that has not been taught.

Recently, there are several works studying the safety alignment of LLMs. A popular formulation
is the constrained alignment problem, which aims to maximize the reward while constraining the
cost to stay below a threshold. Dai et al. (2024) proposed a safe reinforcement learning from human
feedback (RLHF) framework for this problem, which trains reward and cost models on reward and
cost preference data, respectively, and then applies an RL algorithm to fine-tune LLMs to maximize
the Lagrangian function under the learned reward and cost functions. Liu et al. (2024b); Wachi et al.
(2024); Huang et al. (2024); Kim et al. (2025) designed direct preference optimization (DPO)-based
safety alignment approaches. The idea of DPO is to directly fine-tune LLMs using preference data,
without training a reward model. However, these works either still require trained reward and cost
models (Liu et al., 2024b; Huang et al., 2024), or need prior knowledge of the optimal Lagrange
multiplier (Wachi et al., 2024), or are inefficient in cost information learning (Kim et al., 2025).

Motivated by the above facts, we propose a novel and provably efficient primal-dual DPO approach.
Our approach first trains a model using standard DPO on reward preference data, and then fine-tunes
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LLMs with a rearranged Lagrangian DPO objective on cost preference data, utilizing the reward
information provided by the standard DPO-trained model. Unlike prior works (Dai et al., 2024; Liu
et al., 2024b; Huang et al., 2024) which require to train and load three models, i.e., reward and cost
models and the reward-cost-aligned language model, our approach only needs to train two models,
i.e., the reward-aligned and reward-cost-aligned language models, and does not require any prior
knowledge on the optimal solution. Moreover, we establish rigorous theoretical guarantees on the
suboptimality and constraint violation of the output policy. Finally, we investigate an online setting
where collecting preference data online is allowed. In this setting, we adopt exploration bonuses in
our primal-dual DPO approach to guide exploration in the uncovered prompt-response space, and
provide theoretical results that remove the dependence on preference data coverage. All proofs are
deferred to Appendix due to space limits.

The contributions of our work are summarized as follows.

* We propose a novel primal-dual DPO approach for constrained LLM alignment. This
approach first trains a model using standard DPO on reward preference data to offer reward
information, and then adopts a rearranged Lagrangian DPO objective to fine-tune LLMs
utilizing the offered reward information. It neither requires to train reward and cost models,
which significantly saves memory costs, nor needs prior knowledge of the optimal Lagrange
multiplier. We provide rigorous suboptimality and cost violation guarantees.

* We conduct experiments on the PKU-SafeRLHF preference dataset (Dai et al., 2024).
Empirical results show that our approach achieves an effective helpfulness-harmlessness
trade-off without training reward and cost models.

* In the online data setting, by incorporating exploration bonuses in our rearranged DPO
objective, our approach can effectively explore the uncovered prompt-response space, and
enjoys theoretical results that get rid of the dependence on preference data coverage.

2 RELATED WORK

In this section, we review the related work to ours. With the rapid development of LLMs, the
alignment of LLMs has received extensive attention. RLHF (Ouyang et al., 2022) and DPO (Rafailov
et al., 2023) are the two main algorithmic frameworks for LLM alignment. RLHF first trains a reward
model, and then applies an RL algorithm with the learned reward model to fine-tune LLMs. DPO
does not explicitly train a reward model, but instead directly fine-tunes LLMs using preference data.

Recently, to reduce the harmful content generation of LLMs, there are several works studying safety
alignment. Dai et al. (2024) proposed a safe RLHF framework. Safe RLHF trains a reward model
and a cost model on reward and cost preference data, respectively, and then applies an RL algorithm,
PPO (Schulman et al., 2017), to maximize the Lagrangian function using the learned reward and
cost functions. Liu et al. (2024b) used trained reward and cost models to regenerate preference data
according to the Lagrangian function, and then applied DPO on regenerated data. Wachi et al. (2024)
observed a relationship between the optimal policy of maximizing the Lagrangian function and that of
maximizing the reward function, and performed DPO combined with this observation. However, their
approach requires prior knowledge of the optimal Lagrange multiplier, and their theoretical results
depend on the gap between the used and optimal Lagrange multipliers, which can be unbounded.
Kim et al. (2025) reordered preference data if the preferred response is unsafe and the not-preferred
response is safe, and ran DPO on reordered data. Their approach is inefficient in cost information
learning. Huang et al. (2024); Zhang et al. (2025) investigated constrained LLM alignment from the
perspective of dual optimization. Huang et al. (2024) proposed to first learn the optimal Lagrange
multiplier via an explicit form of the dual function to avoid the expensive computation of evaluating
the optimal policy under every updated Lagrange multiplier, and then compute the optimal policy.
Zhang et al. (2025) generalized the algorithms in Huang et al. (2024) to the multi-shot scheme and
focused on the primal-dual gap analysis under policy parameterization.

(Reviewer kvKV) (Reviewer VPsQ) In contrast to the above works, our approach only needs to
train and load two models, rather than three as in prior works which need trained reward and cost
models (Dai et al., 2024; Liu et al., 2024b; Huang et al., 2024; Zhang et al., 2025), or require prior
knowledge of the optimal Lagrange multiplier (Wachi et al., 2024). Regarding theoretical results, to
the best of our knowledge, only (Wachi et al., 2024; Huang et al., 2024; Zhang et al., 2025) and our
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work provide theoretical guarantees on the output policy. Moreover, we provide novel theoretical
results which get rid of the dependence on preference data coverage in the online data setting. The
results in (Wachi et al., 2024; Huang et al., 2024) have an unbounded term or require an extra
assumption, and the results in (Zhang et al., 2025) focus on analyzing the primal-dual gap brought by
policy parameterization. Due to the difference in needed assumptions and main focuses, the results in
(Wachi et al., 2024; Huang et al., 2024; Zhang et al., 2025) and ours cannot be directly compared.
We present a comparison table on the assumptions, the required trained and loaded models, and
theoretical guarantees with a more detailed description of related work in Appendix A.

3 PRELIMINARIES

Reinforcement Learning from Human Feedback (RLHF). The RLHF framework (Christiano
et al., 2017; Ouyang et al., 2022) consists of three phases: (i) supervised fine-tuning a pre-trained
LLM on a high-quality dataset of downstream tasks, e.g., dialogue and summarization, (ii) reward
model learning, and (iii) RL optimization with the learned reward model.

Let & and ) denote the sets of all possible prompts and responses. We define a policy 7 : X — Ay
as a mapping from X to a distribution on ), where Ay, denotes the set of all distributions on )). We
formulate an LLM as a policy, and use 7 to denote the supervised fine-tuned (SFT) model.

In the reward model learning phase, we have access to a reward preference dataset D" =
{xf, y™, y" N where 2 is a prompt, ¥, y!! are preferred and dispreferred responses under prompt
7}, and the superscripts r, w and 1 stand for reward preference, “winner’” and “loser”, respectively. The
generation of preference data is as follows: We assume that there exists an unknown reward function
r*(2,y) € [~ Rmax, Rmax] for some constant Ry,,x, which models the helpfulness of response y
under prompt x. Human annotators compare a pair of responses ™, 3" under prompt . Then, we
assume that the probability that y™ is preferred to 3 under prompt 2 follows the Bradley-Terry
model (Bradley & Terry, 1952):

r [y™ rlx _ eXp(T*(x?yrw)) = o (r*(z. v™) — r*(x rl
Pri V) = ) + ey T ) O

where o(z) := m denotes the sigmoid function. This Bradley-Terry model is a standard

assumption used to characterize human preference in the RLHF literature (Ouyang et al., 2022;
Rafailov et al., 2023). With the reward preference data, we train a reward model r via maximum
likelihood estimation (MLE), i.e., minimizing the negative log-likelihood loss:

Nf
. 1 w
min —— Zlogo (r(af, yi™) — T(xi,y?)) . 2)
i=1

In the RL optimization phase, we apply RL algorithms, e.g., PPO (Schulman et al., 2017), to fine-tune
the SFT model under the learned reward model 7:

max E,pr [Ey~ﬂ(~|x) [r(z,y)] — B -KL (7r(|:v)\|7rref(\x))] ) 3)
Here [ is a parameter controlling the deviation between the trained model 7w and SFT model 7,

since we do not want the trained model to be too far away from the SFT model. DP is a distribution of
prompts, and the optimal solution to Eq. (3) is independent of DP, which will be presented in Eq. (4).

Direct Preference Optimization (DPO). Recently, Rafailov et al. (2023) designed an direct prefer-
ence optimization (DPO) approach, which bypasses the reward model training phase in RLHF, and
directly fine-tunes LLMs using preference data. The derivation idea of DPO is as follows.

First, the optimal solution to Eq. (3) is (Peters & Schaal, 2007; Peng et al., 2019)

71-ref(y|‘r) exp (%T(LU, y))

Z(x) ’
where Z,.(z) := 3, oy Teer(y'| ) exp(%r(x, y')) is the partition function. Then, we can rewrite
Eq. (4) to express the reward function 7 by the optimal policy 7" as

r(z,y) = Blog % + Blog Zy (). 5)

“

™ (ylr) =
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Egs. (4) and (5) hold for any reward function r. Hence, the Bradley-Terry model in Eq. (1) can be
expressed by the optimal policy 7/.:
rw rl Tr:* (yrw‘x) 7T:* (yrl|m))
Pr[y™ - y'lz] =0 (6 log (™ |7) Blog revil) )
where the partition function Z,-(x) is cancelled out. Now, by expressing the probability that
preference data happen by 7., we can replace the likelihood in the MLE training objective in Eq. (2)
by Eq. (6), and obtain a new objective with the optimization variable directly being the policy:

Nr
L1 (Y |a;) (g |7%)
min —— 1oga(ﬂlogzwlrﬁlog tt .
™ Nr ; 71'ref(yg |$2) Wref(ylr”w;)

Eq. (7) is the training objective of DPO. Thus, DPO directly uses preference data to fine-tune LLMs
without training a reward model, and enjoys lower memory and computational costs than RLHF.

Safe RLHF. To enhance safety in LLM alignment, Dai et al. (2024) proposed a safe RLHF framework.
In safe RLHF, we assume that there exists an unknown cost function ¢*(z,y) € [—Cmax; Cmax|
for some constant Cax, Which characterizes the harmfulness of response y under prompt z.

(©)

(N

D¢ = {28,y 1Y, where 45 and y¢' denote unsafer and safer responses under prompt
¢ (y£™ has a higher cost than y¢"), and the superscript c refers to cost preference. We assume that
cost preference is generated according to the Bradley-Terry model with cost function c*, i.e.,
exp(c”(z,y™)) i
Pr[y™ = ¢lz] = =o (c"(z,y™) — " (z,9y7)) . 8
] = e el @ ) ®

Similar to Eq. (2), we can also train a cost model ¢ via MLE:

N¢
. 1 |
min ~ leoga (c(x‘;, ) — e(af, v§ )) . 9)

To restrict the costs of LLM outputs within a threshold, we consider the constrained optimization:
max  Epope [Eyor((a) [1(2,9)] = B KL (7(-|2) |7t (:|2))]
st c(z,y) <0, Vao~Dy~mx(|x).

Here for simplicity, we set the threshold of harmfulness to 0. The above problem is hard to solve
using neural networks, since it requires the cost of every possible response y to stay below 0.

To feasibly perform safety alignment, many prior works, e.g., (Dai et al., 2024; Wachi et al., 2024;
Liu et al., 2024b; Kim et al., 2025), consider a relaxed optimization problem with an expected cost
constraint, which we called constrained alignment problem:

max  f(7) = Eanpr [Eynrn(fo) [ (2,9)] = B+ KL (7(-|2) | mret(:|2))]

s.Lt. g(’n’) = Ea:NDP,yN‘:r(~|x) [C* ((E, y)} <O0. (10)
In this work, we also study this relaxed problem. Then, it is natural to look into the Lagrangian dual
problem of the above constrained optimization:

min max L(m;A) i= Eynpr [Byan o) [ (@, y) =X+ (2, y)] = B-KL (7(-]2) | meer(-|2))] , (1D

where A > 0 is a Lagrange multiplier. Throughout the paper, we call L(7; \) the Lagrangian function.

With the above unconstrained formulation, the safe RLHF framework (Dai et al., 2024) regarded
r — A - ¢ as a new reward function and applied an RL algorithm PPO (Schulman et al., 2017) to
maximize L(7; \), and performed subgradient descent (Beck, 2017) to update A. Safe RLHF requires
to train both reward and cost models, which incurs high memory and computational costs.

4 PRIMAL-DUAL DPO UTILIZING STANDARD DPO

In this section, we propose a provably efficient primal-dual DPO approach for the constrained
alignment problem (Eq. (10)), utilizing a model trained using standard DPO on reward preference
data to provide reward information. We first describe the key idea behind our approach, and present
the specific algorithm PD-DPQO which has rigorous theoretical guarantees.



Under review as a conference paper at ICLR 2026

4.1 OUR APPROACH

First, we have that the optimal solution to max, L(m; A) in Eq. (11) is
T acylr)
Wref(ylx)

A-

where Z,_.o(2) 1= ey Tret(y'|7) exp(% (r(z,y') —
r and c can be any reward and cost functions.

r(x,y) — A-c(z,y) = Blog + Blog Z,_y..(x), (12)

c(x,y"))) is the partition function, and

When one wants to apply the derivation idea of DPO in Eqgs. (6) and (7), a difficulty arises: We do
not have preference data generated according to r — X - ¢, but only have preference data generated
according to r and c separately. Thus, we cannot use 3 log %;(ﬁﬁ'f) to directly express data

likelihood as in Eq. (7), which means that the DPO derivation idea cannot be directly applied here.
To overcome this difficulty, we first rearrange Eq. (12) as

c(z,y) = % <r(x,y) — Blog W — Blog Zr_)\.c(ac)) )

Plugging the above equation with r* and c¢* into Eq. (8), the generation of cost preference data can
be rewritten as Pry®" = yl|z] =

) T o () ' T e (Y 2) )
—r*(x,y™) — Blog —2 ="~ _ (r*(z,y") — flog —2 2 2 )
U(z\( (z,y™) — Blog Trer (Yo |) ( (2,4%) = Blog Trer (y°!|7) )

where Z,.« _ ..+ () is cancelled out. Then, replacing the cost preference data likelihood in Eq. (9) by
the above equation, we can obtain a training objective with the optimization variable directly being
the policy which is supposed to get close to 7\ _, .. during training:

NC
: 1 1 * () CcwW CW C * C C. C C
rr;m T N© Zloga ()\ (7" (x5, y5") — BLx (y5" |25) — (7“ (xiyyil) - ﬁLﬂ(yilxi)))> ,  (13)
i=1

m(ylz)
7Tref(.y|93)

where L, (y|z) := log is the logarithmic ratio of response y under x between 7 and 7yes.

Now the main challenge lies in that we do not know r*, and meanwhile, we do not want to ex-
plicitly train a reward model in order to keep memory and computational efficiency. To han-
dle this challenge, we make an observation that 7*(x¢,y$") — r*(25,4S") can be expressed by
Blog %}tl‘z; — Blog %jl‘;; according to Eq. (4). Then, 7. is what we can learn by training
a model using standard DPO on reward preference data.

Therefore, using this observation, the training objective Eq. (13) can be rewritten as

NC
: 1 ﬁ CW|,.C CW|,.C cli,.c cli,.c
min Ncgloga(A(Lw;*@i 99) = La(125) = (Ls, (651105~ La(0$'129)) ) )+ (14)

where 7. can be learned by first training a model using standard DPO on reward preference data.

Eq. (14) is the main idea of our primal-dual DPO approach utilizing standard DPO. Our approach
only needs to train two models, i.e., the reward-aligned and reward-cost-aligned language models,
rather than three models (i.e., reward and cost models and the reward-cost-aligned language models)
as in prior works (Dai et al., 2024; Liu et al., 2024b; Huang et al., 2024; Zhang et al., 2025), which
significantly reduces memory costs. This approach shows even more advantages when there already
exists a trained model on reward preference data, which is often the case since there are many
high-quality and open-source LLMs (Dubey et al., 2024; Team et al., 2025).

4.2 A PROVABLY EFFICIENT ALGORITHM PD-DPO

While Eq. (14) has presented the main idea of our primal-dual DPO approach, to enable rigorous the-
oretical guarantees, we develop a specific provably efficient algorithm PD-DPO, which imposes policy
search constraints based on Eq. (14) and enjoys suboptimality and constraint violation guarantees.
Before describing the specific algorithm PD-DPQ, we first introduce several assumptions.
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Algorithm 1: PD-DP0

InplIt: B’ﬂ—refy P A17 Ka NCE7 MCEa ’DP’ D'= {(1'1;7 yng yzl)}ze[N“} ’DC = {(IEL:’ y;;W? yfl)}le[NL]
Train a model using standard DPO on reward preference data:

1
melll Nt Trer (Y5 27) Wref(yﬂxri)

N | pr |t
Th ¢ argmin —— Zloga (ﬂ log er’) — Blog M) , (15)
=1

where II" is defined in Eq. (17)
fork=1,2,..., K do
Train a model using a rearranged Lagrangian DPO objective on cost preference data:

NC
N 1 7 (Y] %5) (Y |27)
T — argmin —— logo| — <B log —= = — Blog —*——*—
N¢ ; <)\k e (Y5 |5)

mElT, Teer (Y5 |25)
w2 (9 )e9) (g )25)
—(Blog —22iZi _ Blog #) , (16)
( Wref(y?lﬂf‘{) Wref(yﬂxg)
where II7 is defined in Eq. (18)
Construct an estimate ¢ for E,pe y~m, (.|2)[c* (2, y)]: Fori =1,..., NCE, first sample
MCE iid.

x; ~ DP, y; ~ mi(-|z;). Then, for each (z;,y;), sample {Z; ; };2; "~ Ber(o(c*(zi,y:)))-
Set &), wtE Zf\ff o (51 Z;Vicf Zi j), where 071 (2) :=log(12 — 1) is the inverse
of the sigmoid function

Akt1 ¢ Projig 5, (A + 1), where n 1= %

return 79 := unif(mq, ..., 7x)

Assumption 1 (Slater’s Condition). There exists a policy 7T which satisfies
f™)—f(7)

Epnpp ynz(-|ayc® (2,9)]

Eynpr ymr(-|2)[c*(2,y)] < 0. In addition, we know a constant p > —

This assumption is common in the constrained optimization and learning literature (Beck, 2017;
Efroni et al., 2020). In practice, it is reasonable that there exists a safe policy model, e.g., a language
model which refuses to answer harmful questions albeit less helpful.

Following prior works (Dai et al., 2024; Kim et al., 2025), we also allow querying cost binary
feedback from human annotators, which indicates whether a response y is safe under prompt x. Such
cost binary feedback is generated according to

Pr{Z(y) = 1]z] = o (¢"(z,y))
and Pr[Z(y) =0|z] =1 — o (c*(x,y)), where Z(y) = 1 and Z(y) = 0 denote that y is unsafe and

safe, respectively. We will use cost binary feedback in algorithm PD-DPO to estimate the cost of the
current trained model for Lagrange multiplier update.

Now we present an efficient and provably convergent primal-dual DPO algorithm PD-DPO. PD-DPO
first trains a model using standard DPO on reward preference data, and leverages this model to
provide reward information to train a model using a rearranged Lagrangian DPO objective with policy
search constraints. Then, PD-DPO conducts projected subgradient descent to update the Lagrange
multiplier. PD-DPO performs such model training and Lagrange multiplier update alternately.

Algorithm 1 illustrates the algorithm procedure of PD-DPO. Specifically, PD-DPO first trains a model
w7 using the standard DPO objective (Rafailov et al., 2023) on reward preference data D" within a
constrained policy search range:

mrr(yl) - exp (3r(x.y)

Zy/ey Wref(y/‘x)  €Xp (%T(l’,y/))

Since we use only finite preference data, we cannot exactly learn .. Instead, we learn a reward
function # which is close to 7* and implicitly maintained by the policy 7. The notation 77 denotes

= ﬂ—(y|x) = e [_Rmaxv Rmax] . (I7)
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the optimal policy under the learned reward function 7 (Eq. (4)). The policy search range II" is used
to restrict the learned reward function 7 within [— Ryax, Rmax] (Line 1). Next, in each iteration &,
given a Lagrange multiplier Az, PD-DPO utilizes the reward information provided by 7% to train a
model using a rearranged Lagrangian DPO objective as derived in Section 4.1, but with a constrained
policy search range:

Tref (Y] Z) €xp ( (B log = ﬂmf(y‘z) — Apc(z, y)))
Iy, : =< w(ylx) = - ) : ¢€ [~ Chax, Cmax]
Zy rey Tref (y'|x) exp (E (ﬁ log mef(y B) Aw(x,y’)))
“ Trr(yl2) exp (§ (7(2,9) = Mne(, 1))
= 7T(1/|x): 1 ce [_Cma)u Cmax] . (18)

S yey Mt/ |2 exp (§ (7(z, ) = Aec(z, 1))

Here equality (a) is due to Eq. (5) and the fact that the partition function Z;(x) only depends on = and
can be cancelled out. IIj, is used to restrict the learned cost function within [—Chax, Cmax] (Line 3).

After obtaining 7y, we estimate the cost of mj, for Lagrange multiplier update using the following

scheme: We i.i.d. draw N°F prompt- response pairs {(xz, Yi)}i ClE using 7, where the superscript CE
stands for cost estimation. For each pair (x;, y;), we i.i.d. query human annotators whether response
y; is safe under prompt z; ME times, and obtain M“E cost binary feedback {Z;, ]} _1 " drawn from
Ber(o(c*(24,y:))). Then, we take the inverse of the sigmoid function o =1 (-) on the average of these
MCE Bernoulli outcomes to obtain an estimate ¢ for the expected cost of 7, (Line 4). In analysis,
we can bound the deviation between this estimate ¢; and the expected cost of 7y, (see Appendix C.2).
After cost estimation, PD-DP0O performs projected subgradient descent with ¢, to update Lagrange
multiplier Ag, and enters the next iteration (Line 5).

4.3 THEORETICAL GUARANTEES OF ALGORITHM PD-DPO

Unlike prior works (Dai et al., 2024; Liu et al., 2024b; Kim et al., 2025) which did not provide
theoretical guarantees for their output policy models, we establish rigid suboptimality and constraint
violation guarantees for the output policy of algorithm PD-DPO.

First, we note that our rearranged Lagrangian DPO objective (Eq. (16)) and the safe RLHF procedure,
which first trains reward and cost models using MLE and maximizes L(7; A;) under the learned
reward and cost functions, have the same set of optimal solutions (see Theorem 4 in Appendix C.1
for a formal statement). Next, we present the theoretical results of algorithm PD-DPO.

For any (z,y) € X x Y, let ¢(x,y) denote a |X||)V|-dimensional vector where

the entry corresponding to (x,y) is 1 and all other entries are 0. Let «a(z) =
\/(exp (z) +exp(—2) + 2)2 (|X||y\ + log (%)) + ~z2 and
X||V|INEEK
og () | o |l (H2FE)
B := pCmax N CE + W MCE

+p'a<Cmax)<E(z,y)~DP><rr*|:

K
1
(z,y)ll (Spe +71)71] + ?Z E(r,y)wDPXﬂkﬂ|¢(‘r7 ol (Spe +71)71] )
k=1

K
1
(@, y)”(zmﬂl)‘l} +EZ]E(M)~D"X” [Ilcﬁ(m, y)”(%rﬂf)_l} >
k=1

T .
Here Xpe = 3, , vepo (0(,y) — ¢(z,y")) (¢(z,y) — ¢(z,y") with o € {r,c}. For any m,
(z,y) ~ DP x m denotes « ~ DP, y ~ 7(-|x). v > 0 is an arbitrary regularization parameter. W is a
parameter dependent on Cyyax, Which is formally defined in Eq. (28) in Appendix C.2.
Theorem 1 (Result of Algorithm PD-DPO). With probability at least 1 — 9, for any K > 1, the output
policy w$" of algorithm PD-DPQ satisfies

) = 1) = 0202 1 ). i) - o(f\’;;%(“l Af”f )+ 2).

+05(Rmax)<E(w,y)~DP X 7% |:
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. 1 . . . 1 1
In this result, the —= term is an inherent error of the primal-dual method. The —~= and ——=

terms are the error due to cost estimation. The four ||¢(x, y)|| (=0 1)~ terms are the error due to
inferring reward and cost information from preference data. The ||¢(x, y)|| (s po+1)—1 factor stands
for how broadly the given preference data cover. Theorem 1 shows that the suboptimality and cost
violation of the output policy by algorithm PD-DPO can be arbitrarily close to zero, when the given
preference data have sufficient coverage, and the number of preference data, the number of iterations
K, and the number of samples for cost estimation N°E, MCE are large enough.

5 EXPLORATORY PRIMAL-DUAL DPO WITH EXPLORATION BONUSES

The result of algorithm PD-DPO (Theorem 1) depends on the coverage of preference data, i.e.,
[¢(z, Y)ll (2 po+~1)-1- If the given preference data do not have sufficient coverage, the suboptimality
and constraint violation of PD-DPO can be unbounded.

To resolve this coverage issue, we further investigate an online setting where collecting preference data
online is allowed. In this setting, we develop an exploratory primal-dual DPO algorithm 0-PD-DPO,
which incorporates exploration bonuses b5, (x, y) and b}, («, y) in the rearranged Lagrangian DPO and
standard DPO objectives. The construction of exploration bonuses is based on the Bradley-Terry
model (Egs. (1) and (8)), which is commonly assumed in many RLHF works, e.g., (Zhu et al., 2023;
Wachi et al., 2024; Huang et al., 2024). In algorithm 0-PD-DPO, the trained policy has an incentive to
explore the uncovered prompt-response space, and gradually expands the used preference data. We
defer the pseudo-code and detailed description of 0-PD-DPO to Appendix D due to space limits.

We take the incorporation of b}, in standard DPO as an example to explain the intuition behind
why including exploration bonuses can encourage exploration. For the standard DPO objective

(Eq. (15)), algorithm 0-PD-DPQ will subtract a b}, (z, y™) term from the original 3 log I erm,

Trref (yrw‘w)
When preference data do not cover (x, y™) well, b}, (z, y™) will be large. Then, subtracting a large
7 (y™|x)
et (y™ |)
value of /3 log % which achieves the optimal value of the MLE objective function. Thus, by
incorporating exploration bonuses in the DPO objective, the trained policy is incentivized to explore
the uncovered prompt-response space. This design and its analysis are novel to the RLHF literature.

value from S log encourages 7 to put a higher probability on y™ to maintain the original

Now we provide the suboptimality and constraint violation guarantees of algorithm 0-PD-DPO. Let
w(z) =/ (exp (2) + exp (~2) +2)2 - (|X][V] + log(X))/Non + 40122 and

Here N°" is the number of preference data collected online in each iteration. 7" > 0 is a given
regularization parameter. C"* is a parameter related to a baseline policy which is used in online data
collection. The definitions of the baseline policy and C®* are in Eq. (34) in Appendix D.

Theorem 2 (Result of Algorithm 0-PD-DPQ). With probability at least 1 — 6, for any K > 1, the
output policy T%" of algorithm 0-PD-DPO satisfies

* outy __ AlCmaX on outy __ Cmax (>\1_2p)2 Bt
) = (i) = O( 22 ). gty o S (RS2 0+ 20,

Compared to Theorem 1, here the results have no dependence on the coverage of preference data,
ie., [|¢(z, y)|l (50 +~1)-1- Theorem 2 demonstrates that the adoption of exploration bonuses in the
rearranged Lagrangian DPO objective effectively incentivizes exploration and expands the used
preference data during training. When all problem parameters K, N°E, ME_ N°" are large enough,
the suboptimality and constraint violation bounds will shrink to zero.
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Dai et al., 2024

While prior works (Huang et al., 2024; Wachi et al., 2024) also provide theoretical results, Huang
et al. (2024) require an assumption that the optimal policy is feasible under the estimated reward
and cost functions. The results in (Wachi et al., 2024) have a term of the deviation between the used
and optimal Lagrange multipliers, which can be unbounded since their algorithm does not contain
any scheme to learn the optimal Lagrange multiplier. In addition, the results in prior works depend
on preference data coverage. To the best of our knowledge, Theorem 2 is the first result for the
constrained alignment problem (Eq. 10) to get rid of the dependence on preference data coverage.

6 EXPERIMENTS

In this section, we provide experimental results. Our experiments are run on an Intel Xeon
Platinum 8558 CPU and a single NVIDIA GH200 96GB GPU. Following prior works, we use
the PKU-SafeRLHF preference dataset (Dai et al., 2024) to train and evaluate models, and take
Alpaca-7b-reproduced as the SFT model, which is a fine-tuned version of the LLaMA-2-7b
model (Touvron et al., 2023b) on the Alpaca dataset (Taori et al., 2023). We compare our algorithm
PD-DPO with the SFT model and existing open-source safety alignment algorithms Beaver-v3.0 (Dai
et al., 2024), SafeDPO (Kim et al., 2025), SACPO and P-SACPO (Wachi et al., 2024).

1

Dai et al., 2024). (Reviewer kvKV)
(Reviewer QQdF) Our PD-DP0O (A = 3) outperforms the SFT model, SafeDP0 (Kim et al., 2025)
and SACPO (Wachi et al., 2024) in both harmlessness and helpfulness. The performance of PD-DPO
(A = 3) is comparable to that of P-SACPO (Wachi et al., 2024). However, PD-DPO does not require
prior knowledge of the optimal Lagrange multiplier as in SACPO and P-SACPO. While PD-DPO has
worse performance than Beaver-v3.0 (Dai et al., 2024), PD-DP0O only needs to train two models
rather than three models as in Beaver-v3.0. In addition, Beaver-v3.0 requires much higher memory
costs than our algorithm (cannot be run on a single GH200 GPU with 96GB memory), and does
not have rigorous theoretical guarantees as our algorithm. This trade-off between performance and
memory costs is similar to the trade-offs between DPO and RLHF that have been reported in the
literature (Rafailov et al., 2023; Xu et al., 2024).

7 CONCLUSION

In this work, we study the constrained alignment problem for LLMs, which aims to maximize the
reward while constraining the cost to stay below a threshold. We develop a novel primal-dual DPO
approach for the offline and online data settings. Our approach adopts a rearranged Lagrangian DPO
training objective, utilizing the reward information provided by a model trained using standard DPO.
We establish suboptimality and constraint violation guarantees, and provide experimental results on
the PKU-SafeRLHF dataset (Dai et al., 2024) to validate the effectiveness of our approach.

There are several interesting directions for future work. One direction is to extend our theoretical
results to the policy parameterization setting. The challenge is that under policy parameterization, the
constrained alignment problem can be non-convex. Another direction is to investigate stricter cost
constraints, e.g., per-response constraints, which is challenging to tackle using neural networks.
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ETHICS STATEMENT

This paper studies the alignment of LLMs to enhance safety or impose certain constraints. The data
used in experiments may contain harmful or offensive content.

REPRODUCIBILITY STATEMENT

This paper provides theoretical guarantees and experimental results for the proposed primal-dual
DPO approach. All results are reproducible. For theoretical guarantees, the assumptions required
are stated in Sections 3 and 4.2 and Appendix D, and all proofs are presented in Appendix. For
experimental results, the experimental setup is described in Section 6 and Appendix B, and the code
is provided in supplementary materials.
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APPENDIX

A A FULL REVIEW OF RELATED WORK

In this section, we give a more detailed review of related work.

With the extensive application of LLMs, the alignment of LLMs has received widespread attention in
the AI community, which aims to make LLMs align with human preference and values, and become
more helpful and harmless. RLHF (Christiano et al., 2017; Ouyang et al., 2022) and DPO (Rafailov
et al., 2023) are two main algorithmic frameworks for LLM alignment. RLHF first trains a reward
model, and then applies RL algorithms with the learned reward model to fine-tune LLMs. DPO
directly fine-tune LLMs using preference data, without explicitly training a reward model.

While LLMs have achieved a remarkable success, they may also generate harmful and fabricated
content (Gehman et al., 2020; Lin et al., 2021; Wei et al., 2023). Recently, there are several works
studying safety or constrained alignment of LLMs. The most related works to ours are (Dai et al.,
2024; Liu et al., 2024b; Wachi et al., 2024; Huang et al., 2024; Zhang et al., 2025; Kim et al., 2025).
Dai et al. (2024) proposed a safe RLHF framework, which considers maximizing the reward while
restricting the cost to be no larger than a threshold. Their approach first trains a reward model and
a cost model on reward and cost preference data, respectively, and then applies an RL algorithm,
PPO (Schulman et al., 2017), to maximize the Lagrangian function constituted by the learned reward
and cost functions. Liu et al. (2024b) regenerated preference data according to the Bradley-Terry
model (Bradley & Terry, 1952) with the Lagrangian function using trained reward and cost models,
and then performed the standard DPO algorithm (Rafailov et al., 2023) on these regenerated data.
Wachi et al. (2024) observed a relationship between the optimal policy of maximizing the Lagrangian
function and the optimal policy of maximizing the reward function, and then applied DPO combined
with this observation. The algorithm in (Wachi et al., 2024) requires prior knowledge of the optimal
Lagrange multiplier, and their theoretical results depend on the deviation between the used Lagrange
multiplier and optimal Lagrange multiplier, which can be unbounded. Kim et al. (2025) reordered
preference data if the preferred response (in terms of helpfulness) is unsafe and the dispreferred
response is safe, and then ran DPO on these reordered data. Their algorithm is inefficient in cost
information learning, and thus performs worse than our algorithm in experiments (see Section 6).
Huang et al. (2024); Zhang et al. (2025) investigated the constrained alignment problem from the
perspective of dual optimization. Huang et al. (2024) derived an explicit form of the dual function,
which only involves the SFT model and does not need to compute the optimal policy to the Lagrangian
function. Leveraging this derivation, their algorithms use offline data generated by the SFT model to
first learn the optimal Lagrange multiplier, which avoids the expensive computation of evaluating
the optimal policy at each step, and then compute the optimal policy only after it learns the optimal
Lagrange multiplier. However, the algorithms in (Huang et al., 2024) require trained reward and
cost models, or need to train the reward-aligned and cost-aligned language models in advance,
while our algorithm only needs to train the reward-aligned language model in advance. Zhang
et al. (2025) generalized the algorithms in (Huang et al., 2024) to the multi-shot scheme with policy
parameterization, and focused on analyzing the primal-dual gap brought by policy parameterizaiton.

(Reviewer kvKV) Table 1 summarizes the assumptions, the number of required trained and loaded
models, and theoretical guarantees on the output policy of our work and the most related works.
Our algorithm just needs to train and load two models, which significantly reduces memory costs
compared to prior works (Dai et al., 2024; Liu et al., 2024b; Huang et al., 2024; Zhang et al., 2025).
While Wachi et al. (2024) also only needed to train two models, they required prior knowledge of the
optimal Lagrange multiplier, and their theoretical results have an unbounded term due to the lack
of schemes to learn the optimal Lagrange multiplier. While Kim et al. (2025) needed to train only
one model, their algorithm has worse empirical performance than ours, and they did not provide
theoretical guarantees on the output policy.

Regarding theoretical results, since the needed assumptions and main focuses of the analyses in our
work and prior works (Wachi et al., 2024; Huang et al., 2024; Zhang et al., 2025) are different, the
results cannot be directly compared. The results in Wachi et al. (2024) have an unbounded term of
the gap between the used Lagrange multiplier and optimal Lagrange multiplier, since their algorithm
does not contain any scheme to learn the optimal Lagrange multiplier. The results in (Huang et al.,
2024) rely on the assumption that the optimal policy is feasible under their used cost model, which is

13



Under review as a conference paper at ICLR 2026

Table 1: Summary of the assumptions, the number of required trained and loaded models, and
theoretical guarantees on the output policy in our work and the most related works. In the last
column, 7 and ¢ denote the reward and cost models, respectively, and 7", 7¢ and 7"° denote
the reward-aligned, cost-aligned and reward-cost-aligned language models, respectively.

# The required Theoretical
Algorithms Assumptions trained and guarantees on the
loaded models output policy
PD-DPO (1) Bradley-Terry model ot ot 1
(ours) (i1) Slater’s condition za,m Yes
(D:iaff:f ﬁuggz 4) Bradley-Terry model 3:r,c,m No
(Liu S-;?P(Z)OZ 4b) Bradley-Terry model 3:r,c,m No
MoCAN, PeCAN (i) Bradley-Terry model 3: 7, e, e )
(Huang et al., 2024) ...(u) Sllater ¥ gondmon (7", 7€, wh°) Yes
” (>ii1) 7* is feasible under ¢ o
(i) Bradley-Terry model
(ii) Slater’s condition
CAID (iii) Boundedness of the 3. re Yes3
(Zhang et al., 2025) | policy parameterization gap "heT ©s
(iv) Strong convexity of
the dual function
(i) Bradley-Terry model
(Wachsilth;OZOZ 4) (ii) Slater’s condition A Yes*
° (iii) Knowledge of \*
(1) Bradley-Terry model
i rsiftegpgozs) (i) Vz, 37 s.t. ¢*(z,5) < 0 1: it No
” and 7er(g)z) > 0

! Our results do not require extra assumptions other than the standard Bradley-Terry model
and Slater’s condition. In addition, our results for the online exploration version of
algorithm PD-DPO get rid of the dependence on preference data coverage (Theorem 2).

2 The results in (Huang et al., 2024) rely on the assumption that the optimal policy 7* is
feasible under the used cost model c.

3 The results in (Zhang et al., 2025) focus on analyzing the primal-dual gap brought by
policy parameterization, instead of the error due to learning reward and cost functions
from preference data as in our work, (Wachi et al., 2024) and (Huang et al., 2024).

4 The results in (Wachi et al., 2024) have an unbounded term of the gap between the used
Lagrange multiplier and optimal Lagrange multiplier A*.

hard to verify in practice. Zhang et al. (2025) focused on analyzing the primal-dual gap due to policy
parameterization, instead of the error due to learning reward and cost functions from preference data
as in our work and (Wachi et al., 2024; Huang et al., 2024). In contrast to prior works, our results
do not require extra assumptions and remove the dependence on preference data coverage in the
extended online exploration setting (Theorem 2).

There are also other works related to safety or constrained alignment of LLMs, e.g., (Zhou et al.,
2023; Ji et al., 2024; Yang et al., 2024; Qi et al., 2025). Most of these works are empirical works,
which did not provide theoretical guarantees on the output policy and are less related to our work.

B MORE EXPERIMENTAL DETAILS

In this section, we will describe more details of algorithm implementation and experimental setup.
Our code is written based on the released code of prior safe RLHF work (Dai et al., 2024) on their
GitHub website, and we also open source our code in supplementary materials.

In algorithm implementation, we implement our algorithm PD-DP0O (Algorithm 1) without policy
search constraints 77 € II" in Line 1 and 7 € IIj, in Line 3, since these two constraints are mainly used
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Table 2:
Hyper-parameters PD-DPO (ours) SafeDPO Beaver-v3.0 SACPO and P-SACPO
3 0.1 0.1 0.01 0.1 (2 =0.025)
epochs 5 3 2 3
max_length 512 512 512 512
per_device_train_batch_size 8 8 16 16
per_device_eval_batch_size 8 8 16 16
gradient_accumulation_steps 1 1 1 2
gradient_checkpointing True True True True
Ir 2e-5 le-6 2e-5 2e-5
Ir_scheduler_type cosine cosine cosine cosine
Ir_warmup_ratio 0.03 0.03 0.03 0.03
weight_decay 0.05 0.05 0.1 -
bf16 True True True True
tf32 True True True True

for guaranteeing theoretical performance. In experiments, we set the Lagrange multiplier of algorithm
PD-DPO as 5 to save computational costs and time due to our limited computational resources. We
find that it works well in practice.

Dai et al., 2024 Wachi et al., 2024

Dai et al., 2024 Kim

et al., 2025

Kim et al.. 2025

C PROOFS FOR ALGORITHM PD-DPO

In this section, we present the proofs for algorithm PD-DPO, including the proofs for the connection to
the RLHF-based procedure, suboptimality, and constraint violation.

We note that our proofs for the connection between our DPO-based procedure and the RLHF-based
procedure (Theorems 3, 4, 5 and 6) follow the analysis of Proposition 4 in (Azar et al., 2024). We
extend their analysis to the setting with constrained policy search ranges and a Lagrangian objective.

C.1 CONNECTION BETWEEN OUR DPO-BASED PROCEDURE AND THE RLHF-BASED

PROCEDURE

We first give a result which builds a bridge between standard DPO and standard RLHF with con-
strained policy search ranges.

Let R := [— Rmax, Rmax) and C := [—Cpax, Cimax). Define the following problem which first learns
a reward model and then finds the optimal policy to maximize the learned reward function:
1 &
~ . W 1l
? ¢ min —ﬁ;logo(r(fvi,yﬁ ) = r(zi, 7)) (19)
max Eopo [Byr((a) [F(2,9)] = 8- KL(7(:|2) || mret(-] )] (20)

Theorem 3 (Connection between Standard DPO and Standard RLHF with Constrained Policy
Ranges). Problems Egs. (15) and (20) have the same set of optimal solutions.

Proof. Step (i). First, we prove that if 7 is an optimal solution to Eq. (20), then 7 is also an optimal
solution to Eq. (15).
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If # € R is an optimal solution to Eq. (19), then 7 € II" (as defined in Eq. (4)) is an optimal solution
to Eq. (20). We have that 7} is also an optimal solution to Eq. (15). Otherwise, there exists another
7' € II" which achieves a smaller objective value in Eq. (15). Then, there must exist a 7’ € R which
satisfies that

mrr(yle) - exp (' (2,1))

7T/(y|$) = 1 )
Z 7Tref(y,|5€) - exp (Br/(x’y/))
y' ey
=27, (x)
ie.,
F(a,y) = Blog U | glog 7,.(x),

ref(y‘x)

and the objective value in Eq. (19) achieved by r’,
_ L g:loga Blog T WIZ) L g100 7 (2s) — (ﬁlog”/(ﬂ') +BlogZ ,(:c»))
Nr i—1 ’/Tref(ylztw xl) " ! ’/Tref(yt | 7.) " ' ’

is smaller than that achieved by 7, which contradicts the supposition that  is the optimal solution to
Eq. (19).

Step (ii). Next, we prove that if 7 is an optimal solution to Eq. (15), then 7 is also an optimal
solution to Eq. (20).

If @ € II" is an optimal solution to Eq. (15), then there exists a 7 € R which satisfies

mrr(yl2) - exp (37(z.y) )

T (ylw) = :
Zy/ey 7Tref(y/“r) - €Xp (%’F(I7y/))
H(a.y) = Blog — A g10g 7, (a).
ref(y|l)

We have that 7 achieves the optimal value in Eq. (19),

7 (5 :)

i) 7Tref(%1|z )

Otherwise, there exists another 7’ € R and then there exists a 7’ = 7 € II* which gives a smaller
objective value than 7 in Eq. (21). Thus, 7 achieves the optimal value in Eq. (19). Then, the optimal
solution to Eq. (20) under cost model 7 is

wole) o mglyle) - oxp (57(0.))

_Zlog(;(ﬁlog((')—‘,-ﬁlogZ(xl) (510 —&—BlogZ;(xi))). @1

X Tyl - exp (; (ﬁ log F(y'x)) o Zf(m)»

’/Tref(y‘x
m(y|lx
X Trer(y|x) - exp (log (y|)>
e (y|0)
= 7 (ylz),
where (a) uses Eq. (5).
Therefore, 7 is also an optimal solution to Eq. (20). ]

In the following, we provide a result which builds a connection between our rearranged Lagrangian
DPO objective and the safe RLHF objective.

16
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Theorem 4 (Connection between Our Rearranged Lagrangian DPO and Safe RLHF). For any k > 0,
problem Eq. (16) and the following problem

¢+ el lenc | e Zloga a8, YY) — C(ﬁ,yfl)) ’ (22)

max Eznpe [Eyr(|2) [r(m,y) = X - (2, y)] = B KL(7(-|2)||mrer (-] 2))] - (23)
have the same set of optimal solutions.

Theorem 4 demonstrates that our rearranged Lagrangian DPO objective is an effective and alternative
way to learn the optimal policy of maximizing the Lagrangian function, while enjoying the advantage
of memory and computational efficiency.

Proof of Theorem 4. First, note that for any ¢, the optimal solution to Eq. (23) is
Trei (Y| ) - exp (l (P, y) = A - &, y)))
Z et (4 |2) - exp ( (P(z,y) — Mg - é(x,y')))

y' ey

Yz eX. (24)

ng)\ké(yu)

=Zp_xe(®)

Then, we have

r(yl) Blog foke(x))
W;:—,\ke(y‘x)

('é) i (ﬂlog M —+ 5logZ7:(z) - BIOg
7"'ref(y|‘ﬁ’(”)

Ak 71'ref(y|33)
where equality (a) uses Eq. (5).

— Blog Zf—m&(@) )

The proof consists of two steps.

Step (i). First, we prove that if 7 is an optimal solution to Eq. (23), then  is also an optimal solution
to Eq. (16).

If ¢ € C is an optimal solution to Eq. (22), then 7_, . € II} (as shown in Eq. (24)) is an optimal
solution to Eq. (23). We have that 7_, . is also an optimal solution to Eq. (16). Otherwise, there

exists another 7" € II§, which achieves a smaller objective value in Eq. (16). Then, there must exist a
¢’ € C which satisfies that

Trer(y|T) - exp ( (ﬁ log = f(li'ﬁ) — A - (x, Z/)))

> Tet(y'|@) - exp (6 <Blo mille) /\k~0'(fv,y’)>)7

us T
ey ref yl

' (ylr) =

=z . (w)
B log T:r_fkku’

ie.,

1 77 (y|z) ' (y|z) )
d(x,y) = ( log —~ — Blo — BlogZ - z) |,
( y> Ak 5 & Wref(ylx) 6 s 7Tref(y|x) /6 s B log w;f_kkcl( )

and the objective value in Eq. (22) achieved by ¢/,

T (Y5 |i) ™ (" |i)
Zloga( (ﬁ log ——~——= — flog ———~ — Blog Zﬁlog %_MC/ (z4)

Tref (yfw|xl) 71'ref(yiw|33i)
1 2 (ysa;) T (Y3 |z;)
— L (Brog Zeli ) gyo TWilE) _ gy00p 2))
)\k< & () & rer(v[s) 825106 72 rpe (T

17
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is smaller than that achieved by ¢, which contradicts the supposition that ¢ is the optimal solution to
Eq. (22).

Step (ii). Next, we prove that if 7 is an optimal solution to Eq. (16), then 7 is also an optimal solution
to Eq. (23).

If 7, € 11§, is an optimal solution to Eq. (16), then there exists a ¢;, € C which satisfies
Trr(yl2) - exp (% (Blog UL — -y (2,9) ) )

Zy rey Tref (Y’ |$) exp ( (B log md(z |‘a;)) — M - ez, y/)))

mr(ylr) =

ie.,
1 7 (y|z) T (y|2)
= — log —/—"——~ — Blog ———+ — Blog Z o .
cr(z,y) " (6 8 o) Blog et (012) Blog Blogﬁ_mk(m)
We have that c;, achieves the optimal value in Eq. (22),

WD) WACED) _
Zloga( (51 Trref (yzwl-T ) 510g ﬁlog ZB log ik —AkCr (xl)

Tref (yz v ‘ Ly ) Tref

L (s10g BUEED o SR <>)) 25

Wref(yzl| z) Wref(yzl| 7.) ﬁlOgm

Otherwise, there exists another ¢’ € C and then there exists a 7’ = 7%_, . € IT;, which gives a
smaller objective value than 7 in Eq. (25). Thus, c; achieves the optimal Value in Eq. (22). Then,
the optimal solution to Eq. (22) under cost model ¢, is

7Tref(y|m)

i (y|T)

+ Blog ———+
Tref (Y| )

m(y|x) o< mer(y|z) - exp (; (f(x,y) — Blog

+ Blog Zﬂlog e (m)))

Tref

(@)

X Tref(y|x) - €xp (5 (6 log Z#(x) + S log % + Blog Zﬁ R (@))

X Tref(y|2) - exp (; (6 log %))
= mr(y|z),

where (a) uses Eq. (5).

Therefore, 7y, is also an optimal solution to Eq. (23). O

C.2 CoST ESTIMATION FOR LAGRANGIAN MULTIPLIER UPDATE

In the following, we bound the estimation error between ¢ and E,pe yr, (-|2) [¢*(z,y)] in Line 4
of Algorithm PD-DPO.

Let ¢ := %. Define events

2| X || Y| NEK
_ log (#) . o
&= |Zi *O'(C*(xivyi)” < VCE , Vi e [N**|,Vk € [K] », (26)
N2 2K
" log (%+
F = NCE ZC (@i, 9i) = Egrpr yorme (o) [€7(2,9)]| € Crax %’ Vk € [K]
(27

18
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Lemma 1. It holds that
Pri&]>1-¢,
PriF]>1-4"

Proof. Using Hoeffding’s inequality, for any i € [NCE], for any fixed (z;, ;) = (z,9) € X x ), we
have that with probability at least 1 — 9,

|Zi — o(c* (@i, p1))| < loif(cé)

Taking a union bound over (z,y) € X x ), i € [NE] and k € [K], we can obtain the first statement.
Combining the fact that ¢*(z, y) € [—Chax, Cmax) for any (z,y) € X x Y, Hoeffding’s inequality,
and a union bound over k € [K], we can obtain the second statement. O

Lemma 2. Assume that event £ N F holds. Then, we have

2|X|[YINEK
5~ E @ p)l] < Coant B log (#H52)
Ck oDy~ (|z) 1€\ Ty Y > Umax NCE J/CE ,
where
1
W .= 28)
( - + l°g(”'yo~'/VCEK)> ( exp(=Cinax)  _ 1°8(W)>
1+exp(_cmax) MCE 1+eXp(_Cmax) MCE
)
and 0’ := §.

Proof. For any i € [N°E], we have

o (2213

MCE

| Zi — o (" (i)

IN

Since ¢*(x, y) € [~Cmax, Cmax| for any (z,y) € X x ), we have

g (2120575

MCE

g (22120575

MCE

U(_Cmax) - S Z’L S U(Cmax) +

The derivative of 071(2) is (67 1)/ (2) = ﬁ For any z lying between Z; and o (c* (x4, 1;)), we
have

(7Y (2)< ! W

2|X||Y|INEK 2| x| | V| NCEK
1 + log( 57 ) exp(—Cmax) 1°g< 57 )
1+exp(—Cmax) MCE 1+exp(—Chmax) MCE

According to the Lagrange’s Mean Value Theorem, we have

lo™N(Z) = c*(wi,ui)| = |0~ (Zi) — 07 Mo (¢ (@i, 1))
<W|Zi — o(c* (i, u1))|

g (22120575

MCE

<W
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Hence, we have

log (2|X|D§|/NCEK) log (Q\XHJ(;[NCEK)

(i ys) = W < U_l(Zi) < c(wiy) + W

MCE MCE
Since the above argument holds for any i € [N“E], we have
1 NCE log (Mll%ﬂ) 1 NCE
* 1,5
NCE ;c (zi,yi) =W 1E < NCE ;0 (Z;)
1 NCE log (z\xmgﬂ)
< <& > ny) + W
NCE MCE
i=1
Combining with the definition of event F, we have
2| X[|YINEK NCE
X log (25) log (57) 1 s
]ExNDP,yNTrk(“iC) [C (l‘,y)] - Cmax W - W MCE g NCE ZO— (Z,L) S
i=1
1Og (QK) log (W)
* 57
]EJUND",yNTFk('\JC) [C (xa y)] + Cmax W + W A/CE

C.3 SUBOPTIMALITY AND CONSTRAINT VIOLATION

Now we give the proof of the suboptimality and constraint violation guarantees for Algorithm PD-DPQ
(Theorem 1).

Recall that for any (z,y) € X x Y, ¢(z,y) denotes a |X||)|-dimensional vector where the entry
corresponding to (z,y) is 1 and all other entries are 0. In addition, let

Nl‘
Sooi= Y (B} y) — dlat,ul) (B u) — ot yi))
=1
N¢ T
Ype = Z ((ﬁ(xfa ng) - (b(x:ayfl)) (¢($§,yfw) - (j)(l’i,yfl)) :

i=1

Define event

G .= {|f(x,y) =@, y)| < 4@, Yl (s prsyr)-1 -

\/ (030 (R + 050 (~Rarw) + 27 (1X171+108 (3 ) ) 42 (R

é(z,y) — (2, y)| < 4o Y)l (s pe yyr)—1 -

\/ (030 (Cos) + 050 (~ o)+ 2)* (1191 108 (5 ) ) +9(Conme.

V(z,y) € X x y}.

Lemma 3 (MLE Guarantee, Lemma 3.1 in (Zhu et al., 2023)). It holds that
Pr[g] >1-2¢".
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Lemma 4. For any k > 1, we have
f(ﬂ-*; ’F) - f(ﬂ-k; ’F) <Ak Em~DF,y~7rk(~|J:) [é(x7 y)] + Ak (E$~Dp,y~ﬂ*('|$) [é(l‘, y) —c (Jf, y)]) :

Proof. Tt holds that

(@)
f(ﬂ-*; 72) < f(ﬂ'*, ’f) — Ak EZNDP,yNﬂ'*("I)[C* (.13, y)]

=Eonpr [Eymrnr(fa) [F(2,9) = A - €2, 9)] = B - KL(7" (-|2) | et (-] 2))
+ Ak : Em~DP,y~7r*(-|a:) [é($7 y)] - )‘k : EJZN'DP,yNﬂ'*('\w) [C* (JZ, y)]

2 Eonr By (o) [F(2,4) = M - é(2,y)] = B - KL(mx (-]2) | et (- |2))

+ Ak EINDp,yNﬂ*('|$) [é(zv y)} — Ak ExNDP,yNW*(-\m) [C* (xv y)]
= f(ﬂ-kv 72) - Ak E.’L‘N'Dp7yf\/ﬂ'k('|.’f) [é(xv y)] + Ak (EmeP,yNﬂ'*('\z)[é(xv y) —c (LC, y)]) )
where inequality (a) uses the fact that A, > 0 and 7* is feasible, and inequality (b) comes from the
definition of 75, and Theorem 4. O

Now we prove Theorem 1.

Proof of Theorem 1. Recall that §’ := g. Then, according to Lemmas 1 and 3, we have Pr[£ N F N
G] > 1 — 4. Hence, it suffices to prove this theorem assuming that event £ N F N G holds. In the
following proof, we assume that event £ N F N G holds.

For any k > 1 and \ € [0, 2p], we have
o\ 2 . ~ . ) 2
()\k+1 _ )\) = (PrOJ[O,Qp] (A + nelr) — Pro_][o’m ()\))
(a) - —\2
< (A + mcr — A)

— ()\k — 5\)2 + 27’]}€ék ()\k — 5\) + (77k)2 (Ek)Q s

where inequality (a) uses the nonexpansivity of the projection to [0, 2p].

Summing the above inequality over k = 1, ..., K, we have
0< (A1 =A) < (M =)+ 20 Boopryrom, (o € (2, 9)] - (Ak — A)
k=1
K B K B K
- Z 20y - EIN’DP,yNWk(-|m) [C* (l’, y)] : ()‘k - A) + Z 2Nk Ce ()\k: - A) + Z (7719)2 (Ek)Q .
k=1 k=1 k=1

Hence, we have

K

K
> 2k Bty (o) € (@ 0)] - A=Y 20 - Egropr yrormy () [6(2, )] - Ak
k=1 k=1

K
-2 " .
< ()\1 - A) + Z 277k‘>\k : Ea:NDP,yNTrk(‘\I) [C (l’, y) - C(I’, y)]
k=1

K K
+ Z 2% (>\k - 5‘) (ék - Emep,yNWk(<|x) [C*((E, y)]) + Z (77k)2 (ék?)2 .
k=1 k=1

Using Lemma 4, we have

K
> 20 (Banmymy g € (@, 0)] A+ £ 7) = f(mas )
k=1
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= M+ By 1) E2,9) = ¢ (2,9)])
B K K
)\1 + Z nk Ck:)2 + Z 277k)\k> : ]ECENDP,yNﬂ‘k("Z) [C* (J?, y) - é(xa y)]
k=1

-+ Z 2’I7k ()\k — 5\) (Ek — EINDpJ/Nmﬁ(‘u) [C*(:L', y)}) .

Recall that g, = 1. Then, we have

K B K
(f(m*) = f(me)) + A ZEIN'DP,ywﬁk(~|m) [c*(z,y)]
k=1 k=1
1 K
< 2> @) 2 M+ B yoomy (o) € (2,9) = &z, y)]
k=1 k=1

(M = A) (& = Bt ooy (2 [€ (2, 9)])
Ak - Egnpr sy~ (- |x)[ (.’1? y) (.’IJ, y)]

K K
=30 () = ) = S () — flms )
k=1 k=1
K

kY C’maux 2K * ;
277 ()\1 — )\)2 + % + Z Ak - EmeP7y~7rk(<|z) [C (CE, y) - C(I7 y)}
k=1
(A = A) (@ = Epopr gy (o) €5 (2, 9)])

Ak ExN'DP sy~ (- |32)[ ( y) (:E,y)]

+K- EINDP,yNTK‘*("CE) [’f‘*(.l? - ’f‘ T y ZEIN'DP,yNﬂ'k I)[ ( ) f(l‘,y)]

Let A = 0. Recall that 7% is the uniform policy over 71, ..., 7Tk and 7 := G AL NS Then, we have
f(@®) = f(rx")
1 X
K Z (f(7™) = f(mx)
k=1
| X[ || NCE
M 1oz (3) log (155 )

K
1
+P<E1~Dp,y~ﬂ*(-z) [H¢($7y)”(27}c+7])*1} +?Z EINDpnyﬂ'k('W) [¢<x’y)||(zvv+’ﬂ)li|>.

k=1

1
V (050 (Conas) + 050 (~Conas) + 20" (191 108 (5 ) ) +9(Conme?
1 K
+ (E%m,yw*(.m [Ilqﬁ(ﬂc,y)\l(zp,w)fl} 22> EonDrymm, (o) [||¢(%y><zpr+w)1]>‘
k=1
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\/(eXp (Rimax) + xp (—Rmax) + 2)° <|X|y| +log G)) + fy(RmaXV) .

Let A\ = 2p. Then, we have
(@) = (7% + 20Eqp y~7r"“‘( 1) [ (7, 9)]

Z 7Tk + > ZEI/\/DP yromg (- |x)[ ( )]

k: kl

If L Zk 1 Bz yomn (-2 [€* (2, 9)] < 0, the second statement of the theorem naturally holds;
Otherw1se we can replace the term 2pE,pr gy~ o (. |2) [ (2, Y)] BY 2p[Epmprp ymom (12 [ (2, )] +
in the above inequality. Then, using Corollary 1 and Lemma 10, we obtain

Ea:NDP,yNﬂ"’“‘( \z)[ ( )]

_9,)2 log (L
:O<Cmax (()‘1 2P) _’_)\1> +Cmax Og(é) =+

WK A\ NCE

log (|X||32\NCE)

MCE

S

K
1
+ (ExNDP,yNTr*(-CE) [||¢(‘T7y)||(29c+’)/[)_1:| +EZ ]EmNDP,yNTrk(-\m) {||¢(177y)”(zvc+71)—1]>.
k=1

¢ (05D (Conw) + X0 (~Conw) + 21 (12191 + 105 (5 ) ) +9(Cos

1

K
1
—i—; (Em~DP,y~7r*(~|a:)|:||¢(x7 y)H(EDH#yI)*l] +? E EINDP7yN7T;C(~|I)|:||¢(‘/E7 y)(zDr+71)1]> .
k=1

¢ (exD (Runa) + 3D (~Runa) + 2) (|X||y T log ( 5)) +7<Rmax>2).

D PSEUDO-CODE AND DETAILED DESCRIPTION OF ALGORITHM 0-PD-DPO

In this section, we present the pseudo-code and a more detailed description of algorithm 0-PD-DPQ.

Algorithm 2 illustrates the algorithm procedure of 0-PD-DP0. Compared to algorithm PD-DPQ,
0-PD-DPO includes exploration bonuses b,(x,y) and bj,(z,y) in the standard DPO and standard
rearranged Lagrangian DPO training objectives (Lines 3 and 4). We define the exploration bonuses

b (2, ) as

exp(z) +exp(—=z +2) 2
bi(a,y) ::4”‘“%’””@%*““”v R EEPEIED. (1aylog (5 ) )+

where

Sop = Y (0@9) - 0(@.9") (6a.9) — oy )
(z,y,y")€DY
K N

NO“ Z Z (ki Uhii) — O(@his Ui i) (D(@his Yri) — (@i, y;@,i))T

k=11=1

with z = Ryax When ¢ = r, and z = Cp,.x Wwhen o = c.

We take b}, (z,y™) in Eq. (29) as an example to explain the intuition behind why including exploration
bonuses b, effectively encourages exploration: When preference data do not cover (z, y™) well,
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Algorithm 2: 0-PD-DPO

Input: 3,8 := 3, B, e, p, A1y K, NOE, MCE, 4on, No = 32K 2 In(SEIXI) /(yom)2
D" = {(f, y, i) Fieve, D° = {(25, 5, 48) e ey

DY < D", D§ « D¢

fork=1,2,..., K do

Train a model using standard DPO with exploration bonuses:

% . ™ yrw € T w
Tjpp, < argmin — > logo </3 log W((yn'yi) = b (@, y™)
Tl (a,y™,yt)eDr ref
ﬂ-(yrl‘x) r 1l
- (/B IOg Wref(yrl|x) - bk (1’, Yy ) ) (29)

where IT:, is defined in Eq. (31)
Train a model using a rearranged Lagrangian DPO objective with exploration bonuses:

. 1 T, (Y |2) w(y™|x
Tk 4—argmin — Z loga<>\ (ﬁlogk‘kCW - Blog%
el (z,y*v,y)eDe k Trer (4| 2) Mret (4 |)

ar (g9 ey
i) - (1og T 10y (y'x)) - bi(x,y“)))), (30)

7rref(yCl |z) 7rref(yCl |z

where IT¢, is defined in Eq. (32)
Construct an estimate ¢, for Eqwpp yr, (-|2)[¢* (2, 9)]: Fori=1,..., NCE_ first sample

x; ~ DP,y; ~ m(-|z;). Then, for each (x;,y;), sample {Zi’j}j]‘icf i Ber(o(c* (x4, yi)))-

Set &, + v Zf\ff LA Z]Aicf Zij), where 071 (2) 1= log({X — 1) is the inverse
of the sigmoid function

Akl Proj[o)Qp]()\k + ncy), where 7 := cm:;l\/?

Fori=1,...,N°, sample x; ~ DP, y; ~ mj(:|x;), y, ~ 7°*¢(-|x;). Collect reward and

cost preference feedback on {(x;,y;, y})} X, , and obtain preference data { (x;, v, yi") } )

and {(l.i7quw7y§l)}£\7:“; on on
| Diy < D U{(za, v, i) Diyy = DU {(aa, 5™, 45}

return 79" := unif(mq, ..., 7x)

m(y™|z)
rww,cr(yfw ‘ x)
higher probability on ™ to maintain the original value of 3 log % which achieves the optimal

value of the MLE training objective. By incorporating exploration bonuses in the training objective,
the trained model 75, has incentive to explore uncovered prompt-response space.

b, (z,y™) will be large. Then, subtracting a large value from /3 log encourages 7 to put a

In addition, the constrained policy search ranges in Lines 3 and 4 also incorporate exploration bonuses,
which are defined as

mrr(yl2) - exp (4 (r(.y) + Ui(.9))

reRy, (3D
X ey mrly'i2) -exp (3 () + 2 )

ITj, == { w(ylz) =

and

ﬂ;k+bfk (yli)

Tref(y|x) - €xp (}3 <ﬂ log Treylz) Ak (c(z,y) — 52(377?/))))
z:—{w(yx)— T :
Zy/Gy Tref(Y']T) - €xp ([13 (,6’ log W — A (c(z,y') — bi(%l]’))))
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cE C}
{ Wl Tret(y|) - exp (é (Fr(2,y) + bl (2, y) — Ak (c(x,y) — bi(%y))))
= mylr)= .
Ey/ey 7Tref(yllx) - €Xp (% (72]@(111‘, y/) + bZ(.’L‘, y/) - )‘k (C(l‘vy/) - b%(mayl)))>

cEC}. (32)

At the end of each iteration, 0-PD-DPO collects reward and cost preference feedback using 7, and a
baseline policy 7°%¢ (Line 7). The baseline policy 7"*¢ is a fixed policy used in online preference
data collection for ease of comparison. We make a technical assumption on 72%¢:

base

Assumption 2 (Baseline Policy). The baseline policy m°*¢ satisfies that for any policy T,

By gyt |(0(2.9) = 6(@.) (8(a,9) = 6(w,9) | (33)
i Cbﬂse IE:ENDF’,y/NTrb“Se [¢(I7 y,)¢($7 y/)—q . (34)

This assumption is used to guarantee that the difference of feature vectors between any policy 7 and
7P3¢ can be connected to the feature vectors of %€ itself, which is useful in analysis when bounding
the error due to inferring reward and cost information from preference data.

After collecting online preference data, 0-PD-DPO adds these data to Dj, and Dy, which will be used
in model training in the next iteration (Line 8). As the algorithm proceeds, the preference data D,
and Dj, will cover more and more prompt-response space.

E PROOFS FOR ALGORITHM 0-PD-DPQO

In this section, we provide the proofs for algorithm 0-PD-DPQO in the online data setting, including the
proofs for the connection to the RLHF-based procedure, suboptimality, and constraint violation.

E.1 CONNECTION BETWEEN OUR DPO-BASED PROCEDURE AND THE RLHF-BASED
PROCEDURE WITH EXPLORATION BONUSES

First, we give a result which establishes a connection between standard DPO and standard RLHF
with constrained policy search ranges and exploration bonuses.

Define the following problem which first learns a reward model and then finds the optimal policy to
maximize the learned reward with exploration bonuses:

N . w |

Foemin = logo (r(a.y™) — r(a,y") (33
(z,y™,y1) D),

max Bz pr [Eyr(la) [Pr(2,) + U, 9)] = B - KL(7(|2) | mer(-|2))] (36)

Theorem 5 (Connection between Standard DPO and Standard RLHF with Constrained Policy Ranges
and Exploration Bonuses). Problems Egs. (29) and (36) have the same set of optimal solutions.

Proof. Step (i). First, we prove that if 7 is an optimal solution to Eq. (36), then 7 is also an optimal
solution to Eq. (29).

If 71, € R is an optimal solution to Eq. (35), then

'/Tref(y|x) - €Xp (% ('Fk(x, y) + bll;:(xv y)))

Yy ey maily/l2) - exp (§ (e, y) + Hi(2.y)))

oy (yl7) =

25



Under review as a conference paper at ICLR 2026

is an optimal solution to Eq. (36). We have that 77 o is also an optimal solution to Eq. (29).

Otherwise, there exists another 7’ € f[ﬁc which achieves a smaller objective value in Eq. (29). Then,
there must exist a v’ € R which satisfies that

7Tref(?/|x) - €Xp (% (r’(%y) + bfg(ffay)))

Syey merly/l2) - exp (3 (7 (2,y) + B (@.9)))

™ (ylz) =

)

ie.,

/
T'/ x, = fBlo M‘i’ lo Z’r’ o () — b} z,Y),
(z,y) =8 8 e l7) Blog Zy 1y () — b (2, y)

and the objective value in Eq. (35) achieved by 7/,

7I_/ Iw T
Y togo( Alog ZYTID L Blog 7,y () — By, ™)
( Yy yrl)eﬁr Wref(y |LL’)
.y, k

" () 1
—_— log Zr — b (z,y"
Tref yrl|$) + 6 0g Ly +bj, (x) k('T’ Yy ) )

- (6 log

is smaller than that achieved by 7 (since 7’ achieves a smaller DPO objective value), which
contradicts the supposition that 7, is the optimal solution to Eq. (35).

Step (ii). Next, we prove that if 7 is an optimal solution to Eq. (29), then 7 is also an optimal
solution to Eq. (36).

Ifme 1:[§C is an optimal solution to Eq. (29), then there exists a 77 € R which satisfies

Trr(yl) - exp (3 (7. ) + Vi (2.1)))

H(yl) = = ,
> yey Met(Y'|T) - exp (3 (F(z,y") + b}c(x,y’)))
ie.,
. _ 7 (ylz) N
7(z,y) = Blog 77Tref(y|x) + Blog Zz(x) — by (x,y). (37)

We have that 7 achieves the optimal value in Eq. (35),

o I'w
- ) logo Blog ~ D4 5106 72 (a) — b (2, 4™)
- et (Y™ )
(z,y™,y") €Dy,

i 1l
- (5 log m + Blog Zi(x) — by (z, y“)) ) (38)

Otherwise, there exists another ' € R and then there exists a 7’ = 7% € IT}, which gives a smaller
objective value than 7 in Eq. (38). Thus, 7 achieves the optimal value in Eq. (35). Then, the optimal
solution to Eq. (36) under cost model 7 is

(#() + B (e, y>>)

R I

m(y|z) o Ter(y|x) - exp (

& mrer(y]) - exp (1 (5 log S +Flog ZF(x)))

B Trer(y|2)
< mglyla) - oxp (1o )
Tret (Y] 7)
= 7 (y|z),
where (a) uses Eq. (37).
Therefore, 7 is also an optimal solution to Eq. (36). L]
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Now we present a result which relates our rearranged Lagrangian DPO objective to the safe RLHF
objective with constrained policy search ranges and exploration bonuses.

For any k > 1, define the following problem that first learns a cost model and then finds the optimal
policy for the Lagrangian function under 7, + b}, and Ay:

NC

A . 1 cw cl

Cr min — - Z;loga (c(a:i, ) — e(xg, us )) (39)
i

max Eppr [Eyr(la) [P (@, y) + B (2, 9) = Ak (6 (2, ) = b (2, 9))] = B - KL(7 (- |2) | mret (] 2))]
(40)

Theorem 6 (Connection between Our Rearranged Lagrangian DPO and Safe RLHF with Constrained
Policy Ranges and Exploration Bonuses). For any k > 0, Problems Egs. (30) and (40) have the same
set of optimal solutions.

Proof. First, note that for any ¢, the optimal solution to Eq. (40) is
Trer(yl) exp (7 () +b (2, )~ Me (el y) b (2.9))))

> ety |z) exp (;(fk(ﬂf, Y) 0 (2,y") = Ak (6@, y') b (=, y'))))
y' €Y

)

77;,€+b'k—xk(ak—b;)(y|$) =

=05 — g (2 —b5) (T)

Vre X. (41
Then, we have

b, (e —t) (Y12)

et (y|)

Cp(x,y) = )\ik (fk(w, y) + b (z,y) — Blog

— Blog Zs, 1y —xy.(er—b5) (@) + by (z,y)

T ettt e () (Y1)
Trer(y2)

+ Blog Zp, v () — Blog

@ 1 Blo 7%+brk(1/|x)
Ak 7Tref(y|-r)

— Blog Ziy v, — A (en—5) (@) + b (@, ),

where equality (a) uses a similar derivation as Eq. (5).
Now we prove this theorem.

Step (i). First, we prove that if 7 is an optimal solution to Eq. (40), then 7 is also an optimal solution
to Eq. (30).

If ¢, € C is an optimal solution to Eq. (39), then W;k%,’;/\k(érbp € 1:[2 (as shown in Eq. (41)) is an

optimal solution to Eq. (40). We have that 77 Ak (Ga—bS) is also an optimal solution to Eq. (30).

Otherwise, there exists another 7’ € l:[; which achieves a smaller objective value in Eq. (30). Then,
there must exist a ¢’ € C which satisfies that

72, o, (01)

raslyle) - xp (% (108 T e (¢.) ~ io) )

™ (ylz) = ;
) 1 7o (y]T) e
5™ /) xp (5 ( 9108 " EE ()~ o)
ey ref(Y
=Z (z)
B1og — ke _xp (er—g)

Tref
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1 T (Y]2) )
’ k10,
(2,y) = — [ Blog = Blog “ L Blogz . .
( ) Ak ( Wref(yll‘) Wref(ylaj) Blog Tfr’;rfbk 7)\k(c’fb2)( )
+ (2, 9),
and the objective value in Eq. (39) achieved by ¢/,

1 e (Y7]T) (g
_ Z 10g0<)\(510gk+bk_610g7r(y|x)
k

(2,5 ) EDe Tret (Y[ 2) Tret (Y| )

b, (y'[) ~Blog 7 (y!|z)
Tref(y!]) Tret (y!]2)

1
—BlogZ o T )+b° x, yv —(ﬁlog
Blog 5Tk —n(e! bt)( )+l ) Ak

Tref

—flogZ rk+b (‘73)) — by (=, yd)> )
Blog —k (e~ b5)

is smaller than that achieved by ¢, which contradicts the supposition that ¢, is the optimal solution
to Eq. (39).

Step (ii). Next, we prove that if 7 is an optimal solution to Eq. (30), then 7 is also an optimal solution
to Eq. (40).

If mp, € ﬁz is an optimal solution to Eq. (30), then there exists a ¢;, € C which satisfies

mrtyle) - exp (4 (108 T s ali) — o) )

T (012)

Tk (yle) = :
D yey Tret(y'|z) - exp ( (5 log ——hrms— — Ak (ex(z, ) — b (=, y’)))>

ie.,
1 7o, (Y]T) 7 (Y| )
ez, y) = | Blog ——F—~— — Blog —~—= — Blog Z T
Ak ( Tref (Y] ) Tret (Y|) Blog Tffrb e (cp—bE )( )
+ by (2, ).
We have that ¢, achieves the optimal value in Eq. (39),

— Z loga( (ﬁl 7”%(‘ (sz|)x) — flog k(Y

(z,ye ) €De ﬂ-ref(ycw‘x)

CW‘J;

* 1
1 T (U |2) 7 (y!|z)
—BlogZ >+b° z, y*v —(ﬂlog k —Blog
Blog T’“*’» g (cp—be )( @) k( ) Ak et (y°!|) et (Y] 2)
—BlogZ . . (x)) — b5 (z,y) ). 42)
Blog —— X (er—b5,)

Otherwise, there exists another ¢ € C and then there exists a 7’ = 7% . f_py € II¢ which
k0%, — Ak (¢’ —b%,) k

gives a smaller objective value than 75 in Eq. (42). Thus, ¢ achieves the optimal value in Eq. (39).
Then, the optimal solution to Eq. (39) under cost model ¢y, is

1/, Tt (YT i (ylx
(ylz) o Trer(y|x) - exp <5 (rk(x, y) + by (x,y) — Blog L + Blog M

+ Blog Z o x )
Blog —= % —Ak(ck—b;)( )

Tref

(a)

X Ter(y|x) - exp (; <B log Zs, 4 () + Blog 7k (y]7)

Tret (Y] 2)
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+ Blog Z . T )
Blog —= % —Ak(ck—bvk)( )

Tref

- (5 (sve 255

= mk(ylz),

where (a) uses a similar derivation as Eq. (5).

Therefore, 7y, is also an optimal solution to Eq. (23). O

E.2 SUBOPTIMALITY AND CONSTRAINT VIOLATION

In the following, we present the proof of the suboptimality and constraint violation guarantees for
algorithm 0-PD-DPO (Theorem 2).

Define event

G = {Ifk(w,y) = (@)l < 46,9l (s, 4amn-1

\/(exp (Rmax) + €xp (— Rmax) +2)° (|X||y + log <2§{>) + 7" (Rmax)? := by (7, 9),

Non
|ék(l’,y) - C*(l',y” < 4 ||¢(x7y)||(ivi+fy““1)*l :

Cmax + *Omax +2 ? 2K C
\/(GXP( ) ?\);(I);( ) ) (|X|y| +10g ( 6/ >) + ,.Yon(cmax)Q = bk(x,y)7

V(z,y) € X x y}.

Lemma 5 (MLE Guarantee with Online Data). It holds that
Pr(G™ >1-2§".

Proof. According to Lemma 3.1 in (Zhu et al., 2023), we have that with probability at least 1 — ¢,

I7x(2,y) —r*(2,y)]
S 4 ||¢(Z, y)”(E,D;“_A'_NOn,-yonI)—l N

\/(exp (Rmax) + €xXp (7Rmax) + 2)2 (|X |y| + log (5,)> + NOH’YOH(RHMX)Q

N ||¢ H(Nl“nEDkJr'y"“I)*l ’

\/(exp (Rmax) + €xp (—Rmax) + 2)° (|X|y| + log (;)) + NN (Ryyax)?

=4 ||(Z)(J}, y>||(iDi 4yong)—1 "

(GXP (Rmax) + exp (_Rmax) + 2)2 2 n

/ o 211+ 10 (2)) + 9B

Taking a union bound over £ = 1, ..., K, we can obtain the first statement.

Using a similar argument, we can obtain the second statement. O

Lemma 6. Forany k > 1, we have

f(ﬂ-*; fk + bgc) - f(ﬂ-k'; Tk + bgc) < _>\k' . EwNDP7y~7rk(~|w) [ék(ﬂ?,y) - b%(.l?, y)]
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Proof. Tt holds that
F(m™5 7 + b))
2 575+ B) = M- By (1o [ (2,9)]
= Eqnr [y () [Fr(2,9) + B (2,9) = M- € (2,9)] = B+ KL(x*(-|2) | mrer(-|2)]
= Eontr [Eyore oy [P, 9) + V(@) = A (@(,9) = b, )

—B- KL(W*(W:v)H?Tref('Ix))} Ak Bonmr g () [k (2, y) — b (2, y) — (2, y)]

(b) . ; R
< Eznpr []Eywﬂk(-\z) [Tk(xu y) + bk(‘r7y) — Ak (Ck(xay) - bi(l‘,y))]

= B+ KL(m(-2) |mr(-|2))]

= f(wk; Tk + bl];) — Ak Emr\«DP,ywﬂk(-\z)[ék(m7y) - b(l:c(xvy)]v

where inequality (a) uses the fact that A\, > 0 and 7* is feasible, and inequality (b) comes from

Theorem 6. O]
Let
K
- T
Z'D‘,;, = E'D‘1 + Z]EzNDP,ywﬂk(-\x),y’wﬂbm(-\z) [((ZS(I’,y) - QS(x,y/)) ((ﬁ(éﬂ,y) - ¢($, y/)) :| ;
k=1
_ K T
£p 1= 505 + Y Bandr gy (fo) g/ (J2) [(fb(w,y) —¢(z,y)) (d(z,y) — d(2,9)) } :
k=1
Lemma 7. It holds that
K
Z EwaP,ywﬂ'k (:]x) [b§c (l’, y)]
k=1
(exp (Rmax) + exp (—Rmax) + 2)2 2K
- 4\/ e CEEE SRR s
yor + 4|DY | + 4K 1 ~yor + | DY | 4+ Chase |
2 2XyK(log( + —=——1o )
\/ it PG cme 8\ e
and
K
ZEwaP,ymwk(~|x) [bi(w,y)]
k=1
(exp (Cimax) + €xp (~Cinax) + 2)° 2K
< 4\/ . Non . |X||y| + log 7 + ’YOH(Cmax)z'
DL K | L (TP O
24121 X||V|K | lo + lo .
¢ 118 (b (i) + s (T e

Proof. First, we have

ED;C + ,yonI — ZD‘I +’YonI

K
.
+ Z Eo Do ymmy, () g7~ () [(fb(% y) — o(x,y")) (p(z,y) — ¢z, y"))
=1
K
= E'D'l + ,70n] + Cbase ZEIN'DP,@/NW“SE [QS(QE, y/)¢(xa y/)T] y
k=1
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and thus
K

_ 1 2
(ED‘,’C + ’}/OHI) < <2D"1 + ’}/OHI + Cbase ZEZ'NDp7y/NWbHS€
k=1

1 1
= Cbase <Cbase (Z

K
Drl + ,YUHI) —+ Z ExNDp7y/N7Tbass

[Pz, )o(a, y’)T]>

(¢ ) o(, y’)T]> :
(43)

k=1
For ease of notation, let d := |X'||Y|. Then, we have
K
DI FYC]
k=1 *
K 2
< KZ (EINDp,yNWk(~|JZ) |:H¢<xay)||(ibrk+’y°"l)*1:|)
k=1
K
2
<K Eanrrmiio) 109y 1ymry-1]
k=1
(@) ol 2
S 2K ZExNDP,yNTrk(~|w) {Hd)(xv y)||(ij§c+'y°"I)*l]
k=1
K
= QKZ E$~Dl‘,y~7rk(~|£v),y'~7rbme("w)
k=1

10(0.) = 6(a./) + 60,y 4

K
< 2\/?{( Y Eabr ooy (o)) [“‘Z’(z’ y) = 9(@.y) ?zpwmn—l}
k=1 ’

K
+ ZE$NDp’y/~Wmse(.|I) |:||¢(m’y/)?i7>§€+70"])1:| >
k=1
. (7"“+4\D’1\+4K>d
d
< 2\/?(2 log (o)
k=1
z, )2 _
oGl (e (Soy+9 D)+ 5 By gt (o) [0(2,0)0(2,5) T])

1
2

1 K
+ ('base Z ExNDP,y/Nﬂ.base(,‘z)

Nl

)

(

1
Chbase
d

(v°"+|D;|)+K)d

© on + 41DY| + 4K 2
%2\/?( 2d10g<py + 41Dy + )+ log

d,yon Cbase

()

yon 4 4Dt | + 4K 1
S 2\/2dK (log ( d,-yon + Cbase

(,yon + "Dli‘ + CbaseK))
log )

d,-yOl'l

where inequality (a) comes from Lemma 13, inequality (b) uses Lemma 11 and Eq. (43), and

inequality (c) is due to Lemma 11.

Thus, we can obtain the first statement.

Using a similar analysis as above, we can further obtain the second statement.

In the following, we prove Theorem 2.
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Proof of Theorem 2. For this online setting, we also use events £ and F defined in Egs. (26) and
(27).

Letd' := %. Then, according to Lemmas 1 and 3, we have Pr[é N F N G°"] > 1 — §. Now it suffices
to prove this theorem assuming that event £ N F N G°" holds. In the following proof, we assume that
event £ N F N G holds.

Forany k > land \ € [0, 2p], we have
—\2 : _ . ) 2
()\k+1 _ )\) = (Pm][o,zp] (M + nelr) — Projg o) ()\))
(a) - —\ 2
< (A + mcr — A)
“\2 . < ~
= (A= A)" +2neée (A — A) + (m)” (&1)°,

where inequality (a) uses the nonexpansivity of the projection to [0, 2p].

Summing the above inequality over k = 1,..., K, we have
0< (>\K+1 - >\) < ()\1 - )\) + Z 20y - EINDP,yNﬂk(‘|I) [C*((E,y)] : ()‘k - )\)
k=1
K B K B K
- Z 277k . Ea:NDf‘,ywwk(-|a:) [C* (J), y)] . (Ak - A) + Z 277k5k ()‘k - A) =+ Z (Uk)Q (619)2 .
k=1 k=1 k=1

Hence, we have
K

K
Z 21, - Ea:~DP,y~7rk(-|a:) [C* (Z‘, y)} A - Z 2n - Ea:NDP,y~7rk(~|w) [ék(xv y) - b?c(xa y)] - Ak
k=1 k=1

K K

-2 B % .
< (>‘1 - )‘) + (Uk)2 (Ck)2 + Z 27716)‘16 : Efcpr,ywﬂk('\x)[C (.’E, y) - Ck(xv y) + bi(l’, y)]
k=1 k=1

K
+ Z 27774: ()\k - 5\) (ék: - EIN’DP,yNWk(-|x) [C* (l’, y)]) .
k=1
Using Lemma 6, we have

K
> 20 (Bartn gy (4o € (2, 9)] - M (™50 4 D) — flmus P+ )
k=1

K

()? (é)? + Z 20k Ak BonDr yoomy (o) (€7 (2, y) — Ex(z,y) + by (2, )]
k=1

<M -N"+

M=

k

Il
—

K
+ Z 27716 (>\k - 5‘) (ék‘ - EINDp7yNﬂk('|fE) [C* (xv y)])
k=1

K

(ne)? (@,)° +4 Z Ak Eonpe ymmy (-|2) 05 (7, Y)]
k=1

(a) _
< ()\1 — /\)2 +

M=

k

Il
-

K
+ Z 20k (A — A) (6 — Epopo gy (10 [€F (2, 9)])
k=1

where inequality (a) uses the definition of event G°".

Recall that g, = 1. Then, we have
K K

() = F ) +A Y B yoomy (o [ (@, 9)]

k=1 k=1
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K K
! by c C
< 5 (=074 5 D@ 423 M Bevpn o (im0
k=1 k=1
K —_
+ (% = A) (@ = Eanpo yomy (o[ (2, 1))
k=1
K K
+D () = f( i+ 5)) = Y (f(mr) = f(mws Pr + By)
k=1 k=1
]‘ Y Cmax c
< o =374 MO I L Y
+ Z )\k: - Ck) - INDp,yNWk(.m) [C* (.%‘,y)])

=+ K ’ ]EINDP,yNW*("w)[ (I, y) - (TAk(‘T7y) + bl;f(x7y))]

- ZEwwDP,ywﬂk(-\z) [r*(x,y) - (f(x’y) + b%(.’L‘, y))]
k=1

1 2 n(Cmax
277 (Al )\) 4+ — +2 Z >\k x~DP iy~ (+]x) [b?c (iC, y)]
K B K
+ 3 (k= A) (@ = Eaomryomy (1) €@ 0)]) + 2D B, yromy (o) [0 (2 9):
k=1 k=1
Let A = 0. Recall that %" is the uniform policy over 71, ..., 7Tk and 7 := o f Then, using
Lemmas 2 and 7, we have i
f(@™) = f(7&")
1 X
- K (f(7*) = fm))
k=1
A1 Cm 2p P =
1% max *
< \/I? ZEZNDP y~7 (+|x) bk €T, y E Z CEN'Dp,y"‘TUc("I) [C (.Z', y)”
k=1

2
+ ? Z EwN'DP,yNTI'k('|$) [bl;c (.T, y)]

[ X VINEK
A1 Omax 1Og (%) log ( 3 )
SO\ TR e\ e A MCE

2
+ p\/(exp (Cme) + Z{i(_cm“) +2) (Xllyl +log (?)) + 77 (Crmax) >

€ Rmax +e —Rmax +2 ? K
+ \/( XD ( ) ]\};i( ) ) <|X|y| + log <5>) + 7" (Rimax)?:

).
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Let A = 2p. Then, we have
F™) = F(7R) + 2PEqnpr ymman (- [ (2, y)]
L

9 K
= g 2 ()~ fm) + LN Bty o) € (1)

1 k=1

If % Zszl Eqmpp,ymmy (-2 [€* (2, 9)] < 0, the second statement of the theorem naturally holds;
Otherwise, we can replace the term 2pE, _pp y~rom(.|2) [¢*(z,y)] by 2p[]EzNDp,yNﬂ%‘(,|m) [¢*(z,v)]]+
in the above inequality. Then, using Corollary 1 and Lemmas 2, 7 and 10, we obtain

Emw'Dp,ywﬂ'%‘(- |z) [C* (SC, y)]

Cimax [ (A1 —2p)° 1< .
< ( N +A ]+ ? kz::l EmNDP,yNﬂk(~|:r) [bk (l‘, y)]

~ 4pVK
1 K 1 K
™ 2K Z |5k = Eonpo yorm (o) € (2, y)]| + oK ZExNDp,yNM(.m [0% (z,v)]
k=1 k=1
[ X[ VINEK
Cmax ()\1 - 2/))2 lOg (%) IOg (f)
=0 + A1 + Cmax CE + W CE
VK A1 N M
exp (Cinax) + €xXp (—Cinax) + 2)° K
+ \/ (0 (Cone) £ 060 =0 2D (111914 10g (5 ) ) + 47 Corm

2
+ 1\/(6Xp (ma) + ;{i(iRmaX) +2) <|X|y| +log <[§>) + 70 ( Rinax )

) |

F TECHNICAL TOOLS
In this section, we introduce several technical tools which are used in our analysis.
Lemma 8 (Theorem 8.42 in (Beck, 2017)). For any A > 0 such that q(\) < u,

A< u— f(7) .
—Epnpr yor( o) [ (2, 9)]

Proof. For any A > 0 such that g(\) < u, we have

Hence,

A Eonpr yor(c o [¢7 (2, )] < u— f(7).

Since E, pe y~z (o) [¢* (7, )] < 0, we have

e u—f@
—Eppr ymi (o) [ (2, )]
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Let A* be the set of the optimal solutions to the dual problem miny>q g(A).
Corollary 1 (Corollary 8.43 in (Beck, 2017)). For any \* € A*,
o S -tm
_]EwNDP,y~fr(- |z) [C* (CC, y)]

)
where the second inequality comes from the definition of p.

Proof. This corollary can be obtained by setting u as the optimal value to the dual problem
miny>g ¢(A) = f(7*) in Lemma 8. O
Define g(m) := Epopr yor (|2 [c(2, y)]. Let
v(u) = max {f(r) : g(m) <uj,
Cu) :={m:g(r) <u}.
Lemma 9 (Theorem 3.59 in (Beck, 2017)). For any \* € A*,
v(0) + A'u > v(u).

Proof. For any 7, we have

f(m) = X g(m) <max (f(r) = Ag(m)) = ¢(X") = f(7") = v(0).

Thus, for any u € R and 7 € C(u),
v(0) + Xu > f(m) = A" (g(m) —u) = f(m).

Since the above inequality holds for all m € C'(u), by maximizing f () over m € C(u), we have that
for any u € R,

v(0) + Au > v(u).

Lemma 10 (Theorem 3.60 in (Beck, 2017)). If a policy 7 satisfies that

f@*) = f(@) +p'lg(7)]4 < L,
where L > 0 and p' > 2)\*, then

[9(™)]+ < a

Proof. From Lemma 9, we have that for any u € R,
v(0) —v(u) > —A*u.
Let @ := [g(7)]+. Then, we have
(p =X a < p'u+v(0) —v(a)
<) - 1)+
<L,
where inequality (a) uses the fact that v(0) = f(7*) and v(@) > f(7).

Since p’ > 2\*, we have
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Lemma 11. Let 1)1, ...,k be a sequence of d-dimensional random vectors following distributions
B, ..., Bx, respectively, and we have ||V || < L for any k > 1. Let A be a d x d positive definite
matrix such that owin(Ag) > {1, L}, and define A, = Ao + Zle By, 8, i) | for any k > 1.
Then, we have

K

det(AK) d
D Bty [[0ala, ] < 2log gt < 2log (dt(Ao)
k=1

Proof. This proof uses a similar analytical procedure as Lemma 11 in (Abbasi-Yadkori et al., 2011).
‘We have
det (Ag) = det (Ag—1 +Eypnni [Vr¥K])
— det (Agc—1)det (T + (Ax-1)"* Eynnye [Bx07] (Ax-1)"%)

— det (Ag_1) det (I + BBy [<AK1>§ vr () Wﬂ)

= det (Ax—1) (1+ Byt [[0nclan_y1])
K

= det (Aop) H (1 + By, [H@Z’kH?Akfl)_lD ’

k=1

Taking logarithm on both sides, we have
K

logdet (Ax) = logdet (Ag) + Zlog (1 +Ey, 5, |:Hwk‘|?f4k:—1)_l:|) .
k=1

Since omin(Ao) > {1, L2}, we have HwkH?Ak,l)*l < 1 for any £ > 1. Using the fact that
x < 2log(1 + z), we have

K K
> Eoes, [l )1 ] < 23 o (1+ Evun, [0, 1)
—1 =1

_ det (AK)

= 2108 ot ()

@ (trace(A(ii)-&-KLz )d

< - _
< 2log det (Ao) ’

where inequality (a) uses the AM-GM inequality. O

Lemma 12 (Lemma H.3 in (Agarwal et al., 2020)). Let B be a distribution of d-dimensional vectors
which satisfies that ||| < L if ¢ ~ B. Let 11, ..., ¥ be M ii.d. samples from B, and define
A =Ey [t "]. Then, with probability at least 1 — 8, we have that for any v € RY,

L)
v\ ap v A s gy
i=1
where d := tral‘cz(ﬁ ) is the intrinsic dimension of A.

Proof. Forany i > 1,let D; := 1;3),;) — A. Then, we have that E[D;] = 0, || D;|| < L?, and

M
> E[(D:)?)|| < ML*.
i=1
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The intrinsic dimension of Zf\il E[(D;)?] is equal to that of A, which is d by definition.

Using the Matrix Bernstein inequality (Theorem 7.7.1 in (Tropp et al., 2015)), we have that for any
t>L3/M+ £,

M e
Pr | omax ZE[(D1)2]> > f] < 4d - exp (22> .
[ (i—l LAM + B2

t L? L?

: ! __ !
Setting t' = 27> We have that for any ¢’ > — + 377>

1 M M3
2 / 7 2
O max < E E[(D;) ]> > t] < 4d - exp <L4 n th,) .

3

ﬁ

Pr

i=1

, 202m(4) o/ 2m(4) 5 _M?
Whent' = ——-"+ + L A7 we have 4d - exp m <.
3

Hence, with probability at least 1 — §, we have

o) 20

We can obtain this concentration inequality in the other direction with a similar argument. Therefore,

we complete the proof of this lemma. O
Lemma 13 (Lemma H.4 in (Agarwal et al., 2020)). Let Bi,...,Bx be K distributions of d-
dimensional vectors. For any i € [K|, we draw M i.i.d. samples ; 1, ..., v; m from B;, and form

Ay = L S0 i 0] Define Ai = Eyp [T, A=5 Aj+ 9L and A= 5 A + 41
32K In(854d)
2

5 , with probability at least 1 — §, we have that for any v € R?,

Setting M =

1 .
ivT(A +aD) o <o (A+ D) v < 20T (A4 A1),

- N
where d := max;¢ (k] "TTZ(I_H’).

202m(244) o [om(e5d) . .
Proof. Leta(M) =: ——37—* + L*\| — 5. Using Lemma 12, we have that with probability
1 -4, foranyi € [K],

Ai +a(M)I +

Hence, we have
A+ Ka(M)I +~I = A+~ = A— Ka(M)I +~I.
When v > 2K a(M), the above inequality implies

(A+ Ka(M)I +~I)"* < (fl+7])_l < (A— Ka(M)I+~I)".

Let UAUT be the eigendecomposition of A, where A = diag(oy,...,04) and U = [uq, ..., ug).
Then, we have

vV (A+D) =0 A+~ o <o" ((A — Ka(M)I +~I)"" — (A—|—’y])_1) v

=Y~ ((oi 7= Ko@) ™ = (o +)7") (0w

i=1
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For any ¢ € [d], since o; > 0, we have o; +~ > 2K «(M), and then 2(o; + v — Ka(M)) > o, + 7,
which implies (o; + v — Ka(M))~! < 2(o; + )~ L. Therefore, we have

d
vV (A+yD) =0T (A+~D) v < Z (oi+7) " (v u)? =0 (A4 D) 0.
i=1

Using a similar analysis, we can obtain the statement in the other direction. O
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