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ABSTRACT

The widespread application of Large Language Models (LLMs) imposes increasing
demands on safety, such as reducing harmful content and fake information, and
avoiding certain forbidden tokens due to rules and laws. While there have been
several recent works studying safe alignment of LLMs, these works either require
the training of reward and cost models and incur high memory and computational
costs, or need prior knowledge of the optimal Lagrange multiplier. Motivated by
this fact, we study the problem of constrained alignment in LLMs, i.e., maximizing
the output reward while restricting the cost due to potentially unsafe content to
stay below a threshold. For this problem, we propose a novel primal-dual DPO
approach, which first trains a model using standard DPO on reward preference
data to provide reward information, and then adopts a rearranged Lagrangian DPO
objective utilizing the provided reward information to fine-tune LLMs on cost
preference data. (Reviewer kvKV) Our approach only needs to train two models
rather than three as in prior works that need trained reward and cost models, which
significantly saves memory costs, and does not require extra prior knowledge.
Moreover, we establish rigorous theoretical guarantees on the suboptimality and
constraint violation of the output policy. We also extend our approach to an online
data setting by incorporating exploration bonuses, which enables exploration in the
uncovered prompt-response space, and provide theoretical results that get rid of the
dependence on preference data coverage. Experimental results on the widely-used
preference dataset PKU-SafeRLHF demonstrate the effectiveness of our approach.

1 INTRODUCTION

Large Language Models (LLMs) (Achiam et al., 2023; Touvron et al., 2023a;b) have achieved a
remarkable success in dialogues, summarization, instruction following, etc. Despite the huge success
of LLMs, LLMs may also output fabricated information and harmful content, such as texts involving
discrimination, crimes and moral issues (Gehman et al., 2020; Lin et al., 2021; Wei et al., 2023). With
the extensive application of LLMs, how to align them to enhance safety or impose constraints has
become a crucial problem. For example, we want to prevent LLMs from generating content that may
have negative societal impacts or ethical concerns. In Agentic AI or AI education applications, we
need to avoid certain tokens due to some rules and laws, or course content that has not been taught.

Recently, there are several works studying the safety alignment of LLMs. A popular formulation
is the constrained alignment problem, which aims to maximize the reward while constraining the
cost to stay below a threshold. Dai et al. (2024) proposed a safe reinforcement learning from human
feedback (RLHF) framework for this problem, which trains reward and cost models on reward and
cost preference data, respectively, and then applies an RL algorithm to fine-tune LLMs to maximize
the Lagrangian function under the learned reward and cost functions. Liu et al. (2024b); Wachi et al.
(2024); Huang et al. (2024); Kim et al. (2025) designed direct preference optimization (DPO)-based
safety alignment approaches. The idea of DPO is to directly fine-tune LLMs using preference data,
without training a reward model. However, these works either still require trained reward and cost
models (Liu et al., 2024b; Huang et al., 2024), or need prior knowledge of the optimal Lagrange
multiplier (Wachi et al., 2024), or are inefficient in cost information learning (Kim et al., 2025).

Motivated by the above facts, we propose a novel and provably efficient primal-dual DPO approach.
Our approach first trains a model using standard DPO on reward preference data, and then fine-tunes
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LLMs with a rearranged Lagrangian DPO objective on cost preference data, utilizing the reward
information provided by the standard DPO-trained model. Unlike prior works (Dai et al., 2024; Liu
et al., 2024b; Huang et al., 2024) which require to train and load three models, i.e., reward and cost
models and the reward-cost-aligned language model, our approach only needs to train two models,
i.e., the reward-aligned and reward-cost-aligned language models, and does not require any prior
knowledge on the optimal solution. Moreover, we establish rigorous theoretical guarantees on the
suboptimality and constraint violation of the output policy. Finally, we investigate an online setting
where collecting preference data online is allowed. In this setting, we adopt exploration bonuses in
our primal-dual DPO approach to guide exploration in the uncovered prompt-response space, and
provide theoretical results that remove the dependence on preference data coverage. All proofs are
deferred to Appendix due to space limits.

The contributions of our work are summarized as follows.

• We propose a novel primal-dual DPO approach for constrained LLM alignment. This
approach first trains a model using standard DPO on reward preference data to offer reward
information, and then adopts a rearranged Lagrangian DPO objective to fine-tune LLMs
utilizing the offered reward information. It neither requires to train reward and cost models,
which significantly saves memory costs, nor needs prior knowledge of the optimal Lagrange
multiplier. We provide rigorous suboptimality and cost violation guarantees.

• We conduct experiments on the PKU-SafeRLHF preference dataset (Dai et al., 2024).
Empirical results show that our approach achieves an effective helpfulness-harmlessness
trade-off without training reward and cost models.

• In the online data setting, by incorporating exploration bonuses in our rearranged DPO
objective, our approach can effectively explore the uncovered prompt-response space, and
enjoys theoretical results that get rid of the dependence on preference data coverage.

2 RELATED WORK

In this section, we review the related work to ours. With the rapid development of LLMs, the
alignment of LLMs has received extensive attention. RLHF (Ouyang et al., 2022) and DPO (Rafailov
et al., 2023) are the two main algorithmic frameworks for LLM alignment. RLHF first trains a reward
model, and then applies an RL algorithm with the learned reward model to fine-tune LLMs. DPO
does not explicitly train a reward model, but instead directly fine-tunes LLMs using preference data.

Recently, to reduce the harmful content generation of LLMs, there are several works studying safety
alignment. Dai et al. (2024) proposed a safe RLHF framework. Safe RLHF trains a reward model
and a cost model on reward and cost preference data, respectively, and then applies an RL algorithm,
PPO (Schulman et al., 2017), to maximize the Lagrangian function using the learned reward and
cost functions. Liu et al. (2024b) used trained reward and cost models to regenerate preference data
according to the Lagrangian function, and then applied DPO on regenerated data. Wachi et al. (2024)
observed a relationship between the optimal policy of maximizing the Lagrangian function and that of
maximizing the reward function, and performed DPO combined with this observation. However, their
approach requires prior knowledge of the optimal Lagrange multiplier, and their theoretical results
depend on the gap between the used and optimal Lagrange multipliers, which can be unbounded.
Kim et al. (2025) reordered preference data if the preferred response is unsafe and the not-preferred
response is safe, and ran DPO on reordered data. Their approach is inefficient in cost information
learning. Huang et al. (2024); Zhang et al. (2025) investigated constrained LLM alignment from the
perspective of dual optimization. Huang et al. (2024) proposed to first learn the optimal Lagrange
multiplier via an explicit form of the dual function to avoid the expensive computation of evaluating
the optimal policy under every updated Lagrange multiplier, and then compute the optimal policy.
Zhang et al. (2025) generalized the algorithms in Huang et al. (2024) to the multi-shot scheme and
focused on the primal-dual gap analysis under policy parameterization.

(Reviewer kvKV) (Reviewer VPsQ) In contrast to the above works, our approach only needs to
train and load two models, rather than three as in prior works which need trained reward and cost
models (Dai et al., 2024; Liu et al., 2024b; Huang et al., 2024; Zhang et al., 2025), or require prior
knowledge of the optimal Lagrange multiplier (Wachi et al., 2024). Regarding theoretical results, to
the best of our knowledge, only (Wachi et al., 2024; Huang et al., 2024; Zhang et al., 2025) and our
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work provide theoretical guarantees on the output policy. Moreover, we provide novel theoretical
results which get rid of the dependence on preference data coverage in the online data setting. The
results in (Wachi et al., 2024; Huang et al., 2024) have an unbounded term or require an extra
assumption, and the results in (Zhang et al., 2025) focus on analyzing the primal-dual gap brought by
policy parameterization. Due to the difference in needed assumptions and main focuses, the results in
(Wachi et al., 2024; Huang et al., 2024; Zhang et al., 2025) and ours cannot be directly compared.
We present a comparison table on the assumptions, the required trained and loaded models, and
theoretical guarantees with a more detailed description of related work in Appendix A.

3 PRELIMINARIES

Reinforcement Learning from Human Feedback (RLHF). The RLHF framework (Christiano
et al., 2017; Ouyang et al., 2022) consists of three phases: (i) supervised fine-tuning a pre-trained
LLM on a high-quality dataset of downstream tasks, e.g., dialogue and summarization, (ii) reward
model learning, and (iii) RL optimization with the learned reward model.

Let X and Y denote the sets of all possible prompts and responses. We define a policy π : X → △Y
as a mapping from X to a distribution on Y , where△Y denotes the set of all distributions on Y . We
formulate an LLM as a policy, and use πref to denote the supervised fine-tuned (SFT) model.

In the reward model learning phase, we have access to a reward preference dataset Dr =
{xr

i, y
rw
i , y

rl
i }N

r

i=1, where xr
i is a prompt, yrw

i , y
rl
i are preferred and dispreferred responses under prompt

xr
i, and the superscripts r, w and l stand for reward preference, “winner” and “loser”, respectively. The

generation of preference data is as follows: We assume that there exists an unknown reward function
r∗(x, y) ∈ [−Rmax, Rmax] for some constant Rmax, which models the helpfulness of response y
under prompt x. Human annotators compare a pair of responses yrw, yrl under prompt x. Then, we
assume that the probability that yrw is preferred to yrl under prompt x follows the Bradley-Terry
model (Bradley & Terry, 1952):

Pr
[
yrw ≻ yrl|x

]
=

exp(r∗(x, yrw))

exp(r∗(x, yrw)) + exp(r∗(x, yrl))
= σ

(
r∗(x, yrw)− r∗(x, yrl)

)
, (1)

where σ(z) := 1
1+exp(−z) denotes the sigmoid function. This Bradley-Terry model is a standard

assumption used to characterize human preference in the RLHF literature (Ouyang et al., 2022;
Rafailov et al., 2023). With the reward preference data, we train a reward model r via maximum
likelihood estimation (MLE), i.e., minimizing the negative log-likelihood loss:

min
r
− 1

N r

N r∑
i=1

log σ
(
r(xr

i, y
rw
i )− r(xr

i, y
rl
i )
)
. (2)

In the RL optimization phase, we apply RL algorithms, e.g., PPO (Schulman et al., 2017), to fine-tune
the SFT model under the learned reward model r:

max
π

Ex∼Dp

[
Ey∼π(·|x) [r(x, y)]− β · KL (π(·|x)∥πref(·|x))

]
. (3)

Here β is a parameter controlling the deviation between the trained model π and SFT model πref,
since we do not want the trained model to be too far away from the SFT model. Dp is a distribution of
prompts, and the optimal solution to Eq. (3) is independent of Dp, which will be presented in Eq. (4).

Direct Preference Optimization (DPO). Recently, Rafailov et al. (2023) designed an direct prefer-
ence optimization (DPO) approach, which bypasses the reward model training phase in RLHF, and
directly fine-tunes LLMs using preference data. The derivation idea of DPO is as follows.

First, the optimal solution to Eq. (3) is (Peters & Schaal, 2007; Peng et al., 2019)

π∗
r (y|x) =

πref(y|x) exp
(

1
β r(x, y)

)
Zr(x)

, (4)

where Zr(x) :=
∑
y′∈Y πref(y

′|x) exp( 1β r(x, y
′)) is the partition function. Then, we can rewrite

Eq. (4) to express the reward function r by the optimal policy π∗
r as

r(x, y) = β log
π∗
r (y|x)

πref(y|x)
+ β logZr(x). (5)
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Eqs. (4) and (5) hold for any reward function r. Hence, the Bradley-Terry model in Eq. (1) can be
expressed by the optimal policy π∗

r∗ :

Pr
[
yrw ≻ yrl|x

]
= σ

(
β log

π∗
r∗(y

rw|x)
πref(yrw|x)

− β log π
∗
r∗(y

rl|x)
πref(yrl|x)

)
, (6)

where the partition function Zr∗(x) is cancelled out. Now, by expressing the probability that
preference data happen by π∗

r∗ , we can replace the likelihood in the MLE training objective in Eq. (2)
by Eq. (6), and obtain a new objective with the optimization variable directly being the policy:

min
π
− 1

N r

N r∑
i=1

log σ

(
β log

π(yrw
i |xr

i)

πref(y
rw
i |xr

i)
− β log π(yrl

i |xr
i)

πref(yrl
i |xr

i)

)
. (7)

Eq. (7) is the training objective of DPO. Thus, DPO directly uses preference data to fine-tune LLMs
without training a reward model, and enjoys lower memory and computational costs than RLHF.

Safe RLHF. To enhance safety in LLM alignment, Dai et al. (2024) proposed a safe RLHF framework.
In safe RLHF, we assume that there exists an unknown cost function c∗(x, y) ∈ [−Cmax, Cmax]
for some constant Cmax, which characterizes the harmfulness of response y under prompt x.
(Reviewer EtwF) In addition to reward preference datasetDr, we also have access to a cost preference
dataset Dc = {xc

i, y
cw
i , y

cl
i }N

c

i=1, where ycw
i and ycl

i denote unsafer and safer responses under prompt
xc
i (ycw

i has a higher cost than ycl
i ), and the superscript c refers to cost preference. We assume that

cost preference is generated according to the Bradley-Terry model with cost function c∗, i.e.,

Pr
[
ycw ≻ ycl|x

]
=

exp(c∗(x, ycw))

exp(c∗(x, ycw)) + exp(c∗(x, ycl))
= σ

(
c∗(x, ycw)− c∗(x, ycl)

)
. (8)

Similar to Eq. (2), we can also train a cost model c via MLE:

min
c
− 1

N c

N c∑
i=1

log σ
(
c(xc

i, y
cw
i )− c(xc

i, y
cl
i )
)
. (9)

To restrict the costs of LLM outputs within a threshold, we consider the constrained optimization:
max
π

Ex∼Dc

[
Ey∼π(·|x) [r(x, y)]− β · KL (π(·|x)∥πref(·|x))

]
s.t. c(x, y) ≤ 0, ∀x ∼ Dc, y ∼ π(·|x).

Here for simplicity, we set the threshold of harmfulness to 0. The above problem is hard to solve
using neural networks, since it requires the cost of every possible response y to stay below 0.

To feasibly perform safety alignment, many prior works, e.g., (Dai et al., 2024; Wachi et al., 2024;
Liu et al., 2024b; Kim et al., 2025), consider a relaxed optimization problem with an expected cost
constraint, which we called constrained alignment problem:

max
π

f(π) := Ex∼Dp

[
Ey∼π(·|x) [r∗(x, y)]− β · KL (π(·|x)∥πref(·|x))

]
s.t. g(π) := Ex∼Dp,y∼π(·|x)[c

∗(x, y)] ≤ 0. (10)
In this work, we also study this relaxed problem. Then, it is natural to look into the Lagrangian dual
problem of the above constrained optimization:
min
λ≥0

max
π

L(π;λ) := Ex∼Dp

[
Ey∼π(·|x) [r∗(x, y)−λ · c∗(x, y)]−β ·KL (π(·|x)∥πref(·|x))

]
, (11)

where λ ≥ 0 is a Lagrange multiplier. Throughout the paper, we call L(π;λ) the Lagrangian function.

With the above unconstrained formulation, the safe RLHF framework (Dai et al., 2024) regarded
r − λ · c as a new reward function and applied an RL algorithm PPO (Schulman et al., 2017) to
maximize L(π;λ), and performed subgradient descent (Beck, 2017) to update λ. Safe RLHF requires
to train both reward and cost models, which incurs high memory and computational costs.

4 PRIMAL-DUAL DPO UTILIZING STANDARD DPO

In this section, we propose a provably efficient primal-dual DPO approach for the constrained
alignment problem (Eq. (10)), utilizing a model trained using standard DPO on reward preference
data to provide reward information. We first describe the key idea behind our approach, and present
the specific algorithm PD-DPO which has rigorous theoretical guarantees.

4
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4.1 OUR APPROACH

First, we have that the optimal solution to maxπ L(π;λ) in Eq. (11) is

r(x, y)− λ · c(x, y) = β log
π∗
r−λ·c(y|x)
πref(y|x)

+ β logZr−λ·c(x), (12)

where Zr−λ·c(x) :=
∑
y′∈Y πref(y

′|x) exp( 1β (r(x, y′)− λ · c(x, y′))) is the partition function, and
r and c can be any reward and cost functions.

When one wants to apply the derivation idea of DPO in Eqs. (6) and (7), a difficulty arises: We do
not have preference data generated according to r − λ · c, but only have preference data generated
according to r and c separately. Thus, we cannot use β log π∗

r−λ·c(y|x)
πref(y|x) to directly express data

likelihood as in Eq. (7), which means that the DPO derivation idea cannot be directly applied here.

To overcome this difficulty, we first rearrange Eq. (12) as

c(x, y) =
1

λ

(
r(x, y)− β log

π∗
r−λ·c(y|x)
πref(y|x)

− β logZr−λ·c(x)
)
.

Plugging the above equation with r∗ and c∗ into Eq. (8), the generation of cost preference data can
be rewritten as Pr[ycw ≻ ycl|x] =

σ

(
1

λ

(
r∗(x, ycw)− β log

π∗
r∗−λ·c∗(y

cw|x)
πref(ycw|x)

−
(
r∗(x, ycl)− β log

π∗
r∗−λ·c∗(y

cl|x)
πref(ycl|x)

)))
,

where Zr∗−λ·c∗(x) is cancelled out. Then, replacing the cost preference data likelihood in Eq. (9) by
the above equation, we can obtain a training objective with the optimization variable directly being
the policy which is supposed to get close to π∗

r∗−λ·c∗ during training:

min
π
− 1

N c

N c∑
i=1

log σ

(
1

λ

(
r∗(xc

i, y
cw
i )− βLπ(ycw

i |xc
i)−

(
r∗(xc

i, y
cl
i )− βLπ(ycl

i |xc
i)
)))

, (13)

where Lπ(y|x) := log π(y|x)
πref(y|x) is the logarithmic ratio of response y under x between π and πref.

Now the main challenge lies in that we do not know r∗, and meanwhile, we do not want to ex-
plicitly train a reward model in order to keep memory and computational efficiency. To han-
dle this challenge, we make an observation that r∗(xc

i, y
cw
i ) − r∗(xc

i, y
cl
i ) can be expressed by

β log
π∗
r∗ (y

cw
i |xc

i)
πref(ycw

i |xc
i)
− β log π∗

r∗ (y
cl
i |x

c
i)

πref(ycl
i |xc

i)
according to Eq. (4). Then, π∗

r∗ is what we can learn by training
a model using standard DPO on reward preference data.

Therefore, using this observation, the training objective Eq. (13) can be rewritten as

min
π
− 1

N c

N c∑
i=1

log σ

(
β

λ

(
Lπ∗

r∗
(ycw
i |xc

i)−Lπ(ycw
i |xc

i)−
(
Lπ∗

r∗
(ycl
i |xc

i)−Lπ(ycl
i |xc

i)
)))

, (14)

where π∗
r∗ can be learned by first training a model using standard DPO on reward preference data.

Eq. (14) is the main idea of our primal-dual DPO approach utilizing standard DPO. Our approach
only needs to train two models, i.e., the reward-aligned and reward-cost-aligned language models,
rather than three models (i.e., reward and cost models and the reward-cost-aligned language models)
as in prior works (Dai et al., 2024; Liu et al., 2024b; Huang et al., 2024; Zhang et al., 2025), which
significantly reduces memory costs. This approach shows even more advantages when there already
exists a trained model on reward preference data, which is often the case since there are many
high-quality and open-source LLMs (Dubey et al., 2024; Team et al., 2025).

4.2 A PROVABLY EFFICIENT ALGORITHM PD-DPO

While Eq. (14) has presented the main idea of our primal-dual DPO approach, to enable rigorous the-
oretical guarantees, we develop a specific provably efficient algorithm PD-DPO, which imposes policy
search constraints based on Eq. (14) and enjoys suboptimality and constraint violation guarantees.
Before describing the specific algorithm PD-DPO, we first introduce several assumptions.

5
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Algorithm 1: PD-DPO

Input:β,πref, ρ, λ1,K,N
CE,MCE,Dp,Dr={(xr

i, y
rw
i , y

rl
i )}i∈[N r],Dc={(xc

i, y
cw
i , y

cl
i )}i∈[N c]

1 Train a model using standard DPO on reward preference data:

π∗
r̂ ← argmin

π∈Πr
− 1

N r

N r∑
i=1

log σ

(
β log

π(yrw
i |xr

i)

πref(y
rw
i |xr

i)
− β log π(yrl

i |xr
i)

πref(yrl
i |xr

i)

)
, (15)

where Πr is defined in Eq. (17)
2 for k = 1, 2, . . . ,K do
3 Train a model using a rearranged Lagrangian DPO objective on cost preference data:

πk ← argmin
π∈Πc

k

− 1

N c

N c∑
i=1

log σ

(
1

λk

(
β log

π∗
r̂ (y

cw
i |xc

i)

πref(y
cw
i |xc

i)
− β log π(ycw

i |xc
i)

πref(y
cw
i |xc

i)

−
(
β log

π∗
r̂ (y

cl
i |xc

i)

πref(y
cl
i |xc

i)
− β log π(ycl

i |xc
i)

πref(y
cl
i |xc

i)

)))
, (16)

where Πc
k is defined in Eq. (18)

4 Construct an estimate c̃k for Ex∼Dp,y∼πk(·|x)[c
∗(x, y)]: For i = 1, . . . , NCE, first sample

xi ∼ Dp, yi ∼ πk(·|xi). Then, for each (xi, yi), sample {Zi,j}M
CE

j=1
i.i.d.∼ Ber(σ(c∗(xi, yi))).

Set c̃k ← 1
NCE

∑NCE

i=1 σ
−1( 1

MCE

∑MCE

j=1 Zi,j), where σ−1(z) := log( 1
1−z − 1) is the inverse

of the sigmoid function
5 λk+1 ← Proj[0,2ρ](λk + ηc̃k), where η := λ1

Cmax

√
K

6 return πout
K := unif(π1, . . . , πK)

Assumption 1 (Slater’s Condition). There exists a policy π̄ which satisfies
Ex∼Dp,y∼π̄(·|x)[c

∗(x, y)] < 0. In addition, we know a constant ρ ≥ f(π∗)−f(π̄)
−Ex∼Dp,y∼π̄(·|x)[c∗(x,y)]

.

This assumption is common in the constrained optimization and learning literature (Beck, 2017;
Efroni et al., 2020). In practice, it is reasonable that there exists a safe policy model, e.g., a language
model which refuses to answer harmful questions albeit less helpful.

Following prior works (Dai et al., 2024; Kim et al., 2025), we also allow querying cost binary
feedback from human annotators, which indicates whether a response y is safe under prompt x. Such
cost binary feedback is generated according to

Pr [Z(y) = 1|x] = σ (c∗(x, y))

and Pr[Z(y) = 0|x] = 1− σ (c∗(x, y)), where Z(y) = 1 and Z(y) = 0 denote that y is unsafe and
safe, respectively. We will use cost binary feedback in algorithm PD-DPO to estimate the cost of the
current trained model for Lagrange multiplier update.

Now we present an efficient and provably convergent primal-dual DPO algorithm PD-DPO. PD-DPO
first trains a model using standard DPO on reward preference data, and leverages this model to
provide reward information to train a model using a rearranged Lagrangian DPO objective with policy
search constraints. Then, PD-DPO conducts projected subgradient descent to update the Lagrange
multiplier. PD-DPO performs such model training and Lagrange multiplier update alternately.

Algorithm 1 illustrates the algorithm procedure of PD-DPO. Specifically, PD-DPO first trains a model
π∗
r̂ using the standard DPO objective (Rafailov et al., 2023) on reward preference data Dr within a

constrained policy search range:

Πr :=

π(y|x) = πref(y|x) · exp
(

1
β r(x, y)

)
∑
y′∈Y πref(y′|x) · exp

(
1
β r(x, y

′)
) : r ∈ [−Rmax, Rmax]

 . (17)

Since we use only finite preference data, we cannot exactly learn π∗
r∗ . Instead, we learn a reward

function r̂ which is close to r∗ and implicitly maintained by the policy π∗
r̂ . The notation π∗

r̂ denotes

6
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the optimal policy under the learned reward function r̂ (Eq. (4)). The policy search range Πr is used
to restrict the learned reward function r̂ within [−Rmax, Rmax] (Line 1). Next, in each iteration k,
given a Lagrange multiplier λk, PD-DPO utilizes the reward information provided by π∗

r̂ to train a
model using a rearranged Lagrangian DPO objective as derived in Section 4.1, but with a constrained
policy search range:

Πc
k :=

π(y|x)= πref(y|x) exp
(

1
β

(
β log

π∗
r̂ (y|x)

πref(y|x) − λkc(x, y)
))

∑
y′∈Y πref(y′|x) exp

(
1
β

(
β log

π∗
r̂ (y

′|x)
πref(y′|x) − λkc(x, y

′)
)): c∈ [−Cmax, Cmax]


(a)
=

π(y|x)= πref(y|x) exp
(

1
β (r̂(x, y)− λkc(x, y))

)
∑
y′∈Y πref(y′|x) exp

(
1
β (r̂(x, y′)− λkc(x, y′))

) : c∈ [−Cmax, Cmax]

. (18)

Here equality (a) is due to Eq. (5) and the fact that the partition function Zr̂(x) only depends on x and
can be cancelled out. Πc

k is used to restrict the learned cost function within [−Cmax, Cmax] (Line 3).

After obtaining πk, we estimate the cost of πk for Lagrange multiplier update using the following
scheme: We i.i.d. draw NCE prompt-response pairs {(xi, yi)}N

CE

i=1 using πk, where the superscript CE
stands for cost estimation. For each pair (xi, yi), we i.i.d. query human annotators whether response
yi is safe under prompt xi MCE times, and obtain MCE cost binary feedback {Zi,j}M

CE

j=1 drawn from
Ber(σ(c∗(xi, yi))). Then, we take the inverse of the sigmoid function σ−1(·) on the average of these
MCE Bernoulli outcomes to obtain an estimate c̃k for the expected cost of πk (Line 4). In analysis,
we can bound the deviation between this estimate c̃k and the expected cost of πk (see Appendix C.2).
After cost estimation, PD-DPO performs projected subgradient descent with c̃k to update Lagrange
multiplier λk, and enters the next iteration (Line 5).

4.3 THEORETICAL GUARANTEES OF ALGORITHM PD-DPO

Unlike prior works (Dai et al., 2024; Liu et al., 2024b; Kim et al., 2025) which did not provide
theoretical guarantees for their output policy models, we establish rigid suboptimality and constraint
violation guarantees for the output policy of algorithm PD-DPO.

First, we note that our rearranged Lagrangian DPO objective (Eq. (16)) and the safe RLHF procedure,
which first trains reward and cost models using MLE and maximizes L(π;λk) under the learned
reward and cost functions, have the same set of optimal solutions (see Theorem 4 in Appendix C.1
for a formal statement). Next, we present the theoretical results of algorithm PD-DPO.

For any (x, y) ∈ X × Y , let ϕ(x, y) denote a |X ||Y|-dimensional vector where
the entry corresponding to (x, y) is 1 and all other entries are 0. Let α(z) :=√
(exp (z) + exp (−z) + 2)

2 (|X ||Y|+ log
(
1
δ

))
+ γz2 and

B := ρCmax

√
log
(
K
δ

)
NCE + ρW

√√√√ log
(

|X ||Y|NCEK
δ

)
MCE

+ρ·α(Cmax)

(
E(x,y)∼Dp×π∗

[
∥ϕ(x, y)∥(ΣDc+γI)−1

]
+

1

K

K∑
k=1

E(x,y)∼Dp×πk

[
∥ϕ(x, y)∥(ΣDc+γI)−1

])

+α(Rmax)

(
E(x,y)∼Dp×π∗

[
∥ϕ(x, y)∥(ΣDr+γI)−1

]
+

1

K

K∑
k=1

E(x,y)∼Dp×πk

[
∥ϕ(x, y)∥(ΣDr+γI)−1

])
.

Here ΣD⋄ :=
∑

(x,y,y′)∈D⋄ (ϕ(x, y)− ϕ(x, y′)) (ϕ(x, y)− ϕ(x, y′)⊤ with ⋄ ∈ {r, c}. For any π,
(x, y) ∼ Dp × π denotes x ∼ Dp, y ∼ π(·|x). γ > 0 is an arbitrary regularization parameter. W is a
parameter dependent on Cmax, which is formally defined in Eq. (28) in Appendix C.2.
Theorem 1 (Result of Algorithm PD-DPO). With probability at least 1− δ, for any K ≥ 1, the output
policy πout

K of algorithm PD-DPO satisfies

f(π∗)− f(πout
K ) = O

(
λ1Cmax√

K
+B

)
, g(πout

K ) = O

(
Cmax

ρ
√
K

( (λ1 − 2ρ)
2

λ1
+ λ1

)
+
B

ρ

)
.

7
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In this result, the 1√
K

term is an inherent error of the primal-dual method. The 1√
NCE

and 1√
MCE

terms are the error due to cost estimation. The four ∥ϕ(x, y)∥(ΣD⋄+γI)−1 terms are the error due to
inferring reward and cost information from preference data. The ∥ϕ(x, y)∥(ΣD⋄+γI)−1 factor stands
for how broadly the given preference data cover. Theorem 1 shows that the suboptimality and cost
violation of the output policy by algorithm PD-DPO can be arbitrarily close to zero, when the given
preference data have sufficient coverage, and the number of preference data, the number of iterations
K, and the number of samples for cost estimation NCE,MCE are large enough.

5 EXPLORATORY PRIMAL-DUAL DPO WITH EXPLORATION BONUSES

The result of algorithm PD-DPO (Theorem 1) depends on the coverage of preference data, i.e.,
∥ϕ(x, y)∥(ΣD⋄+γI)−1 . If the given preference data do not have sufficient coverage, the suboptimality
and constraint violation of PD-DPO can be unbounded.

To resolve this coverage issue, we further investigate an online setting where collecting preference data
online is allowed. In this setting, we develop an exploratory primal-dual DPO algorithm O-PD-DPO,
which incorporates exploration bonuses bc

k(x, y) and br
k(x, y) in the rearranged Lagrangian DPO and

standard DPO objectives. The construction of exploration bonuses is based on the Bradley-Terry
model (Eqs. (1) and (8)), which is commonly assumed in many RLHF works, e.g., (Zhu et al., 2023;
Wachi et al., 2024; Huang et al., 2024). In algorithm O-PD-DPO, the trained policy has an incentive to
explore the uncovered prompt-response space, and gradually expands the used preference data. We
defer the pseudo-code and detailed description of O-PD-DPO to Appendix D due to space limits.

We take the incorporation of br
k in standard DPO as an example to explain the intuition behind

why including exploration bonuses can encourage exploration. For the standard DPO objective
(Eq. (15)), algorithm O-PD-DPO will subtract a br

k(x, y
rw) term from the original β log π(yrw|x)

πref(yrw|x) term.
When preference data do not cover (x, yrw) well, br

k(x, y
rw) will be large. Then, subtracting a large

value from β log π(yrw|x)
πref(yrw|x) encourages π to put a higher probability on yrw to maintain the original

value of β log π(yrw|x)
πref(yrw|x) which achieves the optimal value of the MLE objective function. Thus, by

incorporating exploration bonuses in the DPO objective, the trained policy is incentivized to explore
the uncovered prompt-response space. This design and its analysis are novel to the RLHF literature.

Now we provide the suboptimality and constraint violation guarantees of algorithm O-PD-DPO. Let

ω(z) :=
√
(exp (z) + exp (−z) + 2)2 · (|X ||Y|+ log(Kδ ))/N

on + γonz2 and

Bon := ρCmax

√
log
(
K
δ

)
NCE + ρW

√√√√ log
(

|X ||Y|NCEK
δ

)
MCE + (ρ · ω(Cmax) + ω(Rmax)) ·√

|X ||Y|
K

(
log

(
γon +max{|Dr

1|, |Dc
1|}+K

|X ||Y|γon

)
+

1

Cbase log

(
γon +max{|Dr

1|, |Dc
1|}+ CbaseK

|X ||Y|γon

))
.

Here N on is the number of preference data collected online in each iteration. γon > 0 is a given
regularization parameter. Cbase is a parameter related to a baseline policy which is used in online data
collection. The definitions of the baseline policy and Cbase are in Eq. (34) in Appendix D.

Theorem 2 (Result of Algorithm O-PD-DPO). With probability at least 1 − δ, for any K ≥ 1, the
output policy πout

K of algorithm O-PD-DPO satisfies

f(π∗)− f(πout
K ) = O

(
λ1Cmax√

K
+Bon

)
, g(πout

K ) = O

(
Cmax

ρ
√
K

( (λ1 − 2ρ)
2

λ1
+ λ1

)
+
Bon

ρ

)
.

Compared to Theorem 1, here the results have no dependence on the coverage of preference data,
i.e., ∥ϕ(x, y)∥(ΣD⋄+γI)−1 . Theorem 2 demonstrates that the adoption of exploration bonuses in the
rearranged Lagrangian DPO objective effectively incentivizes exploration and expands the used
preference data during training. When all problem parameters K,NCE,MCE, N on are large enough,
the suboptimality and constraint violation bounds will shrink to zero.

8
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Figure 1: (Reviewer VPsQ) (Reviewer kvKV) (Reviewer QQdF) Rewards and negated costs of re-
sponses generated by compared language models when evaluated by Beaver-7b-unified-reward and
Beaver-7b-unified-cost (Dai et al., 2024).

While prior works (Huang et al., 2024; Wachi et al., 2024) also provide theoretical results, Huang
et al. (2024) require an assumption that the optimal policy is feasible under the estimated reward
and cost functions. The results in (Wachi et al., 2024) have a term of the deviation between the used
and optimal Lagrange multipliers, which can be unbounded since their algorithm does not contain
any scheme to learn the optimal Lagrange multiplier. In addition, the results in prior works depend
on preference data coverage. To the best of our knowledge, Theorem 2 is the first result for the
constrained alignment problem (Eq. 10) to get rid of the dependence on preference data coverage.

6 EXPERIMENTS

In this section, we provide experimental results. Our experiments are run on an Intel Xeon
Platinum 8558 CPU and a single NVIDIA GH200 96GB GPU. Following prior works, we use
the PKU-SafeRLHF preference dataset (Dai et al., 2024) to train and evaluate models, and take
Alpaca-7b-reproduced as the SFT model, which is a fine-tuned version of the LLaMA-2-7b
model (Touvron et al., 2023b) on the Alpaca dataset (Taori et al., 2023). We compare our algorithm
PD-DPO with the SFT model and existing open-source safety alignment algorithms Beaver-v3.0 (Dai
et al., 2024), SafeDPO (Kim et al., 2025), SACPO and P-SACPO (Wachi et al., 2024).

Figure 1 presents the model-based evaluation results, i.e., the average reward and negated cost scores
of responses generated by compared language models, when evaluated by the reward model Beaver-
7b-unified-reward and the cost model Beaver-7b-unified-cost (Dai et al., 2024). (Reviewer kvKV)
(Reviewer QQdF) Our PD-DPO (λ = 3) outperforms the SFT model, SafeDPO (Kim et al., 2025)
and SACPO (Wachi et al., 2024) in both harmlessness and helpfulness. The performance of PD-DPO
(λ = 3) is comparable to that of P-SACPO (Wachi et al., 2024). However, PD-DPO does not require
prior knowledge of the optimal Lagrange multiplier as in SACPO and P-SACPO. While PD-DPO has
worse performance than Beaver-v3.0 (Dai et al., 2024), PD-DPO only needs to train two models
rather than three models as in Beaver-v3.0. In addition, Beaver-v3.0 requires much higher memory
costs than our algorithm (cannot be run on a single GH200 GPU with 96GB memory), and does
not have rigorous theoretical guarantees as our algorithm. This trade-off between performance and
memory costs is similar to the trade-offs between DPO and RLHF that have been reported in the
literature (Rafailov et al., 2023; Xu et al., 2024).

7 CONCLUSION

In this work, we study the constrained alignment problem for LLMs, which aims to maximize the
reward while constraining the cost to stay below a threshold. We develop a novel primal-dual DPO
approach for the offline and online data settings. Our approach adopts a rearranged Lagrangian DPO
training objective, utilizing the reward information provided by a model trained using standard DPO.
We establish suboptimality and constraint violation guarantees, and provide experimental results on
the PKU-SafeRLHF dataset (Dai et al., 2024) to validate the effectiveness of our approach.

There are several interesting directions for future work. One direction is to extend our theoretical
results to the policy parameterization setting. The challenge is that under policy parameterization, the
constrained alignment problem can be non-convex. Another direction is to investigate stricter cost
constraints, e.g., per-response constraints, which is challenging to tackle using neural networks.

9
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ETHICS STATEMENT

This paper studies the alignment of LLMs to enhance safety or impose certain constraints. The data
used in experiments may contain harmful or offensive content.

REPRODUCIBILITY STATEMENT

This paper provides theoretical guarantees and experimental results for the proposed primal-dual
DPO approach. All results are reproducible. For theoretical guarantees, the assumptions required
are stated in Sections 3 and 4.2 and Appendix D, and all proofs are presented in Appendix. For
experimental results, the experimental setup is described in Section 6 and Appendix B, and the code
is provided in supplementary materials.
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APPENDIX

A A FULL REVIEW OF RELATED WORK

In this section, we give a more detailed review of related work.

With the extensive application of LLMs, the alignment of LLMs has received widespread attention in
the AI community, which aims to make LLMs align with human preference and values, and become
more helpful and harmless. RLHF (Christiano et al., 2017; Ouyang et al., 2022) and DPO (Rafailov
et al., 2023) are two main algorithmic frameworks for LLM alignment. RLHF first trains a reward
model, and then applies RL algorithms with the learned reward model to fine-tune LLMs. DPO
directly fine-tune LLMs using preference data, without explicitly training a reward model.

While LLMs have achieved a remarkable success, they may also generate harmful and fabricated
content (Gehman et al., 2020; Lin et al., 2021; Wei et al., 2023). Recently, there are several works
studying safety or constrained alignment of LLMs. The most related works to ours are (Dai et al.,
2024; Liu et al., 2024b; Wachi et al., 2024; Huang et al., 2024; Zhang et al., 2025; Kim et al., 2025).
Dai et al. (2024) proposed a safe RLHF framework, which considers maximizing the reward while
restricting the cost to be no larger than a threshold. Their approach first trains a reward model and
a cost model on reward and cost preference data, respectively, and then applies an RL algorithm,
PPO (Schulman et al., 2017), to maximize the Lagrangian function constituted by the learned reward
and cost functions. Liu et al. (2024b) regenerated preference data according to the Bradley-Terry
model (Bradley & Terry, 1952) with the Lagrangian function using trained reward and cost models,
and then performed the standard DPO algorithm (Rafailov et al., 2023) on these regenerated data.
Wachi et al. (2024) observed a relationship between the optimal policy of maximizing the Lagrangian
function and the optimal policy of maximizing the reward function, and then applied DPO combined
with this observation. The algorithm in (Wachi et al., 2024) requires prior knowledge of the optimal
Lagrange multiplier, and their theoretical results depend on the deviation between the used Lagrange
multiplier and optimal Lagrange multiplier, which can be unbounded. Kim et al. (2025) reordered
preference data if the preferred response (in terms of helpfulness) is unsafe and the dispreferred
response is safe, and then ran DPO on these reordered data. Their algorithm is inefficient in cost
information learning, and thus performs worse than our algorithm in experiments (see Section 6).
Huang et al. (2024); Zhang et al. (2025) investigated the constrained alignment problem from the
perspective of dual optimization. Huang et al. (2024) derived an explicit form of the dual function,
which only involves the SFT model and does not need to compute the optimal policy to the Lagrangian
function. Leveraging this derivation, their algorithms use offline data generated by the SFT model to
first learn the optimal Lagrange multiplier, which avoids the expensive computation of evaluating
the optimal policy at each step, and then compute the optimal policy only after it learns the optimal
Lagrange multiplier. However, the algorithms in (Huang et al., 2024) require trained reward and
cost models, or need to train the reward-aligned and cost-aligned language models in advance,
while our algorithm only needs to train the reward-aligned language model in advance. Zhang
et al. (2025) generalized the algorithms in (Huang et al., 2024) to the multi-shot scheme with policy
parameterization, and focused on analyzing the primal-dual gap brought by policy parameterizaiton.

(Reviewer kvKV) Table 1 summarizes the assumptions, the number of required trained and loaded
models, and theoretical guarantees on the output policy of our work and the most related works.
Our algorithm just needs to train and load two models, which significantly reduces memory costs
compared to prior works (Dai et al., 2024; Liu et al., 2024b; Huang et al., 2024; Zhang et al., 2025).
While Wachi et al. (2024) also only needed to train two models, they required prior knowledge of the
optimal Lagrange multiplier, and their theoretical results have an unbounded term due to the lack
of schemes to learn the optimal Lagrange multiplier. While Kim et al. (2025) needed to train only
one model, their algorithm has worse empirical performance than ours, and they did not provide
theoretical guarantees on the output policy.

Regarding theoretical results, since the needed assumptions and main focuses of the analyses in our
work and prior works (Wachi et al., 2024; Huang et al., 2024; Zhang et al., 2025) are different, the
results cannot be directly compared. The results in Wachi et al. (2024) have an unbounded term of
the gap between the used Lagrange multiplier and optimal Lagrange multiplier, since their algorithm
does not contain any scheme to learn the optimal Lagrange multiplier. The results in (Huang et al.,
2024) rely on the assumption that the optimal policy is feasible under their used cost model, which is
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Table 1: Summary of the assumptions, the number of required trained and loaded models, and
theoretical guarantees on the output policy in our work and the most related works. In the last
column, r and c denote the reward and cost models, respectively, and πr, πc and πr,c denote
the reward-aligned, cost-aligned and reward-cost-aligned language models, respectively.

Algorithms Assumptions
# The required

trained and
loaded models

Theoretical
guarantees on the

output policy
PD-DPO
(ours)

(i) Bradley-Terry model
(ii) Slater’s condition 2: πr, πr,c Yes1

Safe RLHF
(Dai et al., 2024) Bradley-Terry model 3: r, c, πr,c No

C-DPO
(Liu et al., 2024b) Bradley-Terry model 3: r, c, πr,c No

MoCAN, PeCAN
(Huang et al., 2024)

(i) Bradley-Terry model
(ii) Slater’s condition

(iii) π∗ is feasible under c

3: r, c, πr,c

(πr, πc, πr,c) Yes2

CAID
(Zhang et al., 2025)

(i) Bradley-Terry model
(ii) Slater’s condition

(iii) Boundedness of the
policy parameterization gap

(iv) Strong convexity of
the dual function

3: r, c, πr,c Yes3

SACPO
(Wachi et al., 2024)

(i) Bradley-Terry model
(ii) Slater’s condition
(iii) Knowledge of λ∗

2: πr, πr,c Yes4

SafeDPO
(Kim et al., 2025)

(i) Bradley-Terry model
(ii) ∀x, ∃ȳ s.t. c∗(x, ȳ) ≤ 0

and πref(ȳ|x) > 0
1: πr,c No

1 Our results do not require extra assumptions other than the standard Bradley-Terry model
and Slater’s condition. In addition, our results for the online exploration version of
algorithm PD-DPO get rid of the dependence on preference data coverage (Theorem 2).

2 The results in (Huang et al., 2024) rely on the assumption that the optimal policy π∗ is
feasible under the used cost model c.

3 The results in (Zhang et al., 2025) focus on analyzing the primal-dual gap brought by
policy parameterization, instead of the error due to learning reward and cost functions
from preference data as in our work, (Wachi et al., 2024) and (Huang et al., 2024).

4 The results in (Wachi et al., 2024) have an unbounded term of the gap between the used
Lagrange multiplier and optimal Lagrange multiplier λ∗.

hard to verify in practice. Zhang et al. (2025) focused on analyzing the primal-dual gap due to policy
parameterization, instead of the error due to learning reward and cost functions from preference data
as in our work and (Wachi et al., 2024; Huang et al., 2024). In contrast to prior works, our results
do not require extra assumptions and remove the dependence on preference data coverage in the
extended online exploration setting (Theorem 2).

There are also other works related to safety or constrained alignment of LLMs, e.g., (Zhou et al.,
2023; Ji et al., 2024; Yang et al., 2024; Qi et al., 2025). Most of these works are empirical works,
which did not provide theoretical guarantees on the output policy and are less related to our work.

B MORE EXPERIMENTAL DETAILS

In this section, we will describe more details of algorithm implementation and experimental setup.
Our code is written based on the released code of prior safe RLHF work (Dai et al., 2024) on their
GitHub website, and we also open source our code in supplementary materials.

In algorithm implementation, we implement our algorithm PD-DPO (Algorithm 1) without policy
search constraints π ∈ Πr in Line 1 and π ∈ Πc

k in Line 3, since these two constraints are mainly used

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 2: Hyper-parameters of our algorithm PD-DPO and the compared algorithms.

Hyper-parameters PD-DPO (ours) SafeDPO Beaver-v3.0 SACPO and P-SACPO
β 0.1 0.1 0.01 0.1 (βλ = 0.025)

epochs 5 3 2 3
max length 512 512 512 512

per device train batch size 8 8 16 16
per device eval batch size 8 8 16 16

gradient accumulation steps 1 1 1 2
gradient checkpointing True True True True

lr 2e-5 1e-6 2e-5 2e-5
lr scheduler type cosine cosine cosine cosine
lr warmup ratio 0.03 0.03 0.03 0.03

weight decay 0.05 0.05 0.1 -
bf16 True True True True
tf32 True True True True

for guaranteeing theoretical performance. In experiments, we set the Lagrange multiplier of algorithm
PD-DPO as 5 to save computational costs and time due to our limited computational resources. We
find that it works well in practice.

For the compared algorithms, we directly access the released models Alpaca-7b-reproduced,
Beaver-v3.0 (Dai et al., 2024), SACPO and P-SACPO (Wachi et al., 2024) via their Hugging Face
websites for evaluation, and do not tune their algorithms. Thus, the hyper-parameters of their
algorithms are the same as reported in their paper (Dai et al., 2024). For algorithm SafeDPO (Kim
et al., 2025), to guarantee fair comparison, we run it on the SFT model Alpaca-7b-reproduced,
without performing additional supervised fine-tuning on pairwise preference data as described in
(Kim et al., 2025). We present the hyper-parameters of our algorithm PD-DPO and the compared
algorithms in Table 2.

C PROOFS FOR ALGORITHM PD-DPO

In this section, we present the proofs for algorithm PD-DPO, including the proofs for the connection to
the RLHF-based procedure, suboptimality, and constraint violation.

We note that our proofs for the connection between our DPO-based procedure and the RLHF-based
procedure (Theorems 3, 4, 5 and 6) follow the analysis of Proposition 4 in (Azar et al., 2024). We
extend their analysis to the setting with constrained policy search ranges and a Lagrangian objective.

C.1 CONNECTION BETWEEN OUR DPO-BASED PROCEDURE AND THE RLHF-BASED
PROCEDURE

We first give a result which builds a bridge between standard DPO and standard RLHF with con-
strained policy search ranges.

LetR := [−Rmax, Rmax] and C := [−Cmax, Cmax]. Define the following problem which first learns
a reward model and then finds the optimal policy to maximize the learned reward function:

r̂ ← min
r∈R

− 1

N r

N r∑
i=1

log σ
(
r(xi, y

rw
i )− r(xi, yrl

i )
)

(19)

max
π

Ex∼Dp

[
Ey∼π(·|x) [r̂(x, y)]− β · KL(π(·|x)∥πref(·|x))

]
(20)

Theorem 3 (Connection between Standard DPO and Standard RLHF with Constrained Policy
Ranges). Problems Eqs. (15) and (20) have the same set of optimal solutions.

Proof. Step (i). First, we prove that if π is an optimal solution to Eq. (20), then π is also an optimal
solution to Eq. (15).
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If r̂ ∈ R is an optimal solution to Eq. (19), then π∗
r̂ ∈ Πr (as defined in Eq. (4)) is an optimal solution

to Eq. (20). We have that π∗
r̂ is also an optimal solution to Eq. (15). Otherwise, there exists another

π′ ∈ Πr which achieves a smaller objective value in Eq. (15). Then, there must exist a r′ ∈ R which
satisfies that

π′(y|x) =
πref(y|x) · exp

(
1
β r

′(x, y)
)

∑
y′∈Y

πref(y
′|x) · exp

(
1

β
r′(x, y′)

)
︸ ︷︷ ︸

:=Zr′ (x)

,

i.e.,

r′(x, y) = β log
π′(y|x)
πref(y|x)

+ β logZr′(x),

and the objective value in Eq. (19) achieved by r′,

− 1

N r

N r∑
i=1

log σ

(
β log

π′(yrw
i |xi)

πref(y
rw
i |xi)

+ β logZr′(xi)−
(
β log

π′(yrl
i |xi)

πref(yrl
i |xi)

+ β logZr′(xi)

))
,

is smaller than that achieved by r̂, which contradicts the supposition that r̂ is the optimal solution to
Eq. (19).

Step (ii). Next, we prove that if π is an optimal solution to Eq. (15), then π is also an optimal
solution to Eq. (20).

If π̃ ∈ Πr is an optimal solution to Eq. (15), then there exists a r̃ ∈ R which satisfies

π̃(y|x) =
πref(y|x) · exp

(
1
β r̃(x, y)

)
∑
y′∈Y πref(y′|x) · exp

(
1
β r̃(x, y

′)
) ,

i.e.,

r̃(x, y) = β log
π̃(y|x)
πref(y|x)

+ β logZr̃(x).

We have that r̃ achieves the optimal value in Eq. (19),

− 1

N r

N r∑
i=1

log σ

(
β log

π̃(yrw
i |xi)

πref(y
rw
i |xi)

+β logZr̃(xi)−
(
β log

π̃(yrl
i |xi)

πref(yrl
i |xi)

+β logZr̃(xi)

))
. (21)

Otherwise, there exists another r′ ∈ R and then there exists a π′ = π∗
r̂ ∈ Πr which gives a smaller

objective value than π̃ in Eq. (21). Thus, r̃ achieves the optimal value in Eq. (19). Then, the optimal
solution to Eq. (20) under cost model r̃ is

π(y|x) ∝ πref(y|x) · exp
(
1

β
r̃(x, y)

)
(a)∝ πref(y|x) · exp

(
1

β

(
β log

π̃(y|x)
πref(y|x)

+ β logZr̃(x)

))
∝ πref(y|x) · exp

(
log

π̃(y|x)
πref(y|x)

)
= π̃(y|x),

where (a) uses Eq. (5).

Therefore, π̃ is also an optimal solution to Eq. (20).

In the following, we provide a result which builds a connection between our rearranged Lagrangian
DPO objective and the safe RLHF objective.
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Theorem 4 (Connection between Our Rearranged Lagrangian DPO and Safe RLHF). For any k ≥ 0,
problem Eq. (16) and the following problem

ĉ← min
c∈[−Cmax,Cmax]

− 1

N c

N c∑
i=1

log σ
(
c(xc

i, y
cw
i )− c(xc

i, y
cl
i )
)
, (22)

max
π

Ex∼Dp

[
Ey∼π(·|x) [r̂(x, y)− λk · ĉ(x, y)]− β · KL(π(·|x)∥πref(·|x))

]
. (23)

have the same set of optimal solutions.

Theorem 4 demonstrates that our rearranged Lagrangian DPO objective is an effective and alternative
way to learn the optimal policy of maximizing the Lagrangian function, while enjoying the advantage
of memory and computational efficiency.

Proof of Theorem 4. First, note that for any ĉ, the optimal solution to Eq. (23) is

π∗
r̂−λk ĉ

(y|x) =
πref(y|x) · exp

(
1
β (r̂(x, y)− λk · ĉ(x, y))

)
∑
y′∈Y

πref(y
′|x) · exp

(
1

β
(r̂(x, y′)− λk · ĉ(x, y′))

)
︸ ︷︷ ︸

:=Zr̂−λkĉ(x)

, ∀x ∈ X . (24)

Then, we have

ĉ(x, y) =
1

λk

(
r̂(x, y)− β log

π∗
r̂−λk ĉ

(y|x)
πref(y|x)

− β logZr̂−λk ĉ(x)

)
(a)
=

1

λk

(
β log

π∗
r̂ (y|x)

πref(y|x)
+ β logZr̂(x)− β log

π∗
r̂−λk ĉ

(y|x)
πref(y|x)

− β logZr̂−λk ĉ(x)

)
,

where equality (a) uses Eq. (5).

The proof consists of two steps.

Step (i). First, we prove that if π is an optimal solution to Eq. (23), then π is also an optimal solution
to Eq. (16).

If ĉ ∈ C is an optimal solution to Eq. (22), then π∗
r̂−λk ĉ

∈ Πc
k (as shown in Eq. (24)) is an optimal

solution to Eq. (23). We have that π∗
r̂−λk ĉ

is also an optimal solution to Eq. (16). Otherwise, there
exists another π′ ∈ Πc

k which achieves a smaller objective value in Eq. (16). Then, there must exist a
c′ ∈ C which satisfies that

π′(y|x) =
πref(y|x) · exp

(
1
β

(
β log

π∗
r̂ (y|x)

πref(y|x) − λk · c
′(x, y)

))
∑
y′∈Y

πref(y
′|x) · exp

(
1

β

(
β log

π∗
r̂ (y|x)

πref(y|x)
− λk · c′(x, y′)

))
︸ ︷︷ ︸

:=Z
β log

π∗
r̂

πref
−λkc′

(x)

,

i.e.,

c′(x, y) =
1

λk

(
β log

π∗
r̂ (y|x)

πref(y|x)
− β log π′(y|x)

πref(y|x)
− β logZ

β log
π∗
r̂

πref
−λkc′

(x)

)
,

and the objective value in Eq. (22) achieved by c′,

− 1

N c

N c∑
i=1

log σ

(
1

λk

(
β log

π∗
r̂ (y

cw
i |xi)

πref(y
cw
i |xi)

− β log π′(ycw
i |xi)

πref(y
cw
i |xi)

− β logZ
β log

π∗
r̂

πref
−λkc′

(xi)

)

− 1

λk

(
β log

π∗
r̂ (y

cl
i |xi)

πref(y
cl
i |xi)

− β log π′(ycl
i |xi)

πref(y
cl
i |xi)

− β logZ
β log

π∗
r̂

πref
−λkc′

(xi)

))
,
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is smaller than that achieved by ĉ, which contradicts the supposition that ĉ is the optimal solution to
Eq. (22).

Step (ii). Next, we prove that if π is an optimal solution to Eq. (16), then π is also an optimal solution
to Eq. (23).

If πk ∈ Πc
k is an optimal solution to Eq. (16), then there exists a ck ∈ C which satisfies

πk(y|x) =
πref(y|x) · exp

(
1
β

(
β log

π∗
r̂ (y|x)

πref(y|x) − λk · ck(x, y)
))

∑
y′∈Y πref(y′|x) · exp

(
1
β

(
β log

π∗
r̂ (y

′|x)
πref(y′|x) − λk · ck(x, y

′)
)) ,

i.e.,

ck(x, y) =
1

λk

(
β log

π∗
r̂ (y|x)

πref(y|x)
− β log πk(y|x)

πref(y|x)
− β logZ

β log
π∗
r̂

πref
−λkck

(x)

)
.

We have that ck achieves the optimal value in Eq. (22),

− 1

N c

N c∑
i=1

log σ

(
1

λk

(
β log

π∗
r̂ (y

cw
i |xi)

πref(y
cw
i |xi)

− β log πk(y
cw
i |xi)

πref(y
cw
i |xi)

− β logZ
β log

π∗
r̂

πref
−λkck

(xi)

)

− 1

λk

(
β log

π∗
r̂ (y

cl
i |xi)

πref(y
cl
i |xi)

− β log πk(y
cl
i |xi)

πref(y
cl
i |xi)

− β logZ
β log

π∗
r̂

πref
−λkck

(xi)

))
. (25)

Otherwise, there exists another c′ ∈ C and then there exists a π′ = π∗
r̂−λkc′

∈ Πc
k which gives a

smaller objective value than πk in Eq. (25). Thus, ck achieves the optimal value in Eq. (22). Then,
the optimal solution to Eq. (22) under cost model ck is

π(y|x) ∝ πref(y|x) · exp

(
1

β

(
r̂(x, y)− β log π∗

r̂ (y|x)
πref(y|x)

+ β log
πk(y|x)
πref(y|x)

+ β logZ
β log

π∗
r̂

πref
−λkck

(x)

))
(a)∝ πref(y|x) · exp

(
1

β

(
β logZr̂(x) + β log

πk(y|x)
πref(y|x)

+ β logZ
β log

π∗
r̂

πref
−λkck

(x)

))
∝ πref(y|x) · exp

(
1

β

(
β log

πk(y|x)
πref(y|x)

))
= πk(y|x),

where (a) uses Eq. (5).

Therefore, πk is also an optimal solution to Eq. (23).

C.2 COST ESTIMATION FOR LAGRANGIAN MULTIPLIER UPDATE

In the following, we bound the estimation error between c̃k and Ex∼Dp,y∼πk(·|x)[c
∗(x, y)] in Line 4

of Algorithm PD-DPO.

Let δ′ := δ
4 . Define events

E :=


∣∣Z̄i − σ(c∗(xi, yi))∣∣ ≤

√√√√ log
(

2|X ||Y|NCEK
δ′

)
MCE , ∀i ∈ [NCE],∀k ∈ [K]

 , (26)

F :=


∣∣∣∣∣∣ 1

NCE

NCE∑
i=1

c∗(xi, yi)− Ex∼Dp,y∼πk(·|x) [c
∗(x, y)]

∣∣∣∣∣∣ ≤ Cmax

√
log
(
2K
δ′

)
NCE , ∀k ∈ [K]

 .

(27)
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Lemma 1. It holds that

Pr [E ] ≥ 1− δ′,
Pr [F ] ≥ 1− δ′.

Proof. Using Hoeffding’s inequality, for any i ∈ [NCE], for any fixed (xi, yi) = (x, y) ∈ X ×Y , we
have that with probability at least 1− δ̃,

∣∣Z̄i − σ(c∗(xi, yi))∣∣ ≤
√√√√ log

(
2
δ̃

)
MCE .

Taking a union bound over (x, y) ∈ X ×Y , i ∈ [NCE] and k ∈ [K], we can obtain the first statement.

Combining the fact that c∗(x, y) ∈ [−Cmax, Cmax] for any (x, y) ∈ X × Y , Hoeffding’s inequality,
and a union bound over k ∈ [K], we can obtain the second statement.

Lemma 2. Assume that event E ∩ F holds. Then, we have

∣∣c̃k − Ex∼Dp,y∼πk(·|x)[c
∗(x, y)]

∣∣ ≤ Cmax

√
log
(
2K
δ′

)
NCE +W

√√√√ log
(

2|X ||Y|NCEK
δ′

)
MCE ,

where

W :=
1(

1
1+exp(−Cmax)

+

√
log

(
2|X||Y|NCEK

δ′

)
MCE

)(
exp(−Cmax)

1+exp(−Cmax)
−

√
log

(
2|X||Y|NCEK

δ′

)
MCE

) (28)

and δ′ := δ
4 .

Proof. For any i ∈ [NCE], we have

∣∣Z̄i − σ(c∗(xi, yi))∣∣ ≤
√√√√ log

(
2|X ||Y|NCEK

δ′

)
MCE .

Since c∗(x, y) ∈ [−Cmax, Cmax] for any (x, y) ∈ X × Y , we have

σ(−Cmax)−

√√√√ log
(

2|X ||Y|NCEK
δ′

)
MCE ≤ Z̄i ≤ σ(Cmax) +

√√√√ log
(

2|X ||Y|NCEK
δ′

)
MCE .

The derivative of σ−1(z) is (σ−1)′(z) = 1
z(1−z) . For any z lying between Z̄i and σ(c∗(xi, yi)), we

have

(σ−1)′(z)≤ 1(
1

1+exp(−Cmax)
+

√
log

(
2|X||Y|NCEK

δ′

)
MCE

)(
exp(−Cmax)

1+exp(−Cmax)
−

√
log

(
2|X||Y|NCEK

δ′

)
MCE

) :=W.

According to the Lagrange’s Mean Value Theorem, we have∣∣σ−1(Z̄i)− c∗(xi, yi)
∣∣ = ∣∣σ−1(Z̄i)− σ−1(σ(c∗(xi, yi)))

∣∣
≤W

∣∣Z̄i − σ(c∗(xi, yi))∣∣
≤W

√√√√ log
(

2|X ||Y|NCEK
δ′

)
MCE .
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Hence, we have

c∗(xi, yi)−W

√√√√ log
(

2|X ||Y|NCEK
δ′

)
MCE ≤ σ−1(Z̄i) ≤ c∗(xi, yi) +W

√√√√ log
(

2|X ||Y|NCEK
δ′

)
MCE .

Since the above argument holds for any i ∈ [NCE], we have

1

NCE

NCE∑
i=1

c∗(xi, yi)−W

√√√√ log
(

2|X ||Y|NCEK
δ′

)
MCE ≤ 1

NCE

NCE∑
i=1

σ−1(Z̄i)

≤ 1

NCE

NCE∑
i=1

c∗(xi, yi) +W

√√√√ log
(

2|X ||Y|NCEK
δ′

)
MCE .

Combining with the definition of event F , we have

Ex∼Dp,y∼πk(·|x) [c
∗(x, y)]− Cmax

√
log
(
2K
δ′

)
NCE −W

√√√√ log
(

2|X ||Y|NCEK
δ′

)
MCE ≤ 1

NCE

NCE∑
i=1

σ−1(Z̄i) ≤

Ex∼Dp,y∼πk(·|x) [c
∗(x, y)] + Cmax

√
log
(
2K
δ′

)
NCE +W

√√√√ log
(

2|X ||Y|NCEK
δ′

)
MCE .

C.3 SUBOPTIMALITY AND CONSTRAINT VIOLATION

Now we give the proof of the suboptimality and constraint violation guarantees for Algorithm PD-DPO
(Theorem 1).

Recall that for any (x, y) ∈ X × Y , ϕ(x, y) denotes a |X ||Y|-dimensional vector where the entry
corresponding to (x, y) is 1 and all other entries are 0. In addition, let

ΣDr :=

N r∑
i=1

(
ϕ(xr

i, y
rw
i )− ϕ(xr

i, y
rl
i )
) (
ϕ(xr

i, y
rw
i )− ϕ(xr

i, y
rl
i )
)⊤
,

ΣDc :=

N c∑
i=1

(
ϕ(xc

i, y
cw
i )− ϕ(xc

i, y
cl
i )
) (
ϕ(xc

i, y
cw
i )− ϕ(xc

i, y
cl
i )
)⊤
.

Define event

G :=

{
|r̂(x, y)− r∗(x, y)| ≤ 4 ∥ϕ(x, y)∥(ΣDr+γI)−1 ·√
(exp (Rmax) + exp (−Rmax) + 2)

2

(
|X ||Y|+ log

(
2

δ′

))
+ γ(Rmax)2,

|ĉ(x, y)− c∗(x, y)| ≤ 4 ∥ϕ(x, y)∥(ΣDc+γI)−1 ·√
(exp (Cmax) + exp (−Cmax) + 2)

2

(
|X ||Y|+ log

(
2

δ′

))
+ γ(Cmax)2,

∀(x, y) ∈ X × Y

}
.

Lemma 3 (MLE Guarantee, Lemma 3.1 in (Zhu et al., 2023)). It holds that

Pr [G] ≥ 1− 2δ′.
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Lemma 4. For any k ≥ 1, we have

f(π∗; r̂)− f(πk; r̂)≤−λk · Ex∼Dp,y∼πk(·|x)[ĉ(x, y)] + λk
(
Ex∼Dp,y∼π∗(·|x)[ĉ(x, y)− c∗(x, y)]

)
.

Proof. It holds that

f(π∗; r̂)
(a)
≤ f(π∗; r̂)− λk · Ex∼Dp,y∼π∗(·|x)[c

∗(x, y)]

= Ex∼Dp

[
Ey∼π∗(·|x) [r̂(x, y)− λk · ĉ(x, y)]− β · KL(π∗(·|x)∥πref(·|x))

]
+ λk · Ex∼Dp,y∼π∗(·|x)[ĉ(x, y)]− λk · Ex∼Dp,y∼π∗(·|x)[c

∗(x, y)]

(b)
≤ Ex∼Dp

[
Ey∼πk(·|x) [r̂(x, y)− λk · ĉ(x, y)]− β · KL(πk(·|x)∥πref(·|x))

]
+ λk · Ex∼Dp,y∼π∗(·|x)[ĉ(x, y)]− λk · Ex∼Dp,y∼π∗(·|x)[c

∗(x, y)]

= f(πk; r̂)− λk · Ex∼Dp,y∼πk(·|x)[ĉ(x, y)] + λk
(
Ex∼Dp,y∼π∗(·|x)[ĉ(x, y)− c∗(x, y)]

)
,

where inequality (a) uses the fact that λk ≥ 0 and π∗ is feasible, and inequality (b) comes from the
definition of πk and Theorem 4.

Now we prove Theorem 1.

Proof of Theorem 1. Recall that δ′ := δ
4 . Then, according to Lemmas 1 and 3, we have Pr[E ∩ F ∩

G] ≥ 1 − δ. Hence, it suffices to prove this theorem assuming that event E ∩ F ∩ G holds. In the
following proof, we assume that event E ∩ F ∩ G holds.

For any k ≥ 1 and λ̄ ∈ [0, 2ρ], we have(
λk+1 − λ̄

)2
=
(

Proj[0,2ρ] (λk + ηk c̃k)− Proj[0,2ρ]
(
λ̄
))2

(a)
≤
(
λk + ηk c̃k − λ̄

)2
=
(
λk − λ̄

)2
+ 2ηk c̃k

(
λk − λ̄

)
+ (ηk)

2
(c̃k)

2
,

where inequality (a) uses the nonexpansivity of the projection to [0, 2ρ].

Summing the above inequality over k = 1, . . . ,K, we have

0 ≤
(
λK+1 − λ̄

)2 ≤ (λ1 − λ̄)2 + K∑
k=1

2ηk · Ex∼Dp,y∼πk(·|x)[c
∗(x, y)] ·

(
λk − λ̄

)
−

K∑
k=1

2ηk · Ex∼Dp,y∼πk(·|x)[c
∗(x, y)] ·

(
λk − λ̄

)
+

K∑
k=1

2ηk c̃k
(
λk − λ̄

)
+

K∑
k=1

(ηk)
2
(c̃k)

2
.

Hence, we have

K∑
k=1

2ηk · Ex∼Dp,y∼πk(·|x)[c
∗(x, y)] · λ̄−

K∑
k=1

2ηk · Ex∼Dp,y∼πk(·|x)[ĉ(x, y)] · λk

≤
(
λ1 − λ̄

)2
+

K∑
k=1

2ηkλk · Ex∼Dp,y∼πk(·|x)[c
∗(x, y)− ĉ(x, y)]

+

K∑
k=1

2ηk
(
λk − λ̄

) (
c̃k − Ex∼Dp,y∼πk(·|x)[c

∗(x, y)]
)
+

K∑
k=1

(ηk)
2
(c̃k)

2
.

Using Lemma 4, we have

K∑
k=1

2ηk

(
Ex∼Dp,y∼πk(·|x)[c

∗(x, y)] · λ̄+ f(π∗; r̂)− f(πk; r̂)
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− λk · Ex∼Dp,y∼π∗(·|x)[ĉ(x, y)− c∗(x, y)]
)

≤
(
λ1 − λ̄

)2
+

K∑
k=1

(ηk)
2
(c̃k)

2
+

K∑
k=1

2ηkλk · Ex∼Dp,y∼πk(·|x)[c
∗(x, y)− ĉ(x, y)]

+

K∑
k=1

2ηk
(
λk − λ̄

) (
c̃k − Ex∼Dp,y∼πk(·|x)[c

∗(x, y)]
)
.

Recall that ηk = η. Then, we have
K∑
k=1

(f(π∗)− f(πk)) + λ̄

K∑
k=1

Ex∼Dp,y∼πk(·|x)[c
∗(x, y)]

≤ 1

2η

(
λ1 − λ̄

)2
+
η

2

K∑
k=1

(c̃k)
2
+

K∑
k=1

λk · Ex∼Dp,y∼πk(·|x)[c
∗(x, y)− ĉ(x, y)]

+

K∑
k=1

(
λk − λ̄

) (
c̃k − Ex∼Dp,y∼πk(·|x)[c

∗(x, y)]
)

+

K∑
k=1

λk · Ex∼Dp,y∼π∗(·|x)[ĉ(x, y)− c∗(x, y)]

+

K∑
k=1

(f(π∗)− f(π∗; r̂))−
K∑
k=1

(f(πk)− f(πk; r̂))

≤ 1

2η

(
λ1 − λ̄

)2
+
η(Cmax)

2K

2
+

K∑
k=1

λk · Ex∼Dp,y∼πk(·|x)[c
∗(x, y)− ĉ(x, y)]

+

K∑
k=1

(
λk − λ̄

) (
c̃k − Ex∼Dp,y∼πk(·|x)[c

∗(x, y)]
)

+

K∑
k=1

λk · Ex∼Dp,y∼π∗(·|x)[ĉ(x, y)− c∗(x, y)]

+K · Ex∼Dp,y∼π∗(·|x)[r
∗(x, y)− r̂(x, y)]−

K∑
k=1

Ex∼Dp,y∼πk(·|x)[r
∗(x, y)− r̂(x, y)].

Let λ̄ = 0. Recall that πout
K is the uniform policy over π1, . . . , πK and η := λ1

Cmax

√
K

. Then, we have

f(π∗)− f(πout
K )

=
1

K

K∑
k=1

(f(π∗)− f(πk))

= O

(
λ1Cmax√

K
+ ρCmax

√
log
(
1
δ

)
NCE + ρW

√√√√ log
(

|X ||Y|NCE

δ

)
MCE

+ρ

(
Ex∼Dp,y∼π∗(·|x)

[
∥ϕ(x, y)∥(ΣDc+γI)−1

]
+

1

K

K∑
k=1

Ex∼Dp,y∼πk(·|x)

[
∥ϕ(x, y)∥(ΣDc+γI)−1

])
·√

(exp (Cmax) + exp (−Cmax) + 2)
2

(
|X ||Y|+ log

(
1

δ

))
+ γ(Cmax)2

+

(
Ex∼Dp,y∼π∗(·|x)

[
∥ϕ(x, y)∥(ΣDr+γI)−1

]
+

1

K

K∑
k=1

Ex∼Dp,y∼πk(·|x)

[
∥ϕ(x, y)∥(ΣDr+γI)−1

])
·
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√
(exp (Rmax) + exp (−Rmax) + 2)

2

(
|X ||Y|+ log

(
1

δ

))
+ γ(Rmax)2

)
.

Let λ̄ = 2ρ. Then, we have

f(π∗)− f(πout
K ) + 2ρEx∼Dp,y∼πout

K (·|x)[c
∗(x, y)]

=
1

K

K∑
k=1

(f(π∗)− f(πk)) +
2ρ

K

K∑
k=1

Ex∼Dp,y∼πk(·|x)[c
∗(x, y)].

If 1
K

∑K
k=1 Ex∼Dp,y∼πk(·|x)[c

∗(x, y)] ≤ 0, the second statement of the theorem naturally holds;
Otherwise, we can replace the term 2ρEx∼Dp,y∼πout

K (·|x)[c
∗(x, y)] by 2ρ[Ex∼Dp,y∼πout

K (·|x)[c
∗(x, y)]]+

in the above inequality. Then, using Corollary 1 and Lemma 10, we obtain

Ex∼Dp,y∼πout
K (·|x)[c

∗(x, y)]

= O

(
Cmax

ρ
√
K

(
(λ1 − 2ρ)

2

λ1
+ λ1

)
+ Cmax

√
log
(
1
δ

)
NCE +W

√√√√ log
(

|X ||Y|NCE

δ

)
MCE

+

(
Ex∼Dp,y∼π∗(·|x)

[
∥ϕ(x, y)∥(ΣDc+γI)−1

]
+

1

K

K∑
k=1

Ex∼Dp,y∼πk(·|x)

[
∥ϕ(x, y)∥(ΣDc+γI)−1

])
·√

(exp (Cmax) + exp (−Cmax) + 2)
2

(
|X ||Y|+ log

(
1

δ

))
+ γ(Cmax)2

+
1

ρ

(
Ex∼Dp,y∼π∗(·|x)

[
∥ϕ(x, y)∥(ΣDr+γI)−1

]
+

1

K

K∑
k=1

Ex∼Dp,y∼πk(·|x)

[
∥ϕ(x, y)∥(ΣDr+γI)−1

])
·√

(exp (Rmax) + exp (−Rmax) + 2)
2

(
|X ||Y|+ log

(
1

δ

))
+ γ(Rmax)2

)
.

D PSEUDO-CODE AND DETAILED DESCRIPTION OF ALGORITHM O-PD-DPO

In this section, we present the pseudo-code and a more detailed description of algorithm O-PD-DPO.

Algorithm 2 illustrates the algorithm procedure of O-PD-DPO. Compared to algorithm PD-DPO,
O-PD-DPO includes exploration bonuses bc

k(x, y) and br
k(x, y) in the standard DPO and standard

rearranged Lagrangian DPO training objectives (Lines 3 and 4). We define the exploration bonuses
b⋄k(x, y) as

b⋄k(x, y) := 4 ∥ϕ(x, y)∥(Σ̃D⋄
k
+γonI)−1

√
(exp (z) + exp (−z) + 2)

2

N on

(
|X ||Y|+log

(
2

δ′

))
+γonz2,

where

Σ̃D⋄
k
:=

1

N on

∑
(x,y,y′)∈D⋄

1

(ϕ(x, y)− ϕ(x, y′)) (ϕ(x, y)− ϕ(x, y′))⊤

+
1

N on

K∑
k=1

N on∑
i=1

(
ϕ(xk,i, yk,i)− ϕ(xk,i, y′k,i)

) (
ϕ(xk,i, yk,i)− ϕ(xk,i, y′k,i)

)⊤
with z = Rmax when ⋄ = r, and z = Cmax when ⋄ = c.

We take br
k(x, y

rw) in Eq. (29) as an example to explain the intuition behind why including exploration
bonuses b⋄k effectively encourages exploration: When preference data do not cover (x, yrw) well,
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Algorithm 2: O-PD-DPO

Input: δ, δ′ := δ
4 , β, πref, ρ, λ1, K, NCE, MCE, γon, N on := 32K2 ln( 8K|X ||Y|

δ′ )/(γon)2, Dp,
Dr = {(xr

i, y
rw
i , y

rl
i )}i∈[N r], Dc = {(xc

i, y
cw
i , y

cl
i )}i∈[N c]

1 Dr
1 ← Dr, Dc

1 ← Dc

2 for k = 1, 2, . . . ,K do
3 Train a model using standard DPO with exploration bonuses:

π∗
r̂+br

k
← argmin

π∈Π̃r
k

−
∑

(x,yrw,yrl)∈Dr

log σ

(
β log

π(yrw|x)
πref(yrw|x)

− br
k(x, y

rw)

−
(
β log

π(yrl|x)
πref(yrl|x)

− br
k(x, y

rl)

))
, (29)

where Π̃r
k is defined in Eq. (31)

4 Train a model using a rearranged Lagrangian DPO objective with exploration bonuses:

πk ← argmin
π∈Π̃c

k

−
∑

(x,ycw,ycl)∈Dc

log σ

(
1

λk

(
β log

π∗
r̂k+br

k
(ycw|x)

πref(ycw|x)
− β log π(ycw|x)

πref(ycw|x)

− bc
k(x, y

cw)−
(
β log

π∗
r̂k+br

k
(ycl|x)

πref(ycl|x)
− β log π(ycl|x)

πref(ycl|x)
− bc

k(x, y
cl)
)))

, (30)

where Π̃c
k is defined in Eq. (32)

5 Construct an estimate c̃k for Ex∼Dp,y∼πk(·|x)[c
∗(x, y)]: For i = 1, . . . , NCE, first sample

xi ∼ Dp, yi ∼ πk(·|xi). Then, for each (xi, yi), sample {Zi,j}M
CE

j=1
i.i.d.∼ Ber(σ(c∗(xi, yi))).

Set c̃k ← 1
NCE

∑NCE

i=1 σ
−1( 1

MCE

∑MCE

j=1 Zi,j), where σ−1(z) := log( 1
1−z − 1) is the inverse

of the sigmoid function
6 λk+1 ← Proj[0,2ρ](λk + ηc̃k), where η := λ1

Cmax

√
K

7 For i = 1, . . . , N on, sample xi ∼ Dp, yi ∼ πk(·|xi), y′i ∼ πbase(·|xi). Collect reward and
cost preference feedback on {(xi, yi, y′i)}N

on

i=1, and obtain preference data {(xi, yrw
i , y

rl
i )}N

on

i=1

and {(xi, ycw
i , y

cl
i )}N

on

i=1

8 Dr
k+1 ← Dr

k ∪ {(xi, yrw
i , y

rl
i )}N

on

i=1, Dc
k+1 ← Dc

k ∪ {(xi, ycw
i , y

cl
i )}N

on

i=1

9 return πout
K := unif(π1, . . . , πK)

br
k(x, y

rw) will be large. Then, subtracting a large value from β log π(yrw|x)
πref(yrw|x) encourages π to put a

higher probability on yrw to maintain the original value of β log π(yrw|x)
πref(yrw|x) which achieves the optimal

value of the MLE training objective. By incorporating exploration bonuses in the training objective,
the trained model πk has incentive to explore uncovered prompt-response space.

In addition, the constrained policy search ranges in Lines 3 and 4 also incorporate exploration bonuses,
which are defined as

Π̃r
k :=

π(y|x) = πref(y|x) · exp
(

1
β (r(x, y) + br

k(x, y))
)

∑
y′∈Y πref(y′|x) · exp

(
1
β (r(x, y′) + br

k(x, y
′))
) : r ∈ R

 , (31)

and

Π̃c
k :=

{
π(y|x)=

πref(y|x) · exp
(

1
β

(
β log

π∗
r̂k+br

k
(y|x)

πref(y|x) − λk (c(x, y)− bc
k(x, y))

))
∑
y′∈Y πref(y′|x) · exp

(
1
β

(
β log

π∗
r̂k+br

k
(y′|x)

πref(y′|x) − λk (c(x, y′)− bc
k(x, y

′))

)) :
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c ∈ C

}

=

{
π(y|x)=

πref(y|x) · exp
(

1
β (r̂k(x, y) + br

k(x, y)− λk (c(x, y)− bc
k(x, y)))

)
∑
y′∈Y πref(y′|x) · exp

(
1
β (r̂k(x, y′) + br

k(x, y
′)− λk (c(x, y′)− bc

k(x, y
′)))
) :

c ∈ C

}
. (32)

At the end of each iteration, O-PD-DPO collects reward and cost preference feedback using πk and a
baseline policy πbase (Line 7). The baseline policy πbase is a fixed policy used in online preference
data collection for ease of comparison. We make a technical assumption on πbase:

Assumption 2 (Baseline Policy). The baseline policy πbase satisfies that for any policy π,

Ex∼Dp,y∼π,y′∼πbase

[
(ϕ(x, y)− ϕ(x, y′)) (ϕ(x, y)− ϕ(x, y′))⊤

]
(33)

⪰ Cbase Ex∼Dp,y′∼πbase

[
ϕ(x, y′)ϕ(x, y′)⊤

]
. (34)

This assumption is used to guarantee that the difference of feature vectors between any policy π and
πbase can be connected to the feature vectors of πbase itself, which is useful in analysis when bounding
the error due to inferring reward and cost information from preference data.

After collecting online preference data, O-PD-DPO adds these data to Dr
k and Dc

k, which will be used
in model training in the next iteration (Line 8). As the algorithm proceeds, the preference data Dr

k
and Dc

k will cover more and more prompt-response space.

E PROOFS FOR ALGORITHM O-PD-DPO

In this section, we provide the proofs for algorithm O-PD-DPO in the online data setting, including the
proofs for the connection to the RLHF-based procedure, suboptimality, and constraint violation.

E.1 CONNECTION BETWEEN OUR DPO-BASED PROCEDURE AND THE RLHF-BASED
PROCEDURE WITH EXPLORATION BONUSES

First, we give a result which establishes a connection between standard DPO and standard RLHF
with constrained policy search ranges and exploration bonuses.

Define the following problem which first learns a reward model and then finds the optimal policy to
maximize the learned reward with exploration bonuses:

r̂k ← min
r∈R

−
∑

(x,yrw,yrl)∈Dr
k

log σ
(
r(x, yrw)− r(x, yrl)

)
(35)

max
π

Ex∼Dp

[
Ey∼π(·|x) [r̂k(x, y) + br

k(x, y)]− β · KL(π(·|x)∥πref(·|x))
]

(36)

Theorem 5 (Connection between Standard DPO and Standard RLHF with Constrained Policy Ranges
and Exploration Bonuses). Problems Eqs. (29) and (36) have the same set of optimal solutions.

Proof. Step (i). First, we prove that if π is an optimal solution to Eq. (36), then π is also an optimal
solution to Eq. (29).

If r̂k ∈ R is an optimal solution to Eq. (35), then

π∗
r̂k+br

k
(y|x) =

πref(y|x) · exp
(

1
β (r̂k(x, y) + br

k(x, y))
)

∑
y′∈Y πref(y′|x) · exp

(
1
β (r̂k(x, y′) + br

k(x, y
′))
)
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is an optimal solution to Eq. (36). We have that π∗
r̂k+br

k
is also an optimal solution to Eq. (29).

Otherwise, there exists another π′ ∈ Π̃r
k which achieves a smaller objective value in Eq. (29). Then,

there must exist a r′ ∈ R which satisfies that

π′(y|x) =
πref(y|x) · exp

(
1
β (r′(x, y) + br

k(x, y))
)

∑
y′∈Y πref(y′|x) · exp

(
1
β (r′(x, y′) + br

k(x, y
′))
) ,

i.e.,

r′(x, y) = β log
π′(y|x)
πref(y|x)

+ β logZr′+br
k
(x)− br

k(x, y),

and the objective value in Eq. (35) achieved by r′,

−
∑

(x,yrw,yrl)∈D̃r
k

log σ

(
β log

π′(yrw|x)
πref(yrw|x)

+ β logZr′+br
k
(x)− br

k(x, y
rw)

−
(
β log

π′(yrl|x)
πref(yrl|x)

+ β logZr′+br
k
(x)− br

k(x, y
rl)

))
,

is smaller than that achieved by r̂k (since π′ achieves a smaller DPO objective value), which
contradicts the supposition that r̂k is the optimal solution to Eq. (35).

Step (ii). Next, we prove that if π is an optimal solution to Eq. (29), then π is also an optimal
solution to Eq. (36).

If π̃ ∈ Π̃r
k is an optimal solution to Eq. (29), then there exists a r̃ ∈ R which satisfies

π̃(y|x) =
πref(y|x) · exp

(
1
β (r̃(x, y) + br

k(x, y))
)

∑
y′∈Y πref(y′|x) · exp

(
1
β (r̃(x, y′) + br

k(x, y
′))
) ,

i.e.,

r̃(x, y) = β log
π̃(y|x)
πref(y|x)

+ β logZr̃(x)− br
k(x, y). (37)

We have that r̃ achieves the optimal value in Eq. (35),

−
∑

(x,yrw,yrl)∈D̃r
k

log σ

(
β log

π̃(yrw|x)
πref(yrw|x)

+ β logZr̃(x)− br
k(x, y

rw)

−
(
β log

π̃(yrl|x)
πref(yrl|x)

+ β logZr̃(x)− br
k(x, y

rl)

))
. (38)

Otherwise, there exists another r′ ∈ R and then there exists a π′ = π∗
r̂ ∈ Π̃r

k which gives a smaller
objective value than π̃ in Eq. (38). Thus, r̃ achieves the optimal value in Eq. (35). Then, the optimal
solution to Eq. (36) under cost model r̃ is

π(y|x) ∝ πref(y|x) · exp
(
1

β
(r̃(x, y) + br

k(x, y))

)
(a)∝ πref(y|x) · exp

(
1

β

(
β log

π̃(y|x)
πref(y|x)

+ β logZr̃(x)

))
∝ πref(y|x) · exp

(
log

π̃(y|x)
πref(y|x)

)
= π̃(y|x),

where (a) uses Eq. (37).

Therefore, π̃ is also an optimal solution to Eq. (36).
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Now we present a result which relates our rearranged Lagrangian DPO objective to the safe RLHF
objective with constrained policy search ranges and exploration bonuses.

For any k ≥ 1, define the following problem that first learns a cost model and then finds the optimal
policy for the Lagrangian function under r̂k + br

k and λk:

ĉk ← min
c∈C
− 1

N c

N c∑
i=1

log σ
(
c(xi, y

cw
i )− c(xi, ycl

i )
)

(39)

max
π

Ex∼Dp

[
Ey∼π(·|x) [r̂k(x, y) + br

k(x, y)−λk (ĉk(x, y)−bc
k(x, y))]−β · KL(π(·|x)∥πref(·|x))

]
(40)

Theorem 6 (Connection between Our Rearranged Lagrangian DPO and Safe RLHF with Constrained
Policy Ranges and Exploration Bonuses). For any k ≥ 0, Problems Eqs. (30) and (40) have the same
set of optimal solutions.

Proof. First, note that for any ĉk, the optimal solution to Eq. (40) is

π∗
r̂k+br

k−λk(ĉk−bc
k)
(y|x)=

πref(y|x) exp
(

1
β (r̂k(x, y)+b

r
k(x, y)−λk (ĉ(x, y)−bc

k(x, y)))
)

∑
y′∈Y

πref(y
′|x) exp

(
1

β
(r̂k(x, y

′)+br
k(x, y

′)−λk (ĉ(x, y′)−bc
k(x, y

′)))

)
︸ ︷︷ ︸

:=Zr̂k+br
k
−λk(ĉk−bc

k
)(x)

,

∀x ∈ X . (41)

Then, we have

ĉk(x, y) =
1

λk

(
r̂k(x, y) + br

k(x, y)− β log
π∗
r̂k+br

k−λk(ĉk−bc
k)
(y|x)

πref(y|x)

− β logZr̂k+br
k−λk(ĉk−bc

k)
(x)

)
+ bc

k(x, y)

(a)
=

1

λk

(
β log

π∗
r̂k+br

k
(y|x)

πref(y|x)
+ β logZr̂k+br

k
(x)− β log

π∗
r̂k+br

k−λk(ĉk−bc
k)
(y|x)

πref(y|x)

− β logZr̂k+br
k−λk(ĉk−bc

k)
(x)

)
+ bc

k(x, y),

where equality (a) uses a similar derivation as Eq. (5).

Now we prove this theorem.

Step (i). First, we prove that if π is an optimal solution to Eq. (40), then π is also an optimal solution
to Eq. (30).

If ĉk ∈ C is an optimal solution to Eq. (39), then π∗
r̂k+br

k−λk(ĉk−bc
k)
∈ Π̃c

k (as shown in Eq. (41)) is an
optimal solution to Eq. (40). We have that π∗

r̂k+br
k−λk(ĉk−bc

k)
is also an optimal solution to Eq. (30).

Otherwise, there exists another π′ ∈ Π̃c
k which achieves a smaller objective value in Eq. (30). Then,

there must exist a c′ ∈ C which satisfies that

π′(y|x) =
πref(y|x) · exp

(
1
β

(
β log

π∗
r̂k+br

k
(y|x)

πref(y|x) − λk (c′(x, y)− bc
k(x, y))

))
∑
y′∈Y

πref(y
′|x) · exp

(
1

β

(
β log

π∗
r̂k+br

k
(y|x)

πref(y|x)
− λk (c′(x, y′)− bc

k(x, y
′))

))
︸ ︷︷ ︸

:=Z

β log

π∗
r̂k+br

k
πref

−λk(c′−bc
k
)

(x)

,
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i.e.,

c′(x, y) =
1

λk

(
β log

π∗
r̂k+br

k
(y|x)

πref(y|x)
− β log π′(y|x)

πref(y|x)
− β logZ

β log
π∗
r̂k+br

k
πref

−λk(c′−bc
k)

(x)

)
+ bc

k(x, y),

and the objective value in Eq. (39) achieved by c′,

−
∑

(x,ycw,ycl)∈Dc

log σ

(
1

λk

(
β log

π∗
r̂k+br

k
(ycw|x)

πref(ycw|x)
− β log π′(ycw|x)

πref(ycw|x)

−β logZ
β log

π∗
r̂k+br

k
πref

−λk(c′−bc
k)

(x)

)
+bc

k(x, y
cw)− 1

λk

(
β log

π∗
r̂k+br

k
(ycl|x)

πref(ycl|x)
−β log π′(ycl|x)

πref(ycl|x)

− β logZ
β log

π∗
r̂k+br

k
πref

−λk(c′−bc
k)

(x)

)
− bc

k(x, y
cl)

)
,

is smaller than that achieved by ĉk, which contradicts the supposition that ĉk is the optimal solution
to Eq. (39).

Step (ii). Next, we prove that if π is an optimal solution to Eq. (30), then π is also an optimal solution
to Eq. (40).

If πk ∈ Π̃c
k is an optimal solution to Eq. (30), then there exists a ck ∈ C which satisfies

πk(y|x) =
πref(y|x) · exp

(
1
β

(
β log

π∗
r̂k+br

k
(y|x)

πref(y|x) − λk (ck(x, y)− bc
k(x, y))

))
∑
y′∈Y πref(y′|x) · exp

(
1
β

(
β log

π∗
r̂k+br

k
(y′|x)

πref(y′|x) − λk (ck(x, y′)− bc
k(x, y

′))

)) ,
i.e.,

ck(x, y) =
1

λk

(
β log

π∗
r̂k+br

k
(y|x)

πref(y|x)
− β log πk(y|x)

πref(y|x)
− β logZ

β log
π∗
r̂k+br

k
πref

−λk(ck−bc
k)

(x)

)
+ bc

k(x, y).

We have that ck achieves the optimal value in Eq. (39),

−
∑

(x,ycw,ycl)∈Dc

log σ

(
1

λk

(
β log

π∗
r̂k+br

k
(ycw|x)

πref(ycw|x)
− β log πk(y

cw|x)
πref(ycw|x)

−β logZ
β log

π∗
r̂k+br

k
πref

−λk(ck−bc
k)

(x)

)
+bc

k(x, y
cw)− 1

λk

(
β log

π∗
r̂k+br

k
(ycl|x)

πref(ycl|x)
−β log πk(y

cl|x)
πref(ycl|x)

− β logZ
β log

π∗
r̂k+br

k
πref

−λk(ck−bc
k)

(x)

)
− bc

k(x, y
cl)

)
. (42)

Otherwise, there exists another c′ ∈ C and then there exists a π′ = π∗
r̂k+br

k−λk(c′−br
k)
∈ Π̃c

k which
gives a smaller objective value than π̃k in Eq. (42). Thus, ck achieves the optimal value in Eq. (39).
Then, the optimal solution to Eq. (39) under cost model ck is

π(y|x) ∝ πref(y|x) · exp

(
1

β

(
r̂k(x, y) + br

k(x, y)− β log
π∗
r̂k+br

k
(y|x)

πref(y|x)
+ β log

πk(y|x)
πref(y|x)

+ β logZ
β log

π∗
r̂k+br

k
πref

−λk(ck−bc
k)

(x)

))
(a)∝ πref(y|x) · exp

(
1

β

(
β logZr̂k+br

k
(x) + β log

πk(y|x)
πref(y|x)
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+ β logZ
β log

π∗
r̂k+br

k
πref

−λk(ck−bc
k)

(x)

))

∝ πref(y|x) · exp
(
1

β

(
β log

πk(y|x)
πref(y|x)

))
= πk(y|x),

where (a) uses a similar derivation as Eq. (5).

Therefore, πk is also an optimal solution to Eq. (23).

E.2 SUBOPTIMALITY AND CONSTRAINT VIOLATION

In the following, we present the proof of the suboptimality and constraint violation guarantees for
algorithm O-PD-DPO (Theorem 2).

Define event

Gon :=

{
|r̂k(x, y)− r∗(x, y)| ≤ 4 ∥ϕ(x, y)∥(Σ̃Dr

k
+γonI)−1 ·√

(exp (Rmax) + exp (−Rmax) + 2)
2

N on

(
|X ||Y|+ log

(
2K

δ′

))
+ γon(Rmax)2 := br

k(x, y),

|ĉk(x, y)− c∗(x, y)| ≤ 4 ∥ϕ(x, y)∥(Σ̃Dc
k
+γonI)−1 ·√

(exp (Cmax) + exp (−Cmax) + 2)
2

N on

(
|X ||Y|+ log

(
2K

δ′

))
+ γon(Cmax)2 := bc

k(x, y),

∀(x, y) ∈ X × Y

}
.

Lemma 5 (MLE Guarantee with Online Data). It holds that

Pr [Gon] ≥ 1− 2δ′.

Proof. According to Lemma 3.1 in (Zhu et al., 2023), we have that with probability at least 1− δ′,

|r̂k(x, y)− r∗(x, y)|
≤ 4 ∥ϕ(x, y)∥(ΣDr

k
+N onγonI)−1 ·√

(exp (Rmax) + exp (−Rmax) + 2)
2

(
|X ||Y|+ log

(
2

δ′

))
+N onγon(Rmax)2

=
4√
N on
∥ϕ(x, y)∥( 1

Non ΣDr
k
+γonI)−1 ·√

(exp (Rmax) + exp (−Rmax) + 2)
2

(
|X ||Y|+ log

(
2

δ′

))
+N onγon(Rmax)2

= 4 ∥ϕ(x, y)∥(Σ̃Dr
k
+γonI)−1 ·√

(exp (Rmax) + exp (−Rmax) + 2)
2

N on

(
|X ||Y|+ log

(
2

δ′

))
+ γon(Rmax)2.

Taking a union bound over k = 1, . . . ,K, we can obtain the first statement.

Using a similar argument, we can obtain the second statement.

Lemma 6. For any k ≥ 1, we have

f(π∗; r̂k + br
k)− f(πk; r̂k + br

k) ≤ −λk · Ex∼Dp,y∼πk(·|x)[ĉk(x, y)− b
c
k(x, y)].
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Proof. It holds that

f(π∗; r̂k + br
k)

(a)
≤ f(π∗; r̂k + br

k)− λk · Ex∼Dp,y∼π∗(·|x)[c
∗(x, y)]

= Ex∼Dp

[
Ey∼π∗(·|x) [r̂k(x, y) + br

k(x, y)− λk · c∗(x, y)]− β · KL(π∗(·|x)∥πref(·|x))
]

= Ex∼Dp

[
Ey∼π∗(·|x) [r̂k(x, y) + br

k(x, y)− λk (ĉk(x, y)− bc
k(x, y))]

− β · KL(π∗(·|x)∥πref(·|x))
]
+ λk · Ex∼Dp,y∼π∗(·|x)[ĉk(x, y)− bc

k(x, y)− c∗(x, y)]
(b)
≤ Ex∼Dp

[
Ey∼πk(·|x) [r̂k(x, y) + br

k(x, y)− λk (ĉk(x, y)− bc
k(x, y))]

− β · KL(πk(·|x)∥πref(·|x))
]

= f(πk; r̂k + br
k)− λk · Ex∼Dp,y∼πk(·|x)[ĉk(x, y)− b

c
k(x, y)],

where inequality (a) uses the fact that λk ≥ 0 and π∗ is feasible, and inequality (b) comes from
Theorem 6.

Let

Σ̄Dr
k
:= ΣDr

1
+

K∑
k=1

Ex∼Dp,y∼πk(·|x),y′∼πbase(·|x)

[
(ϕ(x, y)− ϕ(x, y′)) (ϕ(x, y)− ϕ(x, y′))⊤

]
,

Σ̄Dc
k
:= ΣDc

1
+

K∑
k=1

Ex∼Dp,y∼πk(·|x),y′∼πbase(·|x)

[
(ϕ(x, y)− ϕ(x, y′)) (ϕ(x, y)− ϕ(x, y′))⊤

]
.

Lemma 7. It holds that
K∑
k=1

Ex∼Dp,y∼πk(·|x)[b
r
k(x, y)]

≤ 4

√
(exp (Rmax) + exp (−Rmax) + 2)

2

N on

(
|X ||Y|+ log

(
2K

δ′

))
+ γon(Rmax)2·

2

√
2|X ||Y|K

(
log

(
γon + 4|Dr

1|+ 4K

|X ||Y|γon

)
+

1

Cbase log

(
γon + |Dr

1|+ CbaseK

|X ||Y|γon

))
,

and
K∑
k=1

Ex∼Dp,y∼πk(·|x)[b
c
k(x, y)]

≤ 4

√
(exp (Cmax) + exp (−Cmax) + 2)

2

N on

(
|X ||Y|+ log

(
2K

δ′

))
+ γon(Cmax)2·

2

√
2|X ||Y|K

(
log

(
γon + 4|Dc

1|+ 4K

|X ||Y|γon

)
+

1

Cbase log

(
γon + |Dc

1|+ CbaseK

|X ||Y|γon

))
.

Proof. First, we have

Σ̄Dr
k
+ γonI = ΣDr

1
+ γonI

+

K∑
k=1

Ex∼Dp,y∼πk(·|x),y′∼πbase(·|x)

[
(ϕ(x, y)− ϕ(x, y′)) (ϕ(x, y)− ϕ(x, y′))⊤

]
⪰ ΣDr

1
+ γonI + Cbase

K∑
k=1

Ex∼Dp,y′∼πbase

[
ϕ(x, y′)ϕ(x, y′)⊤

]
,
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and thus(
Σ̄Dr

k
+ γonI

)−1 ⪯

(
ΣDr

1
+ γonI + Cbase

K∑
k=1

Ex∼Dp,y′∼πbase

[
ϕ(x, y′)ϕ(x, y′)⊤

])−1

=
1

Cbase

(
1

Cbase

(
ΣDr

1
+ γonI

)
+

K∑
k=1

Ex∼Dp,y′∼πbase

[
ϕ(x, y′)ϕ(x, y′)⊤

])−1

.

(43)

For ease of notation, let d := |X ||Y|. Then, we have
K∑
k=1

Ex∼Dp,y∼πk(·|x)

[
∥ϕ(x, y)∥(Σ̃Dr

k
+γonI)−1

]

≤

√√√√K

K∑
k=1

(
Ex∼Dp,y∼πk(·|x)

[
∥ϕ(x, y)∥(Σ̃Dr

k
+γonI)−1

])2

≤

√√√√K

K∑
k=1

Ex∼Dp,y∼πk(·|x)

[
∥ϕ(x, y)∥2(Σ̃Dr

k
+γonI)−1

]
(a)
≤

√√√√2K

K∑
k=1

Ex∼Dp,y∼πk(·|x)

[
∥ϕ(x, y)∥2(Σ̄Dr

k
+γonI)−1

]

=

√√√√2K

K∑
k=1

Ex∼Dp,y∼πk(·|x),y′∼πbase(·|x)

[
∥ϕ(x, y)− ϕ(x, y′) + ϕ(x, y′)∥2

(Σ̄Dr
k
+γonI)−1

]

≤ 2
√
K

(
K∑
k=1

Ex∼Dp,y∼πk(·|x),y′∼πbase(·|x)

[
∥ϕ(x, y)− ϕ(x, y′)∥2(Σ̄Dr

k
+γonI)−1

]

+

K∑
k=1

Ex∼Dp,y′∼πbase(·|x)

[
∥ϕ(x, y′)∥2(Σ̄Dr

k
+γonI)−1

]) 1
2

(b)
≤ 2
√
K

(
2 log


(
γon+4|Dr

1|+4K
d

)d
(γon)d

+
1

Cbase

K∑
k=1

Ex∼Dp,y′∼πbase(·|x)

[

∥ϕ(x, y′)∥2(
1

Cbase

(
ΣDr

1
+γonI

)
+
∑k−1

k′=1
Ex∼Dp,ỹ∼πbase(·|x)[ϕ(x,ỹ)ϕ(x,ỹ)

⊤]
)−1

]) 1
2

(c)
≤ 2
√
K

√√√√√√√√2d log

(
γon + 4|Dr

1|+ 4K

dγon

)
+

2

Cbase log


(

1

Cbase (γon+|Dr
1|)+K

d

)d
(
γon

Cbase

)d


≤ 2

√
2dK

(
log

(
γon + 4|Dr

1|+ 4K

dγon

)
+

1

Cbase log

(
γon + |Dr

1|+ CbaseK

dγon

))
,

where inequality (a) comes from Lemma 13, inequality (b) uses Lemma 11 and Eq. (43), and
inequality (c) is due to Lemma 11.

Thus, we can obtain the first statement.

Using a similar analysis as above, we can further obtain the second statement.

In the following, we prove Theorem 2.
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Proof of Theorem 2. For this online setting, we also use events E and F defined in Eqs. (26) and
(27).

Let δ′ := δ
4 . Then, according to Lemmas 1 and 3, we have Pr[E ∩ F ∩ Gon] ≥ 1− δ. Now it suffices

to prove this theorem assuming that event E ∩ F ∩ Gon holds. In the following proof, we assume that
event E ∩ F ∩ Gon holds.

For any k ≥ 1 and λ̄ ∈ [0, 2ρ], we have(
λk+1 − λ̄

)2
=
(

Proj[0,2ρ] (λk + ηk c̃k)− Proj[0,2ρ]
(
λ̄
))2

(a)
≤
(
λk + ηk c̃k − λ̄

)2
=
(
λk − λ̄

)2
+ 2ηk c̃k

(
λk − λ̄

)
+ (ηk)

2
(c̃k)

2
,

where inequality (a) uses the nonexpansivity of the projection to [0, 2ρ].

Summing the above inequality over k = 1, . . . ,K, we have

0 ≤
(
λK+1 − λ̄

)2 ≤ (λ1 − λ̄)2 + K∑
k=1

2ηk · Ex∼Dp,y∼πk(·|x)[c
∗(x, y)] ·

(
λk − λ̄

)
−

K∑
k=1

2ηk · Ex∼Dp,y∼πk(·|x)[c
∗(x, y)] ·

(
λk − λ̄

)
+

K∑
k=1

2ηk c̃k
(
λk − λ̄

)
+

K∑
k=1

(ηk)
2
(c̃k)

2
.

Hence, we have
K∑
k=1

2ηk · Ex∼Dp,y∼πk(·|x)[c
∗(x, y)] · λ̄−

K∑
k=1

2ηk · Ex∼Dp,y∼πk(·|x)[ĉk(x, y)− b
c
k(x, y)] · λk

≤
(
λ1 − λ̄

)2
+

K∑
k=1

(ηk)
2
(c̃k)

2
+

K∑
k=1

2ηkλk · Ex∼Dp,y∼πk(·|x)[c
∗(x, y)− ĉk(x, y) + bc

k(x, y)]

+

K∑
k=1

2ηk
(
λk − λ̄

) (
c̃k − Ex∼Dp,y∼πk(·|x)[c

∗(x, y)]
)
.

Using Lemma 6, we have
K∑
k=1

2ηk
(
Ex∼Dp,y∼πk(·|x)[c

∗(x, y)] · λ̄+ f(π∗; r̂k + br
k)− f(πk; r̂k + br

k)
)

≤
(
λ1 − λ̄

)2
+

K∑
k=1

(ηk)
2
(c̃k)

2
+

K∑
k=1

2ηkλk · Ex∼Dp,y∼πk(·|x)[c
∗(x, y)− ĉk(x, y) + bc

k(x, y)]

+

K∑
k=1

2ηk
(
λk − λ̄

) (
c̃k − Ex∼Dp,y∼πk(·|x)[c

∗(x, y)]
)

(a)
≤
(
λ1 − λ̄

)2
+

K∑
k=1

(ηk)
2
(c̃k)

2
+ 4

K∑
k=1

ηkλk · Ex∼Dp,y∼πk(·|x)[b
c
k(x, y)]

+

K∑
k=1

2ηk
(
λk − λ̄

) (
c̃k − Ex∼Dp,y∼πk(·|x)[c

∗(x, y)]
)
,

where inequality (a) uses the definition of event Gon.

Recall that ηk = η. Then, we have
K∑
k=1

(f(π∗)− f(πk)) + λ̄

K∑
k=1

Ex∼Dp,y∼πk(·|x)[c
∗(x, y)]
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≤ 1

2η

(
λ1 − λ̄

)2
+
η

2

K∑
k=1

(c̃k)
2
+ 2

K∑
k=1

λk · Ex∼Dp,y∼πk(·|x)[b
c
k(x, y)]

+

K∑
k=1

(
λk − λ̄

) (
c̃k − Ex∼Dp,y∼πk(·|x)[c

∗(x, y)]
)

+

K∑
k=1

(f(π∗)− f(π∗; r̂k + br
k))−

K∑
k=1

(f(πk)− f(πk; r̂k + br
k))

≤ 1

2η

(
λ1 − λ̄

)2
+
η(Cmax)

2K

2
+ 2

K∑
k=1

λk · Ex∼Dp,y∼πk(·|x)[b
c
k(x, y)]

+

K∑
k=1

(
λk − λ̄

) (
c̃k − Ex∼Dp,y∼πk(·|x)[c

∗(x, y)]
)

+K · Ex∼Dp,y∼π∗(·|x)[r
∗(x, y)− (r̂k(x, y) + br

k(x, y))]

−
K∑
k=1

Ex∼Dp,y∼πk(·|x)[r
∗(x, y)− (r̂(x, y) + br

k(x, y))]

≤ 1

2η

(
λ1 − λ̄

)2
+
η(Cmax)

2K

2
+ 2

K∑
k=1

λk · Ex∼Dp,y∼πk(·|x)[b
c
k(x, y)]

+

K∑
k=1

(
λk − λ̄

) (
c̃k − Ex∼Dp,y∼πk(·|x)[c

∗(x, y)]
)
+ 2

K∑
k=1

Ex∼Dp,y∼πk(·|x)[b
r
k(x, y)].

Let λ̄ = 0. Recall that πout
K is the uniform policy over π1, . . . , πK and η := λ1

Cmax

√
K

. Then, using
Lemmas 2 and 7, we have

f(π∗)− f(πout
K )

=
1

K

K∑
k=1

(f(π∗)− f(πk))

≤ λ1Cmax√
K

+
2ρ

K

K∑
k=1

Ex∼Dp,y∼πk(·|x)[b
c
k(x, y)] +

ρ

K

K∑
k=1

∣∣c̃k − Ex∼Dp,y∼πk(·|x)[c
∗(x, y)]

∣∣
+

2

K

K∑
k=1

Ex∼Dp,y∼πk(·|x)[b
r
k(x, y)]

= O

(
λ1Cmax√

K
+ ρCmax

√
log
(
K
δ

)
NCE + ρW

√√√√ log
(

|X ||Y|NCEK
δ

)
MCE

+ ρ

√
(exp (Cmax) + exp (−Cmax) + 2)

2

N on

(
|X ||Y|+ log

(
K

δ

))
+ γon(Cmax)2·√

|X ||Y|
K

(
log

(
γon + |Dc

1|+K

|X ||Y|γon

)
+

1

Cbase log

(
γon + |Dc

1|+ CbaseK

|X ||Y|γon

))

+

√
(exp (Rmax) + exp (−Rmax) + 2)

2

N on

(
|X ||Y|+ log

(
K

δ

))
+ γon(Rmax)2·√

|X ||Y|
K

(
log

(
γon + |Dr

1|+K

|X ||Y|γon

)
+

1

Cbase log

(
γon + |Dr

1|+ CbaseK

|X ||Y|γon

)))
.
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Let λ̄ = 2ρ. Then, we have

f(π∗)− f(πout
K ) + 2ρEx∼Dp,y∼πout

K (·|x)[c
∗(x, y)]

=
1

K

K∑
k=1

(f(π∗)− f(πk)) +
2ρ

K

K∑
k=1

Ex∼Dp,y∼πk(·|x)[c
∗(x, y)].

If 1
K

∑K
k=1 Ex∼Dp,y∼πk(·|x)[c

∗(x, y)] ≤ 0, the second statement of the theorem naturally holds;
Otherwise, we can replace the term 2ρEx∼Dp,y∼πout

K (·|x)[c
∗(x, y)] by 2ρ[Ex∼Dp,y∼πout

K (·|x)[c
∗(x, y)]]+

in the above inequality. Then, using Corollary 1 and Lemmas 2, 7 and 10, we obtain

Ex∼Dp,y∼πout
K (·|x)[c

∗(x, y)]

≤ Cmax

4ρ
√
K

(
(λ1 − 2ρ)

2

λ1
+ λ1

)
+

1

K

K∑
k=1

Ex∼Dp,y∼πk(·|x)[b
c
k(x, y)]

+
1

2K

K∑
k=1

∣∣c̃k − Ex∼Dp,y∼πk(·|x)[c
∗(x, y)]

∣∣+ 1

ρK

K∑
k=1

Ex∼Dp,y∼πk(·|x)[b
r
k(x, y)]

= O

(
Cmax

ρ
√
K

(
(λ1 − 2ρ)

2

λ1
+ λ1

)
+ Cmax

√
log
(
K
δ

)
NCE +W

√√√√ log
(

|X ||Y|NCEK
δ

)
MCE

+

√
(exp (Cmax) + exp (−Cmax) + 2)

2

N on

(
|X ||Y|+ log

(
K

δ

))
+ γon(Cmax)2·√

|X ||Y|
K

(
log

(
γon + |Dc

1|+K

|X ||Y|γon

)
+

1

Cbase log

(
γon + |Dc

1|+ CbaseK

|X ||Y|γon

))

+
1

ρ

√
(exp (Rmax) + exp (−Rmax) + 2)

2

N on

(
|X ||Y|+ log

(
K

δ

))
+ γon(Rmax)2·√

|X ||Y|
K

(
log

(
γon + |Dr

1|+K

|X ||Y|γon

)
+

1

Cbase log

(
γon + |Dr

1|+ CbaseK

|X ||Y|γon

)))
.

F TECHNICAL TOOLS

In this section, we introduce several technical tools which are used in our analysis.
Lemma 8 (Theorem 8.42 in (Beck, 2017)). For any λ ≥ 0 such that q(λ) ≤ u,

λ ≤ u− f(π̄)
−Ex∼Dp,y∼π̄(·|x)[c∗(x, y)]

.

Proof. For any λ ≥ 0 such that q(λ) ≤ u, we have

u ≥ q(λ) ≥ f(π̄)− λ · Ex∼Dp,y∼π̄(·|x)[c
∗(x, y)].

Hence,

−λ · Ex∼Dp,y∼π̄(·|x)[c
∗(x, y)] ≤ u− f(π̄).

Since Ex∼Dp,y∼π̄(·|x)[c
∗(x, y)] < 0, we have

λ ≤ u− f(π̄)
−Ex∼Dp,y∼π̄(·|x)[c∗(x, y)]

.

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Let Λ∗ be the set of the optimal solutions to the dual problem minλ≥0 q(λ).

Corollary 1 (Corollary 8.43 in (Beck, 2017)). For any λ∗ ∈ Λ∗,

λ∗ ≤ f(π∗)− f(π̄)
−Ex∼Dp,y∼π̄(·|x)[c∗(x, y)]

≤ ρ,

where the second inequality comes from the definition of ρ.

Proof. This corollary can be obtained by setting u as the optimal value to the dual problem
minλ≥0 q(λ) = f(π∗) in Lemma 8.

Define g(π) := Ex∼Dp,y∼π(·|x)[c(x, y)]. Let

v(u) := max
π
{f(π) : g(π) ≤ u} ,

C(u) := {π : g(π) ≤ u} .

Lemma 9 (Theorem 3.59 in (Beck, 2017)). For any λ∗ ∈ Λ∗,

v(0) + λ∗u ≥ v(u).

Proof. For any π, we have

f(π)− λ∗g(π) ≤ max
π

(f(π)− λ∗g(π)) = q(λ∗) = f(π∗) = v(0).

Thus, for any u ∈ R and π ∈ C(u),

v(0) + λ∗u ≥ f(π)− λ∗ (g(π)− u) ≥ f(π).

Since the above inequality holds for all π ∈ C(u), by maximizing f(π) over π ∈ C(u), we have that
for any u ∈ R,

v(0) + λ∗u ≥ v(u).

Lemma 10 (Theorem 3.60 in (Beck, 2017)). If a policy π̃ satisfies that

f(π∗)− f(π̃) + ρ′[g(π̃)]+ ≤ L,

where L > 0 and ρ′ ≥ 2λ∗, then

[g(π̃)]+ ≤
2L

ρ′
.

Proof. From Lemma 9, we have that for any u ∈ R,

v(0)− v(u) ≥ −λ∗u.

Let ũ := [g(π̃)]+. Then, we have

(ρ′ − λ∗) ũ ≤ ρ′ũ+ v(0)− v(ũ)
(a)
≤ f(π∗)− f(π̃) + ρ′ũ

≤ L,

where inequality (a) uses the fact that v(0) = f(π∗) and v(ũ) ≥ f(π̃).
Since ρ′ ≥ 2λ∗, we have

ũ ≤ L

ρ′ − λ∗
≤ L

ρ′ − ρ′

2

=
2L

ρ′
.
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Lemma 11. Let ψ1, . . . , ψK be a sequence of d-dimensional random vectors following distributions
B1, . . . ,BK , respectively, and we have ∥ψk∥ ≤ L for any k ≥ 1. Let A0 be a d× d positive definite
matrix such that σmin(A0) ≥ {1, L2}, and define Ak = A0 +

∑k
i=1 Eψi∼Bi

[ψiψ
⊤
i ] for any k ≥ 1.

Then, we have

K∑
k=1

Eψk∼Bk

[
∥ψk∥2(Ak−1)−1

]
≤ 2 log

det(AK)

det(A0)
≤ 2 log


(

trace(A0)+KL
2

d

)d
det (A0)

 .

Proof. This proof uses a similar analytical procedure as Lemma 11 in (Abbasi-Yadkori et al., 2011).

We have

det (AK) = det
(
AK−1 + EψK∼BK

[
ψKψ

⊤
K

])
= det (AK−1) det

(
I + (AK−1)

− 1
2 EψK∼BK

[
ψKψ

⊤
K

]
(AK−1)

− 1
2

)
= det (AK−1) det

(
I + EψK∼BK

[
(AK−1)

− 1
2 ψK

(
(AK−1)

− 1
2 ψK

)⊤])
= det (AK−1)

(
1 + EψK∼BK

[
∥ψK∥2(AK−1)−1

])
= det (A0)

K∏
k=1

(
1 + Eψk∼Bk

[
∥ψk∥2(Ak−1)−1

])
.

Taking logarithm on both sides, we have

log det (AK) = log det (A0) +

K∑
k=1

log
(
1 + Eψk∼Bk

[
∥ψk∥2(Ak−1)−1

])
.

Since σmin(A0) ≥ {1, L2}, we have ∥ψk∥2(Ak−1)−1 ≤ 1 for any k ≥ 1. Using the fact that
x ≤ 2 log(1 + x), we have

K∑
k=1

Eψk∼Bk

[
∥ψk∥2(Ak−1)−1

]
≤ 2

K∑
k=1

log
(
1 + Eψk∼Bk

[
∥ψk∥2(Ak−1)−1

])
= 2 log

det (AK)

det (A0)

(a)
≤ 2 log


(

trace(A0)+KL
2

d

)d
det (A0)

 ,

where inequality (a) uses the AM-GM inequality.

Lemma 12 (Lemma H.3 in (Agarwal et al., 2020)). Let B be a distribution of d-dimensional vectors
which satisfies that ∥ψ∥ ≤ L if ψ ∼ B. Let ψ1, . . . , ψM be M i.i.d. samples from B, and define
A = Eψ∼B[ψψ

⊤]. Then, with probability at least 1− δ, we have that for any v ∈ Rd,

∣∣∣∣∣v⊤
(

1

M

M∑
i=1

ψiψ
⊤
i −A

)
v

∣∣∣∣∣ ≤ 2L2 ln
(

8d̂
δ

)
3M

+ L2

√√√√2 ln
(

8d̂
δ

)
M

,

where d̂ := trace(A)
∥A∥ is the intrinsic dimension of A.

Proof. For any i ≥ 1, let Di := ψiψ
⊤
i −A. Then, we have that E[Di] = 0, ∥Di∥ ≤ L2, and∥∥∥∥∥
M∑
i=1

E[(Di)
2]

∥∥∥∥∥ ≤ML4.
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The intrinsic dimension of
∑M
i=1 E[(Di)

2] is equal to that of A, which is d̂ by definition.

Using the Matrix Bernstein inequality (Theorem 7.7.1 in (Tropp et al., 2015)), we have that for any
t ≥ L2

√
M + L2

3 ,

Pr

[
σmax

(
M∑
i=1

E[(Di)
2]

)
≥ t

]
≤ 4d̂ · exp

(
− t

2

2

L4M + L2t
3

)
.

Setting t′ = t
M , we have that for any t′ ≥ L2

√
M

+ L2

3M ,

Pr

[
σmax

(
1

M

M∑
i=1

E[(Di)
2]

)
≥ t′

]
≤ 4d̂ · exp

(
−M(t′)2

2

L4 + L2t′

3

)
.

When t′ =
2L2 ln

(
4d̂
δ

)
3M + L2

√
2 ln

(
4d̂
δ

)
M , we have 4d̂ · exp

(
−M(t′)2

2

L4+L2t′
3

)
≤ δ.

Hence, with probability at least 1− δ, we have

σmax

(
1

M

M∑
i=1

E[(Di)
2]

)
≤

2L2 ln
(

4d̂
δ

)
3M

+ L2

√√√√2 ln
(

4d̂
δ

)
M

.

We can obtain this concentration inequality in the other direction with a similar argument. Therefore,
we complete the proof of this lemma.

Lemma 13 (Lemma H.4 in (Agarwal et al., 2020)). Let B1, . . . ,BK be K distributions of d-
dimensional vectors. For any i ∈ [K], we draw M i.i.d. samples ψi,1, . . . , ψi,M from Bi, and form
Âi =

1
M

∑M
j=1 ψi,jψ

⊤
i,j . Define Ai = Eψ∼Bi [ψψ

⊤], A =
∑K
i=1Ai + γI , and Â =

∑K
i=1 Âi + γI .

Setting M :=
32K2 ln( 8Kd̃

δ )

γ2 , with probability at least 1− δ, we have that for any v ∈ Rd,

1

2
v⊤(A+ γI)−1v ≤ v⊤(Â+ γI)−1v ≤ 2v⊤(A+ γI)−1v,

where d̃ := maxi∈[K]
trace(Ai)
∥Ai∥ .

Proof. Let α(M) =:
2L2 ln

(
8Kd̂
δ

)
3M +L2

√
2 ln

(
8Kd̂
δ

)
M . Using Lemma 12, we have that with probability

1− δ, for any i ∈ [K],

Ai + α(M)I +
γ

K
I ⪰ Âi +

γ

K
I ⪰ Ai − α(M)I +

γ

K
I.

Hence, we have

A+Kα(M)I + γI ⪰ Â+ γI ⪰ A−Kα(M)I + γI.

When γ ≥ 2Kα(M), the above inequality implies

(A+Kα(M)I + γI)
−1 ⪯

(
Â+ γI

)−1

⪯ (A−Kα(M)I + γI)
−1
.

Let UΛUT be the eigendecomposition of A, where Λ = diag(σ1, . . . , σd) and U = [u1, . . . , ud].
Then, we have

v⊤(Â+ γI)−1v − v⊤(A+ γI)−1v ≤ v⊤
(
(A−Kα(M)I + γI)

−1 − (A+ γI)−1
)
v

=

d∑
i=1

(
(σi + γ −Kα(M))

−1 − (σi + γ)
−1
)
(v⊤ui)

2.
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For any i ∈ [d], since σi ≥ 0, we have σi+ γ ≥ 2Kα(M), and then 2(σi+ γ −Kα(M)) ≥ σi+ γ,
which implies (σi + γ −Kα(M))−1 ≤ 2(σi + γ)−1. Therefore, we have

v⊤(Â+ γI)−1v − v⊤(A+ γI)−1v ≤
d∑
i=1

(σi + γ)
−1

(v⊤ui)
2 = v⊤(A+ γI)−1v.

Using a similar analysis, we can obtain the statement in the other direction.
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