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ABSTRACT

We develop methods for estimating Fréchet bounds on (possibly high-dimensional)
distribution classes in which some variables are continuous-valued. We establish
the statistical correctness of the computed bounds under uncertainty in the marginal
constraints and demonstrate the usefulness of our algorithms by evaluating the
performance of machine learning (ML) models trained with programmatic weak
supervision (PWS). PWS is a framework for principled learning from weak super-
vision inputs (e.g. crowdsourced labels, knowledge bases, pre-trained models on
related tasks etc.), and it has achieved remarkable success in many areas of science
and engineering. Unfortunately, it is generally difficult to validate the performance
of ML models trained with PWS due to the absence of labeled data. Our algorithms
address this issue by estimating sharp lower and upper bounds for performance
metrics such as accuracy/recall/precision/F1 score.

1 INTRODUCTION

Consider a random vector (X,Y, Z) ∈ X × Y × Z is drawn from an unknown distribution P . We
assume X ⊂ Rd is arbitrary while Y and Z are finite. In this work, we develop and analyze the
statistical properties of a method for estimating Fréchet bounds (Rüschendorf, 1991a;b) of the form

L ≜ infπ∈Π Eπ[g(X,Y, Z)] and U ≜ supπ∈Π Eπ[g(X,Y, Z)] (1.1)

when g is a fixed bounded function, with Π being the set of distributions π for (X,Y, Z) such that
the marginal πX,Z (resp. πY,Z) is identical to the prescribed marginal PX,Z (resp. PY,Z). Our
proposed method can efficiently obtain estimates for the bounds by solving convex programs, with
the significant advantage that the computational complexity of our algorithm does not scale with the
dimensionality of X , making it well-suited for applications dealing with high-dimensional data.

In previous work, for example, Fréchet bounds were studied in the financial context (e.g., see
Rüschendorf (2017); Bartl et al. (2022)). However, our focus is on applying our methods of estimating
Fréchet bounds to the problem of assessing predictors trained using programmatic weak supervision
(PWS). PWS is a modern learning paradigm that allows practitioners to train their supervised models
without the immediate need for observable labels Y (Ratner et al., 2016; 2017; 2018; 2019; Shin
et al., 2021; Zhang et al., 2022). In PWS, practitioners first acquire cheap and abundant weak labels
Z through heuristics, crowdsourcing, external APIs, and pretrained models, which serve as proxies
for Y . Then, the practitioner fits a label model, i.e., a graphical model for PY,Z (Ratner et al., 2016;
2019; Fu et al., 2020; Dong et al., 2022), which, under appropriate modeling assumptions, can be
fitted without requiring Y ’s. Finally, a predictor h : X → Y is trained using a noise-aware loss
constructed using this fitted label model (Ratner et al., 2016). One major unsolved issue with the
weak supervision approach is that even if we knew PY,Z , the risk1 R(h) = E[ℓ(h(X), Y )] or any
other metrics such as accuracy/recall/precision/F1 score are not identifiable (not uniquely specified)
because the joint distribution PX,Y is unknown while the marginals PX,Z and PY,Z are known or can
be approximated. As a consequence, any performance metric based on h cannot be estimated without
making extra strong assumptions, e.g., X ⊥⊥ Y | Z, or assuming the availability of some labeled
samples. Unfortunately, these conditions are unlikely to arise in many situations. To overcome this
difficulty, we propose a novel method that, among other things, can estimate sharp lower and upper
bounds for some metrics of interest. For example, the upper and lower bounds for the accuracy

1For a given loss function ℓ that is not necessarily used during training time.
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of a classifier h can be estimated using our method simply by letting g(x, y, z) = 1[h(x) = y] in
equation 1.1. At a high level, our method replaces PY,Z with the fitted label model, and PX,Z with
its empirical version in the Fréchet bounds in equation 1.1, and reformulates the problem in terms of
a convex optimization. Note that having a good label model is crucial for obtaining accurate bounds
for the metric of interest. We summarize our main contributions below:

1. Developing a practical algorithm for estimating the Fréchet bounds in equation 1.1. Our algorithm
can be summarized as solving convex programs and is scalable to high-dimensional distributions.

2. Quantifying the uncertainty in the computed bounds due to uncertainty in the prescribed marginals
by deriving the asymptotic distribution for our estimators.

3. Applying our method to bounding the accuracy, precision, recall, and F1 score of classifiers trained
with weak supervision. This enables practitioners to evaluate classifiers in weak supervision
settings without access to labels.

1.1 RELATED WORK

Weak supervision: With the emergence of data-hungry models, the lack of properly labeled datasets
has become a major bottleneck in the development of supervised models. One approach to overcome
this problem is using programmatic weak supervision (PWS) to train predictors in the absence of high-
quality labels Y (Ratner et al., 2016; 2017; 2018; 2019; Shin et al., 2021; Zhang et al., 2022). PWS
has shown the potential to solve a variety of tasks in different fields with satisfactory performance.
For example, some works have applied weak supervision to named-entity recognition (Lison et al.,
2020; Fries et al., 2021; Shah et al., 2023), video frame classification (Fu et al., 2020), bone and
breast tumor classification (Varma et al., 2017). More recently, Smith et al. (2022) proposed a new
approach to integrating weak supervision and pre-trained large language models (LLMs). Rather than
applying LLMs in the usual zero/few-shot fashion, they treat those large models as weak labelers that
can be used through prompting to obtain weak signals instead of using hand-crafted heuristics.

A relevant line of research within the realm of weak supervision that is closely related to this work is
adversarial learning (Arachie & Huang, 2019; 2021; Mazzetto et al., 2021b;a). Often, adversarial
learning aims to learn predictors that perform well in worst-case scenarios. For example, Mazzetto
et al. (2021a) develops a method to learn weakly supervised classifiers in the absence of a good label
model. In their work, the authors use a small set of labeled data points to constrain the space of
possible data distributions and then find a predictor that performs well in the worst-case scenario. Our
work relates to this literature in the sense that we are interested in the worst and best-case scenarios
over a set of distributions. However, we focus on developing an evaluation method instead of another
adversarial learning strategy.

Set estimation: It is often the case that the distributions of interest cannot be fully observed, which
is generally due to missing or noisy data (Molinari, 2020; Guo et al., 2022). In cases in which
practitioners can only observe some aspects of those distributions, e.g., marginal distributions,
moments etc., parameters of interest may not be identifiable without strong assumptions due to
ambiguity in the observable data. However, set estimation (partial identification) deals with the
problem without imposing extra assumptions. This framework allows estimating a set of potential
values for the parameters of interest and has been frequently considered in many areas such as
microeconometrics (Manski, 1989; 1990; 2003; Molinari, 2020), causal inference (Kallus, 2022;
Guo et al., 2022), algorithmic fairness (Fogliato et al., 2020; Prost et al., 2021). Our work is most
related to Rüschendorf (1991a;b; 2017); Bartl et al. (2022), which study bounds for the uncertainty
of a quantity of interest for a joint distribution that is only partially identified through its marginals,
i.e., Fréchet bounds. Compared to the aforementioned works, the novelty of our contribution is
proposing a convex optimization algorithm that accurately estimates the Fréchet bounds with proven
performance guarantees in a setup that is realized in numerous weak-supervision applications.

1.2 NOTATION

We write EQ and VarQ for the expectation and variance of statistics computed using i.i.d. copies of a
random vector W ∼ Q. Consequently, PQ(A) = EQ1A, where 1A is the indicator of an event A. If
the distribution is clear by the context, we omit the subscript. If (am)m∈N and (bm)m∈N are sequences
of scalars, then am = o(bm) is equivalent to am/bm → 0 as m→∞ and am = bm + o(1) means
am−bm = o(1). If (V (m))m∈N is a sequence of random variables, then (i) V (m) = oP (1) means that
for every ε > 0 we have P(|V (m)| > ε)→ 0 as m→∞, (ii) V (m) = OP (1) means that for every
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ε > 0 there exists a M > 0 such that supm∈N P(|V (m)| > M) < ε, (iii) V (m) = am+ oP (1) means
V (m) − am = oP (1), (iv) V (m) = oP (am) means V (m)/am = oP (1), and (v) V (m) = OP (am)
means V (m)/am = OP (1).

2 ESTIMATING FRÉCHET BOUNDS

A roadmap to our approach follows: we first reformulate the Fréchet bounds in equation 1.1 into
their dual problems, which we discuss in equation 2.1. Then, we replace the non-smooth dual
problems with their appropriate smooth approximations, as discussed in equation 2.3. The advantage
of having finite Y and Z spaces, which is motivated by numerous weak supervision applications, is
that we are able to replace the infinite-dimensional primal Fréchet problem in equation 1.1 with a
finite-dimensional dual problem. This makes optimization considerably easier.

2.1 DUAL FORMULATIONS OF THE BOUNDS AND THEIR APPROXIMATIONS

This section presents a result that allows us to efficiently solve the optimization problems in 1.1 by
deriving their dual formulations as finite-dimensional convex programs. Before we dive into the
result, let us define a family of matrices denoted by

A ≜
{
a ∈ R|Y|×|Z| :

∑
y∈Y ayz = 0 for every z ∈ Z

}
.

With this definition in place, we introduce the dual formulation in Theorem 2.1.

Theorem 2.1. Let g : X × Y × Z → R be a bounded measurable function. Then,

L = sup
a∈A

E[fl(X,Z, a)] and U = inf
a∈A

E[fu(X,Z, a)], where (2.1)

fl(x, z, a) ≜min
ȳ∈Y

[g(x, ȳ, z) + aȳz]− EPY |Z [aY z | Z = z]

fu(x, z, a) ≜max
ȳ∈Y

[g(x, ȳ, z) + aȳz]− EPY |Z [aY z | Z = z] .
(2.2)

Moreover, L and U are attained by some optimizers in A.

Theorem 2.1 remains valid if we maximize/minimize over R|Y|×|Z| instead ofA. However, this is not
necessary because the values of fl and fu remain identical for the following shifts in a: a·z ← a·z+bz
where bz ∈ R. By constraining the set of optimizers to A, we eliminate the possibility of having
multiple optimal points.

The computation of these bounds entails finding a minimum or maximum over a discrete set, meaning
that straightforward application of their empirical versions could result in optimizing non-smooth
functions, which is often challenging. To mitigate this, we consider a smooth approximation of the
problem that is found to be useful in handling non-smooth optimization problems (An et al., 2022;
Asl & Overton, 2021). We approximate the max and min operators with their “soft” counterparts:

softmin{b1, · · · , bK} ≜ −ε log[
∑

k exp(−bk/ε)] + ε log(K)

softmax{b1, · · · , bK} ≜ ε log[
∑

k exp(bk/ε)]− ε log(K) ,

where ε > 0 is a small constant that dictates the level of smoothness. As ε nears zero, these soft
versions of max and min converge to their original non-smooth forms. Using these approximations,
we reformulate our dual optimization in equation 2.1 into smooth optimization problems:

Lε ≜ sup
a∈A

E[fl,ε(X,Z, a)] and Uε ≜ inf
a∈A

E[fu,ε(X,Z, a)], where (2.3)

fl,ε(x, z, a) ≜− ε log
[

1
|Y|
∑

y∈Y exp
(

g(x,y,z)+ayz

−ε

)]
− EPY |Z [aY z | Z = z]

fu,ε(x, z, a) ≜ ε log
[

1
|Y|
∑

y∈Y exp
(

g(x,y,z)+ayz

ε

)]
− EPY |Z [aY z | Z = z]

(2.4)

and ε > 0 is kept fixed at an appropriate value. As a consequence of Lemma 5 of An et al. (2022),
we know that Lε and Uε are no more than ε log |Y| units from L and U . Thus, that distance can be
regulated by adjusting ε. For example, if we are comfortable with an approximation error of 10−2

units when |Y| = 2, we will set ε = 10−2/ log(2) ≈ .014.
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2.2 ESTIMATING THE BOUNDS

In practice, it is not usually possible to solve the optimization problems in 2.3, because we may not
have direct access to the distributions PX,Z and PY |Z . We overcome this problem by assuming that
we can estimate the distributions using an available dataset.

To this end, let us assume that we have a sample {(Xi, Zi)}ni=1
iid∼ PX,Z , and thus we replace

the relevant expectations with PX,Z by its empirical version. Additionally, we have a sequence
{P̂ (m)

Y |Z ,m ∈ N} that estimates PY |Z with greater precision as m increases. Here, m can be viewed
as the size of a sample to estimate PY |Z . Although the exact procedure for estimating the conditional
distribution is not relevant to this section, we have discussed in our introductory section that this
can be estimated using a label model (Ratner et al., 2019; Fu et al., 2020) in applications with weak
supervision or in a variety of other ways for applications beyond weak supervision. Later in this
section, we will formalize the precision required for the estimates. To simplify our notation, we omit
the superscript m in P̂

(m)
Y |Z , whenever it is convenient to do so.

Thus, the Fréchet bounds are estimated as

L̂ε = sup
a∈A

1
n

∑n
i=1 f̂l,ε(Xi, Zi, a) and Ûε = inf

a∈A
1
n

∑n
i=1 f̂u,ε(Xi, Zi, a), where (2.5)

f̂l,ε(x, z, a) ≜− ε log
[

1
|Y|
∑

y∈Y exp
(

g(x,y,z)+ayz

−ε

)]
− EP̂Y |Z

[aY z | Z = z]

f̂u,ε(x, z, a) ≜ ε log
[

1
|Y|
∑

y∈Y exp
(

g(x,y,z)+ayz

ε

)]
− EP̂Y |Z

[aY z | Z = z]
(2.6)

In our practical implementations we eliminate the constraint that
∑

y ayz = 0 by adding a penalty term∑
z∈Z(

∑
y∈Y ayz)

2 to Ûε (and its negative to L̂ε) and then solve unconstrained convex programs
using L-BFGS algorithm (Liu & Nocedal, 1989). Since the penalty term vanishes only when∑

y ayz = 0, we guarantee that the optimal solution is in A.

2.3 ASYMPTOTIC PROPERTIES OF THE ESTIMATED BOUNDS

In the following, we state the assumptions required for our asymptotic analysis of L̂ε and Ûε. Our
first assumption is technical, which eliminates certain edge cases and is rather minimal.

Assumption 2.2. For every y ∈ Y and z ∈ Z the P(Y = y | Z = z) is bounded away from both
zero and one, i.e. κ < P(Y = y | Z = z) < 1− κ for some κ > 0.

In our next assumption, we formalize the degree of precision for the sequence {P̂ (m)
Y |Z ,m ∈ N} of

estimators that we require for desired performances of the bound estimates.

Assumption 2.3. Denote the total variation distance (TV) between probability measures as dTV. For
every z ∈ Z , for some λ > 0, we have that dTV

(
P̂

(m)
Y |Z=z, PY |Z=z

)
= OP (m

−λ).

The asymptotic distributions for the estimated bounds follow.

Theorem 2.4. Assume 2.2 and 2.3, and let n be a function of m such that n→∞ and n = o(m2λ)
when m→∞. Then, as m→∞

√
n(L̂ε − Lε)⇒ N(0, σ2

l,ε) and
√
n(Ûε − Uε)⇒ N(0, σ2

u,ε)

where σ2
l,ε ≜ Varfl,ε(X,Z, a∗l,ε), σ

2
u,ε ≜ Varfu,ε(X,Z, a∗u,ε), and a∗l,ε and a∗u,ε are the unique

optimizers to attain Lε and Uε (equation 2.3).

The above theorem requires m2λ to grow faster than n implying that, through assumption 2.3, PY |Z
is estimated with a precision greater than the approximation error when we replace PX,Z with
1
n

∑
i δXi,Zi . This allows us to derive the asymptotic distribution when combined with classical

results from M-estimation (see proof in the appendix for more details).

An immediate consequence of the distributional convergence in Theorem 2.4 is that L̂ε and Ûε

converge in probability to Lε and Uε. Since Lε and Uε can be arbitrarily close to L and U , depending
on the choice of ε, so is their estimates, as long as n is large enough.
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Construction of confidence bound: One interesting use of Theorem 2.4 is that we can construct an
approximate confidence interval for the estimates of the bounds. For example, an approximate 1− γ
confidence interval for Lε can is constructed as

Î =
[
L̂ε − τγ σ̂l,ε√

n
, L̂ε +

τγ σ̂l,ε√
n

]
, (2.7)

where τγ = Φ−1(1− γ/2) and σ̂l,ε is the empirical standard deviation of fl,ε(X,Z, ·), substituting
the estimate â (solution for the problem in 2.5). For such interval, it holds P

(
Lε ∈ Î

)
≈ 1− γ, i.e.,

with approximately 1− γ confidence we can say that the true Lε is in the interval in equation 2.7. An
interval for Uε can be constructed similarly.

2.4 EXTRA INSIGHTS AND RESULTS

In Section A, we explore three extra theoretical aspects of the Fréchet bounds of interests and our
methodology. First, we describe a connection between Fréchet bounds computation and the optimal
transport problems (Peyré et al., 2019). Second, we included a theoretical result regarding the size of
the difference U − L. If this difference is small, then our bounds accurately estimate E[g(X,Y, Z)]
without observing samples from the joint distribution of (X,Y, Z). Intuitively, the new theorem says
that if the uncertainty we have about X or Y after observing Z is low, then the bounds L and U
should be close (we bound that difference using the concept of conditional entropy). Finally, we have
included a theoretical result on label model misspecification. In that result, we study what happens if
the label model P̂Y |Z converges to a certain distribution QY |Z such that dTV(PY |Z=z, QY |Z=z) ≤ δ
for all z. We show that the difference between the resulting bounds from the true bounds is O(δ).

3 EVALUATION OF MODEL PERFORMANCE IN WEAK SUPERVISION

In this section, we describe how to use the ideas presented in Section 2 to estimate non-trivial bounds
for the accuracy of a weakly supervised classifier h when no high-quality labels are available. In
the standard weak supervision setup, only unlabeled data (X) is available, but the practitioner can
extract weak labels (Z) from the available data. More specifically, we assume access to the dataset
{(Xi, Zi)}mi=1, i.i.d. with distribution PX,Z , used in its entirety to estimate a label model P̂Y |Z
(Ratner et al., 2019; Fu et al., 2020) and where part of it, e.g., a random subset of size n, is used to
estimate bounds. To simplify the exposition, we assume the classifier h is fixed2

3.1 RISK AND ACCURACY

Let ℓ be a generic classification loss function. The risk of a classifier h is defined as R(h) =
E[ℓ(h(X), Y )], which cannot be promptly estimated in a weak supervision problem, where we do not
observe any Y . In this situation, we can make use of our bound estimators in Section 2.2, where we
set g(x, y, z) = ℓ(h(x), y) to obtain bounds for R(h). Furthermore, we can estimate an uncertainty
set for the accuracy of the classification simply by letting g(x, y, z) = 1[h(x) = y].

3.2 PRECISION, RECALL, AND F1 SCORE

For a binary classification problem, where Y = {0, 1}, the precision, recall, and F1 score of a
classifier h are defined as

p ≜P(Y = 1 | h(X) = 1) = P(h(X)=1,Y=1)
P(h(X)=1) ,

r ≜P(h(X) = 1 | Y = 1) = P(h(X)=1,Y=1)
P(Y=1) ,

F ≜ 2
r−1+p−1 = 2P(h(X)=1,Y=1)

P(h(X)=1)+P(Y=1) .

(3.1)

The quantities P(h(X) = 1) and P(Y = 1) in the above definitions are identified, since the marginals
PX,Z and PY,Z are specified in the Fréchet problem in equation 1.1. The P(h(X) = 1) can be
estimated from the full dataset {(Xi, Zi)}mi=1 simply using P̂(h(X) = 1) ≜ 1

m

∑m
i=1 1[h(Xi) = 1].

On the other hand, in most weak supervision applications, P(Y = 1) is assumed to be known from
some prior knowledge or can be estimated from an auxiliary dataset, e.g., using the method described
in the appendix of Ratner et al. (2019). Estimating or knowing P(Y = 1) is required to fit the label
model (Ratner et al., 2019; Fu et al., 2020) in the first place, so it is beyond our scope of discussion.
Then, we assume we have an accurate estimate P̂(Y = 1).

2In practice, it can be obtained using all the data not used to estimate bounds.
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The probability P(h(X) = 1, Y = 1), which is the final ingredient in the definition of precision,
recall, and F1 score is not identifiable as PX,Y is unknown. The uncertainty bounds for this quantity
can be estimated using our method simply by letting g(x, y, z) = 1[h(x) = 1 and y = 1]. Let
L̂ε and Ûε denote the estimated lower and upper bounds for P(h(X) = 1, Y = 1) obtained using
equation 2.5. Naturally, the lower bound estimators for precision, recall, and F1 score are

p̂l,ε ≜
L̂ε

P̂(h(X)=1)
, r̂l,ε ≜

L̂ε

P̂(Y=1)
, and F̂l,ε ≜

2L̂ε

P̂(h(X)=1)+P̂(Y=1)
,

while the upper bound estimators p̂u,ε, r̂u,ε, and F̂u,ε are given by substituting L̂ε by Ûε above. In
the following corollary, we show that the bounds converge asymptotically to normal distributions,
which we use for calculating their coverage bounds presented in our applications.
Corollary 3.1. Let n be a function of m such that n → ∞ and n = o

(
m(2λ)∧1

)
when m → ∞.

Assume the conditions of Theorem 2.4 hold. Then as m→∞
√
n
(
p̂l,ε − pl,ε

)
⇒ N(0, σ2

p,l,ε), pl,ε =
Lε

P(h(X)=1) , σ
2
p,l,ε ≜

σ2
l,ε

P(h(X)=1)2

√
n
(
r̂l,ε − rl,ε

)
⇒ N(0, σ2

r,l,ε), rl,ε =
Lε

P(Y=1) , σ
2
r,l,ε ≜

σ2
l,ε

P(Y=1)2

√
n
(
F̂l,ε − Fl,ε

)
⇒ N(0, σ2

F,l,ε), Fl,ε =
2Lε

P(h(X)=1)+P(Y=1) , σ
2
F,l,ε ≜

4σ2
l,ε

[P(h(X)=1)+P(Y=1)]

(3.2)

where Lε, σ2
l,ε are defined in Theorem 2.4. Asymptotic distributions for

√
n
(
p̂u,ε− pu,ε

)
,
√
n
(
r̂u,ε−

ru,ε
)
, and

√
n
(
F̂u,ε − Fu,ε

)
are obtained in a similar way by changing Lε to Uε and σ2

l,ε to σ2
u,ε.

Reiterating our discussion in the final paragraph in Section 2.2, asymptotic distributions are important
for constructing confidence intervals for the bounds, which can be done in a similar manner.

4 EXPERIMENTS

All experiments are structured to emulate conditions where high-quality labels are inaccessible during
training, validation, and testing phases, and all weakly-supervised classifiers are trained using the
noise-aware loss (Ratner et al., 2016). To fit the label models, we assume PY is known (computed
using the full dataset). Unless stated, we use l2-regularized logistic regressors as classifiers, where the
regularization strength is determined according to the validation noise-aware loss. In the following,
we comment about the used datasets.

Wrench datasets: To carry out realistic experiments within the weak supervision setup and study
accuracy/F1 score estimation, we utilize datasets incorporated in Wrench (Weak Supervision
Benchmark) (Zhang et al., 2021). This standardized benchmark platform features real-world datasets
and pre-generated weak labels for evaluating weak supervision methodologies. Most of Wrench’s
datasets are designed for classification tasks, encompassing diverse data types such as tabular, text,
and image. For text datasets, we employ the all-MiniLM-L6-v2 model from the sentence-
transformers3 library for feature extraction (Reimers & Gurevych, 2019). Features were extracted for
the image datasets before their inclusion in Wrench.

Hate Speech Dataset (de Gibert et al., 2018): This dataset contains sentence-level annotations for
hate speech in English, sourced from posts from white supremacy forums. It encompasses thousands
of sentences classified into either Hate (1) or noHate (0) categories. This dataset provides an ideal
ground for examining recall and precision estimation. Social media moderators aim to maximize
the filtering of hate posts, i.e., increasing recall, while ensuring that non-hate content is rarely
misclassified as offensive, maintaining high precision. Analogously to the Wrench text datasets, we
utilize all-MiniLM-L6-v2 for feature extraction.

4.1 BOUNDING THE PERFORMANCE OF WEAKLY SUPERVISED CLASSIFIERS

In this section, we conduct an empirical study using some of the Wrench and Hate Speech datasets
to verify the validity and usefulness of our methodology. We compare results for which PY |Z is
estimated using the true labels Y (“Oracle”) and those derived using Snorkel’s (Ratner et al., 2017;
2018) default label model with no hyperparameter tuning and a thousand epochs. Such a comparison
facilitates an evaluation of our method’s efficacy, especially in cases where the label model could be
incorrectly specified. Results for other Wrench datasets and one extra label model (FlyingSquid, (Fu
et al., 2020)) are presented in Section D.

3Accessible at https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2.
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Figure 1: Bounds on classifier accuracies/F1 scores across classification thresholds for the Wrench datasets.
Despite potential misspecification in Snorkel’s label model, it performs comparably to using labels to estimate
PY |Z , giving approximate but meaningful bounds.

Table 1: Bounding accuracy in multinomial classification.

Dataset Lab. model Lo. bound Up. bound Test acc

agnews Oracle 0.49±0.01 0.95±0.01 0.82±0.01

Snorkel 0.45±0.01 0.90±0.01 0.80±0.01

chemprot Oracle 0.22±0.02 0.59±0.02 0.41±0.02

Snorkel 0.14±0.02 0.67±0.01 0.39±0.02

In Figure 1, we present bounds on the clas-
sifiers’ performances across various classi-
fication thresholds for binary classification
Wrench datasets. A noteworthy observation
is that even if Snorkel’s label model is po-
tentially misspecified, its performance in es-
timating bounds mirrors that of when using
labels to estimate PY |Z , giving approximate
but meaningful bounds. This suggests that determining bounds remains valuable, irrespective
of perfect label model specification. Delving deeper into Figure 1, results for “youtube”, “com-
mercial”, and “tennis” highlight that our uncertainty about out-of-sample performance is small,
even without labeled samples. However, there is a noticeable increase in uncertainty for “imdb”,
making weakly supervised models deployment riskier without additional validation. Yet, the
bounds retain their informative nature. For instance, for those willing to accept the risk, the
“imdb” classifier’s ideal threshold stands at .5. This is deduced from the flat worst-case and
peaking best-case accuracy at this threshold. Table 1 presents some results for “agnews” (4
classes) and “chemprot” (10 classes). The number of possible combinations for values of Y
and Z grows exponentially with the number of weak labels, making the “Oracle” estimation of
PY |Z not feasible. Then, we reduce the number of weak labels in “chemprot” from 26 to 10.
From Table 1, we can see that both “Oracle” and “Snorkel” approaches produce valid bounds.

Figure 2: Precision and recall bounds for hate
speech detection.

Now, we present bounds on the classifiers’ precision
and recall across different classification thresholds for
the hate speech dataset. This dataset did not provide
weak labels, so we needed to generate them. We em-
ployed four distinct weak labelers. The initial weak
labeler functions are based on keywords and terms.
Should words or phrases match those identified as
hate speech in the lexicon created by Davidson et al.
(2017), we categorize the sentence as 1; if not, it’s
designated 0. The second weak labeler is based on
TextBlob’s sentiment analyzer (Loria et al., 2018):
a negative text polarity results in a 1 classification,
while other cases are labeled 0. Our final pair of weak
labelers are language models4, specifically BERT and
RoBERTa, that have undergone fine-tuning for detecting toxic language or hate speech. Figure 2
presents both recall and precision bounds and test estimates for the weakly-supervised hate speech
classifier. Mirroring observations from Figure 1, Snorkel’s standard label model gives valuable
bounds analogous to scenarios where we employ labels to estimate PY |Z . If used by practitioners,

4Access the models at https://huggingface.co/IMSyPP/hate_speech_en and https://
huggingface.co/s-nlp/roberta_toxicity_classifier.
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Figure 3: Performance bounds for classifiers on the YouTube dataset, initially relying solely on few-shot weak
labels obtained via prompts to the LLM Llama-2-13b-chat-hf. The progression of plots illustrates the
comparative impact of integrating “high-quality” labels from Wrench versus synthetically generated “low-
quality” labels. Evidently, the addition of “high-quality” labels significantly enhances the bounds, underscoring
their superior utility over “low-quality” labels for optimal classification of SPAM and HAM comments.

Figure 2 could help trade-off recall and precision by choosing an appropriate classification threshold
in the absence of high-quality labels.

4.2 CHOOSING A SET OF WEAK LABELS

In this experiment, our aim is to examine how our proposed approach performs under the influ-
ence of highly informative weak labels as opposed to scenarios with less informative weak la-
bels. Using the YouTube dataset provided by Wrench, we attempt to classify YouTube comments
into categories of SPAM or HAM, leveraging Snorkel to estimate PY |Z . Inspired by Smith et al.
(2022), we craft three few-shot weak labelers by prompting5 the large language model (LLM) called
Llama-2-13b-chat-hf6. For each dataset entry, we pose three distinct queries to the LLM.
Initially, we inquire if the comment is SPAM or HAM. Next, we provide clear definitions of SPAM
and HAM, then seek the classification from LLM. In the third prompt, leveraging in-context learning
ideas (Dong et al., 2022), we provide five representative comments labeled as SPAM/HAM prior to
requesting the LLM’s verdict on the comment in question. In cases where LLM’s response diverges
from SPAM or HAM, we interpret it as LLM’s abstention.

After obtaining this triad of weak labels, we analyze two situations. Initially, we integrate the top
five7 weak labels (“high-quality” labels) from Wrench. In the subsequent scenario, we synthetically
generate weak labels (“low-quality” labels) that bear no linkage with Y . The first plot in Figure 3
depicts the bounds of our classifier based solely on weak few-shot labels, which unfortunately do
not provide substantial insights. Enhancing the bounds requires the inclusion of additional weak
labels. Yet, as indicated by the subsequent pair of plots, it becomes evident that only the incorporation
of “high-quality” weak labels results in significant shrinkage and upward shift of the bounds. As
confirmed by the test accuracy, if a practitioner had used our method to select the set of weak labels,
that would have led to a significant boost in performance.

4.2.1 MODEL SELECTION STRATEGIES USING THE FRÉCHET BOUNDS

In Sections 4.1 and 4.2, we implicitly touched on the topic of model selection when discussing
threshold and weak label selection. Here, we explicitly discuss the use of our Fréchet bounds for
model selection purposes. Consider a set of possible models H ≜ {h1, · · · , hK} from which we
wish to find the best model according to a specific metric, e.g., accuracy, or F1 score. We consider
three approaches for model selection using the Fréchet bounds: choosing the model with the best
possible (i) lower bound, (ii) upper bound, and (iii) average of lower and upper bounds on the metric
of interest. Strategy (i) works well for the worst-case scenario and can be seen as the distributionally
robust optimization (DRO) (Chen et al., 2020) solution when the uncertainty set is given by Π in
equation 1.1, while (ii) is suitable for an optimistic scenario, and (iii) is suggested when one wants to
balance between the worst- and best-case scenarios. Please check Section A.4 for more details.

We conduct an experiment to test the idea of using Fréchet bounds for model selection purposes. In
this experiment, we select multilayer-perceptrons (MLPs). The considered MLPs have one hidden
layer with a possible number of neurons in {50, 100}. Training is carried out with Adam (Kingma &
Ba, 2014), with possible learning rates in {.1, .001} and weight decay (l2 regularization parameter)
in {.1, .001}. For those datasets that use the F1 score as the evaluation metric, we also tune the
classification threshold in {.2, .4, .5, .6, .8} (otherwise, they return the most probable class as a

5More details regarding the prompts can be found in the appendix.
6Available at https://huggingface.co/meta-llama/Llama-2-13b-chat-hf.
7The most informative weak labels are determined based on their alignment with the true label.
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prediction). In total, H is composed of 8 trained models when evaluating accuracy and 40 models
when evaluating the F1 score. We also consider directly using the label model (Snorkel (Ratner et al.,
2018)) to select models. For example, when the metric considered is accuracy, i.e., we use select
the model argmaxhk∈H

1
n

∑n
i=1 EP̂Y |Z

1[hk(X) = Y | Z = Zi], which is a natural choice when
X ⊥⊥ Y | Z. As benchmarks, we consider having a few labeled samples.

Table 2: Performance of selected models

Lower bound Upper bound Bounds avg Label model Labeled (n = 100)

agnews 0.80±0.00 0.80±0.00 0.80±0.00 0.80±0.00 0.80±0.00

imdb 0.50±0.00 0.69±0.00 0.74±0.01 0.75±0.00 0.75±0.00

tennis 0.77±0.00 0.77±0.00 0.77±0.00 0.77±0.00 0.70±0.11

sms 0.23±0.01 0.66±0.01 0.66±0.01 0.23±0.01 0.73±0.03

commercial 0.91±0.00 0.78±0.00 0.91±0.00 0.91±0.00 0.85±0.04

In Table 3, we report a sub-
set of our results (please
check Section A.4 for the
full set of results). In this
table, we report the aver-
age test scores of the cho-
sen models over 5 repeti-
tions for different random
seeds (standard deviation re-
port as subscript). We can
extract some lessons from the table. First, using metrics derived from the Fréchet bounds is most
useful when our uncertainty about the model performance is low, e.g., “‘commercial” and “tennis”
in Figure 1. In those cases, using our metrics for model selection gives better results even when
compared to a labeled validation set of size n = 100. Moreover, once the practitioner knows that the
uncertainty is low, using the label model approach will also lead to good results. Second, in some
cases using the bounds average can be more beneficial than using the label model approach, which
implicitly assumes X ⊥⊥ Y | Z. However, using the lower bound might be good if the practitioner
wants to be robust/safe even though those results typically do not stand out in Wrench datasets.

5 CONCLUSION

Limitations. We highlight two main limitations of our work. Firstly, our method and theoretical
results can only be applied to cases in which Y and Z are finite sets, e.g., in classification problems.
In the case of general Y and Z , the dual formulation in Theorem 2.1 can probably be extended
without too much effort. However, the optimization problem we would have to solve in that case
requires optimizing lower/upper bounds over spaces of functions which can prove to be challenging
both computationally and theoretically. The second limitation regards the convergence of the label
model to P̂Y |Z to the true conditional distribution PY |Z . One issue that needs to be considered is
the label model specification, e.g., through specifying a dependency graph. If the label model is not
correctly specified, it should not converge to the true target distribution; thus, estimated bounds might
not be meaningful. Another issue is that if |Z| is large, the label model’s convergence might be slow,
and a big unlabeled dataset is needed for the bounds to be accurately estimated. Using a more curated
but smaller set of weak labels may be more advantageous for bounds estimation, and using the ideas
presented in Section 4.2 can be useful in that case.

Extensions. One possible extension of our method is the accommodation of more general Y and Z
to permit bound estimation to more general tasks such as regression. Another possible extension is
the application of the ideas presented in this work in different fields of machine learning or statistics.
One could consider applying our ideas to the problem of “statistical matching” (SM) (D’Orazio
et al., 2006; Conti et al., 2016; D’Orazio, 2019; Lewaa et al., 2021; Conti et al., 2019), for example.
The classic formulation of SM involves observing two distinct datasets that contain replications of
(X,Z) and (Y,Z), but the triplet (X,Y, Z) is never observed. The primary goal is to make inferences
about the relationship between X and Y . For example, one extensively studied instance involves
matching data from the Programme for International Student Assessment (PISA) and the Teaching
and Learning International Survey (TALIS) (Kaplan & Turner, 2012; Kaplan & McCarty, 2013;
Leunda Iztueta et al., 2017). PISA provides data about students and their schools across various
countries, while TALIS furnishes data about teachers and their schools. In this context, for a given
country, the matching variables Z are school attributes like size, with X representing the average
student grades within a school and Y denoting the teachers’ motivation, for instance. For instance,
if our focus is on bounding P((X,Y ) ∈ B) = E[1B(X,Y )] for a certain event B, we could define
g(x, y, z) = 1B(x, y) and apply our method.
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Ré. Training complex models with multi-task weak supervision. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 33, pp. 4763–4771, 2019.

Alexander J Ratner, Christopher M De Sa, Sen Wu, Daniel Selsam, and Christopher Ré. Data
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A EXTRA CONTENT

A.1 CONNECTION TO OPTIMAL TRANSPORT

The optimizations in the Frechet bounds equation 1.1 can be connected to an optimization problem.
We only explain this connection for the lower bound, but the connection to the upper bound is quite
similar. The optimization lower bound is

infπX,Z=PX,Z

πY |Z=PY |Z

Eπ[g(X,Y, Z)] =

= infπX,Z=PX,Z

πY |Z=PY |Z

∑
z P(Z = z)Eπ[g(X,Y, Z) | Z = z]

=
∑

z P(Z = z)

{
infπX|Z=z=PX|Z=z

πY |Z=z=PY |Z=z

EπX,Y |Z=z
[g(X,Y, z)]

}
where we notice that the inner minimization is an optimal transport problem between the probability
distributions PX|Z=z and PY |Z=z with the cost function dz(x, y) = g(x, y, z).

A.2 WHEN ARE THE BOUNDS INFORMATIVE?

We say that the bounds L and U are informative if the difference U −L is small, i.e., we can estimate
E[g(X,Y, Z)] with high precision even if the joint random vector (X,Y, Z) is never observed.
Theorem A.1 gives an upper bound for U − L based on the marginal distributions PX,Z and PY,Z .

Intuitively, Theorem A.1 says that if the uncertainty we have about X or Y after observing Z is
low, then the bounds L and U should be close. For example, take the extreme case where Y = Z:
knowing Z tells us exactly the value of Y , and we could perfectly label every data point (X,Z),
recovering the triplet (X,Y, Z). In that case, H(Y | Z) = 0 and, consequently, U = L.
Theorem A.1. Let L and U be defined as in equation equation 1.1. Then

U − L ≤
√
8 ∥g∥2∞ min

(
H(X | Z), H(Y | Z)

)
where H(X | Z) (resp. H(Y | Z)) denotes the conditional entropy of X (resp. Y ) given Z.

Proof. In this proof, we shall assume X is a continuous random variable for clarity, even though this
is not strictly needed.

Let Q(1)
X,Y,Z and Q

(2)
X,Y,Z be two distributions in Π, i.e., with marginals PX,Z and PY,Z . Let the

densities of Q(1)
X,Y,Z and Q

(2)
X,Y,Z as q(1)X,Y,Z and q

(2)
X,Y,Z . Then, see that∣∣∣∫ gdQ

(1)
X,Y,Z −

∫
gdQ

(2)
X,Y,Z

∣∣∣ =
=
∣∣∣∫ ∑y,z g(x, y, z)(q

(1)
X,Y,Z(x, y, z)− q

(2)
X,Y,Z(x, y, z))dx

∣∣∣
≤
∫ ∑

y,z |g(x, y, z)| · |q
(1)
X,Y,Z(x, y, z)− q

(2)
X,Y,Z(x, y, z)|dx

≤ 2 ∥g∥∞
∑

z pZ(z)
1
2

∫ ∑
y ·|q

(1)
X,Y |Z(x, y | z)− q

(2)
X,Y |Z(x, y | z)|dx

= 2 ∥g∥∞ E
[
dTV(Q

(1)
X,Y |Z , Q

(2)
X,Y |Z)

]
≤ 2 ∥g∥∞

{
E
[
dTV(Q

(1)
X,Y |Z , PX|ZPY |Z)

]
+ E

[
dTV(Q

(2)
X,Y |Z , PX|ZPY |Z)

]}
(A.1)

≤ 2 ∥g∥∞

{
E
[√

1
2KL(Q(1)

X,Y |Z ||PX|ZPY |Z)

]
+ E

[√
1
2KL(Q(2)

X,Y |Z ||PX|ZPY |Z)

]}
(A.2)

≤ 2 ∥g∥∞

{√
1
2E
[
KL(Q(1)

X,Y |Z ||PX|ZPY |Z)
]
+

√
1
2E
[
KL(Q(2)

X,Y |Z ||PX|ZPY |Z)
]}

(A.3)

≤ 2 ∥g∥∞
{√

1
2H(X | Z) +

√
1
2H(X | Z)

}
(A.4)

≤
√
8 ∥g∥2∞ H(X | Z)
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where step A.1 is justified by triangle inequality, step A.2 is justified by Pinsker’s inequality, step
A.3 is justified by Jensen’s inequality, and step A.4 is justified by the fact that both expected KL
terms are conditional mutual information terms, which can be bounded by the conditional entropy.

Following the same idea, we can show that
∣∣∣∫ gdQ

(1)
X,Y,Z −

∫
gdQ

(2)
X,Y,Z

∣∣∣ ≤ √8 ∥g∥2∞ H(Y | Z).
Consequently,∣∣∣∫ gdQ

(1)
X,Y,Z −

∫
gdQ

(2)
X,Y,Z

∣∣∣ ≤ min

(√
8 ∥g∥2∞ H(X | Z),

√
8 ∥g∥2∞ H(Y | Z)

)
=
√
8 ∥g∥2∞ min

(
H(X | Z), H(Y | Z)

)
.

Because this statement is valid for any distributions Q(1)
X,Y,Z and Q

(2)
X,Y,Z in Π, we have that

U − L ≤
√
8 ∥g∥2∞ min

(
H(X | Z), H(Y | Z)

)

A.3 LABEL MODEL MISSPECIFICATION

In this section, we evaluate the performance of Fréchet bounds when the label model PY |Z is
misspecified. Assume that
Assumption A.2. For some δ > 0 and every z ∈ Z we have that

dTV
(
QY |Z=z, PY |Z=z

)
≤ δ . (A.5)

Then we show that
Theorem A.3. Recall from equation equation 2.3 that Lϵ and Uϵ are the smoothened upper and
lower Fréchet bounds with the true PY |Z=z . Additionally, define Ľϵ and Ǔϵ as the same Fréchet
bounds, but with misspecified QY |Z=z , i.e.

Ľϵ ≜ sup
a∈A

E[f̌l,ε(X,Z, a)] and Ǔϵ ≜ inf
a∈A

E[f̌u,ε(X,Z, a)] , (A.6)

where

f̌l,ε(x, z, a) ≜− ε log
[

1
|Y|
∑

y∈Y exp
(

g(x,y,z)+ayz

−ε

)]
− EQY |Z [aY z | Z = z]

f̌u,ε(x, z, a) ≜ ε log
[

1
|Y|
∑

y∈Y exp
(

g(x,y,z)+ayz

ε

)]
− EQY |Z [aY z | Z = z]

(A.7)

If QY |Z satisfies the assumption 2.2, then for some C > 0 which is independent of δ > 0 we have

|Ľϵ − Lϵ| ∨ |Ǔϵ − Uϵ| ≤ Cδ . (A.8)

Proof of Theorem A.3. We only prove the theorem for upper Fréchet bound. The proof of lower
bound is similar.

First, notice that

f̌u,ε(x, z, a)− fu,ϵ(x, z, a) =

= ε log
[

1
|Y|
∑

y∈Y exp
(

g(x,y,z)+ayz

ε

)]
− EQY |Z [aY z | Z = z]

− ε log
[

1
|Y|
∑

y∈Y exp
(

g(x,y,z)+ayz

ε

)]
+ EPY |Z [aY z | Z = z]

= EPY |Z [aY z | Z = z]− EQY |Z [aY z | Z = z]

and thus

|f̌u,ε(x, z, a)− fu,ϵ(x, z, a)| (A.9)

=
∣∣EPY |Z [aY z | Z = z]− EQY |Z [aY z | Z = z]

∣∣ (A.10)

≤ ∥a∥∞ × 2dTV
(
QY |Z=z, PY |Z=z

)
(using a⊤b ≤ ∥a∥∞∥b∥1) (A.11)

≤ 2∥a∥∞δ . (Assumption A.2) (A.12)
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Defining

a⋆ ≜ argminaE[f̌u,ε(X,Z, a)], ǎ ≜ argminaE[f̌u,ε(X,Z, a)] , (A.13)

we now establish that

|Ǔϵ − Uϵ| ≤ 2(∥a⋆∥∞ ∨ ∥ǎ∥∞)δ . (A.14)

This is easily established from the following arguments:

Ǔϵ = E[f̌u,ε(X,Z, ǎ)]

≤ E[f̌u,ε(X,Z, a⋆)] (ǎ is the minimizer)
≤ E[fu,ε(X,Z, a⋆)] + 2∥a⋆∥∞δ (using eq. equation A.12)
= Uϵ + 2∥a⋆∥∞δ

(A.15)

and similarly

Uϵ = E[fu,ε(X,Z, a⋆)] ≤ E[fu,ε(X,Z, ǎ)] ≤ E[f̌u,ε(X,Z, ǎ)] + 2∥ǎ∥∞δ = Ǔϵ + 2∥a⋆∥∞δ .
(A.16)

Notice from Lemma C.5 that a⋆ is bounded. Since QY |Z satisfies assumption 2.2, one can make a
similar argument for ǎ that it is also bounded. Thus, we can find a C > 0, which is independent of
δ > 0, such that

2(∥a⋆∥∞ ∨ ∥ǎ∥∞) ≤ C

and the theorem holds for this C.

A.4 MODEL SELECTION USING PERFORMANCE BOUNDS

In this section, we propose and empirically evaluate three strategies for model selection using our
estimated bounds in Equation 2.5.

A.4.1 INTRODUCING MODEL SELECTION STRATEGIES

Assume, for example, g(x, y, z) = 1[h(x) = y] for a given classifier h, i.e., we conduct model
selection based on accuracy, even though we can easily extend the same idea to different choices of
metrics, such as F1 score. The model selection problem consists of choosing the best model from a
set H ≜ {h1, · · · , hK} in order to maximize out-of-sample accuracy. Define L̂ε(h) and Ûε(h) as
the estimated accuracy lower and upper bounds for a certain model h. The first strategy is to choose
the model with highest accuracy lower bound, i.e.,

h∗
lower = argmaxhk∈HL̂ε(hk)

Maximizing the accuracy lower bound approximates the distributionally robust optimization (DRO)
(Chen et al., 2020) solution when the uncertainty set is given by Π in 1.1. That is, we optimize for the
worst-case distribution in the uncertainty set. Analogously, we can choose the model that optimizes
the best-case scenario

h∗
upper = argmaxhk∈HÛε(hk).

Moreover, if we want to guarantee that both worst and best-case scenarios are not bad, we can
optimize the average of upper and lower bounds, i.e.,

h∗
avg = argmaxhk∈H

L̂ε(hk)+Ûε(hk)
2 .

A.4.2 EXPERIMENT SETUP

In this experiment, we select multilayer-perceptrons (MLPs). The considered MLPs have one hidden
layer with a possible number of neurons in {50, 100}. Training is carried out with Adam (Kingma &
Ba, 2014), with possible learning rates in {.1, .001} and weight decay (l2 regularization parameter)
in {.1, .001}. For those datasets that use the F1 score as the evaluation metric, we also tune the
classification threshold in {.2, .4, .5, .6, .8} (otherwise, they return the most probable class as a
prediction). In total, H is composed of 8 trained models when evaluating accuracy and 40 models
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when evaluating the F1 score. We also consider directly using the label model (Snorkel (Ratner et al.,
2018)) to select models. For example, when the metric considered is accuracy, i.e., we use

h∗
label model = argmaxhk∈H

1
n

∑n
i=1 EP̂Y |Z

1[hk(X) = Y | Z = Zi],

which is a natural choice when X ⊥⊥ Y | Z. As benchmarks, we consider having a few labeled
samples.

In Table 3, we report the average test scores of the chosen models over 5 repetitions for different
random seeds (standard deviation report as subscript). The main message here is that, for those
datasets in which our uncertainty about the score (given by the different upper and lower bounds)
is small, e.g., “‘commercial” and “tennis”, using our approaches leads to much better results when
compared to using small sample sizes.

Table 3: Performance of selected models

Lower bound Upper bound Bounds avg Label model Labeled (n = 10) Labeled (n = 25) Labeled (n = 50) Labeled (n = 100)

agnews 0.80±0.00 0.80±0.00 0.80±0.00 0.80±0.00 0.80±0.00 0.80±0.00 0.80±0.00 0.80±0.00

trec 0.49±0.01 0.50±0.01 0.50±0.01 0.50±0.02 0.45±0.09 0.50±0.01 0.50±0.01 0.49±0.02

semeval 0.55±0.01 0.53±0.00 0.55±0.01 0.55±0.01 0.50±0.05 0.52±0.04 0.54±0.01 0.54±0.01

chemprot 0.48±0.00 0.50±0.01 0.48±0.00 0.48±0.00 0.47±0.01 0.48±0.02 0.49±0.01 0.49±0.01

youtube 0.88±0.04 0.82±0.02 0.89±0.01 0.89±0.01 0.87±0.04 0.88±0.03 0.89±0.01 0.89±0.01

imdb 0.50±0.00 0.69±0.00 0.74±0.01 0.75±0.00 0.59±0.11 0.65±0.12 0.70±0.10 0.75±0.00

yelp 0.80±0.00 0.81±0.00 0.80±0.00 0.80±0.00 0.77±0.01 0.79±0.02 0.81±0.00 0.80±0.01

census 0.54±0.00 0.47±0.00 0.52±0.00 0.52±0.00 0.50±0.06 0.54±0.01 0.54±0.00 0.53±0.01

tennis 0.77±0.00 0.77±0.00 0.77±0.00 0.77±0.00 0.59±0.13 0.59±0.13 0.64±0.13 0.70±0.11

sms 0.23±0.01 0.66±0.01 0.66±0.01 0.23±0.01 0.47±0.21 0.55±0.17 0.65±0.05 0.73±0.03

cdr 0.48±0.00 0.35±0.00 0.48±0.00 0.50±0.00 0.49±0.01 0.49±0.01 0.49±0.01 0.49±0.01

basketball 0.49±0.02 0.49±0.02 0.49±0.02 0.44±0.02 0.36±0.15 0.41±0.12 0.46±0.02 0.46±0.02

spouse 0.15±0.00 0.35±0.02 0.35±0.02 0.37±0.02 0.15±0.00 0.15±0.00 0.15±0.00 0.19±0.08

commercial 0.91±0.00 0.78±0.00 0.91±0.00 0.91±0.00 0.85±0.05 0.84±0.04 0.84±0.04 0.85±0.04

Now, we explore a different way of comparing models. Instead of making an explicit model selection,
this experiment uses the proposed metrics, i.e., accuracy lower/upper bounds, bounds average, to rank
MLP classifiers. We rank the models using both the test set accuracy/F1 score (depending on Zhang
et al. (2021)) and alternative metrics, i.e., accuracy/F1 score lower/upper bounds, bounds average,
label model, and small labeled sample sizes. Then, we calculate a Pearson correlation between
rankings and display numbers in Table 4. If the numbers are higher, it means that the proposed
selection method is capable of distinguishing good from bad models. Table 4 shows that the bounds
average and label model methods usually return the best results when no labels are used. Moreover,
in some cases using a small labeled sample for model selection can relatively hurt performance (when
the validation set is small, there is a chance all models will have the same or similar performances,
leading to smaller or null rank correlations).
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Table 4: Ranking correlation when ranking using test set and alternative metric

Lower bound Upper bound Bounds avg Label model Labeled (n = 10) Labeled (n = 25) Labeled (n = 50) Labeled (n = 100)

agnews 0.90±0.01 0.98±0.01 0.93±0.02 0.90±0.01 0.89±0.06 0.88±0.05 0.87±0.04 0.88±0.07

trec 0.80±0.03 0.96±0.03 0.96±0.05 0.88±0.10 0.73±0.37 0.87±0.07 0.87±0.09 0.82±0.07

semeval 0.99±0.01 0.81±0.04 0.99±0.01 0.99±0.01 0.91±0.06 0.95±0.07 0.97±0.02 0.95±0.03

chemprot 0.76±0.01 0.97±0.02 0.77±0.02 0.76±0.01 0.90±0.06 0.88±0.07 0.91±0.09 0.96±0.05

youtube 0.95±0.03 0.86±0.08 0.95±0.03 0.96±0.02 0.83±0.09 0.95±0.04 0.93±0.03 0.92±0.03

imdb −0.76±0.00 0.76±0.00 0.93±0.05 0.94±0.03 −0.09±0.76 0.32±0.75 0.68±0.60 0.99±0.01

yelp 0.92±0.00 0.96±0.02 0.97±0.00 0.97±0.00 0.82±0.10 0.95±0.05 0.99±0.01 0.98±0.02

census 0.98±0.00 0.91±0.00 0.95±0.00 0.94±0.00 0.57±0.29 0.75±0.02 0.75±0.02 0.72±0.02

tennis 0.89±0.01 0.90±0.01 0.89±0.00 0.87±0.01 0.09±0.08 0.06±0.15 0.12±0.16 0.14±0.23

sms 0.10±0.06 0.99±0.00 0.95±0.01 0.89±0.02 0.47±0.38 0.58±0.30 0.79±0.02 0.80±0.03

cdr 0.85±0.00 0.95±0.00 0.97±0.00 1.00±0.00 0.17±0.21 0.26±0.22 0.34±0.18 0.36±0.18

basketball 0.94±0.00 0.30±0.01 0.70±0.00 0.85±0.01 0.45±0.37 0.60±0.30 0.75±0.00 0.75±0.00

spouse 0.82±0.00 0.88±0.00 0.89±0.00 0.96±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.04±0.07

commercial 0.94±0.00 0.98±0.00 0.99±0.00 1.00±0.00 0.63±0.17 0.71±0.02 0.71±0.02 0.70±0.02

B A PROOF FOR THE DUALITY RESULT

Proof of Theorem 2.1. We start proving the result for L. See that

L = inf
π∈Π

Eπ[g(X,Y, Z)]

= inf
{πz∈Πz}z∈Z

∑
z∈Z

P(Z = z) · Eπz
[g(X,Y, Z) | Z = z]

=
∑
z∈Z

P(Z = z) · inf
πz∈Πz

Eπz
[g(X,Y, Z) | Z = z]

with Πz , is defined as

Πz ≜ {πz ∈ ∆(X × Y) : πz ◦ ρ−1
X = PX|Z=z and πz ◦ ρ−1

Y = PY |Z=z}

That is, for each z ∈ Z , Πz represents the set of couplings such that marginals are given by PX|Z=z

and PY |Z=z . We can represent the problem in this way since the marginal distribution of Z is fixed
and, given that distribution, {Πz} specifies the same set of distributions as Π.

Realize that we have broken down our initial maximization problem in |Z| smaller minimization
problems. Each of those minimization problems can be treated as an optimal transportation problem.
Consequently, by Beiglböck & Schachermayer (2011, Theorem 1), for each z ∈ Z , we get the
following duality result

infπz∈Πz Eπz [g(X,Y, Z) | Z = z] = sup(βz,αz)∈Ψz
E[βz(X) + αz(Y ) | Z = z]

with

Ψz ≜

{
(βz, αz) :

βz : X → [−∞,∞), αz : Y → [−∞,∞)
E[|βz(X)| | Z = z] <∞,E[|αz(Y )| | Z = z] <∞
βz(x) + αz(y) ≤ g(x, y, z) for all (x, y) ∈ X × Y

}

Moreover, partially optimizing on βz(x), we can set β∗
z (x) = miny∈Y [g(x, y, z)− αz(y)] and then

infπz∈Πz Eπz [g(X,Y, Z) | Z = z] =

= supαz
E [miny∈Y [g(X, y, Z) + αz(y)]− αz(Y ) | Z = z]

where αz is a simple function taking values in the real line.

17



Under review as a conference paper at ICLR 2024

Consequently,

L =
∑
z∈Z

P(Z = z) · sup
αz

E
[
min
y∈Y

[g(X, y, Z) + αz(y)]− αz(Y ) | Z = z

]
= sup

{αz}z∈Z

∑
z∈Z

P(Z = z) · E
[
min
y∈Y

[g(X, y, Z) + αz(y)]− αz(Y ) | Z = z

]
= sup

{αz}z∈Z

E
[
min
y∈Y

[g(X, y, Z) + αZ(y)]− αZ(Y )

]
Because each αz is a function assuming at most |Y| values and we have |Z| functions (one for each
value of z), we can equivalently solve an optimization problem on R|Y|×|Z|. Adjusting the notation,

L = sup
a∈R|Y|×|Z|

E
[
min
ȳ∈Y

[g(X, ȳ, Z) + aȳZ ]
]
− E [aY Z ]

From Beiglböck & Schachermayer (2011, Theorem 2), we know that the maximum is attained by
some a∗ ∈ R|Y|×|Z|. To show that there is a maximizer in A, we need to update the solution

a∗·z ← a∗·z −
∑

y∈Y a∗yz (shift sub-vector by a constant) (B.1)

for every z ∈ Z . The objective function is not affected by such translations.

To prove the result for U , first realize that because g is bounded, with no loss of generality, we can
assume its range is a subset of [0, 1]. Define c(x, y, z) = 1− g(x, y, z) and see that

U = sup
π∈Π

Eπ[1− c(X,Y, Z)] = 1− inf
π∈Π

Eπ[c(X,Y, Z)]

Proceeding as before, we can obtain the final result by finding the dual formulation for
infπ∈Π Eπ[c(X,Y, Z)].
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C PROOFS FOR THE ESTIMATION RESULTS

We will analyze the estimator for U (results for the estimator of L can be obtained analogously).

Proof of Theorem 2.4. By Lemmas C.1 and C.2, we can guarantee that E[f̃u,ε(X,Z, a)] is minimized
by a unique a∗u,ε (equalling it to Uε) and that∇2

aE[f̃u,ε(X,Z, a∗u,ε)] is positive definite. Also, from the
proof of Lemma C.2, we can see that f̃u,ε is convex in a (because its Hessian is positive semidefinite).
It is also true that the second moment of f̃u,ε(X,Z, a) is well defined (exists and finite) for each a
since g is bounded. Define

Ũε ≜ inf
a∈R|Y|×|Z|

1
n

∑n
i=1 f̃u,ε(Xi, Zi, a)

and let ãε denote a value that attains that minimum, which is tight according to Lemma C.6. From
Niemiro (1992, Theorem 4) and the conditions discussed above, we know that

√
n(ãε − a∗u,ε) =

OP (1). Then

√
n(Ũε − Uε)

=
1√
n

(∑
i

f̃u,ε(Xi, Zi, ãε)−
∑
i

f̃u,ε(Xi, Zi, a
∗
u,ε)

)
+
√
n

(
1

n

∑
i

f̃u,ε(Xi, Zi, a
∗
u,ε)− Uε

)

=
1√
n

(
[
√
n(ãε − a∗u,ε)]

⊤[
1

n

∑
i

∇2
af̃u,ε(Xi, Zi, ā)][

√
n(ãε − a∗u,ε)]

)
+

+
√
n

(
1

n

∑
i

f̃u,ε(Xi, Zi, a
∗
u,ε)− Uε

)
+ oP (1)

(C.1)
where the first term is obtained by a second-order Taylor expansion of the summing functions around
ãε (ā is some random vector). Also, from the standard central limit theorem, we know that

√
n
(

1
n

∑
i f̃u,ε(Xi, Zi, a

∗
u,ε)− Uε

)
⇒ N(0,Varf̃u,ε(X,Z, a∗u,ε))

Given that
√
n(ãε − a∗u,ε) = OP (1) and that the Hessian has bounded entries (then OP (1) as well),

the first term in C.1 is oP (1). Because a∗u,ε ∈ A, we have that fu,ε(X,Z, a∗u,ε) = f̃u,ε(X,Z, a∗u,ε)
and then

√
n(Ũε − Uε)⇒ N(0,Varfu,ε(X,Z, a∗u,ε))

by Slutsky’s theorem. Since

√
n(Ûε − U) =

√
n(Ûε − Ũε) +

√
n(Ũε − Uε),

if we can show that

√
n(Ũε − Ûε) = oP (1)

we are done.
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Let â be solution for the problem in 2.5 and see that

|Ũε − Ûε| =

=
∣∣∣ 1n ∑n

i=1 f̃u,ε(Xi, Zi, ãε)− 1
n

∑n
i=1 ε log

[
1
|Y|
∑

y∈Y exp
(

g(Xi,y,Zi)+âyZi

ε

)]
+ EP̂Y |Z

[âY Z | Z = Zi]
∣∣∣

≤
∣∣∣ 1n ∑n

i=1 f̃u,ε(Xi, Zi, ãε)− 1
n

∑n
i=1 f̃u,ε(Xi, Zi, â)

∣∣∣+
+
∣∣∣ 1n ∑n

i=1 f̃u,ε(Xi, Zi, â)− 1
n

∑n
i=1 ε log

[
1
|Y|
∑

y∈Y exp
(

g(Xi,y,Zi)+âyZi

ε

)]
+ EP̂Y |Z

[âY Z | Z = Zi]
∣∣∣

= ( 1n
∑n

i=1 f̃u,ε(Xi, Zi, â)− 1
n

∑n
i=1 f̃u,ε(Xi, Zi, ãε))+

+
∣∣∣ 1n ∑n

i=1

∑
y[P(Y = y | Z = Zi)− P̂(Y = y | Z = Zi)]âyZi

∣∣∣
≤
(

1
n

∑n
i=1 f̃u,ε(Xi, Zi, â)− 1

n

∑n
i=1 ε log

[
1
|Y|
∑

y∈Y exp
(

g(Xi,y,Zi)+âyZi

ε

)]
+ EP̂Y |Z

[âY Z | Z = Zi]
)

+

(
1
n

∑n
i=1 ε log

[
1
|Y|
∑

y∈Y exp

(
g(Xi,y,Zi)+ãεyZi

ε

)]
− EP̂Y |Z

[ãεY Z
| Z = Zi]− 1

n

∑n
i=1 f̃u,ε(Xi, Zi, ãε)

)
+
∣∣∣ 1n ∑n

i=1

∑
y[P(Y = y | Z = Zi)− P̂(Y = y | Z = Zi)]âyZi

∣∣∣
=
(

1
n

∑n
i=1

∑
y[P̂(Y = y | Z = Zi)− P(Y = y | Z = Zi)]âyZi

)
+
(

1
n

∑n
i=1

∑
y[P(Y = y | Z = Zi)− P̂(Y = y | Z = Zi)]ãεyZi

)
+
∣∣∣ 1n ∑n

i=1

∑
y[P(Y = y | Z = Zi)− P̂(Y = y | Z = Zi)]âyZi

∣∣∣
≤ 2 ∥â∥∞

1
n

∑n
i=1

∑
y |P(Y = y | Z = Zi)− P̂(Y = y | Z = Zi)|+

+ ∥ãε∥∞
1
n

∑n
i=1

∑
y |P(Y = y | Z = Zi)− P̂(Y = y | Z = Zi)|

≤ 2 ∥â∥∞
∑

z

∑
y |P(Y = y | Z = z)− P̂(Y = y | Z = z)|+

+ ∥ãε∥∞
∑

z

∑
y |P(Y = y | Z = z)− P̂(Y = y | Z = z)|

≤ 4 ∥â∥∞
∑

z dTV

(
P̂Y |Z=z, PY |Z=z

)
+ 2 ∥ãε∥∞

∑
z dTV

(
P̂Y |Z=z, PY |Z=z

)
= OP (m

−λ)

where the last equality is obtained using Assumption 2.3 and the conclusion of Lemma C.6. Conse-
quently,

√
n(Ũε − Ûε) =

√
nOP (m

−λ) = o(mλ)OP (m
−λ) = oP (1)

Finally, using Slutsky’s theorem,

√
n(Ûε − U) =

√
n(Ûε − Ũε) +

√
n(Ũε − U)⇒ N(0,Varfu,ε(X,Z, a∗u,ε))

Proof of Corollary 3.1. We prove the asymptotic distribution of
√
n
(
p̂u,ε − pu,ε

)
. The result for the

lower bound can be obtained analogously.

First, note that

P̂(h(X) = 1)− P(h(X) = 1) = OP (m
−1/2) (C.2)

by the standard central limit theorem.
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Next, see that

√
n (p̂u,ε − pu,ε) =

=
√
n
(

Ûε

P̂(h(X)=1)
− Uε

P(h(X)=1)

)
= 1

P̂(h(X)=1)

√
n
(
Ûε − P̂(h(X)=1)

P(h(X)=1)Uε

)
= 1

P̂(h(X)=1)

√
n
(
Ûε − Uε

)
+ 1

P̂(h(X)=1)

√
n
(
Uε − P̂(h(X)=1)

P(h(X)=1)Uε

)
= 1

P̂(h(X)=1)

√
n
(
Ûε − Uε

)
+ Uε

√
n
(

1
P̂(h(X)=1)

− 1
P(h(X)=1)

)
= 1

P̂(h(X)=1)

√
n
(
Ûε − Uε

)
+ Uε

√
n
(
P̂(h(X) = 1)− P(h(X) = 1)

)(
−1

P(h(X)=1)2

)
+ oP

(
m−1/2

)
= 1

P̂(h(X)=1)

√
n
(
Ûε − Uε

)
+ oP (1)

⇒ N(0, σ2
p,u,ε)

where the (i) fifth and sixth lines equality is obtained using Taylor’s theorem, (ii) sixth and seventh
lines equality is obtained using observation C.2 and the fact that n = o(m(2λ)∧1), and (iii) seventh to
eighth lines equality is obtained using observation C.2, Theorem 2.4, and Slutsky’s theorem.

We prove the asymptotic distribution of
√
n
(
r̂u,ε − ru,ε

)
. The result for the lower bound can be

obtained analogously. From Lemma C.3, we know that there is an estimator P̂(Y = 1) such that
P̂(Y = 1)− P(Y = 1) = OP (m

−(λ∧1/2)), i.e., it has enough precision. We use that estimator.

Next, see that

√
n (r̂u,ε − ru,ε) =

=
√
n
(

Ûε

P̂(Y=1)
− Uε

P(Y=1)

)
= 1

P̂(Y=1)

√
n
(
Ûε − P̂(Y=1)

P(Y=1)Uε

)
= 1

P̂(Y=1)

√
n
(
Ûε − Uε

)
+ 1

P̂(Y=1)

√
n
(
Uε − P̂(Y=1)

P(Y=1)Uε

)
= 1

P̂(Y=1)

√
n
(
Ûε − Uε

)
+ Uε

√
n
(

1
P̂(Y=1)

− 1
P(Y=1)

)
= 1

P̂(Y=1)

√
n
(
Ûε − Uε

)
+ Uε

√
n
(
P̂(Y = 1)− P(Y = 1)

)(
−1

P(Y=1)2

)
+ oP

(
m−1/2

)
= 1

P̂(Y=1)

√
n
(
Ûε − Uε

)
+ oP (1)

⇒ N(0, σ2
r,u,ε)

Finally, we prove the asymptotic distribution of
√
n
(
F̂u,ε − Fu,ε

)
. The result for the lower bound

can be obtained analogously. From the facts stated above, we know that

P̂(h(X) = 1) + P̂(Y = 1)− [P(h(X) = 1) + P(Y = 1)] =

= [P̂(h(X) = 1)− P(h(X) = 1)] + [P̂(Y = 1)− P(Y = 1)] =

= OP (m
−(λ∧1/2))
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Then,
√
n
(
F̂u,ε − Fu,ε

)
=

=
√
n
(

2Ûε

[P̂(h(X)=1)+P̂(Y=1)]
− 2Uε

[P(h(X)=1)+P(Y=1)]

)
= 2

[P̂(h(X)=1)+P̂(Y=1)]

√
n
(
Ûε − [P̂(h(X)=1)+P̂(Y=1)]

[P(h(X)=1)+P(Y=1)]Uε

)
= 2

[P̂(h(X)=1)+P̂(Y=1)]

√
n
(
Ûε − Uε

)
+ 1

[P̂(h(X)=1)+P̂(Y=1)]

√
n
(
2Uε − [P̂(h(X)=1)+P̂(Y=1)]

[P(h(X)=1)+P(Y=1)]2Uε

)
= 2

[P̂(h(X)=1)+P̂(Y=1)]

√
n
(
Ûε − Uε

)
+ 2Uε

√
n
(

1
[P̂(h(X)=1)+P̂(Y=1)]

− 1
[P(h(X)=1)+P(Y=1)]

)
= 2

[P̂(h(X)=1)+P̂(Y=1)]

√
n
(
Ûε − Uε

)
+

+ 2Uε
√
n
(
[P̂(h(X) = 1) + P̂(Y = 1)]− [P(h(X) = 1) + P(Y = 1)]

)(
−1

[P(h(X)=1)+P(Y=1)]2

)
+ oP

(
m−1/2

)
= 2

[P̂(h(X)=1)+P̂(Y=1)]

√
n
(
Ûε − Uε

)
+ oP (1)

⇒ N(0, σ2
F,u,ε)

where all the steps are justified as before.

C.0.1 AUXILIARY LEMMAS

Lemma C.1. Define

f̃u,ε(x, z, a) ≜ fu,ε(x, z, a) +
∑

z′∈Z

(∑
y∈Y ayz′

)2
Then

inf
a∈R|Y|×|Z|

E[f̃u,ε(X,Z, a)] = inf
a∈A

E[fu,ε(X,Z, a)]

Proof. First, see that
E[f̃u,ε(X,Z, a)] ≥ E[fu,ε(X,Z, a)]

From Lemma C.5, we know that there exists some a∗u,ε ∈ R|Y|×|Z| such that

inf
a∈A

E[fu,ε(X,Z, a)] = E[fu,ε(X,Z, a∗u,ε)]

For that specific a∗u,ε, we have that

E[f̃u,ε(X,Z, a∗u,ε)] = E[fu,ε(X,Z, a∗u,ε)]

Consequently,

inf
a∈R|Y|×|Z|

E[f̃u,ε(X,Z, a)] = E[f̃u,ε(X,Z, a∗u,ε)] = E[fu,ε(X,Z, a∗u,ε)] = inf
a∈A

E[fu,ε(X,Z, a)]

Lemma C.2. The function of a given by E[f̃u,ε(X,Z, a)] has positive definite Hessian, i.e.,

Hε(a) = ∇2
aE[f̃u,ε(X,Z, a)] ≻ 0

and, consequently, it is strictly convex.

Proof. See that

Hε(a) = ∇2
aE[fu,ε(X,Z, a)] +∇2

a

[∑
z′∈Z

(∑
y∈Y ayz′

)2]
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We start computing the first term in the sum.

First, for an arbitrary pair (k, l) ∈ Y × Z , define

skl(x) ≜
exp

(
g(x,k,l)+akl

ε

)
∑

y exp
(

g(x,y,l)+ayl
ε

)
Now, see that

∂
∂akl

fu,ε(x, z, a) = 1{l}(z)

[
skl(x)− P(Y = k | Z = l)

]

and

∂2

∂apl∂akl
fu,ε(x, z, a) =

1
ε1{l}(z)

[
1{k}(p)skl(x)− skl(x)spl(x)

]

See that ∂2

∂apb∂akl
fu,ε(x, z, a) = 0 if b ̸= l. Consequently, the Hessian ∇2

a fu,ε(x, z, a) is block
diagonal.

Consequently, because the second derivatives are bounded, we can push them inside the expectations
and get

∂2

∂apl∂akl
E [fu,ε(X,Z, a)] =

= E
[

∂2

∂apl∂akl
fu,ε(X,Z, a)

]
= 1

εE
[
1{l}(Z)

[
1{k}(p)skl(X)− skl(X)spl(X)

]]
= 1

ε1{k}(p) · E [P(Z = l | X)skl(X)]− 1
εE [P(Z = l | X)skl(X)spl(X)]

Because ∇2
a fu,ε(x, z, a) is block diagonal, we know that the Hessian

∇2
a E [fu,ε(X,Z, a)]

is block diagonal (one block for each segment a·z of the vector a). Now, realize that

∇2
a

[∑
z′∈Z

(∑
y∈Y ayz′

)2]
is also block diagonal, with each block being matrices of ones. In this case, we also have one block
for each segment a·z of the vector a. Consequently, Hε(a) is block diagonal, and it is positive definite
if and only if all of its blocks are positive definite. Let us analyse an arbitrary block of Hε(a), e.g.,
∇2

a·l
E
[
f̃u,ε(X,Z, a)

]
. Let s·l(x) be the vector composed of skl(x) for all k. If 1 ∈ R|Y| denotes a

vector of ones, then,

∇2
a·l

E
[
f̃u,ε(X,Z, a)

]
=

= 1
εdiag

(
E [P(Z = l | X)s·l(X)]

)
− 1

εE
[
P(Z = l | X)s·l(X)s·l(X)⊤

]
+ 11⊤

= E

{
1
εP(Z = l | X)

[
diag

(
s·l(X)

)
− s·l(X)s·l(X)⊤ + ε

P(Z=l)11
⊤
]}

= E

{
1
εP(Z = l | X)

[
diag

(
s·l(X)

)
− s·l(X)s·l(X)⊤ + 1̃1̃⊤

]}
where 1̃ =

√
ε

P(Z=l)1. See that diag
(
s·l(x)

)
has rank |Y| (full rank) while s·l(x)s·l(x)⊤ is rank one

for every x ∈ RdX . Consequently, the rank of the difference

D(x) = diag
(
s·l(x)

)
− s·l(x)s·l(x)

⊤
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is greater or equal |Y| − 1. It is the case that rank(D(x)) = |Y| − 1 because 1̃ is in the null space of
D:

D(x)1̃ =
[
diag

(
s·l(x)

)
− s·l(x)s·l(x)

⊤
]
1̃ =

√
ε

P(Z=l) (s·l(x)− s·l(x)) = 0

Moreover, the range of D(x) and 1̃1̃⊤ are orthogonal. For any two vectors v,u ∈ R|Y|, we have that

(D(x)v)⊤(1̃1̃⊤u) = v⊤D(x)⊤1̃1̃⊤u = v⊤D(x)1̃1̃⊤u = v⊤01̃⊤u = 0

That implies D(x) + 1̃1̃⊤ is full rank. To see that, let v ∈ R|Y| be arbitrary and see

(D(x) + 1̃1̃⊤)v = 0⇒ D(x)v = 1̃1̃⊤v = 0

Because D(x)v = 0, it means that v = θ1̃ for some constant θ. If θ ̸= 0, then 1̃1̃⊤v = θ|Y|1̃ ̸= 0.
Therefore, θ = 0 and v = 0.

Now, let u ∈ R|Y| be arbitrary non-null vector and see

u⊤D(x)u = u⊤diag
(
s·l(x)

)
u− u⊤s·l(x)s·l(x)

⊤u

=
∑

y u
2
ysyl(x)−

(∑
y uysyl(x)

)2
=
(∑

y syl(x)
)(∑

y u
2
ysyl(x)

)
−
(∑

y uysyl(x)
)2

=
(∑

y

√
syl(x)

√
syl(x)

)(∑
y

√
u2
ysyl(x)

√
u2
ysyl(x)

)
−
(∑

y uysyl(x)
)2

≥
(∑

y uysyl(x)
)2
−
(∑

y uysyl(x)
)2

= 0

by the Cauchy–Schwarz inequality. Then, D(x) is positive semidefinite, and because 1̃1̃⊤ is also
positive semidefinite, their sum needs to be positive definite for all x (that matrix is full rank). Each
block of Hε(a) is positive definite; consequently, Hε(a) is positive definite.

Lemma C.3. Assume Assumption 2.3 holds. Let

P̂(Y = 1) = 1
m

∑m
i=1 EP̂Y |Z

[Y | Z = Zi]

Then

P̂(Y = 1)− P(Y = 1) = OP (m
−(λ∧1/2))

Proof. To derive this result, see that

|P̂(Y = 1)− P(Y = 1)| =

=
∣∣∣ 1m ∑m

i=1 EPY |Z [Y | Z = Zi]− P(Y = 1) + 1
m

∑m
i=1 EP̂Y |Z

[Y | Z = Zi]− EPY |Z [Y | Z = Zi]
∣∣∣

≤
∣∣ 1
m

∑m
i=1 EPY |Z [Y | Z = Zi]− P(Y = 1)

∣∣+ 1
m

∑m
i=1

∣∣∣EP̂Y |Z
[Y | Z = Zi]− EPY |Z [Y | Z = Zi]

∣∣∣
= OP (m

−1/2) + 1
m

∑m
i=1

∣∣∣PP̂Y |Z
[Y = 1 | Z = Zi]− PPY |Z [Y = 1 | Z = Zi]

∣∣∣
≤ OP (m

−1/2) +
∑

z∈Z

∣∣∣PP̂Y |Z
[Y = 1 | Z = z]− PPY |Z [Y = 1 | Z = z]

∣∣∣
≤ OP (m

−1/2) +
∑

y∈{0,1}
∑

z∈Z

∣∣∣PP̂Y |Z
[Y = y | Z = z]− PPY |Z [Y = y | Z = z]

∣∣∣
= OP (m

−1/2) + 2
∑

z∈Z dTV

(
P̂Y |Z=z, PY |Z=z

)
= OP (m

−1/2) +OP (m
−λ)

= OP (m
−(λ∧1/2))

where the standard central limit theorem obtains the third step, the sixth step is obtained by the
formula of the total variation distance for discrete measures, and the seventh step is obtained by
Assumption 2.3.
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Lemma C.4. For some κ > 0 and any y ∈ Y assume that κ ≤ py ≤ 1− κ. Define A = {ay ∈ R :∑
y ay = 0}. Then the optima of the following problems

infa∈A fu(a), fu(a) ≜ E
[
ϵ log

{
1
|Y|
∑

y exp
( g(X,y)+ay

ϵ

)}]
−
∑

y pyay ,

supa∈A fl(a), fl(a) ≜ E
[
− ϵ log

{
1
|Y|
∑

y exp
( g(X,y)+ay

−ϵ

)}]
−
∑

y pyay

(C.3)

are attained in a compact set K(κ, L) ⊂ A where ∥g∥∞ ≤ L.

Proof of lemma C.4. We shall only prove this for the minimization problem. The conclusion for the
maximization problem follows in a similar way.

Strict convexity: The second derivation of fu is

∇ay,ay′ fu(a) =
1
ϵE
[
p(X, y, a){δy,y′ − p(X, y′, a)}

]
(C.4)

where p(x, y, a) ≜
exp
(

g(X,y)+ay
ϵ

)
∑

i∈Y exp
(

g(X,i)+ai
ϵ

) . For any u ∈ RY we have

u⊤∇2fu(a)u =
∑

i,j∈Y uiuj∇ai,aj
fu(a)

= 1
ϵ

∑
i,j∈Y uiujE

[
p(X, i, a){δi,j − p(X, j, a)}

]
= 1

ϵE
[∑

i u
2
i p(X, i, a)−

{∑
i uip(X, i, a)

}2]
= 1

ϵE[σ
2(X,u, a)] ≥ 0

(C.5)

where σ2(x, u, a) is the variance of a categorical random variable taking the value ui with probability
p(x, i, a). This leads to the conclusion that the function is convex.

To establish strict convexity, we fix a ∈ A and notice that 0 < p(x, y, a) < 1 (because ∥g∥∞ ≤ L).
Therefore, the σ2(x, u, a) can be zero only when the ui’s are all equal. Since A = {a ∈ RY :∑

y ay = 0}, such u belongs to the space A in the unique case ui = 0. This leads to the conclusion
that for any u ∈ A and u ̸= 0

u⊤∇2fu(a)u = 1
ϵE[σ

2(X,u, a)] > 0 .

Therefore, fu is strictly convex and has a unique minimizer in A. In the remaining part of the proof,
we focus on the first-order condition.

First order condition: The first-order condition is

h(a, y) = py for all y ∈ Y, where h(a, y) ≜ E[p(X, y, a)] (C.6)

To show that equation C.6 has a solution in a compact ball K(ϵ, κ, L) ≜ {a ∈ A : ∥a∥2 ≤
M(ϵ, κ, L)} we construct an M(ϵ, κ, L) > 0 such that miny h(a, y) < κ whenever ∥a∥2 >
M(ϵ, κ, L). Since κ ≤ py ≤ 1 − κ for all y ∈ Y this concludes that the solution to equation C.6
must be inside the K(ϵ, κ, L).

Construction of the compact set: Let us define ymin ≜ argminyay and ymax ≜ argmaxyay . To
construct M(κ, L, ϵ) (we shall write it simply as M whenever it is convenient to do so) we notice that

h(a, ymin) = E[p(X, ymin, a)]

= E
[

exp
(

g(X,1)+aymin
ϵ

)
∑

i∈Y exp
(

g(X,i)+ai
ϵ

)]
≤ exp

(
L+aymin

ϵ

)
exp
(

L+aymin
ϵ

)
+
∑

i≥2 exp
(

−L+ai
ϵ

)
=

exp
(

2L
ϵ

)
exp
(

2L
ϵ

)
+
∑

i≥2 exp
(

ai−aymin
ϵ

)
≤ exp

(
2L
ϵ

)
exp
(

2L
ϵ

)
+exp

(
aymax−aymin

ϵ

) ≤ exp
(

2L
ϵ

)
exp
(

2L
ϵ

)
+exp

(
R
ϵ

) ,

(C.7)
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where
R ≜ min{maxy ay −miny ay :

∑
i ai = 0,

∑
i a

2
i > M2} .

We rewrite the constraints of the optimization as:

R ≜ min
{
maxy ay −miny ay : mean{ai} = 0, var{ai} > M2

|Y|
}
.

where we use the Popoviciu’s inequality on variance to obtain

M2

|Y| < var{ai} ≤ (maxy ay−miny ay)
2

4 , or maxy ay −miny ay > 2M√
|Y|

,

Thus R ≥ 2M√
|Y|

whenever ∥a∥2 > M . We use this inequality in equation C.7 and obtain

h(a, ymin) ≤
exp
(

2L
ϵ

)
exp
(

2L
ϵ

)
+exp

(
R
ϵ

) ≤ exp
(

2L
ϵ

)
exp
(

2L
ϵ

)
+exp

(
2M

ϵ
√

|Y|

) .
Finally, we choose M = M(ϵ, κ, L) > 0 large enough such that

h(a, ymin) ≤
exp
(

2L
ϵ

)
exp
(

2L
ϵ

)
+exp

(
2M

ϵ
√

|Y|

) < κ .

For such an M we concludes that h(a, ymin) < κ whenever ∥a∥2 > M .

Lemma C.5. Lε and Uε are attained by some optimizers in a compact set K(ϵ, κz, z ∈ Z;L) ⊃ A
(equation 2.3), where κz = min{py|z, 1− py|z : y ∈ Y}.

Proof of lemma C.5. We shall only prove the case of the minimization problem. The proof for the
maximization problem uses a similar argument.

A decomposition of the minimization problem according to the values of Z follows.

mina∈A E
[
ϵ log

{
1
|Y|
∑

y∈Y exp
( g(X,y,Z)+aY,Z

ϵ

)}
− E [aY,Z | Z]

]
=
∑

z pz

 min
a·,z∈RY∑
y ay,z=0

E
[
ϵ log

{
1
|Y|
∑

y∈Y exp
( g(X,y,z)+aY,z

ϵ

)}
| Z = z

]
− E[aY,z | Z = z]


=
∑

z pz

 min
a·,z∈RY∑
y ay,z=0

E
[
ϵ log

{
1
|Y|
∑

y∈Y exp
( g(X,y,z)+aY,z

ϵ

)}
| Z = z

]
−
∑

y ay,zpy|z


(C.8)

where pz = P (Z = z) and py|z = P (Y = y | Z = z). We fix a z and consider the corresponding
optimization problem in the decomposition. Then according to lemma C.4 the optimal point is in
a compact set K(ϵ, κz, L). Thus the optimal point of the full problem is in the Cartesian product∏

z K(ϵ, κz, L) ⊂ A, which a compact set. Thus we let K(ϵ, κz, z ∈ Z;L) =
∏

z K(ϵ, κz, L).

Lemma C.6. The optimizers for the problems in equation 2.5 are tight with respect to m,n→∞.

Proof of the lemma C.6. Let py|z = P (Y = y | Z = z) and p̂
(m)
y|z = P̂

(m)
Y |Z=z(y). Since

1
2

∑
y

∣∣p̂(m)
y|z − py|z

∣∣ = dTV

(
P̂

(m)
Y |Z=z, PY |Z=z

)
= OP (m

−λ)

according to the assumption 2.3, for sufficiently large m with high probability p(m) (p(m)→ 1 as
m→∞) κz

2 ≤ p̂
(m)
y|z ≤ 1− κz

2 for all y. Fix such an m and p̂
(m)
y|z . In lemma C.5 we replace PX,Z
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with
∑n

i=1 δXi,Zi
and py|z with p̂

(m)
y|z to reach the conclusion that the optimizer is in the compact set

K(ϵ, κz/2, z ∈ Z;L). Thus, for sufficiently large m and any n

P
(
optimizer is in K(ϵ, κz/2, z ∈ Z;L)

)
≥ p(m) .

This establishes that the optimizers are tight.
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D MORE ON EXPERIMENTS

D.1 EXTRA RESULTS FOR THE WRENCH EXPERIMENT

Extra results for binary classification datasets can be found in Figures 4, 5, 6. In Figure 5, we truncate
the number of weak labels to be at most 10 in all datasets (in order to use the “Oracle” approach). In
Figure 6, we do not use the “Oracle” approach, then using all weak labels. However, We can see that
when the number of weak labels is large, estimating the label model is harder, potentially leading to
invalid bounds, e.g., see “census” dataset.

In Tables 5 and 6, we can see the results for multinomial classification datasets. In Figure 5, we
truncate the number of weak labels to be at most 10 in all datasets (in order to use the “Oracle”
approach) while in the second table, we do not. In general, we can see that Snorkel is a better label
model when compared with FlyingSquid, in the sense that the bounds contain the test score more
frequently.

Figure 4: Bounds on classifier accuracies across classification thresholds for the Wrench datasets. Despite
potential misspecification in Snorkel’s and FlyingSquid’s label model, it performs comparably to using labels to
estimate PY |Z , giving approximate but meaningful bounds. .

Figure 5: Bounds on classifier accuracies and F1 scores across classification thresholds for the Wrench datasets
(truncating the number of weak labels in 10). Despite potential misspecification in Snorkel’s and FlyingSquid’s
label model, it performs comparably to using labels to estimate PY |Z , giving approximate but meaningful
bounds.
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Figure 6: Bounds on classifier accuracies and F1 scores across classification thresholds for the Wrench datasets
(using the full set of weak labels). Despite potential misspecification in Snorkel’s and FlyingSquid’s label model,
it performs comparably to using labels to estimate PY |Z , giving approximate but meaningful bounds.

Table 5: Bounding the accuracy of classifiers in multinomial classification (truncating the number of weak labels
in 10)

Dataset Label model Lower bound Upper bound Test accuracy

ag
ne

w
s Oracle 0.49±0.01 0.95±0.01 0.82±0.01

Snorkel 0.45±0.01 0.9±0.01 0.8±0.01

FlyingSquid 0.14±0.0 0.61±0.01 0.79±0.01

tr
ec

Oracle 0.04±0.02 0.85±0.03 0.38±0.04

Snorkel 0.01±0.01 0.67±0.03 0.3±0.04

FlyingSquid 0.16±0.0 0.18±0.0 0.28±0.04

se
m

ev
al Oracle 0.24±0.02 0.38±0.02 0.36±0.04

Snorkel 0.3±0.0 0.31±0.0 0.32±0.04

FlyingSquid 0.12±0.0 0.14±0.0 0.32±0.04

ch
em

pr
ot Oracle 0.22±0.02 0.59±0.02 0.41±0.02

Snorkel 0.14±0.02 0.67±0.01 0.39±0.02

FlyingSquid 0.01±0.0 0.29±0.01 0.41±0.02

D.2 EXTRA PLOTS FOR THE HATE SPEECH DETECTION EXPERIMENT

In Table 7, we can see the same results already in the main text plus the results for FlyingSquid.

Figure 7: Precision and recall bounds for hate speech detection. These plots guide practitioners to trade off recall
and precision in the absence of high-quality labels.
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Table 6: Bounding the accuracy of classifiers in multinomial classification (using all weak labels)

Dataset Label model Lower bound Upper bound Test accuracy

agnews Snorkel 0.45±0.01 0.9±0.01 0.79±0.01

FlyingSquid 0.14±0.0 0.61±0.01 0.79±0.01

trec Snorkel 0.33±0.04 0.67±0.03 0.49±0.04

FlyingSquid 0.04±0.02 0.31±0.02 0.24±0.04

semeval Snorkel 0.34±0.03 0.69±0.03 0.53±0.04

FlyingSquid 0.12±0.0 0.14±0.0 0.32±0.04

chemprot Snorkel 0.36±0.02 0.73±0.02 0.48±0.02

FlyingSquid 0.04±0.0 0.22±0.01 0.45±0.02

D.3 EXAMPLES OF PROMPTS USED IN SECTION 4.2

Prompt 1
1You should classify the target sentence as "spam" or "ham". If

definitions or examples are introduced, you should consider them when
classifying sentences. Respond with "spam" or "ham".

2

3Target sentence: if your like drones, plz subscribe to Kamal Tayara. He
takes videos with his drone that are absolutely beautiful. --
Response:

Prompt 2
1You should classify the target sentence as "spam" or "ham". If

definitions or examples are introduced, you should consider them when
classifying sentences. Respond with "spam" or "ham".

2

3Definition of spam: spam is a term referencing a broad category of
postings which abuse web-based forms to post unsolicited
advertisements as comments on forums, blogs, wikis and online
guestbook.

4

5Definition of ham: texts that are not spam.
6

7Target sentence: if your like drones, plz subscribe to Kamal Tayara. He
takes videos with his drone that are absolutely beautiful. --
Response:

Prompt 3
1You should classify the target sentence as "spam" or "ham". If

definitions or examples are introduced, you should consider them when
classifying sentences. Respond with "spam" or "ham".

2

3Example 0: 860,000,000 lets make it first female to reach one billion!!
Share it and replay it! -- Response: ham

4

5Example 1: Waka waka eh eh -- Response: ham
6

7Example 2: You guys should check out this EXTRAORDINARY website called
ZONEPA.COM . You can make money online and start working from home
today as I am! I am making over \$3,000+ per month at ZONEPA.COM !
Visit Zonepa.com and check it out! How does the mother approve the
axiomatic insurance? The fear appoints the roll. When does the space
prepare the historical shame? -- Response: spam

8

9Example 3: Check out these Irish guys cover of Avicii\&\#39;s Wake Me
Up! Just search... \&quot;wake me up Fiddle Me Silly\&quot; Worth a
listen for the gorgeous fiddle player! -- Response: spam
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10

11Example 4: if you want to win money at hopme click here <a href="https://
www.paidverts.com/ref/sihaam01">https://www.paidverts.com/ref/
sihaam01</a> it\&\#39;s work 100/100 -- Response: spam

12

13Target sentence: if your like drones, plz subscribe to Kamal Tayara. He
takes videos with his drone that are absolutely beautiful. --
Response:
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