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Abstract
Diffusion models excel at producing high-quality
samples but naively require hundreds of iterations,
prompting multiple attempts to distill the genera-
tion process into a faster network. However, many
existing approaches suffer from a variety of chal-
lenges: the process for distillation training can be
complex, often requiring multiple training stages,
and the resulting models perform poorly when uti-
lized in single-step generative applications. In this
paper, we introduce a simple yet effective means
of distilling diffusion models directly from initial
noise to the resulting image. Of particular impor-
tance to our approach is to leverage a new Deep
Equilibrium (DEQ) model as the distilled archi-
tecture: the Generative Equilibrium Transformer
(GET). Our method enables fully offline train-
ing with just noise/image pairs from the diffusion
model while achieving superior performance com-
pared to existing one-step methods on comparable
training budgets. We demonstrate that the DEQ
architecture is crucial to this capability, as GET
matches a 5× larger ViT in terms of FID scores
while striking a critical balance of computational
cost and image quality. Code, checkpoints, and
datasets will be released.

1. Introduction
Diffusion models (Sohl-Dickstein et al., 2015; Song and
Ermon, 2019; Ho et al., 2020; Song et al., 2021b) have
emerged as a powerful class of generative models due to
their remarkable performance on a wide range of generative
tasks (Rombach et al., 2022; Ramesh et al., 2022; Saharia
et al., 2022; Meng et al., 2021; Nichol et al., 2022; Kong
et al., 2020; Ho et al., 2022). These models are trained with
a denoising objective derived from score matching (Hyväri-
nen and Dayan, 2005; Song and Ermon, 2019), variational

*Equal contribution 1Carnegie Mellon University 2Bosch
Center for AI. Correspondence to: Zhengyang Geng
<zgeng2@cs.cmu.edu>.

Workshop on Challenges in Deployable Generative AI at Inter-
national Conference on Machine Learning (ICML), Honolulu,
Hawaii, USA. 2023. Copyright 2023 by the author(s).

inference (Sohl-Dickstein et al., 2015; Ho et al., 2020), or
optimal transport (Liu et al., 2023; Lipman et al., 2023), en-
abling them to generate clean data samples by progressive
denoising the initial Gaussian noise. Despite the promising
results, one major drawback of diffusion models is their
slow generative process, which often necessitates hundreds
to thousands of model evaluations (Ho et al., 2020; Song
et al., 2021b).

In an effort to speed up the sampling of diffusion models, re-
searchers have proposed distillation methods (Salimans and
Ho, 2022; Meng et al., 2022; Zheng et al., 2022; Song et al.,
2023; Berthelot et al., 2023) aimed at distilling the long
sampling chain into a more efficient few-step or single-step
process. However, these methods often require carefully
designed distillation targets, multiple training passes, and
maintenance of dual model copies which increases memory
and compute requirements.

In this work, our objective is to streamline the distillation
of diffusion models while retaining the perceptual quality
of the generated images. To this end, we introduce a simple
and effective technique that distills a multi-step diffusion
process into a single-step generative model, using solely
noise/image pairs. At the heart of our technique is the
Generative Equilibrium Transformer (GET), a novel Deep
Equilibrium (DEQ) model (Bai et al., 2019). GET can be
interpreted as an infinite depth network using weight-tied
transformer layers, which also allows for the adaptive layer
evaluations in the forward pass, striking a balance between
inference speed and sample quality.

Our direct approach for distillation, via noise/image pairs
generated by a diffusion model, can be applied to both
ViT (Dosovitskiy et al., 2021; Peebles and Xie, 2022) and
GET. Yet, in our experiments, we show that GET, in particu-
lar, is capable of achieving substantially better quality than
ViTs using smaller models. Indeed, GET delivers percep-
tual image quality on par with or superior to other complex
distillation techniques, such as progressive distillation (Sal-
imans and Ho, 2022; Meng et al., 2022), in the context of
both class-conditional and unconditional image generation.

To summarize, we make the following key contributions:

• We propose Generative Equilibrium Transformer
(GET), a deep equilibrium vision transformer that is
well-suited for single-step generative models.
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Figure 1. Generative Equilibrium Transformer (GET). (Left) GET consists of two major components: Injection transformer and
Equilibrium transformer. The Injection transformer transforms noise embeddings into an input injection for the Equilibrium transformer.
The Equilibrium transformer is the equilibrium layer that takes in noise input injection and an optional class embedding and solves for the
fixed point. (Right) Details of transformer blocks in the Injection transformer (Inj) and Equilibrium transformer (DEQ), respectively.
Blue dotted boxes denote optional class label inputs.

• We streamline diffusion distillation by training GET
directly on noise/image pairs sampled from diffusion
models, which turns out to be a simple yet effective
strategy for producing one-step generative models in
both class-conditional and unconditional cases.

2. Preliminaries
In this section, we will briefly introduce Deep Equilibrium
(DEQ) Models. We provide a detailed background on diffu-
sion models, distillation, and other fast sampling techniques
for diffusion models in Appendix A.

DEQs (Bai et al., 2019) are neural networks of infinite depth,
which solve for fixed points in the forward pass,

lim
k→∞

fθ(z
k;x) = fθ(z

⋆;x) = z⋆ (1)

where x ∈ Rdx is the input injection, z⋆ ∈ Rdz is the output,
and fθ is the equilibrium layer parametrized by θ.

DEQs can utilize implicit differentiation to differentiate
through the fixed point analytically. The Jacobian of z⋆

with respect to the model weights θ is given by

∂z⋆

∂θ
=

(
I − ∂fθ

∂z⋆

)−1
∂fθ(z

⋆;x)

∂θ
(2)

3. Generative Equilibrium Transformer
We introduce the Generative Equilibrium Transformer
(GET), a Deep Equilibrium vision transformer designed for
learning one-step generative models from diffusion models.

h, c = Emb (e) , Emb (y) ; if y /∈ ∅ (3)
n = InjectionT (h, c) (4)
z⋆ = EquilibriumT (z⋆,n, c) (5)
x̃ = Decoder (z⋆) (6)

GET. Generative Equilibrium Transformer (GET) directly
maps Gaussian noises e and optional class labels y to im-
ages x̃. The major components of GET include the injection
transformer (InjectionT, Eq. (4)) and the equilibrium trans-
former (EquilibriumT, Eq. (5)). The InjectionT transforms
tokenized noise embedding h to an intermediate representa-
tion n that serves as the input injection for the equilibrium
transformer. The EquilibriumT, which is the equilibrium
layer, solves for the fixed point z⋆ by taking in the noise
injection n and an optional class embedding c. Finally, this
fixed point z⋆ is decoded and rearranged to generate an im-
age sample x̃ (Eq. (6)). Figure 1 provides an overview of the
GET architecture. Note that because we are directly distill-
ing the entire generative process, there is no need for a time
embedding t as is common in standard diffusion models.

Noise Embedding. GET first converts an input noise e ∈
RH×W×C into a sequence of 2D patches p ∈ RN×(P 2·C),
where C is the number of channels, P is patch size, H and
W denotes height and width of the original image, and N =
HW/P 2 is the resulting number of patches. Let D denote
the width of the network. We follow ViT to use a linear layer
to project the N patches to D dimensional embedding. We
add standard sinusoidal position encoding (Vaswani et al.,
2017) to produce the noise embedding h.
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InjectionT & EquilibriumT. Both InjectionT and Equi-
libriumT are composed of a sequence of Transformer blocks.
InjectionT is called only once to produce the noise injection
n, while EquilibriumT defines the function fθ of the im-
plicit layer z⋆ = fθ(z

⋆,n, c) that is called multiple times—
creating a weight-tied computational graph—until conver-
gence. A linear layer is added at the end of InjectionT to
compute the noise injection nl ∈ RN×3D, l ∈ [Le], for
each of the Le GET blocks in EquilibriumT.

Transformer Block. GET utilizes a near-identical block
design for the noise injection (InjectionT) and the equilib-
rium layer (EquilibriumT), differing only at the injection
interface. Specifically, the transformer block is built upon
the standard Pre-LN transformer block (Xiong et al., 2020;
Dosovitskiy et al., 2021; Peebles and Xie, 2022):

z = z+Attention (LN (z) ,u)

z = z+ FFN (LN (z))

Here, z ∈ RN×D represents the latent token, u ∈ RN×3D is
the input injection, LN, FFN, and Attention stand for Layer
Normalization (Ba et al., 2016), a 2-layer Feed-Forward
Network with a hidden dimension of size D × E, and an
attention (Vaswani et al., 2017) layer with an injection inter-
face, respectively.

Injection Interface. For blocks in the injection trans-
former, u is equal to the class embedding token c ∈ R1×3D

for conditional image generation, i.e., u = c for conditional
models, and u = 0 otherwise. In contrast, for blocks in the
equilibrium transformer, u is the broadcast sum of noise in-
jection n ∈ RN×3D and class embedding token c ∈ R1×3D,
i.e., u = n+c for conditional models and u = n otherwise.

We modify the standard transformer attention layer to in-
corporate an additive injection interface before the query
q ∈ RN×D, key k ∈ RN×D, and value v ∈ RN×D,

q,k,v = zWi + u

z = MHA(q,k,v)

z = zWo

where Wi ∈ RD×3D, Wo ∈ RD×D. The injection in-
terface enables interactions between the latent tokens and
the input injection in the multi-head dot-product attention
(MHA) operation,

qk⊤ = (zWq + uq)(zWk + uk)
⊤

= zWqW
⊤
k z

⊤ + zWqu
⊤
k + uqW

⊤
k z

⊤ + u⊤
q uk,

where Wq,Wk ∈ RD×D are slices from Wi, and uq,uk ∈
RN×D are slices from u. This scheme adds no more com-
putational cost compared to the standard MHA operation,
yet it achieves a similar effect as cross-attention and offers
good stability during training.
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Figure 2. Data Efficiency and Parameter Efficiency of GET:
GET outperforms PD and a 5× larger ViT in fewer iterations,
yielding better FID scores.
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Figure 3. Sampling speed of GET: GET can sample faster than
large ViTs, while achieving better FID scores. The size of each
individual circle is proportional to the model size. For GETs, we
vary the number of iterations in the Equilibrium transformer.

Image Decoder. The output of the GET-DEQ is first nor-
malized with Layer Normalization (Ba et al., 2016). The
normalized output is then passed through another linear
layer to generate patches p̄ ∈ RN×D. The resulting patches
p̄ are rearranged back to the resolution of the input noise e
to produce the image sample x̃ ∈ RH×W×C .

3.1. Experiment Results

4. Experiments
We evaluate the effectiveness of our proposed Generative
Equilibrium Transformer (GET) in the offline distillation
of diffusion models on single-step class-conditional and un-
conditional image generation. Here, we use “single-step”
to refer to the use of a single model evaluation while gen-
erating samples. We train and evaluate ViTs and GETs of
varying scales on these tasks. GETs exhibit substantial data
and parameter efficiency in offline distillation compared to
the strong ViT baseline. Note that owing to the computa-
tional resources required to fully evaluate models, we report
all our results on CIFAR-10 (Krizhevsky, 2009); extensions
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Figure 4. CIFAR-10 image samples from unconditional GET.

Figure 5. CIFAR-10 image samples from class-conditional GET.
Each row corresponds to a class in CIFAR-10.

to the ImageNet-scale (Deng et al., 2009) are possible, but
would require substantially larger GPU resources.

4.1. Experiment setup

In this section, we describe our offline distillation procedure
and summarize our evaluation metrics. For a detailed de-
scription of our data collection process, network configs,
and training specifics, please refer to the Appendix C.

Offline Distillation. We distill a pretrained EDM (Karras
et al., 2022) into ViTs and GETs by training on a dataset D
with noise/image pairs sampled from the teacher diffusion
model using a reconstruction loss:

L(θ) = Ee,x∼D∥x−Gθ(e)∥1

Table 1. Performance on unconditional CIFAR-10
Method NFE ↓ FID ↓ IS ↑
Diffusion Models

DDPM (Ho et al., 2020) 1000 3.17 9.46
DDIM (Song et al., 2021a) 1000 4.04 -
Score SDE (Song et al., 2021b) 2000 2.2 9.89
DDIM (Song et al., 2021a) 10 13.36 -
LSGM (Vahdat et al., 2021) 147 2.10
FastDPM (Kong and Ping, 2021) 10 9.9
DPM-solver (Lu et al., 2022) 10 4.7 -
DEIS (Zhang and Chen, 2023) 10 4.17 -
EDM (Karras et al., 2022) 35 2.04 9.84

Continuous Flows

2-ReFlow(+Distill) (Liu et al., 2023) 1 12.21 (4.85) 8.08 (9.01)
3-ReFlow(+Distill) (Liu et al., 2023) 1 8.15 (5.21) 8.47 (8.79)
Flow Matching (Diffusion) (Lipman et al., 2023) 183 8.06 -
Flow Matching (OT) (Lipman et al., 2023) 142 6.35 -
PFGM (Xu et al., 2022) 110 2.35 9.68

GANs

StyleGAN2 (Karras et al., 2020b) 1 8.32 9.18
StyleGAN-XL (Sauer et al., 2022) 1 1.85 -

Diffusion Distillation

KD (Luhman and Luhman, 2021) 1 9.36 8.36
PD (Salimans and Ho, 2022) 1 9.12 -
DFNO (Zheng et al., 2022) 1 4.12 -
TRACT-EDM (Berthelot et al., 2023) 1 4.17 -
TRACT (Berthelot et al., 2023) 1 5.02 -
PD-EDM (Salimans and Ho, 2022; Song et al., 2023) 1 8.34 8.69
CD (Song et al., 2023) 1 3.55 9.48

Consistency Models

CT (Song et al., 2023) 1 8.70 8.49
CT (Song et al., 2023) 2 5.83 8.85

Ours

GET-Base 1 6.91 9.16

where x is the desired ground truth image, Gθ(·) is uncon-
ditional ViT/GET with parameters θ, and e is the initial
Gaussian noise. To train a class-conditional GET, we also
use class labels y in addition to noise/image pairs:

L(θ) = Ee,y,x∼D∥x−Gc
θ(e,y)∥1

where Gc
θ(·) is class-conditional ViT/GET with parameters

θ. As is the standard practice, we also maintain an exponen-
tial moving average (EMA) of weights of the model, which
in turn is used at inference time for sampling.

Table 2. Generative performance on class-conditional CIFAR-
10. w indicates the level of classifier guidance.

Method NFE ↓ FID ↓ IS ↑
GANs

BigGAN (Brock et al., 2018) 1 14.73 9.22
StyleGAN2-ADA (Karras et al., 2020a) 1 2.42 10.14

Diffusion Models

DDIM (Meng et al., 2022) 2048 2.73 9.66
EDM (Karras et al., 2022) 35 1.79 -
NCSN++-G (Chao et al., 2022) 2000 2.25 -
EDM-G++ (Kim et al., 2022) 35 1.64 -

Diffusion Distillation

Guided Distillation (w = 0) (Meng et al., 2022) 1 8.34 8.63
Guided Distillation (w = 0.3) (Meng et al., 2022) 1 7.34 8.90
Guided Distillation (w = 1) (Meng et al., 2022) 1 8.62 9.21
Guided Distillation (w = 2) (Meng et al., 2022) 1 13.23 9.23

Ours

GET-Base 1 6.25 9.40
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Table 3. Comparison of relevant training and hyperparameter settings for common distillation techniques. GET requires neither multiple
training phases nor any trajectory information. We only count the number of models involved in the forward pass and exclude EMA in
#Models. † indicates offline distillation techniques. ▲For CD, we count the VGG network used in the perceptual loss (Zhang et al., 2018).

Model FID ↓ IS ↑ BS Training Phases #Models Trajectory Teacher

KD (Luhman and Luhman, 2021)† 9.36 - 4× 1 1 ✗ DDIM
PD (Salimans and Ho, 2022) 9.12 - 1× log2(T ) 2 ✓ DDIM
DFNO (Zheng et al., 2022)† 4.12 - 2× 1 1 ✓ DDIM
TRACT (Berthelot et al., 2023) 14.40 - 2× 1 1 ✓ DDIM
TRACT (Berthelot et al., 2023) 4.17 - 2× 2 1 ✓ EDM
PD-EDM (Salimans and Ho, 2022; Song et al., 2023) 8.34 8.69 4× log2(T ) 2 ✓ EDM
CD▲ (Song et al., 2023) 3.55 9.48 4× 1 3 ✓ EDM
Ours† 7.42 9.16 1× 1 1 ✗ EDM
Ours† 6.91 9.16 2× 1 1 ✗ EDM

Guided Distillation (Meng et al., 2022) 7.34 8.90 4× log2(T ) + 1 3 ✓ DDIM
Ours† 6.25 9.40 2× 1 1 ✗ EDM

Efficiency. Models trained with offline distillation require
high data efficiency to make optimal use of limited training
data sampled from pretrained diffusion models. In Figure 2,
we observe that even with a fixed and limited offline data
budget of 1M samples, GET achieves parity with online
distilled EDM (Karras et al., 2022; Salimans and Ho, 2022;
Song et al., 2023) while using only half the number of
training iterations. For comparison, PD, TRACT, and CM
use a much larger data budget of 96M, 256M, and 409.6M
samples, respectively. Moreover, GET is able to match
the FID score of a 5× large ViT, suggesting substantial
parameter efficiency.

Sampling Speed. Figure 3 illustrates the sampling speed
of both ViT and GET. A smaller GET (37.2M) can achieve
faster sampling than a larger ViT (302.6M) while achieving
lower FID scores.

One-Step Image Generation. We provide results for
unconditional and class-conditional image generation on
CIFAR-10 in Table 1 and Table 2, respectively. GET out-
performs a much more complex distillation procedure—PD
with classifier-free guidance—in class-conditional image
generation. GET also outperforms PD and KD in terms of
FID score for unconditional image generation. This effec-
tiveness is intriguing, given that our approach for offline
distillation is relatively simpler when compared to other
state-of-the-art distillation techniques. In Table 3, we have
outlined key differences in distillation techniques.

Qualitative results. We visualize uncurated CIFAR-
10 (Krizhevsky, 2009) samples generated by GET in Fig-
ure 4 and Figure 5. GET can learn rich semantics and world
knowledge from the dataset. For instance, GET has learned
the symmetric layout of dog faces solely using reconstruc-
tion loss in the pixel space, as shown in Figure 5.

Scaling Model Size. We conduct extensive experiments
to understand the trends of sample quality as we scale the
model size of GET. Table 8 provides a summary of our
findings on single-step unconditional image generation. We
find that even small GET models with 10-20M parameters
can generate images with sample quality on par with NAS-
derived AutoGAN (Gong et al., 2019).

5. Conclusion and Limitations
We propose a simple yet effective approach to distill dif-
fusion models into generative models capable of sampling
with just a single model evaluation. Our method involves
training a Generative Equilibrium Transformer (GET) ar-
chitecture directly on noise/image pairs generated from a
pretrained diffusion model, eliminating the need for trajec-
tory information and temporal embedding. As our method
for offline distillation relies on deterministic samplers to
ensure a unique mapping between initial noise e and image
x, it cannot be directly applied to stochastic samplers which
do not satisfy this requirement. However, this limitation also
applies to many other distillation techniques, as they cannot
maintain their fidelity under stochastic trajectories (Luh-
man and Luhman, 2021; Salimans and Ho, 2022; Berthelot
et al., 2023). Overall, we find that GET demonstrates su-
perior performance over more complex online distillation
techniques such as progressive distillation (Salimans and
Ho, 2022; Meng et al., 2022) in both class-conditional and
unconditional settings. In addition, a small GET can gen-
erate higher quality images than a 5× larger ViT, sampling
faster while using less training memory and fewer compute
FLOPs, demonstrating its effectiveness.
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A. Background and Related Work
Diffusion Models. Diffusion models (Sohl-Dickstein
et al., 2015; Ho et al., 2020; Song et al., 2021a; Kingma
et al., 2021; Dhariwal and Nichol, 2021) or score-based gen-
erative models (Song and Ermon, 2019; Song et al., 2021b)
progressively perturb images with an increasing amount of
Gaussian noise and then reverse this process through sequen-
tial denoising to generate images. Specifically, consider a
dataset of i.i.d. samples pdata, then the diffusion process
{x(t)}Tt=0 for t ∈ [0, T ] is given by an Itô SDE (Song et al.,
2021b):

dx = f(x, t)dt+ g(t)dw (7)

where w is the standard Wiener process, f(·, t) : Rd → Rd

is the drifting coefficient, g(·) : R → R is the diffusion
coefficient, and x(0) ∼ pdata and x(T ) ∼ N (0, I). All
diffusion processes have a corresponding deterministic pro-
cess known as the probability flow ODE (PF-ODE) (Song
et al., 2021b) whose trajectories share the same marginal
probability densities as the SDE. This ODE can be written
as:

dx = −σ̇(t)σ(t)∇x log p(x, σ(t))dt (8)

where σ(t) is the noise schedule of diffusion process, and
∇x log p(x, σ(t)) represents the score function. Karras et al.
(2022) show that the optimal choice of σ(t) in Eq. (8)
is σ(t) = t. Thus, the PF-ODE can be simplified to
dx/dt = −t∇x log p(x, σ(t)) = (x−Dθ(x; t))/t, where
Dθ(·, t) is a denoiser function parametrized with a neural
network that minimizes the expected L2 denoising error for
samples drawn from pdata. Samples can be efficiently gener-
ated from this ODE through numerical methods like Euler’s
method, Runge-Kutta method, and Heun’s second-order
solver (Ascher and Petzold, 1998).

Distillation techniques for diffusion models. Knowledge
distillation (KD) (Luhman and Luhman, 2021) proposed to
distill a multi-step DDIM (Song et al., 2021a) sampler into
a single-step sampler by training the student model on 1M
synthetic image samples. There are several key differences
between KD and our work: GET does not employ any
temporal embedding and predicts images instead of noise.
Further, GET is built upon ViT, unlike the UNet in KD.
Additionally, we demonstrate the effectiveness of our ap-
proach on both unconditional and class-conditional image
generation.

Progressive distillation (PD) (Salimans and Ho, 2022) pro-
poses a strategy for online distillation to distill a T -step
teacher DDIM (Song et al., 2021a) diffusion model into a
new T/2 step student DDIM model, repeating this process
until one-step models are achieved. Transitive closure time-
distillation (TRACT) (Berthelot et al., 2023) generalizes PD
to distill N > 2 steps together at once, reducing the overall
number of training phases. Consistency models (Song et al.,

2023) achieve online distillation in a single pass by taking
advantage of a carefully designed teacher and distillation
loss objective.

Diffusion Fourier neural operator (DFNO) (Zheng et al.,
2022) maps the initial Gaussian distribution to the solution
trajectory of the reverse diffusion process by inserting the
temporal Fourier integral operators in the pretrained U-Net
backbone. Meng et al. (2022) propose a two-stage approach
to distill classifier-free guided diffusion models into few-
step generative models by first distilling a combined con-
ditional and unconditional model, and then progressively
distilling the resulting model for faster generation.

Fast sampling methods for diffusion models. While dis-
tillation is a predominant approach to speed up sampling rate
of existing diffusion models, there are alternate lines of work
to reduce the length of sampling chains by considering al-
ternate formulations of diffusion model (Song et al., 2021a;
Karras et al., 2022; Watson et al., 2021; Song et al., 2021b;
Kong and Ping, 2021), correcting bias and truncation er-
rors in the denoising process (Bao et al., 2022b; San-Roman
et al., 2021; Bao et al., 2022a), and through training-free fast
samplers at inference (Kong and Ping, 2021; Lu et al., 2022;
Zhang and Chen, 2023; Dockhorn et al., 2022; Jolicoeur-
Martineau et al., 2021; Liu et al., 2022). Several works like
DDIM (Song et al., 2021a), Improved DDPM (Nichol and
Dhariwal, 2021), FastDPM (Kong and Ping, 2021), SGM-
CLD (Dockhorn et al., 2021), EDM (Karras et al., 2022)
modify or optimize the forward diffusion process so that
the denoising process can be made more efficient. DPM-
Solver (Lu et al., 2022), and GENIE (Dockhorn et al., 2022)
are higher-order ODE solvers that generate samples in few
steps. There are also works that combine diffusion models
with other families of generative models for faster sampling
(Xiao et al., 2021; Zheng et al., 2023).

Transformers. Transformers were first proposed by
Vaswani et al. (2017) for machine translation and since
then have been widely applied in many domains like natural
language processing (Devlin et al., 2019; Radford et al.,
2018; Roberts et al., 2019; Lewis et al., 2019), reinforce-
ment learning (Parisotto et al., 2020; Chen et al., 2021), self-
supervised learning (Caron et al., 2021), vision (Dosovitskiy
et al., 2021; Liu et al., 2021), and generative modeling (Hud-
son and Zitnick, 2021; Ramesh et al., 2022; Peebles and
Xie, 2022; Esser et al., 2021). Many design paradigms for
architectures of transformers have emerged over years. No-
table ones include encoder-only (Devlin et al., 2019; Liu
et al., 2019; Lan et al., 2019), decoder-only (Radford et al.,
2018; 2019; Brown et al., 2020; Wang et al., 2022; Wei et al.,
2021), and encoder-decoder architectures (Vaswani et al.,
2017; Raffel et al., 2020; Lample and Conneau, 2019). We
are interested in scalable transformer-based architectures
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for generative modeling. Most relevant to this work are two
encoder-only transformer architectures: Vision Transformer
(ViT) (Dosovitskiy et al., 2021) and Diffusion Transformer
(DiT) (Peebles and Xie, 2022). Vision Transformer (ViT)
closely follows the original transformer architecture. It first
converts 2D images into patches which are flattened and
projected onto an embedding space. Positional encodings
are added to patch embeddings to retain positional infor-
mation. This sequence of embedding vectors is fed into
the standard transformer architecture. The resulting archi-
tecture is then trained on a downstream task. Diffusion
Transformers (DiT) are based on ViT architecture and oper-
ate on sequences of patches of image that are projected onto
a latent space through an image encoder (Rombach et al.,
2022). In addition, DiTs adapt several architectural modi-
fications that enable their use as a backbone for diffusion
models and help them scale better to yield better generative
models with increasing model size. Some of these architec-
ture design choices include adaptive Layer Normalization
(AdaLN) (Dhariwal and Nichol, 2021; Brock et al., 2018;
Perez et al., 2018; Karras et al., 2019), zero-initializing the
final convolutional layer in each DiT block (Goyal et al.,
2017), and use of timestep embedding (Ho et al., 2020; Song
et al., 2021a).

Deep equilibrium models. Deep Equilibrium models
(DEQs) (Bai et al., 2019) solve for a fixed point in the
forward pass. Specifically, given an input x and a layer or a
block fθ, DEQ approximates an infinite-depth representa-
tion of fθ by solving for its fixed point z⋆: z⋆ = fθ(z

⋆;x).
For the backward pass, one can differentiate analytically
through z⋆ by the implicit function theorem. DEQs do not
have any convergence guarantees and can be highly unstable
to train (Bai et al., 2021). As a result, recent efforts focus
on addressing these issues by designing variants of DEQs
with provable guarantees (Winston and Kolter, 2020; Revay
et al., 2020), or through optimization techniques such as
Jacobian regularization (Bai et al., 2021), and fixed-point
correction (Bai et al., 2022). DEQs have been successfully
applied on a wide range of tasks such as image classifica-
tion (Bai et al., 2020), semantic segmentation (Bai et al.,
2020; Zhang et al., 2022), optical flow estimation (Bai et al.,
2022), landmark detection (Micaelli et al., 2023), out-of-
distribution generalization (Anil et al., 2022), language mod-
elling (Bai et al., 2019), unsupervised learning (Tsuchida
and Ong, 2023), and generative modelling (Lu et al., 2021;
Pokle et al., 2022).

B. Addition details of GET architecture
Details of injection interface in transformer blocks.
First, we reiterate the design of the transformer block used
in GET. The transformer block is built upon the standard
Pre-LN transformer block (Xiong et al., 2020; Dosovitskiy

et al., 2021; Peebles and Xie, 2022), as shown below:

z = z+Attention (LN (z) ,u)

z = z+ FFN (LN (z))

Here, z ∈ RN×D represents the latent token, u ∈ RN×3D is
the input injection, LN, FFN, and Attention stand for Layer
Normalization (Ba et al., 2016), a 2-layer Feed-Forward
Network with a hidden dimension of size D × E, and an
attention (Vaswani et al., 2017) layer with an injection inter-
face, respectively.

For blocks in the injection transformer, u is equal to the class
embedding token c ∈ R1×3D for conditional image genera-
tion, i.e., u = c for conditional models, and u = 0 other-
wise. In contrast, for blocks in the equilibrium transformer,
u is the broadcast sum of noise injection n ∈ RN×3D and
class embedding token c ∈ R1×3D, i.e., u = n + c for
conditional models and u = n otherwise.

We modify the standard transformer attention layer to in-
corporate an additive injection interface before the query
q ∈ RN×D, key k ∈ RN×D, and value v ∈ RN×D,

q,k,v = zWi + u

z = MHA(q,k,v)

z = zWo

where Wi ∈ RD×3D, Wo ∈ RD×D. The injection in-
terface enables interactions between the latent tokens and
the input injection in the multi-head dot-product attention
(MHA) operation,

qk⊤ = (zWq + uq)(zWk + uk)
⊤

= zWqW
⊤
k z

⊤ + zWqu
⊤
k + uqW

⊤
k z

⊤ + u⊤
q uk,

where Wq,Wk ∈ RD×D are slices from Wi, and uq,uk ∈
RN×D are slices from u. This scheme adds no more com-
putational cost compared to the standard MHA operation,
yet it achieves a similar effect as cross-attention and offers
good stability during training.

C. Experimental Setup
Data Collection. For unconditional image generation on
CIFAR-10 (Krizhevsky, 2009), we generate 1M noise/image
pairs from the pretrained unconditional EDM Karras et al.
(2022). This dataset is denoted as EDM-Uncond-1M. As
in EDM, we sample 1M images using Heun’s second-order
deterministic solver (Ascher and Petzold, 1998). Generat-
ing a batch of images takes 18 steps or 35 NFEs (Number
of Function Evaluations). Overall, this dataset takes up
around 29 GB of disk space. The entire process of data
generation takes about 4 hours on 4 NVIDIA A6000 GPUs
using Pytorch (Paszke et al., 2019) Distributed Data Par-
allel (DDP) and a batch size of 128 per GPU. In addition
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to unconditional image generation, we sample 1M noise-
label/image pairs from the conditional VP-EDM Karras
et al. (2022) using the same settings. This dataset is denoted
as EDM-Cond-1M. Both the datasets will be released for
future studies.

Training Details. We use AdamW (Loshchilov and Hut-
ter, 2017) optimizer with a learning rate of 1e-4, a batch
size of 128 (denoted as 1×BS), and 800k training iterations,
which are identical to Progressive Distillation (PD) (Sali-
mans and Ho, 2022). For conditional models, we adopt a
batch size of 256 (2×BS). No warm-up, weight decay, or
learning rate decay is applied. We convert input noise to
patches of size 2 × 2. We use 6 steps of fixed point iter-
ations in the forward pass of GET-DEQ with fixed point
correction (Bai et al., 2022) and differentiate through it. For
the O(1) memory mode, we utilize gradient checkpoint-
ing (Chen et al., 2016) for DEQ’s computational graph. We
set the EMA momentum to 0.9999 for all the models.

Evaluation Metrics. We measure image sample qual-
ity for all our experiments via Frechet inception distance
(FID) (Heusel et al., 2017) and Inception Score (IS) (Sal-
imans et al., 2016) computed on 50k images. We include
other relevant metrics such as FLOPs, training speed, mem-
ory, sampling speed, and the Number of Function Evalua-
tions (NFEs), wherever necessary.

Model Configuration. The configuration of different
GET architectures are listed in Table 4. Here, Li and Le

denote the number of transformer blocks in the Injection
transformer and Equilibrium transformer, respectively. D
denotes the width of the network. E corresponds to the
expanding factor of the FFN layer in the Equilibrium trans-
former, which results in the hidden dimension of E × D.
For the injection transformer, we always adopt an expanding
factor of 4.

Table 4. Details of configuration for GET architectures.

Model Params Li Le D E

GET-Tiny 8.9M 6 3 256 6
GET-Mini 19.2M 6 3 384 6
GET-Small 37.2M 6 3 512 6
GET-Base 62.2M 1 3 768 12
GET-Base+ 83.5M 6 3 768 8

Table 5. Details of configuration for ViT architectures.

Model Params L D

ViT-B 85.2M 12 768
ViT-L 302.6M 24 1024

We have listed relevant model configuration details of ViT
in Table 5. The model configurations are adopted from
DiT (Peebles and Xie, 2022), whose effectiveness was tested
for learning diffusion models. In this table, L denotes the
number of transformer blocks in ViT. D stands for the width
of the network. We always adopt an expanding factor of
4 following the common practice (Vaswani et al., 2017;
Dosovitskiy et al., 2021; Peebles and Xie, 2022).

D. Additional Experiments
Class Conditioning. As both GET and ViT share the
same class injection interface, we perform an ablation study
on ViT. We consider two types of input injection schemes
for class labels: 1) additive injection scheme 2) injection
with adaptive layer normalization (AdaLN-Zero) as used in
DiT (Peebles and Xie, 2022). We summarize the results in
Table 6. Despite using almost the same parameters as uncon-
ditional ViT-B, the class-conditional ViT-B using additive
injection interface has an FID of 12.43 at 200k, while the
ViT-B w/ AdaLN-Zero class embedding (Peebles and Xie,
2022) set up an FID of 17.19 at 200k iterations. Another
surprising observation is that ViT-B w/ AdaLN-Zero class
embedding performs worse than unconditional ViT in terms
of FID score. Therefore, it seems that adaptive layer nor-
malization might not be useful when used only with class
embedding.

Table 6. Ablation on class conditioning.

Model FID↓ IS↑ Params↓
ViT-Uncond 15.20 8.27 85.2M
ViT-AdaLN-Zero 17.19 8.38 128.9M
ViT-Inj-Interface 12.43 8.69 85.2M

Why Scaling Laws for Implicit Models? As a prospec-
tive study, we preliminarily investigate the scaling properties
of Deep Equilibrium models using GET. The scaling law
is an attractive property, as it enables us to predict models’
performance at extremely large compute based on the per-
formance of tiny models. This predictive capability allows
us to select the most efficient model given the constraints
of available training budget (Brown et al., 2020; Hoffmann
et al., 2022; OpenAI, 2023). While the scaling law for ex-
plicit networks has been extensively studied, its counterpart
for implicit models remains largely unexplored. Implicit
models are different from explicit models as they utilize
more computation through weight-tying under similar pa-
rameters and model designs. Therefore, it is natural to
question whether their scaling laws align with those of their
explicit counterparts.

Scaling Model Size. We conduct extensive experiments
to understand the trends of sample quality as we scale the
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Figure 6. (a) (Left) Smaller GETs can achieve better FID scores than larger ViTs, demonstrating DEQ’s parameter efficiency. Each curve
in this plot connects models of different sizes within the same model family at identical training iterations, as indicated by the numbers
after the model names in the legend. (b) (Right) Compute efficiency of GET: Larger GET models use training compute more efficiently.
For a given GET, the training budget is calculated from training iterations. Refer to Table 8 for the exact size of GET models.

Table 7. Benchmarking GET against ViT on unconditional image generation on CIFAR-10. For the first time, implicit layers strictly
surpass explicit networks in all metrics. Results are benchmarked on 4 A6000 GPUs using a batch size of 128, 800k iterations, and
PyTorch (Paszke et al., 2019) distributed training protocol. Training Mem stands for training memory consumed per GPU. O(1)
symbolizes the O(1) training memory mode, which differs only in training memory and speed.

Model FID↓ IS↑ Params↓ FLOPs↓ Training Mem↓ Training Speed↑
ViT-Base 11.49 8.61 85.2M 23.0G 10.1GB 4.83 iter/sec
GET-Mini 10.72 8.69 19.2M 15.2G 9.2GB 5.79 iter/sec
GET-Mini-O(1) - - - - 5.0GB 4.53 iter/sec

Table 8. Performance of GETs on unconditional CIFAR-10.

Models Params NFE ↓ FID ↓ IS ↑
GET-Tiny 8.9M 1 15.19 8.37
GET-Mini 19.2M 1 10.72 8.69
GET-Small 37.2M 1 8.00 9.03
GET-Base 62.2M 1 7.42 9.16
GET-Base+ 83.5M 1 7.19 9.09

More Training

GET-Tiny-4×Iters 8.9M 1 11.47 8.64
GET-Base-2×BS 62.2M 1 6.91 9.16

model size of GET. Table 8 provides a summary of our
findings on single-step unconditional image generation. We
find that even small GET models with 10-20M parameters
can generate images with sample quality on par with NAS-
derived AutoGAN (Gong et al., 2019). In general, sample
quality improves with the increase in model size.

Scaling Training Compute. Our experimental results sup-
port the findings of Peebles and Xie (2022) for explicit mod-
els (DiT) and extend them to implicit models. Specifically,
for both implicit and explicit models, larger models are
better at exploiting training FLOPs. Figure 6 shows that

larger models eventually outperform smaller models when
the training compute increases. For implicit models, there
also exists a “sweet spot” in terms of model size under a
fixed training budget, e.g., GET-Small outperforms both
smaller and larger GETs at 231 training GFLOPs. Further-
more, because of the internal dynamics of implicit models,
they can match a much larger explicit model in terms of
FLOPs and training compute while using fewer parameters.
This underscores the potential of implicit models as candi-
dates for compute-optimal models (Hoffmann et al., 2022)
with significantly better parameter efficiency. For exam-
ple, at 231 training GFLOPs, Figure 6(b) suggests that one
should choose GET-Small (31.2M) among implicit models
for the best performance, which is much more parameter
efficient and faster in sampling than the best-performing
explicit model, ViT-L (302M), at this training budget.

Benchmarking GET against ViT. Table 7 summarizes
key metrics for unconditional image generation for ViT and
GET. Our experiments indicate that a smaller GET (19.2M)
can generate higher-quality images faster than a much larger
ViT (85.2M) while utilizing less training memory and fewer
FLOPs. GET also demonstrates substantial parameter effi-
ciency over ViTs as shown in Figure 6(b).
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