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Abstract
To create models that are robust across a wide001
range of test inputs, training datasets should002
include diverse examples that span numerous003
phenomena. Dynamic adversarial data collec-004
tion (DADC), where annotators craft examples005
that challenge continually improving models,006
holds promise as an approach for generating007
such diverse training sets. Prior work has008
shown that running DADC over 1–3 rounds009
can help models fix some error types, but it010
does not necessarily lead to better generaliza-011
tion beyond adversarial test data. We argue012
that running DADC over many rounds maxi-013
mizes its training-time benefits, as the differ-014
ent rounds can together cover many of the015
task-relevant phenomena. We present the first016
study of longer-term DADC, where we collect017
20 rounds of NLI examples for a small set of018
premise paragraphs, with both adversarial and019
non-adversarial approaches. Models trained020
on DADC examples make 26% fewer errors on021
our expert-curated test set compared to mod-022
els trained on non-adversarial data. Our analy-023
sis shows that DADC yields examples that are024
more difficult, more lexically and syntactically025
diverse, and contain fewer annotation artifacts026
compared to non-adversarial examples.027

1 Introduction028

Traditional crowdsourcing methods often yield029

datasets that lack diversity, contain spurious cor-030

relations, and are easy for existing models (Guru-031

rangan et al., 2018; Poliak et al., 2018; Geva et al.,032

2019; Ko et al., 2020; Potts et al., 2021). Training033

on such examples can lead to models that reach034

deceptively high accuracy on in-distribution test035

data, yet fail on challenge sets (Naik et al., 2018;036

Glockner et al., 2018; Gardner et al., 2020), input037

perturbations (Wallace et al., 2019; Kaushik et al.,038

2020), and distribution shifts (Talmor and Berant,039

2019; Hendrycks et al., 2020).040

Dynamic adversarial data collection (DADC)041

holds promise as an approach to mitigate these042
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Figure 1: Model accuracy on our expert-curated test
set when training on data collected from three differ-
ent methods. Standard non-adversarial data collection
is more effective than adversarial data collection in the
short-term. However, in the long term, adversarial data
collection statistically significantly outperforms stan-
dard data, especially when the data is collected using
a dynamic model that is updated after each round.

training set problems. In DADC, humans are tasked 043

with creating examples that fool state-of-the-art 044

models but are answerable by humans. Crucially, 045

DADC is dynamic in that data collection is repeated 046

over many rounds with a stream of ever-improving 047

models-in-the-loop. As models improve, annota- 048

tors are incentivized to craft new types of examples 049

that challenge the latest models. In the limit, this 050

process would ideally cover most task-relevant phe- 051

nomena, leading to more robust models. 052

Whether DADC actually leads to diverse, high- 053

coverage training data, however, has remained un- 054

clear. It could cause annotators to write unnatural 055

examples or to focus on a narrow subset of unusual 056

examples that models find difficult to learn, thus de- 057

creasing data diversity (Bowman and Dahl, 2021). 058
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Some prior work has shown that a few rounds of059

DADC can indeed improve robustness to adversar-060

ial inputs (Dinan et al., 2019; Nie et al., 2020a),061

however, there are mixed results on improving ac-062

curacy on other distributions (Kaushik et al., 2021).063

To date, no study has analyzed how DADC evolves064

over many rounds. Thus, the long-term benefits or065

drawbacks of adopting it as a core dataset creation066

paradigm remain poorly understood.067

In this work, we conduct the first study of068

DADC’s effects in the long term, where we conduct069

many rounds and rapidly update models. We focus070

on the task of natural language inference (NLI),071

which serves as a crucial benchmark for research072

on language understanding (Bowman et al., 2015;073

Williams et al., 2018a). To make our study feasible,074

we conduct intensive data collection on a small set075

of context passages that span different genres and076

exhibit numerous natural language phenomena. By077

using a small set of contexts, we create a scenario078

in which models can improve quickly from round079

to round, thus approximating the dynamics of run-080

ning DADC at a larger scale. We compare three081

approaches for collecting training data—no model,082

static model-in-the-loop, and dynamic model-in-083

the-loop—in a controlled setting for 20 rounds.084

To evaluate the different methods, we collect085

expert-curated non-adversarial test examples for086

each context that span numerous NLI phenomena087

which humans can handle correctly. On this test088

set, DADC outperforms the alternative approaches089

after many rounds of data collection (e.g., Fig-090

ure 1). Standard non-adversarial data collection091

causes model accuracy to climb quickly for a short092

period of time, but accuracy quickly plateaus after093

more examples are collected. On the other hand,094

DADC examples yield larger improvements for095

later rounds. To understand these results, we show096

that DADC examples are overall more diverse in097

lexical and syntactic patterns, contain fewer arti-098

facts, and become more difficult over each round.099

Overall, our results show that building large adver-100

sarial training sets may be more useful than stan-101

dard model-agnostic collection in the long term.102

2 Background103

Collecting Data with Crowdsourcing. Most104

large-scale supervised datasets are collected using105

crowd workers (Bowman et al., 2015; Rajpurkar106

et al., 2016; Kočiský et al., 2018). Compared to107

experts, crowd workers often produce lower qual-108

ity data as they are not necessarily well-trained for 109

one’s task and can be apathetic to the goals of the 110

research (Snow et al., 2008; Gadiraju et al., 2017). 111

These data quality issues are exacerbated for lan- 112

guage tasks because crowd workers also need to 113

write inputs, e.g., writing hypothesis sentences for 114

natural language inference tasks. These manually- 115

written inputs often follow a very narrow distribu- 116

tion: they lack diversity over lexical items, syntac- 117

tic patterns, domains, example difficulties, reason- 118

ing types, and more (Yang et al., 2018; Gururangan 119

et al., 2018; Geva et al., 2019; Min et al., 2019; 120

Kiela et al., 2021). 121

Dynamic Adversarial Data Collection. In 122

DADC, workers are tasked with writing examples 123

that are answerable by humans but fool existing 124

models (Wallace et al., 2019; Nie et al., 2020a; 125

Kiela et al., 2021). Concretely, workers are pre- 126

sented with a user interface where they can ob- 127

serve model predictions and interactively build data 128

that exposes model failures. Multiple rounds may 129

also be conducted, where the model is updated on 130

the adversarial data collected thus far and rede- 131

ployed; the goal of this is to encourage workers 132

to write increasingly more difficult examples. Ad- 133

versarial data collection has been widely adopted 134

in recent work, especially for building evaluation 135

datasets (Dua et al., 2019; Nie et al., 2020a; Di- 136

nan et al., 2019; Bartolo et al., 2020; Potts et al., 137

2021; Liu et al., 2021; Kaushik et al., 2021; Xu 138

et al., 2020, 2021). Our focus is instead on training, 139

where past work has shown that after a few rounds 140

of adversarial data, a model noticeably improves on 141

its errors, yet many problems still remain (Nie et al., 142

2020a; Bartolo et al., 2020; Kaushik et al., 2021; 143

Zellers et al., 2019). Moreover, it remains unclear 144

whether collecting adversarial or non-adversarial 145

data leads to generally more robust models in the 146

long term (Kaushik et al., 2021). 147

3 Dynamic Data Collection in the Limit 148

The paradigm of DADC raises a natural but unan- 149

swered question: what would happen if we kept 150

going? If we ran DADC for many years, how ro- 151

bust would the resulting models be? Would models 152

improve more quickly than if we had collected 153

training data without a model-in-the-loop? 154

Answering these forward-looking questions is 155

key to understanding whether researchers and prac- 156

titioners should continue to collect data in an ad- 157

versarial fashion. Of course, we cannot practically 158
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Premise Model Rd Hypotheses Label Error

Sound
No 20 Old telephones have sheepskin over a cup or cylinder. Entail -
Static 20 Parts of animal anatomy can function as the origins of sound. Entail 7

Dynamic 20 The transmission due to the vibration can be attenuated with distances. Entail 3

Yellow
No 20 Ruiz’s experiment was on three men. Contradict -
Static 20 It turned out that basset hounds were immune to yellow fever. Contradict 3

Dynamic 20 The American Public Health Association meeting, held in October
1900, was about developing vaccines against yellow fever.

Contradict 7

Faraday
No 20 michael faraday’s mother was named margaret Entail -
Static 20 The home of the Faradays, in London, was very crowded. Entail 7

Dynamic 20 Michael had at least nine uncles and/or aunts. Entail 3

Table 1: Examples from the training sets that are generated by crowd workers, with No, Static, or Dynamic models
in the loop. The error column shows whether the worker successfully fooled the model in the loop when submitting
the example in the user interface. See Table 5 for the full premise paragraphs.

run many years of data collection at once due to159

cost and time constraints. Our key idea is to instead160

answer these questions for a more manageable test161

bed that still retains many of the key challenges162

associated with language understanding tasks. In163

particular, we scale down the natural language in-164

ference (NLI) task to a small number of paragraph-165

length premises. In this setting, many rounds of166

smaller-scale data collection can tell us whether167

DADC or non-adversarial data collection leads to168

more robust model accuracy on test hypotheses169

for these same contexts. If DADC is indeed supe-170

rior, this suggests that DADC can collect data that171

more effectively covers the challenging phenom-172

ena required for NLI, and therefore scaling it up to173

(many) more contexts could yield models that are174

similarly robust for more general NLI.175

3.1 Task and Context Paragraphs176

We choose to focus on NLI, a canonical and well-177

studied natural language understanding task (Da-178

gan et al., 2005; Bos and Markert, 2005; Giampic-179

colo et al., 2007; MacCartney and Manning, 2009).180

NLI training datasets are notorious for being rife181

with artifacts and biases (Poliak et al., 2018; Guru-182

rangan et al., 2018; Tsuchiya, 2018; McCoy et al.,183

2019b), which makes NLI a suitable test bed for184

studying questions surrounding training dataset185

quality. Using NLI also enables us to write a rich186

and diverse test set with a small number of con-187

texts because each premise admits many possible188

hypotheses. We focus on binary NLI—definitely189

entailing or not entailing—to minimize labeling dis-190

agreements stemming from the distinction between191

neutral and contradiction in three-way NLI (Pavlick192

and Kwiatkowski, 2019; Nie et al., 2020b).193

We use ten diverse paragraphs from Project194

Gutenberg1 as the premises—each one is chosen to 195

elicit many possible hypotheses. We choose these 196

paragraphs to span a range of genres (scientific, bio- 197

graphical, historical, narrative) and present a differ- 198

ent set of challenges. For instance, some passages 199

describe physical objects in detail, requiring com- 200

monsense understanding of the physical world (e.g., 201

“. . . Phonny had not measured his wires in respect to 202

length, but had cut them off of various lengths, tak- 203

ing care however not to have any of them too short. 204

The result was that the ends of the wires projected 205

to various distances above the board. . . ”). Other 206

passages describe reasoning about uncertainty (e.g., 207

“. . . this negative result might be because these ani- 208

mals are not susceptible to the disease. . . ”) or hy- 209

pothetical events (e.g., “. . . If there should be even 210

partial cooperation between the Austrian leaders, 211

he must retreat . . . ”). See Appendix A for the full 212

premise paragraphs. We minimally edit each para- 213

graph so that they can be read standalone, e.g., we 214

resolve coreferences. 215

3.2 Data Collection Procedure 216

We collect data over many rounds, where each 217

round comprises three steps. First, crowdworkers 218

write hypothesis sentences that are either entailed 219

or not entailed by one of our premises while inter- 220

acting with the current model-in-the-loop. Second, 221

other crowdworkers relabel these examples and 222

help filter out spam and other malformed examples. 223

Finally, we update the model-in-the-loop by fine- 224

tuning on all collected data, including data from 225

the newest round. We use Amazon Mechanical 226

Turk (AMT) for data collection. 227

1https://www.gutenberg.org/
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Hypothesis Generation. To generate hypothe-228

ses, we run AMT tasks where a worker is randomly229

provided one of the premises and is asked to write230

ten different hypotheses. After writing each hy-231

pothesis, they are shown the predictions of a live232

model in the loop. To encourage workers to write233

model-fooling examples, they are given a bonus ev-234

ery time one of their examples fools the model and235

passes the later label verification step. We ask work-236

ers to write ten hypotheses for a single premise, as237

this allows them to better understand the model’s238

behavior and empirically leads to more-difficult239

examples (Section 4). The worker can generate240

hypotheses for either of the binary labels, but we241

encourage them to generate balanced examples in242

the onboarding instructions. The user interface is243

shown in Appendix B.244

Label Verification. To ensure the generated hy-245

potheses are labeled correctly, we run a separate246

AMT task where workers are asked to label each247

example without being shown the original label.248

Each example is labeled by at least three workers.249

If all three agree, that example is saved. If there is250

a disagreement, we ask two additional workers and251

keep the example if four out of five agree on the la-252

bel. We also provide an option to flag a hypothesis253

as “bad”, e.g., it is very ungrammatical or clearly254

spam. If more than one worker flags an example255

as bad, we remove it. We do not allow workers to256

participate in both the labeling and validation AMT257

tasks, as we do not want workers to be influenced258

by one another’s hypotheses.259

Updating the Model. For the initial round of260

data collection, we use as our starting point a261

RoBERTa-large model (Liu et al., 2019) that has262

been finetuned on SNLI (Bowman et al., 2015),263

MNLI (Williams et al., 2018a), and FEVER-264

NLI (Nie et al., 2019).2 We use this training data265

as it provides us with an accurate initial model,266

and note that we collapse the neutral and contradic-267

tion labels during training as we focus on binary268

NLI. To update the model after each round, we269

continue finetuning it on all of the data collected270

thus far and then deploy it for the next round. Our271

finetuning hyperparameters follow the recommen-272

dations of Mosbach et al. (2021): we use a learning273

rate of 2× 10−5, a learning rate warmup over the274

2FEVER-NLI builds upon the dataset from the FEVER
shared task (Thorne et al., 2018). The SNLI and FEVER
datasets are licensed CC-BY-SA. MNLI is licensed by MIT.
and its copyright is held by New York University (2018).

first 10% of steps, bias-corrected Adam, and 15 275

epochs of training. We early stop using held-out 276

validation data (see Section 3.3). We refer to this 277

setting, where crowdworkers interact with a model- 278

in-the-loop that is updated after each round, as the 279

Dynamic Model setting. 280

Baselines. In addition to the above, we also col- 281

lect data with two baseline approaches: 282

• No Model. This is the typical procedure for 283

collecting training data where workers do not 284

interact with a model. 285

• Static Model. We provide a model in the loop 286

to the workers but the model is kept fixed across 287

all the rounds. We use the same model that the 288

Dynamic Model setting uses in its first round. 289

No data is mixed between methods and workers 290

can not participate in multiple methods. 291

3.3 Dataset Details 292

Our codebase is built on top of the Dynabench 293

platform (Kiela et al., 2021), we deploy tasks us- 294

ing the Mephisto library,3 and we serve models 295

using Dynalab (Ma et al., 2021). We restrict our 296

AMT workers to those that speak English, have 297

completed at least 100 tasks on AMT, and have an 298

approval rating of at least 97%. To qualify for the 299

task, a worker must also pass an onboarding proce- 300

dure where they are tasked with correctly labeling 301

five NLI examples in a row. 302

For each data collection method, we run 20 303

rounds of data collection. We stop at 20 rounds as 304

model performance on our validation sets begins to 305

saturate. We collect 550 examples per round before 306

label verification, with an equal distribution over 307

the ten premises. All the data collection methods 308

are run in parallel at the same time of day to control 309

for the effects of time on data quality (Karpinska 310

et al., 2021). At this scale, we are able to complete 311

each round of data collection for all three methods 312

in approximately 24 hours. We hold out 50 exam- 313

ples from each round to use for early stopping and 314

for reporting validation metrics. 315

Table 2 shows overall statistics of our final 316

datasets. These statistics are similar across the 317

three datasets, including the label balance, the rate 318

at which examples are discarded, and the number 319

of AMT workers. However, the datasets differ in 320

the rate at which workers fooled the models in the 321

3https://github.com/facebookresearch/mephisto
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No
Model

Static
Model

Dynamic
Model

# Rounds 20 20 20
# Hypo. 11,000 11,000 11,000
# Verified Hypo. 7,684 7,102 6,911
# Workers 115 104 121
% Contradiction 58.5 56.3 54.6

Table 2: Statistics of our datasets. For each method,
we independently run 20 rounds of data collection with
550 hypotheses per round. We verify the labels of each
hypothesis using additional crowd workers and discard
any low-agreement examples; the adversarial data is
discarded slightly more often. The datasets are roughly
balanced between entailment and contradiction.

loop; Figure 2 shows that the fooling rate is rela-322

tively constant for the static model but goes down323

for the dynamic model as the model is updated.324

Table 1 shows qualitative examples of training hy-325

potheses from each method. We will release our326

data and models publicly.327

3.4 Expert-Curated Test Set328

Kaushik et al. (2021) compared standard data col-329

lection to a single round of adversarial data col-330

lection, finding that adversarial training data im-331

proves accuracy only on adversarially-constructed332

test datasets but not on others. We hypothesize333

that running DADC for many rounds can overcome334

this limitation and improve generalization to inde-335

pendent, non-adversarial test data. To test this, we336

built an expert-curated test set for our ten premise337

paragraphs that is intended to be challenging but338

not necessarily adversarial to models. We (three of339

the authors) wrote 680 NLI examples, and we re-340

cruited five researchers who have published in NLI341

and spurious correlations to write an additional 320342

examples. The test set spans different challenges,343

syntactic patterns, and reasoning types, loosely in-344

spired by the categorizations from Williams et al.345

2020. The examples are not written with a model346

in the loop, they are balanced across the labels,4347

and they are equally distributed over the premises.348

Examples are shown in Table 3.349

We also collect crowd worker labels for our test350

set to ensure that the labels are unambiguous and351

to measure human accuracy. First, we collect 15352

labels for each example. We remove any example353

4Our test set is balanced but the three training sets are
biased towards contradiction in slightly different amounts. We
repeated our experiments by subsampling each training set to
be balanced and found nearly identical results.

0 5 10 15 20
Round

0

10

20

30

40

50

60

70

Fo
ol

in
g 

Ra
te

 (%
)

Data Collection Method
Static Adversarial
Dynamic Adversarial

Figure 2: Model fooling rates. We show how often
crowd workers write examples that are successfully an-
swered by humans but fool the model they interact with.
For the static model, the fooling rate is relatively con-
stant as the model is kept fixed (the variance across
rounds is due to different crowd workers having differ-
ent fooling rates). For the dynamic model, the fooling
rate goes down over time as the model is updated.

from the test set where 9 or fewer workers chose 354

the correct label; this removed 21 examples. Sec- 355

ond, we collect an additional 5 labels to use for 356

estimating human accuracy. The average accuracy 357

is 93.2% when using each label individually. 358

4 Dynamic Adversarial Data 359

Outperforms Non-Adversarial Data 360

Here, we show that DADC outperforms both stan- 361

dard and static adversarial data collection in the 362

long term. In particular, we train various models 363

using the three different datasets and compare them 364

on the validation and expert-curated test sets. 365

4.1 Training Final Models 366

For each dataset, we train 20 models—one for each 367

round—on all of the training data up to and includ- 368

ing a given round. All models start with the same 369

RoBERTa-large model that was used for round one 370

of adversarial data collection. We then continue 371

finetuning this model on the associated training 372

data using the hyperparameters from Section 3.2. 373

Moreover, to measure possible variance across dif- 374

ferent finetuning runs, we train each model with 375

five different random seeds. 376

4.2 Main Results 377

Figure 1 shows our models’ accuracy on the expert 378

test set described in Section 3.4. In the short term, 379
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Premise Hypotheses Label

Sound
The head of a drum and the strings of a piano are similar in that they both vibrate. Entailment
A piano produces sound because the keys vibrate when they are struck by the pianist. Contradiction

Yellow
The speaker only ran one experiment of injecting yellow fever blood into animals. Contradiction
Dr. Daniel Cruz took blood from a sick patient to run his experiment. Entailment

Faraday
Michael Faraday’s wife was named Margaret Hastwell. Contradiction
Yorkshire is a less populous locality to be from then Manchester Square. Entailment

Table 3: Examples from our expert-curated test set. See Table 5 for the premise paragraphs.
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Figure 3: Combined validation accuracy. We create a
validation set by pooling together validation data from
each data collection method. We find the same trend as
the expert-curated test set—dynamic adversarial data
performs best in the long term.

standard non-adversarial data collection performs380

best—it has the highest accuracy after the first four381

rounds. However, in the long term, adversarial382

data collection, especially when done dynamically,383

leads to the highest accuracy by a noticeable mar-384

gin. We run McNemar’s statistical test to compute385

whether the results are significantly different for the386

final round 20 models: the DADC model outper-387

forms the static adversarial model with p < 0.05388

and the non-adversarial model with p < 0.01;389

the static adversarial model outperforms the non-390

adversarial model with p < 0.05.391

We also evaluate models on validation data that392

is split off from each round of each data collection393

method. Figure 3 shows results on a validation394

set that is created by pooling validation data from395

all three collection methods; we observe the same396

trends as our test set, although the accuracies are397

slightly higher on average.398

Overall, these results show that when building 399

training sets in our setting, adversarial data is not 400

necessarily preferred when the number of examples 401

is small. On the contrary, when the number of 402

training examples and rounds is large, using DADC 403

leads to more robust, broader coverage models. 404

Comparison to Humans. Even though the 405

round 20 models have approximately 700 training 406

examples for each premise, they are still noticeably 407

worse than human accuracy. In particular, the best 408

DADC model reaches 84.4% accuracy, whereas 409

human accuracy is 93.2%. This shows that while 410

DADC does lead to better models, we are still far 411

from creating NLP systems that perform robust 412

NLI on our premise paragraphs. 413

Generalization of DADC Data Across Models. 414

One possible concern with adversarially-collected 415

data is that it could be too model-specific, simi- 416

lar to datasets built with active learning (Lowell 417

et al., 2019). To test whether the DADC data can 418

generalize to other (newer) models, we train an 419

ALBERT XXLarge-v2 model (Lan et al., 2020) on 420

SNLI, MNLI, and FeverNLI. We then finetune the 421

model on the data from all 20 rounds for each of 422

our three datasets. The model has an accuracy of 423

69.1% before updating on our collected data, and 424

it reaches an accuracy of 83.1%, 84.6%, and 85.8% 425

on the no model, static model, and dynamic model 426

datasets, respectively. This shows that our DADC 427

data does generalize to better models—it leads to 428

the highest accuracy among the three datasets—but 429

the gap from DADC to static adversarial data is 430

smaller than one from our RoBERTa model. 431

Generalization Beyond Our Premises. Since 432

the DADC data is more difficult than typical crowd- 433

sourced data, it may promote models to learn more 434

robust NLI features. To evaluate this, we test our 435

round 20 models on out-of-distribution datasets, 436

including HANS (McCoy et al., 2019a) and the 437

MNLI mismatched test set (Williams et al., 2018b). 438
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We convert both test sets to binary classification by439

collapsing the neutral and contradiction labels. We440

found that the round 20 models from all three set-441

tings, as well as our initial model trained on SNLI,442

MNLI, and FEVER-NLI, reached comparable accu-443

racies on these test sets. This shows that while the444

DADC data does lead to improved in-distribution445

test performance, it does not necessarily lead to446

better performance under distribution shift.447

5 Analyzing Adversarial Data448

Why is dynamic adversarial data superior to stan-449

dard data in the long term? In Table 4, we re-450

port summary statistics about our three collected451

datasets. We find that dynamic adversarial data is452

more diverse, has higher complexity, and contains453

fewer artifacts than non-adversarial data. These454

findings agree with our intuition surrounding ad-455

versarial datasets: small adversarial training sets456

that contain diverse and challenging examples may457

be hard for models to learn from. However, larger458

datasets of this type will ultimately lead to more459

accurate and robust models in the long term. We460

describe our analyses in detail below.5461

Diversity. DADC data is more diverse at both the462

lexical (unigram and bigram) and example levels463

(Table 4, top). To measure lexical diversity, we464

count the number of unique unigrams and bigrams465

in the dataset. To measure example-level diversity,466

we iterate through each training example and find467

the most similar other training sample according to468

BLEU score (Papineni et al., 2002). We then report469

the average of these BLEU scores similarities; the470

dynamic adversarial examples are the least similar471

to one another.6 The difference in inter-example472

similarity between the DADC data and the static473

adversarial data is significant with p < 0.01 ac-474

cording to a t-test.475

Syntax and Sentence Complexity. The dy-476

namic adversarial data is more complex (Ta-477

ble 4, middle). For each hypothesis, we measure478

5Note that when computing each metric, we use a version
of the No Model and Static Model datasets that are randomly
downsampled to be the same size as the dynamic model data
(6,911 examples). This controls for any effect that dataset size
would have on our analyses.

6Note that this diversity metric is effective because we
collect hundreds of examples for a single context paragraph;
otherwise, we would need to measure similarity between hy-
potheses for different premises, a more complicated problem.
We also experimented with BERTScore (Zhang et al., 2019)
and found similar trends as BLEU score.

No
Model

Static
Model

Dynamic
Model

Diversity
Unique Unigrams 4.0k 4.2k 4.3k
Unique Bigrams 23.3k 24.8k 25.6k
Inter-example Sim. 41.2 41.9 39.5

Complexity
Syntax 2.0 2.1 2.3
Reading Level 4.9 5.4 5.9
Length 10.1 10.9 12.1

Artifacts
Hypo-only Acc % 75.4 69.3 69.7
Overlap Entail % 54.2 49.2 47.3

Table 4: Dataset analysis. The hypotheses generated
by DADC are more diverse based on the number of lex-
ical items and inter-example similarity scores. The hy-
potheses are also more complex, as shown by their in-
creased syntactic complexity (Yngve scores), reading
level (Flesch-Kincaid readability), and lengths. Finally,
adversarial data leads to fewer instances of known ar-
tifacts, namely less hypothesis-only information and
fewer entailment hypotheses with high lexical over-
lap. We bold the best result—lower is better for inter-
example similarity and the artifact analyses.

its length in words, its Flesch-Kincaid readabil- 479

ity (Flesch, 1948), and its syntactic complexity 480

using Yngve scores (Yngve, 1960; Roark et al., 481

2007). Yngve scores roughly measure the devia- 482

tion of a parse tree from a purely right-branching 483

tree—it is the average number of left branches on 484

the path from the root node to each word. To com- 485

pute Yngve scores, we parse sentences using the 486

Benepar parser (Kitaev and Klein, 2018) based on 487

T5 small (Raffel et al., 2020). In all three met- 488

rics, the dynamic adversarial data scores highest, 489

and it is statistically significantly higher than the 490

static model data based on a t-test with p < 0.05. 491

We also show how the syntactic complexity evolves 492

over the rounds in Figure 4. For the non-adversarial 493

and static adversarial data, the syntactic complexity 494

is relatively constant while the DADC examples 495

become increasingly more complex. 496

Fewer Artifacts. NLI training datasets are 497

known to suffer from spurious correlations. The 498

DADC examples contain fewer instances of two 499

known artifacts: hypothesis-only information (Po- 500

liak et al., 2018; Gururangan et al., 2018; Tsuchiya, 501

2018) and high-overlap entailment examples (Mc- 502

Coy et al., 2019b). To measure such artifacts, we 503
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Figure 4: Complexity of syntax over time. We show
how the average syntactic complexity changes over
each round. For the non-adversarial and static adversar-
ial data, the syntactic complexity is relatively constant
across rounds. On the other hand, the DADC examples
become increasingly more complex as annotators are
faced with ever-improving models in the loop.

first train a hypothesis-only model on the training504

set for each dataset using RoBERTa large. We test505

on validation data split off from each respective506

training set, which allows us to measure how much507

hypothesis-only information is present within each508

dataset. The static adversarial and dynamic ad-509

versarial datasets have the lowest hypothesis-only510

accuracy. To measure high-overlap entailment in-511

stances, we find examples where the hypothesis has512

high (>90%) word overlap with the premise and513

compute how often the label is entailment. Such514

examples appear less frequently in DADC data.515

6 Related Work516

Post-hoc Adversarial Filtering. In adversarial517

filtering (Le Bras et al., 2020; Zellers et al., 2018),518

one takes an existing dataset and trains a model on519

the most difficult subportion of the data. Adver-520

sarial filtering shares motivations with adversarial521

data collection—difficult examples are more infor-522

mative for learning—but it is focused on post-hoc523

data filtering rather than collection of new data.524

Moreover, in DADC we train on all of the collected525

examples, whereas adversarial filtering purpose-526

fully deletes easy examples.527

Active Learning. Active learning (Lewis and528

Gale, 1994), especially when performed using529

an uncertainty-based acquisition function, is also530

closely related to DADC. The key differences are 531

in the setup: in DADC, we need crowdworkers to 532

write novel inputs whereas in active learning one 533

typically assumes access to unlabeled inputs. 534

Other Data Quality Improvements. Aside 535

from adversarial data collection, researchers have 536

explored numerous methods for improving data 537

quality when using crowdsourcing. This includes 538

feedback from experts (Parrish et al., 2021; Nan- 539

gia et al., 2021), gamifying the data collection 540

process (Yang et al., 2018), encouraging counter- 541

factual examples (Kaushik et al., 2020; Gardner 542

et al., 2020), or providing prompts that workers 543

can edit (Bowman et al., 2020; Vania et al., 2020). 544

Many of the ideas from these methods can be com- 545

bined with adversarial data collection, e.g., Eisen- 546

schlos et al. (2021) fruitfully combine gamification 547

and adversarial data, and we leave a full exploration 548

of such combinations to future work. 549

7 Conclusion and Future Work 550

We investigated dynamic adversarial data collec- 551

tion in the limit—over a large number of rounds 552

until model performance starts plateauing—and 553

demonstrated that data collected via this method is 554

more valuable for training than alternatives, both on 555

validation data and an expert-curated test set. We 556

analyzed the collected data, showing that DADC 557

yields examples that are more diverse, more com- 558

plex, and contain fewer annotation artifacts com- 559

pared to non-adversarial examples. Our results 560

show that when building large training sets for 561

training NLP models, data collected in an adversar- 562

ial fashion with a continually updating model-in- 563

the-loop can be more useful than standard model- 564

agnostic collection in the long term. 565

In future work, it is vital to conduct similar ex- 566

periments on different tasks, e.g., question answer- 567

ing and sentiment analysis, as well as on a larger 568

number of contexts for NLI. Such experiments can 569

provide insight into the generalizability of our find- 570

ings. Moreover, given that a core benefit of DADC 571

is promoting diversity and complexity of examples, 572

one could explore other diversity-promoting meth- 573

ods of data collection. Lastly, our DADC setup is 574

relatively simplistic in that we use a single target 575

model and provide no other guides to the annota- 576

tor; it would be interesting to provide generative 577

models, model interpretations, an ensemble of tar- 578

get models, or other methods to potentially further 579

improve our DADC results. 580
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Addressing Possible Ethical Concerns581

The premises that we use are sourced from pub-582

licly available sources and were vetted to ensure583

they contained no overtly offensive content. As584

described in main text, we designed our incentive585

structure to ensure that crowdworkers were well586

compensated (i.e., paid over minimum wage in the587

U.S.). Our datasets focus on the English language588

as it is spoken in the United States. They are not589

collected for the purpose of designing NLP appli-590

cations but to conduct a scientific study into col-591

lecting data for training machine learning models.592

We share our datasets to allow the community to593

replicate our findings and do not foresee any risks594

associated with the free use of this data.595
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Table 5 shows the ten paragraphs that are used as1034

the premises in our experiments.1035

B Mechanical Turk Interface1036

Figure 5 shows our Amazon Mechanical Turk in-1037

terface for the model-in-the-loop setting.1038
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Premises

Sound is due to the vibrations of objects. A piano string produces sound because of its vibration when struck, or pulled to one side and then
released. This vibration sets the air in rapid motion, and the result is the recording of the sound on our ear-drums. In old telephones, this
recording corresponds to a film of sheepskin or bladder drawn over a hollow cup or cylinder. When the head of a drum is struck with a small
stick it vibrates. In this case the vibrations are set in motion by the blow, while in the telephone a similar phenomenon is the result of vibratory
waves falling from the voice on the thin membrane, or disk of metal, in the transmitter. When these vibrations reach the ear-drumm the nervous
system, corresponding to electricity in the mechanical telephone, carries this sound to our brains where it is recorded and understood. In the
telephone the wire, charged with electricity, carries the sound from one place to another.

Michael Faraday was born at Newington, Surrey, on September 22, 1791, and was the third of four children. His father, James Faraday, was
the son of Robert and Elizabeth Faraday, of Clapham Wood Hall, in the north-west of Yorkshire, and was brought up as a blacksmith. He was
the third of ten children, and, in 1786, married Margaret Hastwell, a farmer’s daughter. Soon after his marriage he came to London, where
Michael was born. In 1796 James Faraday, with his family, moved from Newington, and took rooms over a coach-house in Jacob’s Well Mews,
Charles Street, Manchester Square. In looking at this humble abode one can scarcely help thinking that the Yorkshire blacksmith and his little
family would have been far happier in a country house than in their new crowded London one, however, had he remained in the countryside, it
is difficult to see how the genius of young Michael could have met with the requisites for its development.

I had demonstrated by repeated experiments that inoculations of yellow fever blood into animals–dogs, rabbits, guinea pigs–gives a negative
result. However, this negative result might be because these animals are not susceptible to the disease. In the civil hospital in Vera Cruz in
1887, Dr. Daniel Ruiz ran a single inoculation experiment on a man. But, this experiment was inconclusive because the patient from whom the
blood was obtained was in the eighth day of the disease, and it was quite possible that the specific germ was destoyed at that point. These were
the facts surrounding yellow fever when Dr. Reed and his associates commenced their investigations in Cuba during the summer of 1900. In
a preliminary note read at the meeting of the American Public Health Association, October 22, 1900, the board gave a report of three cases of
yellow fever which they believed to be direct results of mosquito inoculations.

There are other signs of a coming change in the weather known less generally. When birds of long flight, such as swallows and others, hang
about home and fly low—rain or wind may be expected. Also when animals seek sheltered places, instead of spreading over their usual range:
when pigs carry straw to their sties; and when smoke from chimneys does not ascend readily, an unfavourable change may be looked for. Dew,
on the other hand, is an indication of fine weather. So is fog. Neither of of these two formations occurs under an overcast sky, or when there is
much wind.

A fierce onslaught was made against Alvinczy’s position by Massena’s corps. It was entirely unsuccessful, and the French were repulsed with
the serious loss of three thousand men. Bonaparte’s position was now even more critical than it had been at Castiglione; he had to contend with
two new Austrian armies, one on each flank, and Wurmser with a third stood ready to sally out of Mantua in his rear. If there should be even
partial cooeperation between the Austrian leaders, he must retreat. But he felt sure there would be no cooeperation whatsoever.

The pendulum had swung—it was no longer the Federalist merchants of New England who were discontent with the policies of the governement,
but the planters of the South and particularly of South Carolina. New England was now in favor of a protective tariff. Webster, New England’s
foremost man at Washington, had voted against the tariff of 1816, but had changed his mind and supported a higher tariff in 1824, and a still
higher in 1828. The planters of the South had not found it easy to manufacture goods. They had little or nothing, therefore, to protect against
the products of European countries. On the contrary, they exported much to England, and imported from England and other countries many of
the things they consumed. Accordingly, they were opposed to the whole system of tariff taxation and desired free trade.

The water was wide and deep, so that he could not cross it. He, however, went down to the brink of the water, and got a good drink. This
refreshed him very much, and then he went back again up the bank, and lay down upon the grass there to rest. Presently two cows came down
to the water, on the side opposite to where Tony was sitting.

The death of Socrates was brought under three of his enemies—Lycon, Meletus, and Anytus, the last a man of high rank and reputation in
the state. Socrates was accused by them of despising the ancient gods of the state, introducing new divinities and corrupting the youth of
Athens. He was charged with having taught his followers, young men of the first Athenian families, to despise the established government, to
be turbulent and seditious, and his accusors pointed to Alcibiades and Critias, notorious for their lawlessness, as examples of the fruits of his
teaching.

In some places the wires came very near together, and in others the spaces between them were so wide, that Wallace thought that the squirrel,
if by any chance he should ever get put into the cage, would be very likely to squeeze his way out. Then, besides, Phonny had not measured his
wires in respect to length, but had cut them off of various lengths, taking care however not to have any of them too short. The result was that
the ends of the wires projected to various distances above the board, presenting a ragged and unworkmanlike appearance.

Garrity was the most sinister figure in organized baseball. Once a newspaper reporter, he had somehow obtained control of the Rockets by
chicanery and fraud. Sympathy and gratitude were sentiments unknown to him. He would work a winning pitcher to death, and then send the
man shooting down to the minors the moment he showed the slightest symptom of weakness. He scoffed at regulations and bylaws; he defied
restraint and control; he was in a constant wrangle with other owners and managers; and as a creator of discord and dissension he held the belt.

Table 5: The ten paragraphs we use as premises in our experiments. We refer to these contexts as Sound, Faraday,
Yellow, Weather, Battle, Tariff, Water, Socrates, Wires, and Garrity, respectively.
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Figure 5: Our Amazon Mechanical Turk interface for the model-in-the-loop setting.
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