
DragSolver: A Multi-Scale Transformer for Real-World
Automotive Drag Coefficient Estimation

Ye Liu 1 2 Yuntian Chen 3 4

Abstract
Automotive drag coefficient (Cd) is pivotal to en-
ergy efficiency, fuel consumption, and aerody-
namic performance. However, costly computa-
tional fluid dynamics (CFD) simulations and wind
tunnel tests struggle to meet the rapid-iteration
demands of automotive design. We present Drag-
Solver, a Transformer-based framework for rapid
and accurate Cd estimation from large-scale, di-
verse 3D vehicle models. DragSolver tackles four
key real-world challenges: (1) multi-scale feature
extraction to capture both global shape and fine
local geometry; (2) heterogeneous scale normal-
ization to handle meshes with varying sizes and
densities; (3) surface-guided gating to suppress
internal structures irrelevant to external aerody-
namics; and (4) epistemic uncertainty estimation
via Monte Carlo dropout for risk-aware design.
Extensive evaluations on three industrial-scale
datasets (DrivAerNet, DrivAerNet++, and Dri-
vaerML) show that DragSolver outperforms ex-
isting approaches in accuracy and generalization,
achieving an average reduction of relative L2 error
by 58.7% across real-world datasets. Crucially,
DragSolver is the first to achieve reliable, real-
time Cd inference on production-level automotive
geometries.

1. Introduction
The aerodynamic drag coefficient (Cd) is a critical metric in
automotive design, shaping energy efficiency, fuel consump-

1Shanghai Jiao Tong University, Shanghai 200240. PR China
2Zhejiang Key Laboratory of Industrial Intelligence and Digital
Twin, Eastern Institute of Technology, Ningbo, Zhejiang 315200,
P.R. China 3Ningbo Institute of Digital Twin, Eastern Institute
of Technology, Ningbo, Zhejiang 315200, P.R. China 4Ningbo
Key Laboratory of Advanced Manufacturing Simulation, Eastern
Institute of Technology, Ningbo, Zhejiang 315200, P.R. China.
Correspondence to: Yuntian Chen <ychen@eitech.edu.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

(a)

(b)

(c)

Figure 1. Key challenges in learning-based Cd prediction. (a)
Multi-scale influence: Global shape influences Cd by determining
large-scale aerodynamic flow patterns, including pressure distri-
bution and wake formation. (b) Local and irrelevant structures:
Small details (e.g., mirrors, wheels) induce turbulence, while the
inset highlights internal components (e.g., seats, dashboard) that
are irrelevant to external aerodynamics but appear in 3D scans. (c)
Geometric and mesh variability: Differences in vehicle underbody
structures, mesh resolution, and discretization highlight the chal-
lenge of inconsistent representations across datasets, necessitating
robust normalization.

tion, and vehicle range (Sudin et al., 2014). In the early
design stages, rapid and accurate Cd estimation is essential
for evaluating shape variants under tight development time-
lines. Traditional numerical methods, such as computational
fluid dynamics (CFD) simulations and wind tunnel exper-
iments, provide reliable estimations (Rodi, 1997; Baker &
Brockie, 1991) but are computationally expensive, often
requiring hours or even days per iteration for complex 3D
models (Moin & Mahesh, 1998). This bottleneck signif-
icantly hinders the iterative workflows crucial to modern
automotive engineering.

From a physics standpoint, the drag force FD on a vehicle
is

FD = 1
2 ρ v

2 Cd A, (1)

where ρ is air density, v is velocity, and A is frontal area.

1



DragSolver: A Multi-Scale Transformer for Real-World Automotive Drag Coefficient Estimation

Under standardized test conditions, ρ and v remain fixed,
leaving Cd as the primary shape-dependent variable. If one
could directly map a vehicle’s 3D geometry to Cd, engineers
could swiftly assess design alternatives without incurring
the high costs of CFD or wind tunnel experiments.

Despite this appeal, developing a real-world practi-
cal geometry-to-Cd predictor faces four critical chal-
lenges (Sudin et al., 2014): (1) Multi-scale interactions:
Local details (e.g., spoilers, side mirrors) and global shape
factors (e.g., roof curvature) both heavily influence drag. (2)
Geometric Diversity: Vehicles differ widely in size, pro-
portion, and mesh density, requiring robust normalization
across heterogeneous data. (3) Irrelevant Internal Struc-
tures: Real-world test samples may include interior com-
ponents (e.g. seats, steering wheel) absent in the training
set of exterior surfaces, adding noise and hindering focus
on flow-dominant geometry; (4) Predictive uncertainty: In-
dustrial pipelines need confidence estimates for risk-aware
design, but most existing ML methods treat Cd prediction
as a “black box.” Figure 1 illustrates these issues in detail.

Conventional CFD and wind tunnel experiments, though
accurate, remain prohibitively expensive for repeated design
iterations (Moin & Mahesh, 1998; Heinz, 2020; He et al.,
2021). Recent deep-learning surrogates (Rios et al., 2021;
Abbas et al., 2022) can accelerate aerodynamic analysis
but still exhibit key limitations: (1) existing Cd prediction
methods (Song et al., 2023; Elrefaie et al., 2024a) often rely
on 2D views or low-dimensional shape parameters, failing
to capture real-world 3D geometry; (2) Transformer-based
3D networks (Vaswani et al., 2017; Pang et al., 2022; Han
et al., 2024; Chen et al., 2024; Wu et al., 2024b; 2022; Wang,
2023) excel at modeling global context via multi-head atten-
tion but typically assume uniform point densities and lack
robust mesh normalization or interior filtering; and (3) neu-
ral PDE solvers (Li et al., 2021; 2023c; Hao et al., 2023; Wu
et al., 2024a) emphasize local flow states rather than a global
scalar like Cd, requiring cumbersome flow-field integration
for large, unstructured car meshes. Thus, while Transform-
ers inherently excel at capturing distant geometric cues (e.g.,
mirror-to-tail or underbody interactions) that strongly in-
fluence aerodynamics, a practical geometry-to-Cd pipeline
still needs dedicated modules to handle heterogeneous mesh
scales, interior structures, and predictive uncertainty.

In response, we introduce DragSolver, a practical deep learn-
ing system that delivers reliable, real-time Cd estimations
for diverse, large-scale automotive models. Specifically,
Specifically, DragSolver integrates: (1) Multi-scale feature
extraction to capture both global shape contexts and lo-
cal geometric cues crucial for aerodynamics. (2) Hetero-
geneous scale normalization to handle drastically varying
mesh densities and vehicle sizes consistently. (3) Surface-
guided gating to automatically suppress or ignore irrelevant

internal structures, focusing on exterior flow-dominant sur-
faces. (4) uncertainty estimation via a lightweight Monte
Carlo dropout scheme, enabling risk-aware design deci-
sions in industrial workflows. We extensively evaluate Drag-
Solver on three real-world datasets (DrivAerNet, DrivAer-
Net++, and DrivaerML). Results show an average 58.7%
relative L2 improvement over existing baselines. Further-
more, DragSolver achieves near real-time inference (∼0.9–
5 s per shape) on a single GPU, significantly undercutting
hours-long CFD pipelines. To foster broader research and
real-world adoption, we will release our code upon accep-
tance. Overall, our contributions are threefold:

• We present the first end-to-end multi-scale transformer-
based neural solution for automotive drag forecasting
on large, unstructured industrial datasets.

• We design a surface-guided gating mechanism with het-
erogeneous normalization and uncertainty estimation,
addressing real-world geometric complexities.

• We validate on three high-fidelity, diverse datasets, con-
sistently surpassing prior methods in accuracy, speed,
and out-of-distribution generalization.

2. Related Work

Automotive Aerodynamic Analysis. Accurate drag coef-
ficient (Cd) estimation traditionally relies on computational
fluid dynamics (CFD) and wind tunnel testing (Menter et al.,
2003; Scardovelli & Zaleski, 1999; Fröhlich & Von Terzi,
2008). Though these methods yield high-fidelity aerody-
namic data, they are slow and costly, limiting rapid design it-
eration. While recent learning-based approaches (Song et al.,
2023; Elrefaie et al., 2024a;b) reduce CFD costs, most rely
on low-dimensional shape parameters (e.g., a few geometric
descriptors) or 2D projections (e.g., silhouette views). Such
simplifications ignore the intricate 3D structure that sig-
nificantly impacts aerodynamic flow. Consequently, these
methods struggle to capture local flow phenomena, limiting
their applicability in real-world design loops.

Neural PDE Solvers. A related direction involves neural
PDE solvers (Karniadakis et al., 2021; Wang et al., 2023),
serving as fast surrogates for PDE-governed phenomena
such as fluid flow or stress fields. Neural operators meth-
ods (Li et al., 2021; 2023d; Wu et al., 2023; Li et al., 2023b)
and Transformer-based PDE solvers (Liu et al., 2022; Li
et al., 2023c; Hao et al., 2023; Wu et al., 2024a) achieve
strong results in predicting local flow states. However, de-
riving a global scalar like Cd typically requires further in-
tegration of the entire flow field or explicit knowledge of
pressure/velocity distributions, making them less direct and
often inaccurate for global drag prediction. In contrast,
DragSolver bypasses explicit PDE modeling by learning a

2



DragSolver: A Multi-Scale Transformer for Real-World Automotive Drag Coefficient Estimation

geometry-to-Cd mapping end-to-end, focusing on capturing
the global shape cues relevant to drag without solving local
fields and better suits large-scale automotive meshes with
partial interior data.

Geometric Deep Learning Deep learning on 3D data has
progressed through point-based, voxel-based, mesh-based,
and more recently transformer-based paradigms. Point-
based networks (Qi et al., 2017a;b; Zhao et al., 2021; Pang
et al., 2022; Han et al., 2024; Chen et al., 2024) directly
process unstructured point clouds but can struggle with
very dense or uneven distributions. Voxel-based methods
transform point clouds into regular voxel grids to facilitate
3D convolution operations (Wu et al., 2024b; 2022; Wang,
2023). Mesh-based approaches (Pfaff et al., 2021b; Wang
et al., 2019) exploit edge convolutions, though they can be
sensitive to mesh topology changes and not trivially adopt
multi-scale feature fusion. However, none of these main-
stream methods directly address (1) heterogeneous mesh
normalization, (2) gating out irrelevant internal geometry,
or (3) automotive-specific Cd regression with uncertainty.
Our proposed DragSolver extends the transformer-based
pipeline, integrating multi-scale hierarchical encoding (Wu
et al., 2024b) and additional modules tailored to real-world
automotive drag estimation.

Predictive Uncertainty Estimation Uncertainty-aware
ML helps practitioners gauge the reliability of estimations.
Bayesian neural networks (Jospin et al., 2022) are a classic
approach, but often complicated to implement and scale.
MC Dropout (Gal & Ghahramani, 2016) offers a simpler
variational approximation: applying dropout at inference
time for multiple forward passes. Ensemble methods (Lak-
shminarayanan et al., 2017) also provide robust uncertainty
but at higher memory cost. In our setting, epistemic un-
certainty guides risk-aware decisions when deploying Cd

estimations in industrial design pipelines.

3. Methodology
We present DragSolver, a novel Transformer-based ap-
proach for real-time drag coefficient estimation from large-
scale 3D automotive geometries. Our design addresses four
key challenges in aerodynamic optimization: multi-scale
interactions, heterogeneous geometry, irrelevant internal
structures, and predictive uncertainty.

3.1. Problem Formulation
Task Definition. We aim to learn a function f(G)→ Cd

mapping an automotive geometry G to its drag coefficient
Cd. Concretely, each sample (G, Cd) provides: (1) a 3D
representation of the vehicle (e.g., triangular mesh, point
cloud, or voxel grid), and (2) a scalar Cd measured or com-
puted under standardized conditions (e.g., fixed air density ρ

and velocity v, cf. Eq. 1). Our goal is to approximate Cd

accurately and efficiently, avoiding the high cost of full-
fledged CFD or wind tunnel experiments.

Input Geometry. Let G = {vi}Ni=1 denote either N sur-
face vertices or an N -point cloud of the vehicle. In prac-
tice, G may include partial interior geometry (e.g. seats,
steering wheel) that does not affect external aerodynam-
ics. We address this via surface-guided gating (Sec. 3.4)
to deemphasize irrelevant internal points, focusing on the
flow-dominant exterior.

Learning Objective. Denote by Ĉd = fθ(G) the pre-
dicted drag coefficient from a network with parameters θ.
We adopt a standard regression loss:

Lreg =
1

M

M∑
j=1

(
Ĉ

(j)
d − C

(j)
d

)2
, (2)

where M is the mini-batch size. Additional terms for gating
or regularization may be included (Sec. 3.4). Our goal is to
make Ĉd closely match the true Cd while remaining robust
to geometric variations and interior noise.

3.2. Multi-Scale Architecture
Motivation. Automotive drag depends on both global
shape (e.g., roof curvature, body length) and local details
(e.g., spoilers, side mirrors). A single-scale network may
miss fine geometry or lose broad context. Hence, we adopt a
multi-stage encoder design, inspired by Transformer-based
point processing (Wu et al., 2024b), capturing both large
and small-scale patterns.

Stage-Wise Forward. As illustrated in Fig. 2, we begin
with an embedding block that transforms raw points/voxels
into an initial feature space. We then stack L encoding
stages {enc[0], . . . ,enc[L − 1]}, each combining sparse
or point-based convolutions with attention layers. Let F(0)

be the output of the embedding block. For k = 1, . . . , L:

F(k) = enc[k]
(
F(k−1)

)
. (3)

Deeper stages expand receptive fields to capture global
shape context, while earlier features preserve local detail.

Global Pooling at Each Stage. Unlike single-resolution
pipelines, we collect multi-scale global features by applying
a global pooling operator (GPool) at each stage output:

g(k) = GPool
(
F(k)

)
, k = 0, . . . , L. (4)

Where g(k) ∈ RCk encodes the entire shape at scale k.
Concatenating these pooled features

Gmulti-scale =
[
g(0) ∥ g(1) ∥ . . . ∥ g(L)

]
(5)

yields a comprehensive representation capturing both shal-
low local cues and deep global context. We feed Gmulti-scale
into a final regression MLP to predict Ĉd.

3



DragSolver: A Multi-Scale Transformer for Real-World Automotive Drag Coefficient Estimation

Diverse Meshes Normalized Point

A
tte

nt
io

n

La
ye

rN
or

m

M
LP

Po
si

tio
na

l 
En

co
di

ng

La
ye

rN
or

m

Block × N

V
ox

el
Po

ol

D
ep

th
Fi

lte
rin

g

X

MLP

Em
be

dd
in

g

Encoder × S

H
SN

G
lo

ba
lP

oo
l

X

MLP

M
LP

w
ith

M
C

D
ro

po
ut

2

1

3

4

Figure 2. Overview of DragSolver. The framework consists of four main components: (1) Heterogeneous Scale Normalization (HSN),
which processes diverse vehicle meshes into a unified representation (Sec. 3.3). (2) Surface-Guided Gating, which filters out irrelevant
internal structures to ensure a focus on aerodynamic surfaces (Sec. 3.4). (3) Multi-Scale Architecture, an encoder leveraging voxel
pooling, positional encoding, and attention to capture both global and local aerodynamic features (Sec. 3.2). (4) Epistemic Uncertainty
Estimation, utilizing Monte Carlo Dropout (MC Dropout) to provide confidence estimates in Cd predictions (Sec. 3.5).

Estateback

Fastback

Notchback

Vehicle Models Underbody (Mesh) Body (Point cloud) Comparison of Interior Structures

With Interior

Without Interior

Figure 3. Variability in vehicle configurations, mesh resolution, and structural representations. The first column illustrates three
distinct vehicle types: Estateback (top), Fastback (middle), and Notchback (bottom), highlighting variations in shape distribution.
The second column presents underbody meshes, revealing significant differences in structural complexity and mesh resolution across
datasets. The third column visualizes point cloud representations, showing heterogeneous surface discretization levels. The fourth
column compares vehicles with and without interior structures, emphasizing distributional shifts where real-world data includes
internal components irrelevant to external aerodynamics. These differences underscore the challenges posed by dataset heterogeneity in
learning-based Cd prediction.

3.3. Heterogeneous Scale Normalization
Challenge. Real-world vehicles differ drastically in phys-
ical scale (e.g., compact cars vs. large SUVs) and mesh
densities (hundreds of thousands up to millions of poly-
gons), causing inconsistent feature distributions if ingested
naively.

Automotive Geometric Normalization. We employ a
two-stage approach: (1) Wheelbase Alignment & Global
Scaling. Since wheelbase is relatively standardized, we
first rescale each shape so that the wheelbase matches a
fixed length, ensuring consistent front/rear alignment. We
then normalize all data by scaling the bounding box, en-
suring consistency and reducing large-scale discrepancies.
(2) Hybrid Resolution Sampling. Even after global scal-
ing, some vehicles remain overly dense, others sparse. We
mix mesh-based sampling (capturing high-curvature detail)
with uniform sampling (mitigating density imbalance). This
yields robust coverage of local geometry while preventing

over-/under-representation. Consequently, different vehicles
become more comparable, aiding stable multi-scale feature
extraction.

3.4. Surface-Guided Gating
Motivation. In practice, real-world scans or CAD files can
include internal components (e.g., seats, steering wheel) that
do not affect external aerodynamic flow. Training datasets
often provide only exterior surfaces, whereas test models
might unexpectedly contain such interior geometry, causing
noise and performance degradation. Manual preprocessing
is generally impractical for large-scale automotive designs.
Therefore, we combine a depth-based filtering step with a
multi-stage gating mechanism to robustly suppress irrele-
vant internal structures.

Depth-Based Filtering (Preprocessing). First, we per-
form a coarse elimination of clearly internal voxels. We
estimate the depth of each voxel relative to the outer sur-

4



DragSolver: A Multi-Scale Transformer for Real-World Automotive Drag Coefficient Estimation

face using a ray-marching approach along the principal axes
(e.g., x-direction). Specifically, we cast rays outward from
a reference plane and track the sequence of voxel cross-
ings. For each voxel, its depth is defined as the number of
intersections encountered before reaching the outer shell.
Voxels that are clearly distant from the surface—beyond
a predefined threshold—are classified as internal and re-
moved. This method efficiently eliminates large chunks
of internal geometry while maintaining conservativeness
to avoid mistakenly discarding subtle external cavities or
enclosed aerodynamic features.

Multi-Stage Gating Mechanism. After filtering out obvi-
ous internal voxels, we assign an initial gating weight ci = 1
to each remaining voxel or point. An MLP then refines ci
at select stages of our multi-scale encoder. Specifically: (1)
High-resolution input layer: Each voxel i has c

(init)
i = 1,

which is updated by a gating MLP to account for uncertain
regions near the exterior. Hence c

(init)
i ← σ(MLP(fi)),

letting the network softly downweight borderline internal
geometry. (2) Mid-resolution layers: No gating is applied,
allowing the model to freely attend to intermediate features
without further constraints. (3) Final gating: Right before
global pooling, we recompute c

(final)
i from the final-layer

features. This second pass ensures a fine-grained re-check
so that truly flow-relevant surface voxels remain prominent,
while any residual internal points are minimized. If c(l)i ≈ 0,
that voxel’s feature f

(l)
i is effectively nulled for subsequent

aggregation. In the end, we compute

Fglobal =

∑
i c

(final)
i f

(final)
i∑

i c
(final)
i + ϵ

, (6)

focusing attention on truly external, aerodynamically rel-
evant regions. During training, we insert random “ghost”
voxels inside the bounding box to simulate unexpected inte-
rior structures.

3.5. Epistemic Uncertainty Estimation
Rationale. In industrial design loops, a single Ĉd estima-
tion may be insufficient for critical decisions. Epistemic
uncertainty indicates model ignorance, helping engineers
weigh risk in choosing final shapes.

MC Dropout. We adopt Monte Carlo Dropout (Gal &
Ghahramani, 2016), activating dropout at inference. Let
fθk(G) be the k-th forward pass with distinct dropout
masks. Then

Cd = 1
K

K∑
k=1

fθk(G), σ2
Cd

= 1
K

K∑
k=1

(
fθk(G)− Cd

)2
.

(7)
Hence, σ2

Cd
approximates epistemic uncertainty. In practice,

K = 10 yields stable estimates with minimal overhead.

Table 1. Summary of the datasets used for evaluation.

Dataset Categories #Car #Mesh

DrivAerNet++
Estateback
Fastback
Notchback

7673 420k–2.2M

DrivAerNet Fastback 3760 420k

DrivaerML Notchback 483 750k

4. Experiments
We conduct extensive experiments to evaluate DragSolver
under both in-distribution (ID) and out-of-distribution
(OOD) settings, reflecting real-world automotive design
scenarios. Our primary goals are to (1) assess accuracy on
known distributions, (2) measure generalization to unseen
shapes, datasets, or interior structures, and (3) validate the
effectiveness of each core module via ablation.

Datasets. We use three real-world datasets: (DrivAer-
Net++, DrivAerNet, and DrivaerML)covering diverse body
shapes (estateback, fastback, notchback), mesh resolutions
(420k to 2.2M polygons), and potential interior geometry.
Table 1 summarizes key statistics. Each dataset reserves
20% for testing. For cross-dataset or cross-shape evalua-
tions, we carefully partition training sets in one subset while
testing on different subsets or entirely different datasets.
More detailed descriptions of the datasets can be found in
Appendix B.

Evaluation Metrics. For accuracy, we report: (1) Rela-
tive Ł2 Error: highlighting percentage error relative to the
ground-truth drag coefficient. (2) R2 Score: capturing how
much variance in Cd is explained by the model,

R2 = 1 −
∑M

i=1

(
Cd,i − Ĉd,i

)2∑M
i=1

(
Cd,i − Cd

)2 , (8)

where Cd is the mean of {Cd,i} over the test set. A perfect
model yields R2 = 1, while R2 ≤ 0 indicates no explana-
tory power relative to the mean.

Baselines. We compare DragSolver with more than 10
baselines: including typical 3D geometric deep learning
methods: PointNet (Qi et al., 2017a), PointNet++ (Qi
et al., 2017b), PointTransformer (Zhao et al., 2021), Point-
GPT (Chen et al., 2024), Mamba3D (Han et al., 2024), Point-
Transformer V3 (Wu et al., 2024b), MeshGraphNet (Pfaff
et al., 2021a), RegDGCNN (Elrefaie et al., 2024b). Includ-
ing state-of-the-art neural operators: GNOT (Hao et al.,
2023), GINO (Li et al., 2023a), Transolver (Wu et al.,
2024a)

Implementations. For fairness, we implement a five-stage
multi-scale encoder, each stage halving the spatial resolu-
tion (stride = 2) to progressively expand the receptive field.

5



DragSolver: A Multi-Scale Transformer for Real-World Automotive Drag Coefficient Estimation

Table 2. Performance comparison for in-distribution evaluation on two real-world datasets, where we record Relative L2 and R2. A
smaller Relative L2 is better, while a larger R2 is better. For clarity, the best result is in bold, and the second-best is underlined.
“Promotion” refers to the relative error reduction w.r.t. the second-best model, i.e. 1 − Our error

The next best error . Note: DragSolver applies MC
Dropout for uncertainty (see §3.5), yielding mean ± std. for each metric. Other baselines do not estimate model uncertainty and therefore
report single values.

Model
DrivAerNet DrivAerNet++

Relative L2 ↓ R2 ↑ Relative L2 ↓ R2 ↑
PointNet (Qi et al., 2017a) 0.0062 0.6184 0.0079 0.5170
PointNet++ (Qi et al., 2017b) 0.0046 0.7538 0.0064 0.6241
PointTransformer (Zhao et al., 2021) 0.0024 0.8844 0.0031 0.8015
PointGPT (Chen et al., 2024) 0.0023 0.8910 0.0028 0.8210
Mamba3D (Han et al., 2024) 0.0015 0.9173 0.0014 0.9192
PointTransformer V3 (Wu et al., 2024b) 0.0021 0.9051 0.0022 0.8901
MeshGraphNet (Pfaff et al., 2021a) 0.0230 -0.2334 0.0238 -0.5858
RegDGCNN (Elrefaie et al., 2024b) 0.0030 0.8418 0.0059 0.7064

GINO (Li et al., 2023a) 0.0286 -0.4361 0.0316 -0.5463
Transolver (Wu et al., 2024a) 0.0180 -0.1646 0.0223 -0.3931
GNOT (Hao et al., 2023) 0.0036 0.7926 0.0028 0.8312

DragSolver (Ours) 0.0007± 0.0001 0.9582 ± 0.0016 0.0005± 0.0001 0.9712 ± 0.0011
Relative Promotion 53.3% 4.2% 64.2% 7.05%

Channel dimensions grow from 32 to 256, and we employ
robust patch-based attention, which ensures that our model
parameter is comparable to other Transformer-based models
such as Point Transformer V3 (Wu et al., 2024b). This hier-
archical design balances local and global aerodynamic cues
while efficiently handling diverse vehicle meshes. For Het-
erogeneous Scale Normalization (Sec. 3.3), the wheelbase is
fixed at 2.8m, and we apply a hybrid sampling strategy that
yields around 600 k points per vehicle. We enable Monte
Carlo Dropout at the final regression layers with dropout
rate p = 0.1. At inference, we draw K = 10 forward
passes, yielding a set of predicted Cd values {Ĉ(k)

d }Kk=1.
We then report mean (Cd) and standard deviation (±σCd

).
We optimize with AdamW (Loshchilov, 2019) at a base
learning rate of 1 × 10−3, batch size 24, and train for 50
epochs, adopting cosine LR decay. All experiments run
on NVIDIA A800 GPUs unless stated otherwise. Unless
otherwise stated, these hyperparameters remain fixed across
all experiments. See Appendix C for comprehensive de-
scriptions of implementations.

4.1. Results of In-Distribution

In-Distribution Performance. We first evaluate each
model in a same-distribution scenario, where training and
test sets share the same shape/mesh statistics. Specifically,
we independently train and test on DrivAerNet and Dri-
vAerNet++ (Tab. 2). Point-based networks generally benefit
from learning unstructured data but still suffer with fine
geometry. PointGPT and Mamba3D attain higher R2 on

DrivAerNet++, yet remain behind DragSolver. PDE-based
or neural operator methods often focus on local flow states
and require additional integration for a global Cd, leading
to inconsistent or even negative R2 on complex real-world
shapes. Our DragSolver substantially outperforms all base-
lines on both datasets, reducing relative L2 error to 0.0007
(DrivAerNet) and 0.0005 (DrivAerNet++). It achieves R2

up to 0.9712, indicating an excellent fit with ground-truth
labels. Compared to the second-best method, DragSolver
yields a 53.3% and 64.2% promotion in error reduction, re-
spectively, demonstrating its ability to consistently capture
global aerodynamic interactions in purely data-driven man-
ner. Overall, these in-distribution results confirm that our
multi-scale network, aided by robust normalization excels
at learning complex geometry-to-Cd mappings.

4.2. Results of Out-of-Distribution

Although ID accuracy is important, practical deployment
often faces unseen shape configurations or distinct mesh
distributions. We thus evaluate Out-of-Distribution (OOD)
settings where training and testing data differ in shape type,
dataset origin, or internal structures. Figure 3 illustrates the
diversity in real-world datasets, encompassing variations
in vehicle shape, underbody complexity, and point cloud
resolution. The presence of both high-density and low-
density mesh structures, along with the inclusion of real-
world interior components in some cases, creates significant
distribution shifts. These differences pose challenges for
learning-based prediction.

6



DragSolver: A Multi-Scale Transformer for Real-World Automotive Drag Coefficient Estimation

Table 3. Cross-shape generalization within DrivAerNet++. Train
columns list body types used for training, Test indicates the held-
out shape (estateback E, fastback F, notchback N).

Model Train Test Relative L2 ↓ R2 ↑

Mamba3D F+N E 0.0097 0.4912
PointGPT F+N E 0.0117 0.3616
RegDGCNN F+N E 0.0124 0.3245
DragSolver F+N E 0.0031± 0.0003 0.8054± 0.0021

Mamba3D F+E N 0.0054 0.6179
PointGPT F+E N 0.0094 0.4984
RegDGCNN F+E N 0.0120 0.3838
DragSolver F+E N 0.0034± 0.0003 0.7842± 0.0019

Table 4. Performance comparison for cross-dataset generaliza-
tion. DN++: DrivAerNet++, DML: DrivaerML. Models are
trained on DN++ and tested on DML to evaluate generalization to
unseen high-resolution meshes.

Model Train Test Relative L2 ↓ R2 ↑

Mamba3D DN++ DML 0.0197 -0.0684
PointGPT DN++ DML 0.0447 -0.5447
RegDGCNN DN++ DML 0.0561 -0.6145
DragSolver DN++ DML 0.0091± 0.0001 0.2732± 0.0004

Cross-Shape within DrivAerNet++. The DrivAerNet++
series includes Estateback, Fastback, and Notchback de-
signs. Table 3 shows results where we train only on two
body types (F, N) and test on the third (E)—absent from
training, and vice versa. When testing on estateback (E)
after training on fastback & notchback (F+N), DragSolver
achieves the lowest relative L2 (0.0031) and highest R2

(0.8054), outperforming Mamba3D by an over 3× reduc-
tion in error. Similarly, for the F+E→N split, DragSolver
again surpasses competing methods with an error of 0.0034
and R2 = 0.7842. The substantial gap underscores the
model’s strong capacity to handle shape distribution shifts
and capture exterior geometry cues that impact Cd.

Cross-Dataset Generalization Results. We next exam-
ine a cross-dataset scenario by training on DrivAerNet++
(DN++) and testing on DrivaerML (DML), where vehicles
differ more substantially in shape design, mesh resolution,
and potential internal complexities. Table 4 shows that Drag-
Solver attains a much lower relative L2 error (0.0091) and
a positive R2 of 0.2732, indicating it effectively transfers
across dataset discrepancies. In contrast, Mamba3D yields
a higher error (0.0197) and a negative R2 (-0.0684), while
PointGPT further degrades to a 0.0447 error and −0.5447
R2. A negative R2 suggests these methods underperform
even a naive “constant mean” predictor in this cross-dataset
context. By contrast, DragSolver’s robust normalization,
multi-scale architecture enable it to retain stable perfor-
mance despite the substantial shift from DN++ to DML.

Interior Structure Variation Results. Industrial
pipelines often differ in interior geometry. We model this
mismatch by artificially adding random “ghost” interior
points to both training and testing data in DrivAerNet++.
The training set initially contains only exterior surfaces,
but we insert a limited number of synthetic interior
points to teach the network that such geometry should be
downweighted. At test time, we similarly append more
extensive ghost interiors to mimic real scans that include
seats or dashboards. Table 6 shows that, without gating,
Relative L2 error degrades to 0.078; with gating, the error
is reduced to 0.065. Baselines that lack a dedicated filtering
mechanism degrade more severely, underscoring the value
of surface-guided gating in practical scenarios where
training and testing distributions differ in interior geometry.

Scalability analysis. As shown in Table 8, DragSolver
is already the most accurate model with only 5 % of the
training data, achieving R2=0.82 where the closest base-
line (Mamba3D) is still negatively correlated with ground
truth. Accuracy improves smoothly as the set grows, yet
the gain from 50 % to 100 % data is marginal (∆Rel.L2 =
0.06×10−3), indicating good sample–efficiency. The base-
lines, in contrast, require the full dataset to stabilise and
still exhibit 2–6× higher error at 100 % data. These trends
confirm that our architecture scales favourably in data and
compute, delivering state-of-the-art accuracy under limited
supervision while adding negligible inference overhead as
the dataset expands.

Noise robustness. Table 5 shows that DragSolver is far
less sensitive to real-world–style noise (dropout, pose jit-
ter, sensor error) than the three baselines. Even at the
strongest perturbation it keeps a positive R2, whereas PTV3,
Mamba3D, and PointGPT all become negatively correlated
with CFD ground truth. This confirms the superior resilience
of our physics-aware architecture for noisy, in-situ data.

4.3. Ablation Study

We now ablate the main modules in three settings: (1) in-
distribution, (2) cross-shape, and (3) interior mismatch. The
variants tested are: Single-Scale Only: no multi-scale fea-
ture fusion.+ Multi-scale (no gating, no normalization). +
Multi-scale + Normalization (no gating). DragSolver Full
(Multi-scale + Normalization + Gating). Table 7 shows
that each module contributes noticeably. Multi-scale is
crucial. Comparing “Single-Scale Only” (0.0049 in ID),
we see nearly a 47% relative error reduction in the in-
distribution scenario. Similar improvements appear in cross-
shape (0.0081 vs. 0.0065) and interior mismatch (0.0096 vs.
0.0079), indicating that capturing both global and local geo-
metric cues is essential. Normalization tackles large-scale
variation. Adding heterogeneous normalization (“+ MS +
Norm.”) yields a further jump in accuracy, e.g. from 0.0026
to 0.0007 in the ID setting, showing that unifying vehicle

7



DragSolver: A Multi-Scale Transformer for Real-World Automotive Drag Coefficient Estimation

Table 5. Comparison under limited training data (30% split of DrivAerNet++) with increasing augmentation intensity.

Model #Train Time/ 1× Inf. Drop- Rot. Flip Trans. Noise Rel.L2↓ R2 ↑
Samples epoch (s) Time (s) out (%) (%) (×10−3)

DragSolver (Ours)
1638 52.09 16.82 20% [−2◦∼2◦] 50% 0.01 5% 2.9420 0.8583
1638 52.02 16.81 30% [−3◦∼3◦] 50% 0.02 7% 5.7857 0.7460
1638 53.46 17.51 40% [−4◦∼4◦] 50% 0.03 9% 16.9077 0.2344

PTV3
1638 42.51 14.86 20% [−2◦∼2◦] 50% 0.01 5% 8.6164 0.4669
1638 43.14 14.90 30% [−3◦∼3◦] 50% 0.02 7% 11.4341 0.2501
1638 43.97 15.04 40% [−4◦∼4◦] 50% 0.03 9% 26.5797 −0.5991

Mamba3D
1638 152.39 21.86 20% [−2◦∼2◦] 50% 0.01 5% 13.7013 0.0853
1638 153.51 22.90 30% [−3◦∼3◦] 50% 0.02 7% 19.8485 −0.0894
1638 154.54 23.04 40% [−4◦∼4◦] 50% 0.03 9% 37.4115 −1.5153

PointGPT
1638 157.23 23.15 20% [−2◦∼2◦] 50% 0.01 5% 18.3948 −0.1941
1638 158.32 23.45 30% [−3◦∼3◦] 50% 0.02 7% 36.6032 −1.4559
1638 159.15 24.64 40% [−4◦∼4◦] 50% 0.03 9% 95.2137 −4.8912

Table 6. Impact of interior structure mismatch: training data
has a small portion of synthetic interior points, but test samples
include more extensive interior additions. Baseline methods de-
grade severely when confronted with these unseen interiors, while
DragSolver’s gating mechanism preserves robust performance.

Method Relative L2 ↓ R2 ↑
PointTransformer 0.0096 0.4343
PointTransformer V3 0.0078 0.5455
Mamba3D 0.0084 0.4604
PointGPT 0.0097 0.4241

DragSolver (No Gating) 0.0057± 0.0001 0.6538± 0.0005
DragSolver (Full) 0.0024± 0.0001 0.8739± 0.0004

Table 7. Ablation of DragSolver components on DrivAerNet++
under (a) in-distribution, (b) cross-shape, and (c) interior mismatch
scenarios. Metrics: Relative L2 (lower better).

Method Variant (a) In-Dist (b) Cross-Shape (c) Interior

Single-Scale Only 0.0049 0.0081 0.0096
+ Multi-scale 0.0026 0.0065 0.0079
+ Multi-scale + Norm. 0.0007 0.0034 0.0057
DragSolver (Full) 0.0007± 0.0001 0.0034± 0.0002 0.0024± 0.0002

sizes/densities helps the model converge more effectively.
Gating is pivotal for interior mismatch. In the final column,
adding gating drives error from 0.0057 to 0.0024, a 58% re-
duction, clearly demonstrating how surface-guided filtering
helps when test data includes unexpected internal structures.

4.4. Model Analysis

We further analyze core hyperparameters and design deci-
sions in DragSolver, focusing on DrivAerNet++ under the
in-distribution (ID) scenario unless stated otherwise. Our
goal is to demonstrate how multi-scale depth, pooling strat-
egy, voxel granularity, sampling approaches, and runtime
efficiency collectively shape the final performance.

Table 8. Scalability analysis on DrivAerNet++ under different
training-set sizes. Lower relative L2 is better; higher R2 is better.

Model #Train Train Time/ 1× Inf. Rel.L2 ↓ R2 ↑
Samples Ratio epoch (s) Time (s) (×10−3)

DragSolver

268 5% 5.40 11.98 3.5119 0.8243
536 10% 12.62 12.04 1.3929 0.9255

1638 30% 37.54 12.14 0.7026 0.9620
2680 50% 60.73 12.68 0.5927 0.9673
5361 100% 124.50 13.25 0.5351 0.9710

PTV3

268 5% 4.48 11.54 68.1518 −3.0564
536 10% 9.74 11.40 66.7872 −2.8737

1638 30% 29.07 11.41 6.4185 0.6150
2680 50% 48.81 11.86 3.2661 0.8088
5361 100% 98.77 12.25 1.7319 0.9024

Mamba3D

268 5% 17.02 22.03 42.1424 −1.6104
536 10% 35.12 22.15 32.8624 −1.1419

1638 30% 103.54 22.30 9.2257 0.3926
2680 50% 178.41 22.30 2.8901 0.8362
5361 100% 343.65 23.01 1.4811 0.9191

PointGPT

268 5% 18.21 23.54 70.8708 −3.8234
536 10% 37.02 23.64 62.9200 −3.2949

1638 30% 106.32 23.41 13.2661 0.1315
2680 50% 185.15 23.56 6.2985 0.6180
5361 100% 369.01 23.67 3.1240 0.8207

Table 9. Impact of Multi-Scale Depth L on DrivAerNet++.

Depth L=1 L=3 L=5 L=7

Relative L2 ↓ 0.0020 0.0010 0.0008 0.0009

Multi-Scale Depth (L). As discussed in Sec. 3.2, we vary
the encoder depth L ∈ {1, 3, 5, 7} to assess how capturing
multiple scales influences accuracy. Table 9 indicates that
L = 5 achieves the lowest relative L2 error (0.0008). When
L = 1, the network struggles to encode global shape context
(error 0.0020), and L = 7 brings diminishing returns with
higher overhead. Hence, L = 5 balances accuracy and
efficiency.

Global Pooling: Max vs. Average. After each en-
coder stage (Sec. 3.2), we apply a global pooling operator
(GPool). As shown in Table 10, max pooling consistently

8



DragSolver: A Multi-Scale Transformer for Real-World Automotive Drag Coefficient Estimation

Table 10. Impact of Global Pooling.

Global Pooling Strategies Mean Max

Relative L2 ↓ 0.0009 0.0007

Table 11. Impact of voxel size δ (lower δ = finer granularity).

Voxel Size 0.01 0.05 0.1

Relative L2 ↓ 0.0009 0.0016 0.0029

outperforms average pooling, likely due to its ability to bet-
ter retain salient geometric features (e.g., spoilers, ridges),
which are crucial for aerodynamic prediction.

Voxel Size. When using a sparse voxel backend, we eval-
uate voxel sizes δ ∈ {0.01, 0.05, 0.10} in normalized coor-
dinates. As Table 11 suggests, smaller δ = 0.01 captures
more fine-grained geometry, improving accuracy but slightly
increasing memory/time cost. Larger voxels (δ = 0.10) lose
local detail, hurting Cd prediction. We thus adopt δ = 0.01.

Hybrid Sampling. To handle heterogeneous vehicle
meshes, we compare three sampling strategies under an
OOD setting on DrivAerNet++. Specifically, the test distri-
bution includes shapes and resolutions not seen at training.
Mesh-based sampling alone can overfit to the training mesh
topology, while uniform sampling may underrepresent high-
curvature regions. Table 12 shows that a hybrid approach
achieves the best accuracy, effectively balancing local geo-
metric detail against distribution shifts.

Point Downsampling. Table 13 quantifies the impact of
progressively reducing the number of surface points fed
to the network. A gentle reduction from 60 k to 40 k
points increases the relative L2 by only ∼0.07!×!10−3 and
keeps R2 above 0.95, indicating that the model is robust
to moderate sparsity. Below 30 k points, however, errors
rise rapidly—most notably a six-fold jump in L2 and a 19-
point drop in R2 at 10 k points—showing that excessive
decimation removes critical boundary-layer information.

Table 12. Comparing sampling strategies.

Strategies mesh-based uniform hybrid

Relative L2 ↓ 0.0019 0.0016 0.0012

Training and Inference Efficiency. Finally, we com-
pare DragSolver’s efficiency against state-of-the-art 3D
point-based methods under the same hardware environ-
ment. As highlighted in PTV3 (Wu et al., 2024b), KNN-
based approaches (e.g., PointGPT (Chen et al., 2024),
Mamba3D (Han et al., 2024)) incur high computational
costs due to repeated neighbor graph construction and at-
tention computation. Inspired by this, we adopt a SpConv-
based sparse convolutional backbone (Contributors, 2022)

Table 13. Performance evaluation of DragSolver under varying
numbers of sampled points.

#Train #Sampled Sampled Pts. Rel.L2↓ R2 ↑
Samples Points Ratio (×10−3)

1638 60 000 2.72 – 14.38% 0.7026 0.9620
1638 50 000 2.27 – 11.99% 0.7442 0.9606
1638 40 000 1.18 – 9.59% 0.7766 0.9572
1638 30 000 1.36 – 7.19% 0.8844 0.9534
1638 20 000 0.59 – 4.79% 1.0284 0.9460
1638 10 000 0.30 – 2.40% 4.1502 0.7718

combined with FlashAttention (Dao, 2024), significantly re-
ducing computational complexity by avoiding costly KNN
operations. Table 14 shows that DragSolver achieves 3×
faster training time compared to Point-based methods. Our
method processes normalized point in under 0.9 s with
L = 5, δ = 0.01. Monte Carlo Dropout (T = 10) raises
inference to ≈4.8 s/shape, yet remains far below CFD times
(hours to days), thereby retaining viability for rapid design.

Table 14. Training/inference time (per epoch, per sample).

Method PointGPT Mamba3D PTV3 Ours

Train (s/epoch) 1680 1600 490 530
Infer (s/sample) 0.97 0.95 0.79 0.93

5. Conclusions and Feature Work
We presented DragSolver, a Transformer-based framework
for real-time drag coefficient estimation from 3D automo-
tive geometries. By integrating multi-scale features, het-
erogeneous normalization, surface-guided gating, and MC
Dropout uncertainty, DragSolver robustly handles diverse
mesh densities, interior structures, and shape variations.
Experiments across three real-world datasets show state-
of-the-art results and near real-time inference, confirming
each module’s contribution and the method’s potential for
practical automotive design. Future work will explore par-
tial CFD constraints, expanded uncertainty calibration, and
broader domains (e.g. aerospace).

Acknowledgements
This work was supported by the National Key Research and
Development Program of China 2024YFF1500600, and the
Innovation Capability Support Program of Shaanxi(Program
No.2023-CX-TD-30). We also thank Shenzhen TenFong
Technology Co. Ltd. for valuable engineering support
throughout the project.

9



DragSolver: A Multi-Scale Transformer for Real-World Automotive Drag Coefficient Estimation

Impact Statement
Our approach accelerates aerodynamic evaluation, poten-
tially reducing prototyping costs and improving energy ef-
ficiency. While we do not foresee unusual ethical issues,
biased or incomplete training data could yield unexpected
failure on certain vehicle shapes. Proper dataset diversity
and real-world validation remain critical. This paper aims
to advance Machine Learning for automotive aerodynam-
ics. We identify no major ethical or societal risks beyond
standard ML considerations.

References
Abbas, A., Rafiee, A., Haase, M., and Malcolm, A. Ge-

ometrical deep learning for performance prediction of
high-speed craft. Ocean Engineering, 258:111716, 2022.

Ahmed, S. R., Ramm, G., and Faltin, G. Some salient
features of the time -averaged ground vehicle wake. SAE
Transactions, 93:473–503, 1984. ISSN 0096736X. URL
http://www.jstor.org/stable/44434262.

Ashton, N., Mockett, C., Fuchs, M., Fliessbach, L., Het-
mann, H., Knacke, T., Schonwald, N., Skaperdas, V.,
Fotiadis, G., Walle, A., et al. Drivaerml: High-fidelity
computational fluid dynamics dataset for road-car ex-
ternal aerodynamics. arXiv preprint arXiv:2408.11969,
2024.

Baker, C. and Brockie, N. Wind tunnel tests to obtain train
aerodynamic drag coefficients: Reynolds number and
ground simulation effects. Journal of Wind Engineering
and Industrial Aerodynamics, 38(1):23–28, 1991.

Chang, A. X., Funkhouser, T., Guibas, L., Hanrahan, P.,
Huang, Q., Li, Z., Savarese, S., Savva, M., Song, S.,
Su, H., et al. Shapenet: An information-rich 3d model
repository. arXiv preprint arXiv:1512.03012, 2015.

Chen, G., Wang, M., Yang, Y., Yu, K., Yuan, L., and Yue, Y.
Pointgpt: Auto-regressively generative pre-training from
point clouds. NeurIPS, 36, 2024.

Cogotti, A. A parametric study on the ground effect of a
simplified car model. SAE transactions, pp. 180–204,
1998.

Contributors, S. Spconv: Spatially sparse convolution
library. https://github.com/traveller59/
spconv, 2022.

Dao, T. FlashAttention-2: Faster attention with better paral-
lelism and work partitioning. In ICLR, 2024.

Elrefaie, M., Ahmed, F., and Dai, A. Drivaernet: A para-
metric car dataset for data-driven aerodynamic design
and graph-based drag prediction. volume 88360, pp.
V03AT03A019, 2024a.

Elrefaie, M., Morar, F., Dai, A., and Ahmed, F. Drivaer-
net++: A large-scale multimodal car dataset with com-
putational fluid dynamics simulations and deep learning
benchmarks. NeurIPS, 2024b.

Fröhlich, J. and Von Terzi, D. Hybrid les/rans methods for
the simulation of turbulent flows. Progress in Aerospace
Sciences, 44(5):349–377, 2008.

Gal, Y. and Ghahramani, Z. Dropout as a bayesian approxi-
mation: Representing model uncertainty in deep learning.
In ICML, pp. 1050–1059. PMLR, 2016.

Han, X., Tang, Y., Wang, Z., and Li, X. Mamba3d: En-
hancing local features for 3d point cloud analysis via
state space model. In Proceedings of the 32nd ACM In-
ternational Conference on Multimedia, pp. 4995–5004,
2024.

Hao, Z., Ying, C., Wang, Z., Su, H., Dong, Y., Liu, S.,
Cheng, Z., Zhu, J., and Song, J. Gnot: A general neural
operator transformer for operator learning. ICML, 2023.

He, K., Minelli, G., Wang, J., Gao, G., and Krajnović, S.
Assessment of les, iddes and rans approaches for predic-
tion of wakes behind notchback road vehicles. Journal
of Wind Engineering and Industrial Aerodynamics, 217:
104737, 2021.

Heft, A. I., Indinger, T., and Adams, N. A. Experimental and
numerical investigation of the drivaer model. In Fluids
Engineering Division Summer Meeting, volume 44755,
pp. 41–51. American Society of Mechanical Engineers,
2012a.

Heft, A. I., Indinger, T., and Adams, N. A. Introduction
of a new realistic generic car model for aerodynamic
investigations. Technical report, SAE Technical Paper,
2012b.

Heinz, S. A review of hybrid rans-les methods for turbulent
flows: Concepts and applications. Progress in Aerospace
Sciences, 114:100597, 2020.

Jospin, L. V., Laga, H., Boussaid, F., Buntine, W., and
Bennamoun, M. Hands-on bayesian neural networks—a
tutorial for deep learning users. IEEE Computational
Intelligence Magazine, 17(2):29–48, 2022.

Karniadakis, G. E., Kevrekidis, I. G., Lu, L., Perdikaris,
P., Wang, S., and Yang, L. Physics-informed machine
learning. Nat. Rev. Phys., 2021.

Lakshminarayanan, B., Pritzel, A., and Blundell, C. Simple
and scalable predictive uncertainty estimation using deep
ensembles. NeurIPS, 30, 2017.

10

http://www.jstor.org/stable/44434262
https://github.com/traveller59/spconv
https://github.com/traveller59/spconv


DragSolver: A Multi-Scale Transformer for Real-World Automotive Drag Coefficient Estimation

Langley, P. Crafting papers on machine learning. In Langley,
P. (ed.), Proceedings of the 17th International Conference
on Machine Learning (ICML 2000), pp. 1207–1216, Stan-
ford, CA, 2000. Morgan Kaufmann.

Li, Z., Kovachki, N. B., Azizzadenesheli, K., liu, B., Bhat-
tacharya, K., Stuart, A., and Anandkumar, A. Fourier
neural operator for parametric partial differential equa-
tions. In ICLR, 2021.

Li, Z., Kovachki, N. B., Choy, C., Li, B., Kossaifi, J., Otta,
S. P., Nabian, M. A., Stadler, M., Hundt, C., Azizzade-
nesheli, K., and Anandkumar, A. Geometry-informed
neural operator for large-scale 3d PDEs. In NeurIPS,
2023a.

Li, Z., Kovachki, N. B., Choy, C., Li, B., Kossaifi, J., Otta,
S. P., Nabian, M. A., Stadler, M., Hundt, C., Azizzade-
nesheli, K., et al. Geometry-informed neural operator for
large-scale 3d pdes. arXiv preprint arXiv:2309.00583,
2023b.

Li, Z., Meidani, K., and Farimani, A. B. Transformer for
partial differential equations’ operator learning. TMLR,
2023c.

Li, Z., Shu, D., and Farimani, A. B. Scalable transformer
for pde surrogate modeling. NeurIPS, 2023d.

Liu, X., Xu, B., and Zhang, L. HT-net: Hierarchical
transformer based operator learning model for multiscale
PDEs. arXiv preprint arXiv:2210.10890, 2022.

Loshchilov, I. Decoupled weight decay regularization.
ICLR, 2019.

Menter, F. R., Kuntz, M., Langtry, R., et al. Ten years
of industrial experience with the sst turbulence model.
Turbulence, heat and mass transfer, 4(1):625–632, 2003.

Moin, P. and Mahesh, K. Direct numerical simulation: a tool
in turbulence research. Annual review of fluid mechanics,
30(1):539–578, 1998.

OpenFOAM Foundation. Meshing with snappy-
HexMesh, 2023. URL https://www.openfoam.
com/documentation/guides/latest/doc/
guide-meshing-snappyhexmesh.html. Ac-
cessed: 2024-06-05.

Pang, Y., Wang, W., Tay, F. E., Liu, W., Tian, Y., and Yuan,
L. Masked autoencoders for point cloud self-supervised
learning. In ECCV, pp. 604–621. Springer, 2022.

Pfaff, T., Fortunato, M., Sanchez-Gonzalez, A., and
Battaglia, P. Learning mesh-based simulation with graph
networks. In ICLR, 2021a.

Pfaff, T., Fortunato, M., Sanchez-Gonzalez, A., and
Battaglia, P. W. Learning mesh-based simulation with
graph networks. ICLR, 2021b.

Qi, C. R., Su, H., Mo, K., and Guibas, L. J. Pointnet: Deep
learning on point sets for 3d classification and segmenta-
tion. In CVPR, 2017a.

Qi, C. R., Yi, L., Su, H., and Guibas, L. J. Pointnet++: Deep
hierarchical feature learning on point sets in a metric
space. NeurIPS, 30, 2017b.

Rios, T., Van Stein, B., Bäck, T., Sendhoff, B., and Men-
zel, S. Point2ffd: Learning shape representations of
simulation-ready 3d models for engineering design opti-
mization. In 2021 International Conference on 3D Vision
(3DV), pp. 1024–1033. IEEE, 2021.

Rodi, W. Comparison of les and rans calculations of the
flow around bluff bodies. Journal of wind engineering
and industrial aerodynamics, 69:55–75, 1997.

Scardovelli, R. and Zaleski, S. Direct numerical simulation
of free-surface and interfacial flow. Annual review of fluid
mechanics, 31(1):567–603, 1999.

Song, B., Yuan, C., Permenter, F., Arechiga, N., and Ahmed,
F. Surrogate modeling of car drag coefficient with depth
and normal renderings. In International Design Engi-
neering Technical Conferences and Computers and In-
formation in Engineering Conference, volume 87301, pp.
V03AT03A029. American Society of Mechanical Engi-
neers, 2023.

Sudin, M. N., Abdullah, M. A., Shamsuddin, S. A., Ramli,
F. R., and Tahir, M. M. Review of research on vehicles
aerodynamic drag reduction methods. International Jour-
nal of Mechanical and Mechatronics Engineering, 14
(02):37–47, 2014.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L. u., and Polosukhin, I. Atten-
tion is all you need. In NeurIPS, 2017.

Wang, H., Fu, T., Du, Y., Gao, W., Huang, K., Liu, Z.,
Chandak, P., Liu, S., Van Katwyk, P., Deac, A., et al.
Scientific discovery in the age of artificial intelligence.
Nature, 2023.

Wang, P.-S. Octformer: Octree-based transformers for 3d
point clouds. ACM Transactions on Graphics (TOG), 42
(4):1–11, 2023.

Wang, Y., Sun, Y., Liu, Z., Sarma, S. E., Bronstein, M. M.,
and Solomon, J. M. Dynamic graph cnn for learning on
point clouds. ACM Transactions on Graphics (tog), 38
(5):1–12, 2019.

11

https://www.openfoam.com/documentation/guides/latest/doc/guide-meshing-snappyhexmesh.html
https://www.openfoam.com/documentation/guides/latest/doc/guide-meshing-snappyhexmesh.html
https://www.openfoam.com/documentation/guides/latest/doc/guide-meshing-snappyhexmesh.html


DragSolver: A Multi-Scale Transformer for Real-World Automotive Drag Coefficient Estimation

Wu, H., Hu, T., Luo, H., Wang, J., and Long, M. Solving
high-dimensional pdes with latent spectral models. In
ICML, 2023.

Wu, H., Luo, H., Wang, H., Wang, J., and Long, M. Tran-
solver: A fast transformer solver for pdes on general
geometries. ICML, 2024a.

Wu, X., Lao, Y., Jiang, L., Liu, X., and Zhao, H. Point
transformer v2: Grouped vector attention and partition-
based pooling. NeurIPS, 35:33330–33342, 2022.

Wu, X., Jiang, L., Wang, P.-S., Liu, Z., Liu, X., Qiao, Y.,
Ouyang, W., He, T., and Zhao, H. Point transformer v3:
Simpler faster stronger. In CVPR, pp. 4840–4851, 2024b.

Zhao, H., Jiang, L., Jia, J., Torr, P. H., and Koltun, V. Point
transformer. In ICCV, 2021.

12



DragSolver: A Multi-Scale Transformer for Real-World Automotive Drag Coefficient Estimation

A. Visualization of Predicted Drag Coefficients
In this section, we present additional qualitative insights into DragSolver’s predictions on various car geometries. Specifically,
we visualize each vehicle’s exterior mesh (or point cloud) alongside its predicted drag coefficient (Cd) and compare it to
the ground-truth reference (e.g., wind-tunnel or CFD-derived). Figure 4 illustrates the predicted and ground truth drag
coefficients (Cd) across multiple vehicle geometries. The model demonstrates high accuracy, with predictions closely
aligning with ground truth values. The results underscore the effectiveness of our framework in learning aerodynamic
features and estimating drag coefficients in real-world automotive applications.

True：0.2791
Pred.：0.2768

True：0.2702
Pred.：0.2745True：0.2740

Pred.：0.2689

True：0.3298
Pred.：0.3241

True：0.2941
Pred.：0.2912

True：0.3054
Pred.：0.3074

Figure 4. Comparison between true and predicted aerodynamic drag coefficients (Cd) for different vehicle geometries. Each row presents
a pair of vehicles with their corresponding ground truth and predicted Cd values. The top row shows vehicle designs with higher drag
values (True: Cd = 0.3298, 0.3054; Pred: Cd = 0.3241, 0.3074), indicating greater aerodynamic resistance. The middle row illustrates
models with moderate drag coefficients (True: Cd = 0.2740, 0.2702; Pred: Cd = 0.2689, 0.2745). The bottom row presents the most
aerodynamically optimized designs (True: Cd = 0.2941, 0.2791; Pred: Cd = 0.2912, 0.2768). The results demonstrate the accuracy of
our model in predicting Cd, with minimal deviation from the true values. Notably, variations in aerodynamic design lead to distinct drag
values, impacting energy efficiency in real-world applications.

B. Detailed Dataset Descriptions
Overview of Datasets. Figure 5 offers a comparative look at the three automotive datasets used in our experiments:
DrivAerNet++, DrivAerNet, and DrivAerML. Each varies in mesh density, inclusion of internal geometry, and parametric
scope. Such differences demand robust mesh normalization and multi-scale feature extraction (as detailed in our main text)
to achieve reliable Cd regression. Below, we provide a concise, third-person summary of each dataset, referencing the

13



DragSolver: A Multi-Scale Transformer for Real-World Automotive Drag Coefficient Estimation

original authors and publications.

(a) DrivAerNet++

(b) DrivAerNet

(c) DrivAerML

Surface Mesh Point Cloud

Figure 5. Visual Comparison of DrivAerNet++, DrivAerNet, and DrivAerML. Each row corresponds to a dataset: (a) DrivAer-
Net++ (high-fidelity external surfaces, parametric), (b) DrivAerNet (conventional automotive meshes capturing underbody details),
(c) DrivAerML (even denser CAD scans including internal structures). For each dataset, we show the surface geometry (left), mesh
representation (middle), and a point-cloud view (right). The progression from simpler external shapes to highly detailed, partially interior
meshes underscores the increasing complexity and data richness across the datasets. These contrasting resolutions, structural details, and
geometric variations pose challenges for generalization in Cd prediction.

B.1. DrivAerNet++ Dataset

Origin and Motivation. Elrefaie et al. (2024b) introduced DrivAerNet++ to supply a large-scale collection of watertight
3D car meshes, validated against the DrivAer model (Heft et al., 2012b;a). Unlike generic repositories (e.g. ShapeNet
(Chang et al., 2015)), DrivAerNet++ aims to preserve engineering-quality resolution for aerodynamic simulations.

Parametric Models. Using ANSA® morphing, up to 26 design parameters alter both global car dimensions (length,
roof height) and local features (diffusor, underbody, wheels). This yields baseline configurations—fastback, estateback,
notchback—expanded to thousands of variants, each with a final watertight mesh. Body shapes differ significantly in rear
geometry, occupant space, , matching diverse industrial needs.

CFD Simulation and Validation. Elrefaie et al. (2024b) use snappyHexMesh (OpenFOAM Foundation, 2023) to refine
around wheels, underbody, and wake regions, often reaching 12–24 million cells. They adopt a k–ω SST RANS approach
at 30m/s (Re≈ 107), achieving drag predictions within 2–5% of TUM’s wind-tunnel data (Heft et al., 2012a). While the
fidelity is lower than full LES, it balances mesh size vs. feasibility for large parametric sweeps.

Relevance for ML. Because DrivAerNet++ covers multiple rear-end shapes (fastback, estateback, notchback) at moderate
to high mesh resolution, it provides a diverse design space for training data-driven aerodynamic surrogates. The authors
note possible future expansions with multi-fidelity or hybrid RANS-LES approaches.

B.2. DrivAerNet Dataset

Background and Baseline Geometry. Elrefaie et al. (2024a) present DrivAerNet as an earlier, flexible variant of the
DrivAer model (Heft et al., 2012b), bridging simple bodies (Ahmed (Ahmed et al., 1984) or SAE (Cogotti, 1998)) and
proprietary industrial CAD. Unlike the single baseline STL, they introduced about 50 morphable parameters (roof angle,
wheel/mirror geometry) to broaden shape variation.

CFD Setup and Mesh. In DrivAerNet, the authors also rely on OpenFOAM® with a k–ω SST scheme, refining the
underbody, wheels, and wake regions via snappyHexMesh. A typical velocity is 30m/s, matching the TUM reference,
and the Re≈ 9.39× 106. They particularly highlight a fastback with detailed underbody + wheels + mirrors (FDwWwM),

14



DragSolver: A Multi-Scale Transformer for Real-World Automotive Drag Coefficient Estimation

since each adds significant drag counts. Summaries show that these morphological changes are well captured within a few
percent of experimental values.

Parameter Range and Mesh Resolution. Mesh resolutions vary from around 500k faces up to millions of cells, enabling
more detailed geometry than prior open datasets (Li et al., 2023a; Song et al., 2023). The authors provide code and mor-
phological scripts at https://github.com/Mohamedelrefaie/DrivAerNet/ParametricModel, offering
an external resource for data-driven aerodynamic tasks.

B.3. DrivAerML Dataset

Notchback Configuration. DrivAerML around the notchback variant of the DrivAer body, originally used in the 2nd–4th
AutoCFD Workshops. Wheels are static (no rotation), and cooling inlets are sealed to reduce complexity and facilitate
consistent flow-field comparisons among different CFD codes.

CFD Domain and Mesh. They employ a large “open-road” domain with negligible blockage ratio (∼ 0.25%). The
free-stream velocity is 38.889m/s, giving Re≈ 7.19 × 106 based on wheelbase L = 2.786m. The reference frontal
area A = 2.17m2 is used for force and moment coefficients. Mesh generation uses ANSA’s HeXtreme, producing a
hexa/polyhedral grid of∼ 160 million cells (high-y+ approach, 7 prism layers). This strategy, validated in the 2nd AutoCFD
workshop, balances resolution and runtime for industrial-level setups, capturing underbody flow, mirrors, and wake zones.

Focus on Industrial Fidelity. DrivAerML aims to provide a near-industrial RANS mesh quality—particularly relevant for
advanced turbulence modeling or data-driven aerodynamic surrogates. The geometry’s sealed inlets and static wheels reduce
complexity yet maintain key automotive features (e.g. underbody structures, detailed external surfaces). Full details, domain
boundaries.

Conclusion. These three datasets—DrivAerNet++, DrivAerNet, and DrivAerML—collectively span a wide spectrum of
vehicle shapes, mesh densities, and structural details (exterior-only vs. partial interior). Each dataset has been validated
against DrivAer wind-tunnel data from TUM or other references, making them valuable external resources for learning-based
Cd prediction and surrogate modeling of aerodynamic flows.

C. Implementation Details
This appendix provides additional information about DragSolver’s implementation and the experimental protocols referenced
in §4. It covers model hyperparameters, training configurations, hardware setups, and specific differences from baseline
methods.

C.1. Model Configuration

Overall Architecture. As described in §3.2, DragSolver uses a five-stage encoder, each halving the spatial resolution
(stride = 2) via sparse convolutions or point-based downsampling. For each stage k, the channel dimension grows from an
initial 32 to up to 256 by the final stage (Table 15). We adopt multi-head attention with H = 8 heads. A patch-based or
voxel-based partition is used to handle large unstructured point sets. Following §3.3, we fix the wheelbase to 2.8m, then
apply a hybrid sampling (uniform + mesh-based) that yields ∼600k effective points per shape.

Surface-Guided Gating. We apply the depth-based filtering from §3.4 at an initial voxel resolution of ∆ = 0.01 m.
Voxels beyond a threshold depth (e.g. 40% layers inside) are tagged internal and removed. In high-resolution input layers,
each surviving voxel has an initial gating weight ci = 1 and is refined by a gating MLP (MLPinput). We skip gating at
intermediate layers, then re-apply gating at the final layer via MLPfinal.

Uncertainty Estimation. We use MC Dropout (Gal & Ghahramani, 2016) with a dropout rate of 0.1 in the final regression
MLP. At inference, each shape is passed K = 10 times with different dropout masks, yielding an ensemble {Ĉ(1)

d . . . Ĉ
(10)
d }.

The mean Cd is reported as the prediction, while variance approximates epistemic uncertainty.

15

https://github.com/Mohamedelrefaie/DrivAerNet/ParametricModel


DragSolver: A Multi-Scale Transformer for Real-World Automotive Drag Coefficient Estimation

Table 15. Model layer configuration for DragSolver, with 5 stages plus a final regression MLP. Notation: din is input channels, dout is
output channels. After concatenating multi-scale features into a 768-dimensional vector, we feed it into the shown MLP structure to
predict Cd.

Stage Input Size # Blocks #Heads Output Channels

Embedding 3 1 – 32
Stage 1 32 2 2 64
Stage 2 64 2 4 128
Stage 3 128 2 8 128
Stage 4 128 4 16 256
Stage 5 256 2 16 256

Regression
Concat g(0)∥g(1)∥ · · · ∥g(5) → R768

Linear(768→256)−−−−−−−−−−→ BN−−→ ReLU−−−→ Dropout−−−−−→ Linear(256→128)−−−−−−−−−−→ BN−−→ ReLU−−−→→ Linear(128→1)

C.2. Training Configuration

Training Hyperparameters. Unless otherwise stated, we train for 50 epochs using AdamW (Loshchilov, 2019) with
a base learning rate of 1× 10−3 and a cosine decay schedule. Our batch size is 24 (due to memory constraints). We set
weight decay to 5× 10−5. We do not tune these hyperparameters across tasks, using a unified setting for consistency.

Losses. As described in §3.1, we define a standard MSE loss on the predicted Cd. Specifically,

Lreg =
1

M

M∑
j=1

(
Ĉ

(j)
d − C

(j)
d

)2
.

Data Preprocessing. For DrivAerNet++ and DrivAerNet, we reserve 20% for testing. We randomize the order of shapes
each epoch. For cross-shape or cross-dataset evaluations, we isolate the geometry categories or entire dataset for training vs.
testing as described in §4.1.

C.3. Comparison with Baselines

Point-based Methods. We implement or take code from offical library for standard 3D methods: PointNet, PointNet++,
Mamba3D. Each uses the recommended AdamW or Adam optimizer with identical learning rate as DragSolver. Graph-based
expansions (e.g. DGCNN, MeshGraphNet) require adjacency or face definitions, which are straightforward in DrivAerNet++
but require additional conversion for DrivAerML’s partial interior data. We attempt to keep their hyperparameters near the
official defaults, only adjusting channel size and training epochs to match our setup.

Point-based Methods (Baselines). We adopt or reference the official code repositories from the original authors aiming to
remain as faithful as possible to their recommended training procedures. For consistency with DragSolver’s approximate
600 k-point representation (see §3.3), we also sample 600 k points for each baseline method. This ensures all models
operate on similarly detailed point sets and fairly compare performance on high-density automotive meshes. Because many
of these baselines rely on k-nearest neighbors (KNN) for local feature aggregation, we fix k = 32 to capture sufficient
neighborhood context in complex car surfaces. However, this large k significantly increases memory usage, nearly exhausting
GPU resources in our setup. Apart from adjusting the batch size to accommodate memory constraints, we keep other
hyperparameters as suggested by the original authors (e.g., learning rates, layer widths, activations).

Neural Operators / PDE Solvers. We adapt PDE-based surrogates (e.g. GNOT, Transolver (Wu et al., 2024a)) by letting
them predict a single scalar Cd. That is, instead of local field predictions, we pool features globally and feed an MLP to
regress Cd.

16



DragSolver: A Multi-Scale Transformer for Real-World Automotive Drag Coefficient Estimation

C.4. Hardware and Runtime Statistics

We conduct all experiments on up to 2 NVIDIA A800 GPUs. On DrivAerNet++ at full resolution (∼ 600k points), DragSolver
typically processes a batch of size 24. Inference on a single shape is under 100 ms for a single forward pass, plus K×100ms
for MC Dropout. This is dwarfed by the hours or days needed for high-fidelity CFD or wind tunnel tests.

C.5. License and Data Availability.

DrivAerNet++ and DrivAerNet are from Elrefaie et al. (2024a), while DrivAerML is from Ashton et al. (2024). Please see
Appendix B for direct links and usage instructions.

17


