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Abstract

A functional regression problem aims to learn a map F : Z 7→ Y, where Z is an appropriate
input space and Y is a space of output functions. When Z is also a space of functions, the
learning problem is known as function-to-function regression. In this work, we consider the
problem of learning a map of the form F : Zp 7→ Y, a many-to-one function-to-function
regression problem, where the aim is to learn a suitable F which maps p input functions to
an output function. In order to solve this regression problem with p input functions and a
corresponding output function, we propose a graph-induced operator-valued kernel (OVK)
obtained by imposing a graphical structure describing the inter-relationships among the p
input functions. When the underlying graphical structure is unknown, we propose to learn
an appropriate Laplacian matrix characterizing the graphical structure, which would also aid
in learning the map F . We formulate a learning problem using the proposed graph-induced
OVK, and devise an alternating minimization framework to solve the learning problem. To
learn F along with meaningful and important interactions in the graphical structure, a min-
imax concave penalty (MCP) is used as a sparsity-inducing regularization on the Laplacian
matrix. We further extend the alternating minimization framework to learn F , where each
of the p constituent input functions as well as the output function are multi-dimensional.
To scale the proposed algorithm to large datasets, we design an efficient sample-based ap-
proximation algorithm. Further, we provide bounds on generalization error for the map
obtained by solving the proposed learning problem. An extensive empirical evaluation on
both synthetic and real data demonstrates the utility of the proposed learning framework.
Our experiments show that simultaneous learning of F along with sparse graphical struc-
ture helps in discovering significant relationships among the input functions, and motivates
interpretability of such relationships driving the regression problem.

1 Introduction

Learning to predict functional output from a suitable input is characterized as a functional regression prob-
lem, which aims at learning a function-valued function F : Z → Y, where Z is an appropriate input space
and Y is an output space of functions. In many scenarios, multiple inputs decide the value of an output,
which gives rise to functional regression problems of the form F : Zp → Y, where p is the number of inputs
considered. Even more interesting is the case where interactions among the p inputs can be used in a precise
manner to predict y ∈ Y. In particular, we consider Z to be a space of functions, hence learning a map
F : Zp → Y is called a many-to-one function-to-function regression problem. Without loss of generality,
we refer to this many-to-one function-to-function regression problem as the functional regression problem
considered throughout this paper. Applications of this type of problems can be found in weather forecast-
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Figure 1: Illustrative example of a functional regression problem, where z1, z2, z3 represent atmospheric
pressure at 3 stations in a region, graph G depicts the inter-relationships among z1, z2, z3 and y represents
the average temperature of the region. F maps z1, z2, z3 to y incorporating G.

ing where different weather parameters in stations measured at multiple timepoints across a month can be
characterized as functional inputs used to determine the average rainfall as a time-varying function in that
month. Similarly, emissions from a factory in a day can be predicted as a function of time, based on the
functional data obtained from readings of different components involved in the manufacturing process at
different timepoints in that day. In sports analytics, the movement data of different players throughout the
game can let us know the influence of a particular strategy in ball possession/movement as a functional
output over the duration of the game. Thus in all these applications, we notice situations where a set of
input functions interact to produce an output function. Even though digital data is discrete, systems where
the inherent data produced is smooth and continuous by nature, can be modeled as functions over a suitable
domain (Ramsay, 1982) to leverage the variations based on that domain.

Consider a simple functional regression problem illustrated in Figure 1, where input functions z1, z2, z3 ∈ Z
denote the atmospheric pressure measurements of 3 nearby weather stations and the output function y ∈ Y
denotes the average temperature of the region, throughout a particular day. For predicting y, considering
the input functions z1, z2 and z3 without any relation among them may be restrictive as inherent relations
between the input functions may dictate the generation of y. In order to capture interactions among z1, z2, z3,
we introduce a graph structure G between z1, z2 and z3 in Figure 1, where the nodes of G represent zi’s and
the edges depict potential relations among them. The graph structure G will be useful in representing the
influences and inter-relations among zi’s, which can be useful in the prediction of y ∈ Y using F . We propose
a framework for combining the impact of z1, z2, . . . , zp with the additional information of G to predict y. In
determining the output function y, the graphical structure G on the input functions may be known from
domain knowledge and can possibly be directly incorporated to learn F . A more interesting case is when G
is unknown and needs to be learned along with F . Learning the graph structure G would help to discover
interactions among zi’s which facilitate predicting y. When the number of input functions z1, z2, . . . , zp
grow larger, the associated graph G might also become dense with many edges and incorporating such dense
G might lead to computational difficulties and would also lead to spurious connections/edges which lack
interpretability. Thus, learning a sparse graphical structure G on input functions becomes instrumental in
understanding the significant relationships that drive the functional regression problem to predict the output
function.
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In this work, we consider kernel methods to learn the map F : Zp → Y, either using a priori knowledge of
G or by learning G along with F . Kernel methods have been a popular class of methods that use kernel
functions to associate inputs to a higher dimensional feature space and find applications in classification,
clustering and regression (Shawe-Taylor et al., 2004). For a simple scalar-valued regression problem, the
aim is to learn f : X → R, where X is an appropriate input space of vectors. A scalar-valued kernel
k : X ×X → R associates two inputs in X to a real number which provides a measure of similarity between
those inputs. Scalar-valued kernels which are positive semi-definite are associated to a (unique) space H of
candidate functions f mapping input space X to R, H being referred to as a reproducing kernel Hilbert space
(RKHS). The function f to be learned resides in the aforementioned space H of functions which enables
us to formulate a regularized loss minimization problem over H (Shawe-Taylor et al., 2004), whose solution
can be used to predict the desired output for input samples. On the other hand, for a functional regression
problem, an extension of scalar-valued kernel to operator-valued kernel (OVK) of the formK : Z×Z → L(Y)
associates two input functions to a bounded linear operator on the output space of functions instead of a
real number (Kadri et al., 2016; Saha & Palaniappan, 2020). An operator-valued kernel K which is positive
semi-definite is associated to a (unique) space HK of candidate functions F mapping input space Z to Y, HK
being called a function-valued reproducing kernel Hilbert space (Kadri et al., 2016). Similar to scalar-valued
kernel setting, in the operator-valued kernel setting too, a regularized loss minimization learning problem
can be formulated in the function-valued RKHS HK . The reproducing property of OVKs (Definition A.1)
helps in reformulating the learning problem in the output space Y, enabling algorithms to be developed for
solving the resultant learning problem.

In this paper, we consider another natural extension of this kernel-based framework which leads to a case
where p input functions and their interactions among themselves (captured by a graph G) can be used to
predict the output function. To learn F : Zp → Y, we incorporate p input functions along with the underlying
graphical structure to create a graph-induced operator-valued kernel that induces a corresponding function-
valued RKHS to facilitate learning of F . In order to use graph-induced OVKs in the task of functional
regression based on p input functions with unknown graphical structure, we propose to learn F simultaneously
along with the graphical structure. Predicting output function based on a graph-induced OVK constructed
using graphical structure G over p input functions, to our knowledge, is a novel problem and has not been
explored much in literature. In this context, we outline our major contributions below.

Contributions: We aim to address the following objectives in this work.

• We propose a graph-induced OVK for solving a functional regression problem with p input functions
z1, z2, . . . , zp and their interactions represented using a graphical structure (known/unknown) to
predict a corresponding output function y. This is enabled by Proposition A.1 considering the
Laplacian matrix (L) of the underlying graph G.

• For practical scenarios where the underlying graphical structure is unknown, we provide a construc-
tion of graph-induced OVK and propose to jointly learn the functional regression map F , along with
the graphical structure G represented by L and D, where D is a diagonal matrix with non-negative
entries signifying the impact of individual input functions on y. A regularized loss minimization
problem is formulated using L,D and F in the function-valued RKHS associated with the graph-
induced OVK.

• We propose an alternating minimization framework for solving the designed regularized loss mini-
mization problem to learn L,D and the map F . The functional regression map F is learned for a
fixed L and D by adapting Operator based Minimum Residual (OpMINRES) algorithm (Saha &
Palaniappan, 2020) to solve a linear operator system associated with the graph-induced OVK. For
a fixed F , matrices L and D are learned using projected gradient descent. To learn sparse L, we
introduce minimax concave penalty (MCP) (Ying et al., 2020) as a sparsity-inducing regularization
on the Laplacian matrix L.

• We further extend the proposed alternating minimization framework to solve a multi-dimensional
functional regression problem, where each input function zi ∈ Z, i ∈ {1, 2, . . . , p} and y ∈ Y are
multi-dimensional.
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• In order to scale the proposed alternating minimization framework to handle large datasets, we design
an efficient sample-based approximation algorithm which enables to solve the learning problem over
only a carefully chosen subset of training samples.

• We establish bounds on generalization error for the map F obtained by solving the proposed learning
problem. Our generalization analysis also incorporates the learning of graph-induced OVK.

• An extensive empirical evaluation on both synthetic and real data has been carried out and the
comparison results demonstrate the efficacy of the proposed learning framework. Further our exper-
iments show that simultaneous learning of sparse graphical structure along with the function-valued
regression map F establishes interpretable relationships driving the functional regression problem.

2 Paper Organization

In Section 3, related works from the areas of functional data analysis, functional regression and graph learning
are discussed. The notations used in this paper have been summarized in Section 4. The proposed framework
for solving a functional regression problem using a graphical structure is covered in Section 5. The graph-
induced OVK is introduced and a representer theorem for the learning problem with an unknown graph
structure is presented in Section 5.1. An alternating minimization framework is proposed in Section 5.1 for
jointly learning an unknown graphical structure on the functional inputs and the map F . Inducing sparsity
using a MCP regularization when learning the unknown graphical structure is also discussed in Section 5.1.
An extension of the proposed framework for solving multi-dimensional functional regression problems and
a sample-based approximation algorithm for scaling up to large training data are also presented in Section
5.1. In Section 6, the bounds on generalization error of the learned map F are established by incorporating
learning of graph-induced OVK. Experiments using the proposed alternating minimization framework and
comparative results have been illustrated in Section 7. Section 8 provides the conclusion of the paper.

3 Related Work

As our work lies in the confluence of various areas of research, we divide the related work based on the
different areas below.

Functional Data Analysis: Continuous functions over a time interval have been explored as the central
part of functional data analysis (FDA) in (Ramsay, 1982) and (Ramsay & Dalzell, 2018). FDA techniques
have evolved significantly with non-parametric approaches (Ferraty & Vieu, 2006) and functional principal
component analysis (FPCA) (Happ & Greven, 2018) becoming prevalent tools. These approaches have found
applications in sparse longitudinal data (Yao et al., 2005), classification involving functional data (Rossi &
Villa, 2006) and clustering for multivariate functional data (Jacques & Preda, 2014).

Functional Regression: In the context of functional regression, Oliva et al. (2015) uses projections on
orthonormal basis systems for input and output spaces to estimate regression maps based on random basis
functions from random Fourier features (Rahimi & Recht, 2007). Operator-valued kernel methods have found
applications for vector-valued data (Micchelli & Pontil, 2005) and function-valued data (Kadri et al., 2016) for
solving corresponding vector-valued and functional regression problems. The construction of a positive semi-
definite operator-valued kernel used to learn a function-valued mapping in a corresponding reproducing kernel
Hilbert space (RKHS) is considered in (Kadri et al., 2016), while Saha & Palaniappan (2020) uses indefinite
operator-valued kernels to learn a function-valued function in a corresponding reproducing kernel Krein space
(RKKS). Hullait et al. (2021) uses a robust functional linear regression model based on robust FPCA (Bali
et al., 2011) to predict a response function using a predictor function without considering multiple input
functional data and their graphical structure. Another approach in (Bouche et al., 2021) uses kernel-based
projection learning with a finite (not necessarily orthogonal) basis for the output space. High dimensional
functional data has been used in (Gahrooei et al., 2020) to perform function-to-function regression for a
functional response output using a linear combination of functional inputs considered as covariates. However,
associations among the functional inputs have not been considered in (Gahrooei et al., 2020). Functional deep
learning methods have been developed to solve regression problems using functional direct neural network
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and functional basis neural network (Rao & Reimherr, 2023). In functional direct neural network, continuous
neurons interact with learned weight functions, whereas in functional basis neural network, basis functions
are used to encode the continuous neurons as well as weight functions. Both functional direct neural network
and functional basis neural network in (Rao & Reimherr, 2023) require large amount of data for training.
On the contrary, our work is related to a setting with limited number of training samples which is useful in
various practical scenarios where data availability is restricted.

Graph Learning: Learning graph structure has been an active area of research in machine learning.
In (Dong et al., 2016), a Laplacian matrix corresponding to the graph structure on the observed input
signals is learned by using a vectorized optimization problem with a smoothness assumption over the signals.
The graph Laplacian learning algorithm is based on an alternating minimization scheme for learning the
Laplacian matrix as well as the missing/noisy signals. Pu et al. (2021b) extends this idea by using a kernel-
based learning problem for determining the Laplacian matrix of a graph structure for smooth input signals.
Kernels are used to learn relationships between the input signals as well as the inter-relationships between
covariates such as timestamp of recording an observation. Another popular approach for graph structure
learning in (Qiao et al., 2019) is based on estimation of precision matrix (inverse of covariance matrix) for
functional data corresponding to the p nodes in the graph, assuming that the data arises from a p-dimensional
multivariate Gaussian process. A differential functional graphical model has been considered in (Zhao et al.,
2019) which learns a differential graph to characterize the difference between conditional dependencies of two
different populations which is determined using their respective samples. Extending the idea of determining
precision matrix for capturing conditional dependence between the nodes, Qiao et al. (2020) proposes doubly
functional graphical models to capture the evolving conditional dependence relationship among the sampled
functions corresponding to the nodes. Instead of learning a single graph based on the data, Pu et al. (2021a)
learns a graph topology with topological difference variational autoencoder for graph learning.

A motivating work (Gómez et al., 2021) addresses function-to-function linear regression problem with both
known/unknown directed graph structure where the main focus is on root cause analysis and the node
representing output function is also a part of the graphical structure containing nodes corresponding to
the input functions. The graph structure considered is learned based on a neighborhood selection method
(Meinshausen & Bühlmann, 2006) to determine the set of candidate parents for each node in order to solve the
linear regression problem. Multivariate Gaussian processes have been used with basis functions in (Gómez
et al., 2021) to model a directed acyclic graph which enables solving a function-to-function linear regression
problem. However, in our approach, the goal of learning an undirected graph structure only on the p input
functions is different from the parent-based directed acyclic graph structure assumption in (Gómez et al.,
2021). Moreover, our OVK based approach helps to learn non-linear relations in comparison to the linear
model considered in (Gómez et al., 2021).

4 Notations

We consider a functional regression problem with the input space as X = (L2([0, 1]))p and the output space
as Y = L2([0, 1]), where p ∈ N and L2([a, b]) denotes the space of equivalence classes of square integrable
functions on [a, b], a, b ∈ R and a < b. The notation [n] denotes the the set {1, 2, . . . , n}, for n ∈ N. In
order to denote elements of the input space X , we use the notation x = (x1, x2, . . . , xp) ∈ X . We denote
the graphical structure over the input functions x1, x2, . . . , xp as G = (V,E), where V is the set of p vertices
corresponding to the functional input variables x1, x2, . . . , xp. The degree of a vertex v ∈ V is denoted by
deg(v). K refers to an OVK mapping from X ×X to L(Y), where L(Y) is the set of bounded linear operators
over the output space Y. For a matrix M ∈ Rk×k, where k ∈ N, Mi,j denotes the (i, j)-th element of M and
Mi ∈ Rk denotes the i-th column ofM . Hence, we refer to matrixM as [Mi,j ]ki,j=1 or [M1,M2, . . . ,Mk]. The
transpose of M is denoted by M>. The notation diag(d1, d2, . . . , dp) denotes a p × p diagonal matrix with
the diagonal entries as d1, d2, . . . , dp, where di ∈ R, for i ∈ [p]. For a matrix D ∈ Rp×p, Diag(D) denotes
the p× 1 vector containing the diagonal elements of D. Based on the context, other relevant notations will
be introduced in the paper as required and suitable descriptions will be provided for them.
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5 Functional Regression based on a Graphical Structure

In this section, we introduce the functional regression problem with the aim of incorporating the graph
structure to aid the regression task. To model the graphical structure, we assume that G = (V,E) represents
an undirected graph where V denotes the node set with |V | (= p) nodes and E denotes the edge set of
G. Let x(t) = (x1(t), x2(t), . . . , xp(t)) denote the functional variables for a given domain t ∈ T where
each xi is represented by node vi ∈ V , for i ∈ [p]. Recall that L2([a, b]) denotes the space of equivalence
classes of square integrable functions on [a, b], a, b ∈ R and a < b. For simplicity, we assume xi ∈ L2([0, 1]),
hence

∫ 1
0 x

2
i (t)dt <∞, i ∈ [p]. We discuss the realistic case of functional regression with an unknown graph

structure here. For a related discussion on the case of a known graph structure, we refer the reader to
Appendix A.1.

5.1 Learning with Unknown Graph Structure

Consider a system where a set of input functions determines the output (or response) function. Let the
system be modeled based on p input functional variables x1(t), x2(t), . . . , xp(t), where xi ∈ L2([0, 1]), i ∈ [p].
A functional response variable y(t) is used to model output of the system where y ∈ L2([0, 1]). (Note that
[0, 1] can be replaced with any closed time interval based on the application.)

The undirected graph structure of the functional input variables is represented by a suitable graph G =
(V,E), where V = {v1, v2, . . . , vp} and E = {{vi, vj}|vi is connected to vj , 1 ≤ i, j ≤ p} is the edge set which
characterizes the underlying relationship between the variables. Note that the notation for an edge uses
an unordered pair {vi, vj} which characterizes the undirected nature of the graph G. In order to model
the relation between functional input variables x1, x2, . . . , xp and functional response variable y, we use the
following map F :

y = F (x1, x2, . . . , xp, G). (1)

Note that F now depends explicitly on the graph G in addition to the input functions x1, x2, . . . , xp.

For most problems in real life, the underlying graphical structure encoding the inter-relationships among
the input functions x1, x2, . . . , xp is not known. In such situations, the underlying graph on the input
functions has to be learned with simultaneous prediction of the functional response variable y ∈ Y using x =
(x1, x2, . . . , xp) ∈ X . Considering an undirected simple graph structure on the functional variables may result
in encountering an integer programming based optimization problem which will lead to a computationally
harder problem in addition to the functional regression task. We consider a relaxation in this aspect by
allowing weighted undirected simple graphs in our approach. With a slight abuse of notation, let the graph
structure be given by G = (V,W ), where |V | = p and W ∈ Rp×p is symmetric with wi,j ≥ 0, where
wi,j = 0 whenever vertices vi and vj are not connected and wi,j > 0 denotes the weight assigned to the
edge between vi and vj . Hence the graph Laplacian matrix can be represented as L = D − W , where
D = diag(D1,1,D2,2, . . . ,Dp,p) with Di,i =

∑p
j=1 wi,j . It can be shown that L is positive semi-definite by

virtue of being diagonally dominant with non-negative diagonal entries (Golub & Van Loan, 1996).

We consider the notations x = (x1, x2, . . . , xp) ∈ X (= (L2([0, 1]))p) and y ∈ Y (= L2([0, 1])) to represent
an arbitrary sample (x, y). To learn the mapping F , consider the training data of n samples given as{

(x(i), y(i))
}n
i=1, where x

(i) = (x(i)
1 , x

(i)
2 , . . . , x

(i)
p ) ∈ X and y(i) ∈ Y. In order to learn F , we develop an

operator-valued kernel which can leverage the structural information of G.
Definition 5.1 (Graph-induced Operator-valued Kernel). A graph-induced operator-valued kernel is
defined as

(KG(x, x′)y)(t) = k1(x, x′;G)
∫ 1

0
k2(s, t)y(s)ds, (2)

where k2 is a scalar-valued kernel on R2, G is a graph associating the p input functions in (x1, . . . , xp) ∈ X
and k1 is defined as

k1(x, x′;G) = e−γ(x−x′)>(L+D)(x−x′), γ > 0,
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where L is the Laplacian matrix of graph G and D is a diagonal matrix consisting of non-negative entries.

KG associates a pair x, x′ ∈ X with output function y ∈ Y where G is the graph which incorporates the
interactions of p constituent input functions of x and x′. k2 inside the Hilbert-Schmidt Integral (HSI) operator∫ 1

0 k2(s, t)y(s)ds is a scalar-valued kernel on R×R. The radial basis function (RBF) type kernel construction
of k1 involves L + D, where the addition of the Laplacian L with a diagonal matrix D with non-negative
entries results in a diagonally perturbed Laplacian matrix (Bapat et al., 2001) (see (Kurras et al., 2014;
Aliakbarisani et al., 2022) for applications of perturbed Laplacians). If k1 is positive semi-definite and if k2
is positive semi-definite (implying that the HSI operator is positive semi-definite), then the construction in
(2) is known to be positive semi-definite (Kadri et al., 2016). The addition of diagonal matrix D (with non-
negative entries) to L in (2) preserves the positive semi-definiteness of the kernel k1. Note that the notation
of the form x>Lx′ used in k1 denotes an inner product structure given by x>Lx′ =

∑p
i,j=1

∫ 1
0 xi(t)Lijx

′
j(t)dt

(see Appendix A.1 for details regarding this inner product structure).

Without loss of generality, henceforth we refer to the graph-induced operator-valued kernel KG as K for
simplicity. The matrix L = [Li,j ]pi,j=1 satisfies the conditions: L1 = 0 and Li,j = Lj,i ≤ 0, ∀i 6= j. Note
that the graph-induced operator-valued kernel (K(x, x′)y)(t) = k1(x, x′;G)

∫ 1
0 k2(s, t)y(s)ds as defined in

(2) with k1(x, x′;G) = e−γ(x−x′)>(L+D)(x−x′), γ > 0, x, x′ ∈ X , y ∈ Y is positive semi-definite (see proof
of Proposition A.1 in Appendix A.1), which ensures that there exists a unique function-valued RKHS HK
induced by K (Theorem 1 (Kadri et al., 2016)). Now to simultaneously learn F including the graph structure
represented by L and D, the following optimization problem is formulated:

F̃ , L̃, D̃ = arg min
F∈HK ,L∈L,D∈D

n∑
i=1
‖y(i) − F (x(i))‖2Y + λ‖F‖2HK

+ ρL

n∑
i=1

x(i)>Lx(i) + ρD‖D‖2F , (3)

where L = {L ∈ Rp×p|L1 = 0, Li,j = Lj,i ≤ 0,∀i 6= j} denotes the set of all matrices satisfying the
constraints associated with Laplacian matrices of the graph G = (V,W ) with W = [wi,j ]pi,j=1. Note that
D = {D ∈ Rp×p|Di,i ≥ 0, Di,j = 0,∀i 6= j} denotes the set of all diagonal matrices with non-negative diagonal
entries, ‖.‖F is the Frobenius norm and λ, ρL, ρD > 0. The regularization of D in (3) using Frobenius norm
provides control on the values in D. Note the absence of a Frobenius norm based regularizer for L in (3).
A different smoothness term x>Lx = 1

2
∑p
i,j=1 wi,j‖xi − xj‖2Y is considered (a similar term is considered in

(Humbert et al., 2021)), which provides an improved interaction-based data-oriented regularization instead
of using a simple matrix norm based regularization of L.

Using the representer theorem A.2 and the reproducing property of OVK K, the minimization problem (3)
is equivalently reduced to be in terms of u ∈ Yn instead of F ∈ HK as follows (see Appendix A.2):

min
F,L,D

J(F,L,D) =
n∑
i=1
‖y(i) − F (x(i))‖2Y + λ‖F‖2HK

+ ρL

n∑
i=1

x(i)>Lx(i) + ρD‖D‖2F (4)

=⇒ min
u,L,D

J(u, L,D) =
n∑
i=1

∥∥∥∥∥∥y(i) −
n∑
j=1

K(x(i), x(j))uj

∥∥∥∥∥∥
2

Y

+ λ

n∑
i,j=1
〈K(x(i), x(j))ui, uj〉Y (5)

+ ρL

n∑
i=1

x(i)>Lx(i) + ρD‖D‖2F .

To solve (3) (or (5) equivalently) we now propose an alternating minimization framework where J(u, L,D)
is optimized alternatively with respect to u ∈ Yn, L ∈ L and D ∈ D. We now discuss the steps involved in
alternating minimization of J(u, L,D).

5.1.1 Minimization with respect to u for fixed L,D

Assuming fixed L,D, and from the reproducibility property of K and representer theorem A.2, J(u, L,D)
from (5) simplifies to the following system of linear operator equations in u (see Appendix A.8):

(K + λI)u = y, (6)
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where Ki,ju = K(x(i), x(j))u = k1(x(i), x(j);G)k̄2(u),∀u ∈ Y with k1(x, x′;G) = e−γ(x−x′)>(L+D)(x−x′),
k̄2(u)(t) is defined using an exponential kernel in (2) as k̄2(u)(t) =

∫ 1
0 e
−γop|s−t|u(s)ds, γop > 0, s, t ∈ R,

u = [u1, u2, . . . , un]> ∈ Yn and y = [y(1), y(2), . . . , y(n)]>. In our framework, we consider a particular choice
of kernel k2 on R2 as k2(s, t) = e−γop|s−t|, γop > 0. The OpMINRES algorithm (Saha & Palaniappan,
2020) solves the system (6) by using an iterative Krylov subspace minimal residual method. Consider
P := K +λI, OpMINRES minimizes ‖y−Pu‖Yn , where the norm is defined as ‖ξ‖Yn =

√∑n
i=1
∫ 1

0 ξ
2
i (t)dt,

for ξ = (ξ1, ξ2, . . . , ξn) ∈ Yn. The steps involved in k-th iteration of OpMINRES algorithm are given below:

1. Transforming the linear operator system (K +λI)u = y into a linear system in Rk using a Lanczos-
based method (Lanczos, 1950), called Operator-valued Lanczos (or OpLanczos) scheme.

2. Solving the linear system of the previous step using QR decomposition.

3. Transforming the result obtained in step 2 appropriately to retrieve a solution in Yn.

Using the Krylov subspace Kk(P,y) = span{y,Py,P2y, . . . ,Pk−1y} obtained at the k-th iteration, Op-
MINRES obtains an approximation uk to the original solution using the following:

uk = arg min
θ∈Kk(P,y)

‖y−Pθ‖Yn . (7)

The problem in (7) is transformed into a problem in Rk by using OpLanczos method. The OpLanczos
method at the k-th iteration, tridiagonalizes P to get PQk = QkTk, where Tk has a tridiagonal structure
given by

Tk =



α1 β2 0
β2 α2 β3

β3 α3
. . .

. . . . . . βk−2
βk−1 αk−1 βk

0 βk αk


, (8)

and Qk = [q1, q2, . . . , qk], where the qi’s belonging to Yn are orthonormal and q1 is generally assumed to be
y/‖y‖Yn . Further, the relation PQk = Qk+1T k is also satisfied for a suitably defined T k. Using Qk, θ ∈ Yn
can be written as θ = Qkϑ for an appropriate ϑ ∈ Rk. Hence we have:

min
θ∈Kk(P,y)

‖y−Pθ‖Yn = min
ϑ∈Rk

‖y−PQkϑ‖Yn = min
ϑ∈Rk

‖y−Qk+1T kϑ‖Yn (9)

= min
ϑ∈Rk

‖Qk+1(β1e1 − T kϑ)‖Yn , (10)

(where β1 = ‖y‖Yn , e1 = [1, 0, . . . , 0]> and q1 = y/‖y‖Yn)
= min
ϑ∈Rk

‖β1e1 − T kϑ‖2. (where ‖.‖2 is the standard Euclidean norm.) (11)

Equation (10) reduces to (11) owing to the orthonormality of {q1, q2, . . . , qk+1} (columns of Qk+1). Solving
for ϑk = arg minϑ∈Rk ‖β1e1 − T kϑ‖2 is done using QR decomposition. Now, the transformation from Rk
back to Yn to obtain uk is achieved using the following: uk = Qkϑk = Qk

(
arg minϑ∈Rk ‖β1e1 − T kϑ‖2

)
. In

summary, we note that the minimization of J with respect to u is obtained by using OpMINRES for fixed
L and D. Now, we proceed to the next step in the alternating minimization of J(u, L,D).

5.1.2 Minimization with respect to L for fixed u, D

The minimization of J(u, L,D) with respect to L for fixed u, D is simplified by considering the symmetry
of L ∈ L. To simplify the computations, we introduce vectorization of matrices and half-vectorization

8
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of symmetric matrices (Henderson & Searle, 1979). For a matrix Z = [Zi,j ]qi,j=1 ∈ Rq×q for q ∈ N, the
vectorization of Z is defined as

vec(Z) = [Z1,1, . . . , Zq,1, Z1,2, . . . , Zq,2, . . . , Z1,q, . . . , Zq,q]>.

The half-vectorization of a symmetric matrix Z = [Zi,j ]qi,j=1 ∈ Rq×q is the vectorization of the lower trian-
gular part of Z given by

vech(Z) = [Z1,1, . . . , Zq,1, Z2,2, . . . , Zq,2, . . . , Zq−1,q−1, Zq,q−1, Zq,q]>.

By introducing vectorization and half-vectorization of L, we reduce the minimization of J(u, L,D) with
respect to matrix L into minimization with respect to the vector vech(L). To tackle the constraint set L, we
can reduce it to a simpler form by using half-vectorization and vectorization of L given by vech(L) ∈ R

p(p+1)
2

and vec(L) ∈ Rp2 , respectively. The following relations are used to relate vech(L) and vec(L) using an
appropriate transformation matrix called duplication matrixM:

Mvech(L) = vec(L), whereM∈ Rp
2× p(p+1)

2 .

The constraint set L can then be rewritten as A vech(L) = 0, B vech(L) ≤ 0, where A and B are matrices
which handle L1 = 0 and Li,j ≤ 0, i 6= j, respectively (Dong et al., 2016; Pu et al., 2021b). The construction
and properties of A,B and M can be found in Appendix A.5. For notational simplicity, we consider a
slight abuse of notations when referring to function J(u, L,D) to be equivalent to J(u, vech(L), vech(D))
as vech(L) and vech(D) can be used to represent L and D, respectively. Similarly, when considering fixed
u, vech(L) or vech(D), we denote the function J as a function of non-fixed entities, without referring to the
fixed variables. For example, in the current step, since vech(L) is the non-fixed entity and u, vech(D) are
fixed, we denote J(u, vech(L), vech(D)) simply as Ju,D(vech(L)). We employ a projected gradient descent
procedure to solve min Ju,D(vech(L)). The (k + 1)-th iterate vech(L)k+1 is obtained from the k-th iterate
vech(L)k by the following projected gradient descent step :

vech(L)k+1 = ΠL(vech(L)k − ηL∇vech(L)Ju,D(vech(L)k)), (12)

where ηL > 0 is the learning rate for the descent step, ΠL denotes the projection operator onto the set L.
The expression for gradient term ∇vech(L)J has been derived in Appendix A.6. For a fixed ẑ ∈ R

p(p+1)
2 , the

projection operator ΠL is defined as follows:

ΠL(ẑ) = arg min
z∈R

p(p+1)
2

‖z − ẑ‖2 such that Az = 0, Bz ≤ 0. (13)

The projection operator defined in (13) ensures that vech(L) obtained satisfies the constraints of a Laplacian
matrix of a graph. Projection operator ΠL is evaluated by solving the quadratic program (13) using well-
known interior point methods (Dikin, 1967; Andersen et al., 2012).

For a large matrix L, capturing meaningful relationships between input functions becomes important; oth-
erwise, elements of L may contain many non-zero values which are close to each other in magnitude and
may lead to lack of interpretability. Integrating sparsity-inducing regularizers on L would ensure that the
most important interactions get captured and can improve the predictions for output function. The learned
sparse graphs would then become useful for interpretation. In Section 5.1.4, we discuss about incorporating
sparsity-inducing regularizers in the L-based minimization problem min Ju,D(vech(L)). Now that projected
gradient descent is proposed for minimization of J with respect to L for a fixed u and D, we proceed with
a similar approach for the next step of the alternating minimization framework.

5.1.3 Minimization with respect to D for fixed u, L

Similar to the minimization of J(u, L,D) with respect to L for fixed u, D, as discussed in the previous section,
we proceed with the simplification of D ∈ D using half-vectorization given as vech(D) ∈ R

p(p+1)
2 to solve

min Ju,L(vech(D)). We further use notation Diag(D) to denote the vector containing diagonal elements of

9
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D. In order to deal with the constraint Di,i ≥ 0, ∀i ∈ [p] of D, we construct a matrix C ∈ Rp×
p(p+1)

2 which
consists of 0’s and 1’s satisfying Cvech(D) = Diag(D). Construction of a suitable C has been discussed in
Appendix A.5. For solving min Ju,L(vech(D)), we use projected gradient descent steps given by:

vech(D)k+1 = ΠD(vech(D)k − ηD∇vech(D)J(vech(D)k)), (14)

where ηD > 0 is learning rate for the descent step, ΠD denotes the projection operator onto the set D, and
vech(D)k denotes the k-th iterate for vech(D). The required expression for gradient ∇vech(D)J has been
derived in Appendix A.6. The projection operator ΠD is defined for d̂ ∈ R

p(p+1)
2 as

ΠD(d̂) = arg min
d∈R

p(p+1)
2

‖d− d̂‖2, such that Cd ≥ 0. (15)

The explicit solution of (15) can be easily obtained for i ∈ [p(p+ 1)/2], as the following:

di =
{

0, if i ∈ [p(p+ 1)/2] \ J
max(d̂i, 0), otherwise,

(16)

where the set J consists of indices j such that (vech(C))j = 1 (see Appendix A.5).

Thus, the proposed alternating minimization framework discussed in Sections 5.1.1-5.1.3 can be summarized
in the following steps:

1. Minimization with respect to F ∈ HK (or u ∈ Yn): Solving for u in (K + λI)u = y.

2. Minimization with respect to vech(L): Projected gradient descent of J with respect to vech(L)
such that L ∈ L.

3. Minimization with respect to vech(D): Projected gradient descent of J with respect to vech(D)
such that D ∈ D.

5.1.4 Sparsity Inducing Regularization

The functional regression problem aims at predicting the output function based on the interactions and
influences of the input functions. In a large-scale setting with numerous input functions influencing the
output function, providing each interaction of a pair of input functions with similar weights may hamper
the prediction capability as well as interpretability of the proposed graph-induced operator-valued kernel
method. Sparse graphs ensure a focus on picking more pivotal associations between the pairs of input
functions which drive the functional regression problem, as noisy interactions are given negligible weights
and significant interactions contribute more to the prediction. A popular method to obtain sparsity on the
graph structure is to consider the trace of L as a regularizer (Qiao et al., 2018). But as L is obtained based
on solving a constrained minimization problem (13), we introduce a constraint that can regularize the values
in L (Pu et al., 2021b). To facilitate this, we consider a vector c ∈ R

p(p+1)
2 consisting of 0’s and 1’s, such

that c>vech(L) = trace(L) (Appendix A.5). Let mtrace(> 0) be a hyperparameter controlling the trace of
L which is equivalent to controlling the off-diagonal entries of weight matrix W corresponding to the graph
learned. As our formulation requires solving a quadratic program in the projected gradient descent for L
(Section 5.1.2), a direct way to control the trace of L involves modifying the quadratic program (13) to the
following:

ΠL(ẑ) = arg min
z∈R

p(p+1)
2

‖z − ẑ‖2, such that Az = 0, c>z = mtrace, Bz ≤ 0,

where ẑ ∈ R
p(p+1)

2 and mtrace > 0. The constraint c>z = mtrace is appended with Az = 0 to obtain the
transformed quadratic program for projection operator ΠL:

ΠL(ẑ) = arg min
z∈R

p(p+1)
2

‖z − ẑ‖2, such that Ãz = 0̃, Bz ≤ 0, (17)

10
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Figure 2: Comparison of h(w) := MCP(w) values for different λmcp and γmcp values for varying w. [Best
viewed in color]

where Ã =
[
A
c>

]
and 0̃ =

[
0

mtrace

]
. For our experiments the value of mtrace is considered as p/2 (discussed

in Section 7) to promote sparsity in the learned graph structure. Assigning mtrace the value p/2, allows
a cumulative weight of p/2 to be distributed among the edges in the learned graph, promoting sparsity.
Though we have used mtrace = p/2 for all our experiments, we showcase the impact of different values of
mtrace in Appendix A.10.5 which illustrate that mtrace can be considered as a hyperparameter.

In addition to restricting the trace of L with mtrace, we also utilize a sparsity-inducing regularizer in
minu,D J(vech(L)). Nonconvex regularizers have gained popularity in recent literature (Zhang et al., 2020;
Ying et al., 2020; Vargas Vieyra, 2022) for promoting sparsity in learned graphs. These nonconvex regulariz-
ers acting on weights on individual graph edges are more effective than traditional `1-norm based graphical
lasso regularization which is a classical approach in graph learning (Yuan & Lin, 2007; Banerjee et al., 2008;
d’Aspremont et al., 2008). A nonconvex regularizer, minimax concave penalty (MCP) (Zhang, 2010) denoted
by h is characterized by the definition of its derivative h′ given by:

h′(w) =
{
λmcp − w

γmcp
, w ∈ [0, γmcpλmcp],

0, w ∈ [γmcpλmcp,∞),
(18)

for λmcp, γmcp > 0. The above definition of h′ with h(0) = 0 ensures that h is monotonically increasing in
the interval [0, γmcpλmcp]. The impact of λmcp and γmcp on value of the regularizer h has been compared in
Figure 2. The illustration in Figure 2 shows that MCP function h magnifies the small values till γmcpλmcp
where λmcp and γmcp control the slope and curvature of the truncated concave quadratic function h. This
ensures that most smaller off-diagonal values are penalized by choosing proper λmcp and the differences
between large and small values are exaggerated which promotes sparsity. Though h′ in (18) (or equivalently
h) is defined over R+, we overload the notation to define h(z) = [h(z)i]di=1 where z ∈ Rd+. Ying et al.
(2020) proposes MCP to obtain a nonconvex penalized maximum likelihood estimation method for learning
sparse Laplacian matrices for graphs. However, here we introduce MCP regularizer in the projection step
considered for vech(L). Therefore, we reformulate the minimization problem with respect to L for fixed u

11
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and D as follows:

min
vech(L)∈L̃

vech(L).MCP

Ju,D(vech(L)), (19)

where the constraint set is L̃ =
{
z ∈ R

p(p+1)
2

∣∣∣Ãz = 0̃, Bz ≤ 0
}

and the property vech(L) .MCP signifies
that vech(L) is sparse in the sense of MCP regularization.

The MCP regularizer operates on the off-diagonal entries of L to induce sparsity. To solve (19), we consider
a two-level update procedure for vech(L). In the first level, we use Ju,D(vech(L)), to perform an iteration
of gradient descent to obtain (q + 1)-th iterate from q-th iterate, as follows:

vech(L)q+1 = vech(L)q − ηL∇vech(L)Ju,D(vech(L)q), (20)

where ∇vech(L)J denotes the gradient of J with respect to vech(L) and ηL > 0 is the learning rate for the
descent step. In the second level, we ensure that vech(L)q+1 obtained in (20) is projected onto set L̃ and
is also sparse in the sense of MCP regularization captured using the property vech(L) .MCP. To apply
the MCP regularizer on off-diagonal entries of L for vech(L), we construct a matrix H ∈ R

p(p+1)
2 × p(p+1)

2

comprising 0’s and 1’s such that Hvech(L) produces a vector having the same structure as vech(L) with 0’s
corresponding to diagonal entries of L and the same off-diagonal entries as in L (see Appendix A.5 for the
construction). Then we aim to solve the following minimization problem:

min
z∈R

p(p+1)
2

‖z − vech(L)q+1‖2 +
p(p+1)

2∑
i=1

(h(H(−z)))i, such that Ãz = 0̃, Bz ≤ 0, (21)

where the negative sign before z in MCP regularization is used since h operates on non-negative entries and
L contains negative weights corresponding to off-diagonal entries. Further the product H(−z) eliminates the
positive diagonal entries of L. Note that the first term in the objective function of (21) is convex in z and
the second term is concave in z. Hence we adopt a majorization-minimization iterative approach, similar
to (Ying et al., 2020) to solve (21). In each iteration l of this approach, we obtain a majorization of the
objective function in (21) using the linearization of concave function h at zl as:

‖z − vech(L)q+1‖2 +
p(p+1)

2∑
i=1

(h′(H(−zl)))i(H(−z))i. (22)

Then we solve a minimization step, which when combined with the linearization in (22) leads to the following
quadratic program:

zl+1 = arg min
z∈R

p(p+1)
2

‖z − vech(L)q+1‖2 +
p(p+1)

2∑
i=1

(h′(H(−zl)))i(H(−z))i, such that Ãz = 0̃, Bz ≤ 0. (23)

We solve the problem (23) iteratively till convergence to obtain a sequence of zl’s. The procedure for MCP
based sparsity-inducing regularization has been summarized in Algorithm 1. The solution obtained from
Algorithm 1 is thus a valid Laplacian matrix of a graph, and satisfies trace constraint as well as MCP
based sparsity-inducing regularization property captured by vech(L) .MCP. Note that other nonconvex
regularizers such as smoothly clipped absolute deviation (SCAD) (Fan & Li, 2001; Ying et al., 2020) can
also be used instead of MCP in our approach which can provide comparable sparse graph structures.

Using the learned u, L,D, the graph-induced operator-valued kernel is used to predict the output function
corresponding to the p input functions x̂ = (x̂1, x̂2, . . . , x̂p) based on (114) given by

F (x̂) =
n∑
i=1

K(x(i), x̂)ui, where ui ∈ Y. (24)

12
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Algorithm 1 MCP Regularization of L
Input: vech(L)
Output: vech(Lmcp)
Initialize z0 = vech(L), H
l = 0
while stopping criteria for zl not satisfied do
Find h′(H(−zl))
Find zl+1 as the solution of (23)
l← l + 1

end while
vech(Lmcp) = zl

Algorithm 2 summarizes the entire alternating minimization procedure with sparsity-inducing regularization.
For our experiments, vech(L) is initialized using a Laplacian matrix L with Li,j = −mtrace/(p(p − 1)), for
i 6= j ∈ [p] and Li,i = mtrace/p, for i ∈ [p], which satisfies the mtrace condition in (17). The initial vech(D)
is considered corresponding to D = Ip, identity matrix of order p. Note that the objective function J in
problem (19) is not jointly convex with respect to u, vech(L) and vech(D). To prove the convergence of
alternating minimization of a non-convex function J with respect to a heterogeneous collection of three
variables where ui’s ∈ Y and vech(L), vech(D) ∈ R

p(p+1)
2 requires development of fundamental results which

is out of scope of our current work, and we aim to take this up in future. However, we observed empirical
convergence of the proposed alternating minimization framework in our experiments.

5.1.5 Extension of Learning Graph Structure for Multi-dimensional Outputs

In many scenarios, a functional regression problem involves multi-dimensional input and output functions
which requires learning multiple functions corresponding to each dimension in the output space. Consider
X = (L2([0, 1]))p,Y = L2([0, 1]) with {(x(i),y(i))}ni=1 as the training data, where x(i) ∈ X r,y(i) ∈ Ys, for
i ∈ [n]. Notice that the input space is now X r and output space is Ys, which are both multi-dimensional.
In this case, we have x(i) = (x(i)

1 , x
(i)
2 , . . . , x

(i)
r ) where x(i)

j = (x(i)
j1 , x

(i)
j2 , . . . , x

(i)
jp ) ∈ X ,∀j ∈ [r] and y(i) =

(y(i)
1 , y

(i)
2 , . . . , y

(i)
s ) where y(i)

j ∈ Y,∀j ∈ [s]. Consider a setting where the input space X r is mapped to
output space Ys by learning distinct maps of the from F i : X r → Y, for i ∈ [s]. Note that to find these maps
F i, an extension to the framework developed in Sections A.1 and 5.1 can be used, as long as the proposed
graph-induced OVK framework is adapted to handle the multi-dimensional inputs x(i). For a motivating
example, consider the data of movement of players for a fixed time interval in a basketball game comprising
the x and y coordinates of the playing area belonging to the input space X 2. Similarly, movement of the ball
for the fixed time interval is characterized by x and y coordinates of the court which belong to the output
space Y2. The corresponding regression problem involves learning F = [F 1, F 2]>, where F 1 : X 2 7→ Y and
F 2 : X 2 7→ Y.

For the multi-dimensional setting, we propose the following extension of the scalar-valued kernel based on
L and D as

k1

(
x(i),x(j);G

)
= e
−
∑r

k=1

[
γk

(
x

(i)
k
−x(j)

k

)>
(L+D)

(
x

(i)
k
−x(j)

k

)]
, (25)

where γk > 0,∀k ∈ [r] and k1 maps pair of elements from the input space X r to a real number. Now,
k1
(
x(i),x(j);G

)
can be appropriately used to create a graph-based operator-valued kernel in higher dimen-

sions using the construction of a suitable OVK as follows:K
1 (x(i),x(j)) y1(t)

...
Ks
(
x(i),x(j)) ys(t)

 = k1

(
x(i),x(j);G

)
∫ b
a
k1

2(t′, t)y1(t′)dt′
...∫ b

a
ks2(t′, t)ys(t′)dt′

 , (26)
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Algorithm 2 Alternating Minimization of J
Input: {(x(i), y(i))}ni=1, x

(i) = (x(i)
1 , x

(i)
2 , . . . , x

(i)
p ) ∈ X , y(i) ∈ Y

Output: u, vech(L), vech(D)
Initialize vech(L)0 ∈ L, vech(D)0 ∈ D
y = [y(1), y(2), . . . , y(n)]>
k = 0
while True do
Compute k1(x(i), x(j);G) = e−γRij(vech(L)k+vech(D)k), ∀i, j ∈ [n] using (137) in Appendix A.6
Solve for u in (K + λI)u = y to obtain uk using OpMINRES
if stopping criterion for uk is satisfied then
break from the outermost while loop //exit based on convergence of u iterates

end
q = 0
while stopping criterion for vech(L)q not satisfied do
//stopping criterion is based on convergence of vech(L) iterates
vech(L)q+1 = vech(L)q − ηL∇vech(L)Ju,D(vech(L)q)
vech(L)mcp obtained based on MCP regularization using vech(L)q+1 as input to Algorithm 1
vech(L)q+1 ← vech(L)mcp
q ← q + 1

end while
vech(L)k ← vech(L)q
m = 0
while stopping criterion for vech(D)m not satisfied do
//stopping criterion is based on convergence of vech(D) iterates
vech(D)m = vech(D)k
vech(D)m+1 = ΠD(vech(D)m − ηD∇vech(D)Ju,L(vech(D)m)) using (14)
m← m+ 1

end while
vech(D)k ← vech(D)m
k ← k + 1

end while
u = uk, vech(L) = vech(L)k, vech(D) = vech(D)k

where ki2 : R × R → R, for i ∈ [s] are scalar-valued kernels on R2. In order to use the output functions
y(i) = (y(i)

1 , y
(i)
2 , . . . , y

(i)
s ) for learning s maps from input space X r to the output space Y, the problem in (3)

is extended as follows:

F̃ , L̃, D̃ = arg min
F=[F 1,F 2,...,F s]>∈HK ,L∈L,D∈D

s∑
l=1

[
n∑
i=1
‖y(i)
l − F

l(x(i))‖2Y + λ‖F l‖2Hl
K

]

+
r∑

k=1
ρkx

(i)
k

>
Lx

(i)
k + ρD‖D‖2F ,

(27)

where λ, ρk, ρD are positive reals, HK = H1
K × H2

K × · · · × HsK , F l : X r → Y for l ∈ [s]. Consider
the objective function of (27) as J(F,L,D). Similar to Sections 5.1.1-5.1.4, on applying an alternating
minimization framework, the steps involved in L,D minimization remain the same. In order to solve the
minimization problem in (27) (for fixed L,D) an extension of the representer theorem A.2 is required which
follows based on the construction of graph-induced operator-valued kernel in (26).

Theorem 5.1 (Extended representer theorem). Let K be an operator-valued kernel as defined in (26)
and HK = H1

K×H2
K×· · ·×HsK be its corresponding function-valued reproducing kernel Hilbert space based
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on kernels k1, k
1
2, . . . , k

s
2. The solution F̃λ ∈ HK of the regularized optimization problem:

F̃λ = arg min
F=[F 1,F 2,...,F s]>∈HK

s∑
l=1

(
n∑
i=1
‖y(i)
l − F

l(x(i))‖2Y + λ‖F l‖2Hl
K

)
,

where λ > 0, F = [F 1, F 2, . . . , F s]> ∈ HK = H1
K ×H2

K × · · · × HsK , has the following form

F̃λ(.) =

F̃
1
λ(.)
...

F̃ sλ(.)

 =


∑n
i=1K

1(x(i), .)u1
i

...∑n
i=1K

s(x(i), .)usi

 , where u1
i , u

2
i , . . . , u

s
i ∈ Y. (28)

Proof. The proof follows as a consequence of the representer theorem proof in Appendix A.4.

In order to solve the minimization problem (27), we use the representer theorem and reproducibility property
of the OVKs Kl, for l ∈ [s]. The optimization problem in (27) is solved by using the alternating minimization
of the objective function with respect to F = [F 1, F 2, . . . , F s]> ∈ HK , L ∈ L and D ∈ D. For a constant
L and D, we use the representer theorem (Theorem 5.1) to transform the objective function in terms of
F 1 ∈ H1

K , . . . , F
s ∈ HsK to functions u1

i , u
2
i , . . . , u

s
i ∈ Y, i ∈ [n], respectively. The objective function J is

defined as the following (see Appendix A.2):

J(F 1, F 2, . . . , F s, L,D) =
s∑
l=1

(
n∑
i=1
‖y(i)
l − F

l(x(i))‖2Y + λ‖F l‖2Hl
K

)
+

r∑
k=1

ρk

(
n∑
i=1

x
(i)
k

>
Lx

(i)
k

)
+ ρD‖D‖2F

=⇒ J(u1,u2, . . . ,us, L,D) =
s∑
l=1

 n∑
i=1

∥∥∥∥∥∥y(i)
l −

n∑
j=1

Kl(x(i),x(j))ulj

∥∥∥∥∥∥
2

Y

+ λ

n∑
i,j=1
〈Kl(x(i),x(j))uli, ulj〉Y


(29)

+
r∑

k=1

(
ρk

n∑
i=1

x
(i)
k

>
Lx

(i)
k

)
+ ρD‖D‖2F .

For solving the multi-dimensional functional regression problem, the alternating minimization framework
discussed in Section 5.1 is extended with the major difference in the step concerning minimization with
respect to F = [F 1, F 2, . . . , F s]> (or u1,u2, . . . ,us) for fixed L and D. The multi-dimensionality leads to
solving the following system of linear operator equations:[

(K1 + λI)u1 . . . (Ks + λI)us
]

=
[
Θ1 . . . Θs

]
, (30)

where Kl
i,ju = Kl(x(i),x(j))u = k1(x(i),x(j);G)k̄k2 (u),∀u ∈ Y, Θl = [y(1)

l , y
(2)
l , . . . , y

(n)
l ]> with k̄l2 =∫ 1

0 e
−γl

op|t
′−t|u(t′)dt′, γlop > 0,∀l ∈ [s] and t′, t ∈ [0, 1]. For all Kl, l ∈ [s], the scalar-valued kernel k1

(given in (25)) used remains the same and is built on common L and D. Therefore, s possibly different
graph-induced OVKs are obtained by using exponential kernels on R2 with γlop, for l ∈ [s].

In order to solve for u1,u2, . . . ,us in (30), we use the OpMINRES algorithm discussed in Section 5.1.1 to
solve the systems (Kl + λI)u = yl, for l ∈ [s]. OpMINRES algorithm solves the s systems in parallel with
a stopping criteria which combines s relative residuals.

Thus, for alternating minimization, the steps discussed can be summarized as:

1. Minimization with respect to F = [F 1, F 2, . . . , F s]> ∈ HK (or u1,u2, . . . ,us ∈ Yn): Solving
for u1,u2, . . . ,us in [

(K1 + λI)u1 . . . (Ks + λI)us
]

=
[
Θ1 . . . Θs

]
.

15



Published in Transactions on Machine Learning Research (03/2024)

2. Minimization with respect to vech(L): Projected gradient descent of J with respect to vech(L)
in L with sparsity inducing regularization.

3. Minimization with respect to vech(D): Projected gradient descent of J with respect to vech(D)
in D.

Using the learned graph-induced operator-valued kernel the output function is used to predict for input
functions x̂ = (x̂1, . . . , x̂r), where x̂j ∈ X , for j ∈ [r] as

F (x̂) =


∑n
i=1K

1(x(i), x̂)u1
i

...∑n
i=1K

s(x(i), x̂)usi

 , where u1
i , . . . , u

s
i ∈ Y, for i ∈ [s].

5.1.6 Sample-based Approximation for Functional Regression Problem

The kernel-based alternating minimization framework proposed earlier in this section helps to learn appro-
priate u, L, and D for the prediction of functional output using (24). For a setting where the number of
training samples is large, the training can become computationally expensive as OpMINRES iteration scales
in O(n3), where n is the number of training samples. This issue of scalability is a well-known problem in
kernel methods, which becomes more pronounced in an OVK-based framework. There are many popular
methods for handling scalability issues in kernel methods (Williams & Seeger, 2000; Meanti et al., 2020; Bach
& Jordan, 2005). In most cases, the approaches handling scalability issues for kernel methods are incorpo-
rated into the learning problem for approximating the kernel Gram matrices arising in large datasets, by
using low-rank Cholesky decomposition (Bach & Jordan, 2005), Nyström approximation (Williams & Seeger,
2000) and GPU-based acceleration and parallelization (Meanti et al., 2020). For vector-valued regression
problems, random Fourier features have been used for building OVKs (Brault et al., 2016; Brault, 2017)
which cannot be directly extended to functional regression problems due to the following reasons. Extension
of the random Fourier features to a functional setting requires developing a new theoretical framework for
a functional version of operator-valued Bochner’s theorem. Moreover, spectral decomposition of OVKs for
functional data is beyond the scope of our current work, hence we leave it for future work. In our approach,
we aim for a sample-based approximation heuristic algorithm which enables us to perform a greedy sample
selection procedure followed by the training with only those selected samples.

The motivation of the sample-based approximation lies in characterizing the action of the considered OVK
K on i-th sample (x(i), y(i)) ∈ X × Y. Recall the learning problem discussed in Section 5.1 given by

F̃ , L̃, D̃ = arg min
F∈HK ,L∈L,D∈D

n∑
i=1
‖y(i) − F (x(i))‖2Y + λ‖F‖2HK

+ ρL

n∑
i=1

x(i)>Lx(i) + ρD‖D‖2F ,

which requires solving for u in (K +λI)u = y in the first step of alternating minimization with respect to F
(or u) for fixed L and D. We consider the notations yi and Ki respectively as equivalent to y(i) and K(x(i), ·)
in this section for simplicity. Though approximating ui ∈ Y in F (.) =

∑n
i=1Kiui corresponding to sample

(x(i), y(i)) may provide a better option for performing a sample-based approximation, we do not have the
luxury to perform the inversion required in (K + λI)u = y. One way to assess the importance of a training
sample (x(i), y(i)) is to investigate the action of operator K with x(i) on the output function y(i). Towards
that we build K̄i : X → L(Y) by choosing samples which minimize the squared norm of the difference∑n
i=1 ‖Kiyi − K̄iyi‖2HK

, defined over the RKHS HK . A working set of samples is constructed iteratively
from the training data to formulate K̄iyi as a linear combination of Kijyij ’s, where ij ’s correspond to the
indices of a working set of samples in training data. Inspired by (Smola & Schölkopf, 2000), we propose the
following approach to construct K̄i’s iteratively. Consider indices in I = {i1, i2, . . . , i|I|} ⊂ [n] as the set
of indices for the working set IW = {(x(i), y(i)) : i ∈ I} of samples from the training data. The aim is to
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approximate the action of Ki on yi using samples in IW as

K̄iyi =
|I|∑
j=1

Ti,jKijyij , for i ∈ [n], (31)

=⇒


K̄1y1
K̄2y2
...

K̄nyn

 =


T1,1 T1,2 . . . T1,|I|
T2,1 T2,2 . . . T2,|I|
...

... . . . ...
Tn,1 Tn,2 . . . Tn,|I|



Ki1yi1
Ki2yi2

...
Ki|I|yi|I|

 =: T


Ki1yi1
Ki2yi2

...
Ki|I|yi|I|

 , (32)

where T ∈ Rn×|I|. The values
∥∥Kiyi − K̄iyi

∥∥
HK

are treated as residuals of the approximation for the i-th
training sample. Approximations K̄i corresponding to each sample (x(i), y(i)), for i ∈ [n], created by the
working set IW of samples in (31) are bounded linear operators on the output space Y. For every sample
(x(i), y(i)), where i ∈ [n], the action of operator Ki on yi is approximated by using scalars Ti,1, Ti,2, . . . , Ti,|I|
with Kijyij ∈ HK , for j ∈ [|I|]. Minimization of

∑n
i=1 ‖Kiyi − K̄iyi‖2HK

ensures that the working set of
samples can characterize closely the impact of Kiyi. The approximation of Ki,∀i ∈ [n] using the working
set of samples is described next.

Approximation of Operators using Samples: Initially, suppose I = ∅ and let i1 ∈ [n] be the best
candidate index. Then the index set I is updated as I = {i1}, and the working set IW contains only a single
sample corresponding to the index i1 ∈ I. Now the optimization problem is to determine T1,1, T2,1, . . . , Tn,1
in K̄iyi = Ti,1Ki1yi1 ,∀i ∈ [n] and is given by

arg min
T1,1,T2,1,...,Tn,1

n∑
i=1

∥∥Kiyi − K̄iyi
∥∥2
HK

=
n∑
i=1
‖Kiyi − Ti,1Ki1yi1‖

2
HK

. (33)

The solution of (33) is obtained as

Ti,1 = 〈Kiyi,Ki1yi1〉HK

〈Ki1yi1 ,Ki1yi1〉HK

(34)

= 〈Kii1yi, yi1〉Y
〈Ki1i1yi1 , yi1〉Y

, for i ∈ [n], (35)

where Kii1 = K(x(i), x(i1)) and (34) is obtained by differentiating the objective function in (33) with respect
to Ti,1 and equating it to 0, to obtain the minima for i ∈ [n]. The reproducing property of OVK is used to
obtain (35). This construction of Ti,1 yields

〈Kiyi − K̄iyi,Ki1yi1〉HK
= 0, ∀i ∈ [n]. (36)

The equality in (36) denotes that the space span{(Kiyi − K̄iyi),∀i ∈ [n]} is orthogonal to Ki1yi1 (denoted
by span{(Kiyi − K̄iyi)),∀i ∈ [n]} ⊥ Ki1yi1). Note that this orthogonality property holds for index i1. We
shall show later that a similar property indeed holds for all samples which will be added to the working set.
In general, the number of samples for the functional regression problem can be large and searching for the
best candidates in the complete training set may become costly and defeat the cause for developing a sample
based approximation. Hence we consider a random subset of R samples for an efficient approximation, where
R < n and |I| < R.

For the iterative process to build the working set of indices I and samples IW , let us assume that Iold be
the index set with |Iold| = k (say) and T old ∈ Rn×k be the matrix formed based on (31) for obtaining
K̄old
i yi =

∑k
j=1 Ti,jKijyij ,∀i ∈ [n]. Suppose ik+1 be the index of next best sample to be added to get

Inew = Iold ∪ {ik+1} which provides K̄new
i = K̄old

i yi + Ti,k+1Kik+1yik+1 . The minimization problem as in
(33) is written as

arg min
T1,k+1,T2,k+1,...,Tn,k+1

n∑
i=1

∥∥Kiyi − K̄new
i yi

∥∥2
HK

=
n∑
i=1

∥∥Kiyi − K̄old
i yi − Ti,k+1Kik+1yik+1

∥∥2
HK

, (37)
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where the solution of (37) results in

Ti,k+1 =
〈Kiyi − K̄old

i yi,Kik+1yik+1〉HK

〈Kik+1yik+1 ,Kik+1yik+1〉HK

(38)

=
〈Kiik+1yi, yik+1〉Y −

∑k
j=1 Ti,j〈Kijik+1yij , yik+1〉Y

〈Kik+1ik+1yik+1 , yik+1〉Y
, for i ∈ [n]. (39)

Ti,k+1 in (38) is obtained similar to the procedure for (34) by differentiating the objective function in (37)
with respect to Ti,k+1’s and equating it to 0, obtaining the minima for i ∈ [n]. Equation (39) follows from
properties of inner-product and reproducing property of OVK. The iterative construction ensures that the
following property holds:

〈Kiyi − K̄new
i yi,Kijyij 〉HK

= 0, ∀i ∈ [n],∀j ∈ [k + 1] (40)
=⇒ span{Kiyi − K̄new

i yi|i ∈ [n]} ⊥ span{Kijyij |j ∈ [k + 1]}. (41)

Similar to (36), the iterative procedure ensures that the orthogonality property is extended to (41) in HK ,
which will be used in the iterative selection process discussed below. For each iteration, it remains to find
the best sample from the R randomly selected candidate set of samples, which is to be included in IW . We
discuss this next.

Selecting the Best Samples Iteratively: In order to find the training sample which will minimize the
residuals most effectively, let C be the candidate set of indices for training samples given by C ⊆ [n] \ I.
Suppose for a particular iteration, let I = {i1, i2, . . . , ik} and let the randomly selected candidate set of
indices be C = {c1, c2, . . . , cM}. For each cr ∈ C, we calculate the improvement in the sum of residuals
which can result in including cr in I. Assume K̄old

i yi be given by

K̄old
i yi =

k∑
j=1

Ti,jKijyij , for i ∈ [n], (42)

from which we obtain K̄new
i yi as follows:

K̄new
i yi = K̄old

i yi + Ti,rKcr
ycr
, for cr ∈ C. (43)

In order to select the best sample index from the candidate set C, we need to find the index cr in C which
best approximates

∑n
i=1 ‖Kiyi − K̄new

i yi‖, when Inew = Iold ∪ {cr} is considered as the index set for the
new working set of samples. Let the improvement in the sum of residuals by adding cr in Iold be denoted
by Improvement(cr), given by

Improvement(cr) =
n∑
i=1
‖Kiyi − K̄old

i yi‖2HK
−

n∑
i=1
‖Kiyi − K̄new

i yi‖2HK
(44)

=
∑n
i=1
[
〈Kiyi − K̄old

i yi,Kcrycr 〉HK

]2
〈Kcrycr ,Kcrycr 〉HK

(45)

=

∑n
i=1

[
〈Kicr

yi, ycr
〉Y −

∑k
j=1 Ti,j〈Kijcr

yij , ycr
〉Y
]2

〈Kcrcr
ycr
, ycr
〉Y

. (46)

Equation (44) quantifies the reduction in the residual value by the addition of cr to working set I of indices.
Equation (45) is obtained from (44) by using the properties of inner product and K̄old

i , for i ∈ [n] and the
orthogonality property (41). Equation (46) follows from the reproducing property of operator-valued kernel
K. The sample which achieves the maximum improvement is considered to be the best sample to be added
to the working set. In terms of indices, this selection becomes

Best Indexk = arg max
cr∈C

Improvement(cr).
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Algorithm 3 Sample-based Approximation
Input: {(x(i), y(i))}ni=1, x

(i) = (x(i)
1 , x

(i)
2 , . . . , x

(i)
p ) ∈ X , y(i) ∈ Y

Output: I, the index set of working set of samples.
Initialize vech(L)0, vech(D)0

yi ← y(i),Ki ← K(x(i), .),Kij ← K(x(i), x(j)), ∀i, j ∈ [n]
Initialize k = 0, I = ∅, T = 0
while stopping criterion based on residual (49) is not satisfied do
Construct C by drawing random subset of M elements from [n] \ I, C = {c1, c2, . . . , cM}

Compute Ti,k+1 =
〈Kiik+1yi,yik+1 〉Y−

∑k

j=1
Ti,j〈Kij ik+1yij

,yik+1 〉Y
〈Kik+1ik+1yik+1 ,yik+1 〉Y

, for i ∈ [n]

Improvement(cm) =
∑n

i=1

[
〈Kicmyi,ycm 〉Y−

∑k

j=1
Ti,j〈Kij cmyij

,ycm 〉Y
]2

〈Kcmcmycm ,ycm 〉Y
, for m ∈ [M ]

Best Indexk = arg maxcm∈C Improvement(cm)
I = I ∪ {Best Indexk}
k ← k + 1

end while

Stopping Criterion: As is the case for any iterative algorithm, an appropriate stopping criterion is required
for ending the sample selection process which may be based on the number of iterations or accuracy. For
using accuracy-based stopping criterion, residual is calculated for the k-th iteration as

Residualk =
n∑
i=1

∥∥(Ki − K̄i)yi
∥∥2
HK

(47)

=
n∑
i=1

〈Kiyi,Kiyi〉HK
− 2

k∑
j=1

Tij〈Kiyi,Kijyij 〉HK
+

k∑
j=1

k∑
l=1

TijTil〈Kijyij ,Kilyil〉HK

 (48)

=
n∑
i=1
〈Kiiyi, yi〉Y − 2

n∑
i=1

k∑
j=1

Ti,j〈Kiijyi, yij 〉Y +
n∑
i=1

k∑
j=1

k∑
l=1

Ti,jTi,l〈Kijilyij , yil〉Y . (49)

Equation (48) follows from the properties of inner product of RKHS and (49) is obtained using the repro-
ducibility property of K. As the first part of the summation in (49) remains constant for each iteration, a
threshold for residual value can be used to determine convergence of the last two terms. For a very large set
of training samples, a budget on the number of samples to consider can also be an effective tool for approx-
imation. As the aim is to learn a kernel encapsulating the graphical structure between the input variables,
the sample approximation can still be costly. An effective strategy is to start with an initial L representing a
fully connected graph and an initial D which is the identity matrix. After the sample selection process, the
final working set IW of samples indexed by I are used throughout in the alternating minimization framework.
In our implementations, we used the residual calculation using a validation set instead of the training set
which provided a faster convergence and better generalization. Algorithm 3 illustrates the sample-based
approximation for functional regression problem.

6 Generalization Analysis

Let X = (L2([0, 1]))p be the input space and Y = L2([0, 1]) be the output space. Consider the training
samples given as z = {(x(i), y(i)) : i ∈ [m]} ⊆ X × Y =: Z where zi := (x(i), y(i)),∀i ∈ [m] are drawn i.i.d.
from a probability distribution µ. The empirical error of a learned function-valued function F on the data
z is given as the following:

Ez(F ) = 1
m

m∑
i=1

L (y(i), F (x(i))), (50)
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where L : Y×Y → R+ is a loss function defined on the output space Y. A typical learning problem involves
estimating a function-valued F which is the solution of the following problem:

min
F∈HK

Eλ(F,K), (51)

where Eλ(F,K) := Ez(F ) + λ‖F‖2HK
. In our problem K is parameterized by L,D, γ, γop and belongs to a

class of OVKs K and hence in this work, for the given data, we aim to learn the following:

(Kz, Fz) := arg min{Eλ(F,K) : K ∈ K, F ∈ HK}. (52)

The problem (52) can be reformulated as a regularized empirical error minimization problem. Our focus
is on the problem of bounding the generalization error of Fz, namely E (Fz) − E (F ∗), where E (F ) is the
expected error of F given by E (F ) := E[L (y, F (x))], the expectation E is taken over the probability measure
µ, and F ∗ is the target function defined as

F ∗ = arg min E (F ), (53)

where the minimum is taken over all measurable functions F : X → Y.

6.1 Error Bounds

In this section, we introduce quantities which will be useful for our generalization bound analysis. We use
the approach in (Micchelli et al., 2016; Ying & Zhou, 2007; Wu & Zhou, 2006) and introduce sample error
as the following:

Sz(m,λ, F ) = [E (Fz)− Ez(Fz)] + [Ez(F )− E (F )]. (54)

The sample error Sz(m,λ, F ) in (54) consists of two terms [E (Fz)− Ez(Fz)] and [Ez(F )− E (F )]. The first
term [E (Fz)− Ez(Fz)] is the difference between the expected value of L (y, Fz(x)) with respect to µ and its
empirical mean over a fixed random data set z ⊆ Z. To bound this term we use the notion of Rademacher
averages which enables us to control and analyze the random variables zi associated with the data z ⊆ Z.
Similarly, the second term [Ez(F )− E (F )] denotes the difference between the empirical mean of L (y, F (x))
for a fixed z ⊆ Z and its expectation with respect to µ. We follow the approach in (Micchelli et al., 2016) to
bound both the terms.

In addition to the sample error, we introduce another quantity known as the regularization error R(F ) for
a function F ∈ HK defined as

R(F ) = E (F )− E (F ∗) + λ‖F‖2HK
, (55)

where F ∗ is the target function. A regularized version of problem (53) is given by

(K∗λ, F ∗λ ) := arg min
K∈K,F∈HK

{E (F ) + λ‖F‖2HK
: K ∈ K, F ∈ HK}. (56)

The regularization error of F ∗λ is denoted by R∗(λ) as follows:

R∗(λ) = min
K∈K

min
F∈HK

[
E (F )− E (F ∗) + λ‖F‖2HK

]
. (57)

In order to determine a generalization bound, we use the following result which enables us to relate gener-
alization error using sample error and regularization error.
Proposition 6.1. For every K ∈ K, F ∈ HK , the following inequality holds

E (Fz)− E (F ∗) ≤ Sz(m,λ, F ) +R(F ). (58)

Proof. In order to prove the inequality, we start with the generalization error,

E (Fz)− E (F ∗) = Sz(m,λ, F ) + Ez(Fz)− Ez(F ) + E (F )− E (F ∗) + λ‖F‖2HK
− λ‖F‖2HK

(59)
= Sz(m,λ, F ) +R(F ) + Ez(Fz)− Ez(F )− λ‖F‖2HK

(60)
≤ Sz(m,λ, F ) +R(F ). (61)
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Equation (59) is obtained by adding and subtracting Sz(m,λ, F ) and λ‖F‖2HK
. Equation (60) follows

from the definition of R(F ) in (55). The inequality in (61) is obtained using the facts λ‖F‖2HK
≥ 0 and

Ez(Fz)− Ez(F ) ≤ 0, as Fz = arg minF∈HK
Ez(F ).

Now, we intend to bound the term E (Fz) − Ez(Fz) in (54). Towards this we define the following notion of
Rademacher average of a suitable class of functions.
Definition 6.1 (Rademacher Average). Let F denote a class of functions from X to Y. Let µX denote
the marginal distribution over the input space X . Consider a m-tuple of samples from input space as
(x(1), x(2), . . . , x(m)) ∈ Xm, where x(i) ∼ µX , i ∈ [m]. Then the Rademacher average of class F is defined as

Rm;Y(F) = E

[
sup
F∈F

1
m

∥∥∥∥∥
m∑
i=1

εiF (x(i))
∥∥∥∥∥
Y

]
, (62)

where εi’s are Rademacher random variables uniformly distributed over {+1,−1} and E represents the
expectation over both i.i.d. Rademacher variables εi’s and i.i.d. variables x(i)’s based on µX .

Recall that for a class of functions F from an input space X to R, and a sample (x1, x2, . . . , xm) ∈ Xm, the
Radamacher average of F is defined as

Rm;R(F) = E

[
sup
F∈F

1
m

m∑
i=1

εiF (xi)
]
. (63)

Comparing this expression with that in Definition 6.1, we note that a suitable norm is used in Definition
6.1. Thus our definition of a suitable Radamacher average accommodates the nature of the function class F
which contains function-valued functions, unlike F which is composed of simple real-valued functions.

In order to proceed with the upcoming proofs, we require some assumptions which we state next. Assume
∃β > 0 such that ‖y‖Y ≤ β, ∀y ∈ Y, which provides a uniform upper bound on the norm of the outputs. In
addition, assume that the class K is uniformly bounded, that is,

κ = sup
K∈K

sup
x∈X

sup
y∈Y
‖K(x, .)y‖HK

= sup
K∈K

sup
x∈X

sup
y∈Y

√
〈K(x, x)y, y〉Y <∞. (64)

This assumption holds for OVKs which satisfy the trace class assumption (Kadri et al., 2016).

For any K ∈ K and F ∈ HK , we define the following norm

‖F‖∞ = max
x∈X

max
y∈Y
|〈F (x), y〉Y | = max

x∈X
max
y∈Y
|〈F,K(x, .)y〉HK

| ≤ κ‖F‖HK
, (65)

where we use the reproducing property, 〈F,K(x, .)y〉HK
= 〈F (x), y〉Y and the inequality in (65) follows from

Cauchy-Schwarz inequality. We define for t ≥ 0,

Ξ(t) := sup
y∈Y

sup
‖s‖Y≤t

L (y, s). (66)

The function Ξ(t) provides a bound on the loss function when the second argument s in the loss function has
restricted norm. Ξ(t) enables bounding the norm of the function F via the loss function L by considering
t = 0. Let L : Y → R be defined as the following:

L(t) = sup
y∈Y

sup
‖s1‖Y≤t,
‖s2‖Y≤t

|L (y, s1)−L (y, s2)|
‖s1 − s2‖Y

. (67)

L(t) provides a Lipschitz constant for the loss function L with respect to the second argument when the
norm of the argument is bounded by t.
Lemma 6.2. Let F be a class of functions from X to Y. Consider a m-tuple of samples from input space
as (x(1), x(2), . . . , x(m)) ∈ Xm. Then the following hold:
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1. E
[
supF∈F ‖ 1

m

∑m
i=1 F (x(i))− EF‖Y

]
≤ 2Rm;Y(F).

2. For every c ∈ R, Rm;Y(cF) = |c|Rm;Y(F).

3. For φ : Y → R, if φ is a Lipschitz function with Lipschitz constant L, then Rm;R(φ◦F) ≤ LRm;Y(F).

Proof. The lemma has been proved as Lemma A.6 in Appendix A.9.

We further define the following constants:

ρ =
√

Ξ(0)/λ, τ = κρ, (68)

which will be useful in the upcoming results. The forthcoming results will use the class of kernels given by:

K0 = {K(x, .)y : K ∈ K, x ∈ X , y ∈ Y}. (69)

The following result provides a bound on the sample error which involves the Rademacher average of the
class of kernels K0.
Theorem 6.3. If F ∈ HK, then with confidence 1− δ, where δ ∈ (0, 1), there holds

Sz(m,λ, F ) ≤ 2ρL(τ)β1/4(Rm;Y(K0))1/4 + (Ξ(τ) + Ξ(‖F‖∞))

√
log 1

δ

2m . (70)

The proof will be provided later as a consequence of the results covered in the upcoming section. Theorem
6.3 provides a probabilistic upper bound for the sample error in terms of Rademacher average for the class
of graph-induced operator-valued kernels. Later in Section 6.3, we will consider K to be the class of graph-
induced OVKs and derive a bound on Rm;Y(K0).

6.2 Estimating Sample Error

In this section, we derive results which aid in establishing the result in Theorem 6.3. We use Hoeffding
inequality for bounding the term Ez(F )− E (F ) using random data set z ⊆ Z := X × Y.
Lemma 6.4. Let F be a bounded function. For every δ ∈ (0, 1), with confidence 1− δ there holds

Ez(F )− E (F ) ≤ Ξ(‖F‖∞)

√
log 1

δ

2m . (71)

Proof. Consider the random variable ζ = L (y, F (x)). Note that Ez = 1
m

∑m
i=1 ζ(zi), where zi = (x(i), y(i))

and E = E(ζ). By our assumption, 0 < ζ ≤ Ξ(‖F‖∞) we have |ζ − E[ζ]| ≤ Ξ(‖F‖∞). Using one-sided
Hoeffding inequality, we obtain

P

(
1
m

m∑
i=1

(ζi − E[ζ]) ≥ t
)
≤ exp

(
− 2mt2

Ξ2(‖F‖∞)

)
. (72)

Consider,

δ = exp
(
− 2mt2

Ξ2(‖F‖∞)

)
=⇒ log 1

δ
=
(

2mt2
Ξ2(‖F‖∞)

)
=⇒ t = Ξ(‖F‖∞)

√
log 1

δ

2m . (73)

Therefore, for every δ ∈ (0, 1), with confidence 1− δ the following holds:

Ez(F )− E (F ) ≤ Ξ(‖F‖∞)

√
log 1

δ

2m . (74)

22



Published in Transactions on Machine Learning Research (03/2024)

Now that the second term in the sample error (54) has been bounded, we focus on the first term by considering
a union of unit balls in the space HK where the notion of Rademacher average can be defined for obtaining
bounds. We define a function Θ such that

E (Fz)− Ez(Fz) ≤ Θ(z) := sup
F∈ρBK

(E (F )− Ez(F )) , (75)

where BK is the union of unit balls in HK over K ∈ K given by

BK =
⋃
K∈K

{
F ∈ HK : ‖F‖HK

≤ 1
}
. (76)

The supremum is defined over ρBK in (75) by the following reasoning: λ‖Fz‖2HKz
≤ E (Fz) − E (F ∗) +

λ‖Fz‖2HKz
≤ Ez(0)− E (F ∗) ≤ supy∈Y L (y, 0) = supy∈Y sups:‖s‖Y≤0 L (y, s) = Ξ(0). This gives a bound on

‖Fz‖HKz
, note that Fz is the minimizer in problem (52). In fact, using a similar approach, for any general

F ∈ HK , we have ‖F‖HK
≤
√

Ξ(0)/λ =: ρ which leads to the set ρBK in (75).

Thus to bound E (Fz)− Ez(Fz), we find a suitable upper bound on Θ(z) in the following lemma.
Lemma 6.5. Consider Θ(z) = supF∈ρBK (E (F )− Ez(F )), then for every δ ∈ (0, 1), with confidence 1 − δ
the following holds

Θ(z) ≤ E[Θ(z)] + Ξ(τ)

√
log 1

δ

2m . (77)

Proof. Let z′i be the data set which is obtained by replacing i-th pair zi = (x(i), y(i)) of z with (x′i, y′i). Then,

Θ(z)−Θ(z′i) = sup
F∈ρBK

(E (F )− Ez(F ))− sup
F∈ρBK

(
E (F )− Ez′

i
(F )
)

(78)

≤ sup
F∈ρBK

(Ez′
i
(F )− Ez(F )) (79)

= 1
m

sup
F∈ρBK

(L (y′i, F (x′i))−L (y(i), F (x(i)))) (80)

≤ 1
m

Ξ(τ), (81)

where (79) is obtained by using properties of supremum and (81) follows from the definition of κ, τ and Ξ.
By interchanging z and z′i, we obtain

|Θ(z)−Θ(z′i)| ≤
1
m

Ξ(τ). (82)

Using McDiarmid’s inequality, we obtain

P (Θ(z)− E[Θ(z)] ≥ ε) ≤ exp
(
− 2mε2

Ξ2(τ)

)
. (83)

Using a similar argument as in the proof of Lemma 6.4, the proof follows that for every δ ∈ (0, 1), with
confidence 1− δ the following holds:

Θ(z)− E[Θ(z)] ≤ Ξ(τ)

√
log 1

δ

2m . (84)

The next lemma helps to bound E[Θ(z)] using Rademacher average of the class K0.
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Lemma 6.6. E[Θ(z)] is bounded above as follows:

E[Θ(z)] ≤ 2ρL(τ)β1/4(Rm;Y(K0))1/4.

Proof. The lemma has been proved as Lemma A.7 in Appendix A.9.

Using Lemmas 6.4, 6.5 and 6.6, the result in Theorem 6.3 is proved.

6.3 Learning with Graph-Induced Operator-valued Kernels

In this section, we consider the following class of functions

K0 = {K(x, .)y : K ∈ K, x ∈ X , y ∈ Y}, (85)

where K is defined as the graph-induced OVK given by

K(x, x′)y = e−γ(x−x′)>(L+D)(x−x′)
∫ 1

0
e−γop|s−t|y(s)ds, (86)

= g(x, x′)Ty, (87)

with γ, γop > 0, L ∈ L and D ∈ D. Note that g(x, x′) = e−γ(x−x′)>(L+D)(x−x′) and Ty =
∫ 1

0 e
−γop|s−t|y(s)ds.

Now, in order to bound the Rademacher average Rm;Y(K0), we follow an approach inspired by Maurer
(2016) and split the OVK K using properties on g and T . Consider the class of functions defined as
G = {g(x, .) = e−γ(x−.)>(L+D)(x−.) ∈ HG : ‖g(x, .)‖HG ≤ RG , L ∈ L, D ∈ D, γ > 0} where HG is the RKHS
corresponding to the scalar-valued kernel g on X × X .

Rm;Y(K0) = E

[
sup
k∈G

sup
y∈Y

sup
t∈X

∥∥∥∥∥ 1
m

m∑
i=1

εik(x(i), t)Ty
∥∥∥∥∥
Y

]
(88)

≤ E

[
sup
k∈G

sup
y∈Y

sup
t∈X

∣∣∣∣∣ 1
m

m∑
i=1

εik(x(i), t)
∣∣∣∣∣ ‖Ty‖Y

]
(89)

=
(

sup
y∈Y
‖Ty‖Y

)
E

[
sup
k∈G

sup
t∈X

∣∣∣∣∣ 1
m

m∑
i=1

εik(x(i), t)
∣∣∣∣∣
]

(90)

=
(

sup
y∈Y
‖Ty‖Y

)
R+
m;R(G). (91)

In Equation (91), R+
m;R(G) denotes a Rademacher average involving absolute values of real-valued functions

in G. For bounding Rademacher average R+
m;R(G), we use the notion of covering numbers. Next, we provide

the definition of covering numbers.
Definition 6.2 (Covering Numbers). Let (F, d) be a pseudo-metric space and S be a subset of F. For
every ε > 0, the covering number of S by balls of radius ε with respect to d, denoted by N (S, ε, d) is defined
as the minimal number of balls of radius ε whose union covers S, namely,

N (S, ε, d) = min

n ∈ N : ∃{sj}nj=1 ⊂ F such that S ⊆
n⋃
j=1

B(sj , ε)

 ,

where B(sj , ε) = {s ∈ F : d(s, sj) ≤ ε}.

Let Q be a class of bounded real-valued functions defined on X , x = (x(i) : i ∈ [m]) ∈ Xm and Q|x =
{(Q(x(i)) : i ∈ [m]) : Q ∈ Q} ⊆ Rm. For a norm induced by d on X , we define the d-norm empirical covering
number of Q associated with x as Nd(Q, ε,m) = supx∈Xm N (Q|x, ε, d).
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Let U = supg∈G E[g2]. Using a construction similar to (124) and (125) in Appendix A.3, we obtain

g(x, .) = e−γ(x−.)>(L+D)(x−.) = e−γ‖A(x−.)‖2
p ,

where A =
√

ΛV , for a diagonal matrix Λ with non-negative eigenvalues of L + D and V is a orthonormal
matrix. Consider an appropriate bound as E[g2] ≤ a, ∀g ∈ G which is reasonable owing to the RBF-based
construction of scalar-valued kernels in G. Based on Corollary 2.2.8 in (Van Der Vaart & Wellner, 1996), we
can bound the Rademacher average using covering number as

R+
m;R(G) ≤ 1√

m

∫ U

0

√
logNd(G, ε,m)dε, (92)

≤ 1√
m

∫ a

0

√
logNd(G, ε,m)dε. (93)

To bound Nd(G, ε,m), we use Remark 11 in (Cucker & Smale, 2002), to state that there exists C > 0 and
q > 0 such that

logNd(G, ε,m) ≤
(
RGC

ε

) 1
q

. (94)

Based on our assumptions, there exists K > 0 such that supy∈Y ‖Ty‖Y ≤ K. Using (93) and (94) in (91), we
obtain

Rm;Y(K0) ≤ 2aqK(RGC/a)1/2q

(2q − 1)
√
m

. (95)

Using the result in (95) with (70), we can establish the generalization bounds for the class of kernels con-
structed with graph-induced operator-valued kernels. For the problem considered in this work, the loss is
defined as L (y, y′) =

∫ 1
0 (y(t)− y′(t))2dt with Ξ(t) ≤ (β + t)2 and L(t) ≤ 2(β + t). We obtain the following

for λ < 1, δ ∈ (0, 1), with confidence 1− δ as

Sz(m,λ, F ∗λ ) ≤ 4ρ(β + τ)β1/4
(

2aqK(RGC/a)1/2q

(2q − 1)
√
m

)1/4

+ ((β + τ)2 + (β + ‖F ∗λ‖∞)2)

√
log 1

δ

2m (96)

≤ 4β√
λ

(
β + κβ√

λ

)
β1/4

(
2aqK(RGC/a)1/2q

(2q − 1)
√
m

)1/4

+ 2
(
β + κβ√

λ

)2
√

log 1
δ

2m (97)

= 4β9/4

λ
(κ+

√
λ)
(

2aqK(RGC/a)1/2q

(2q − 1)
√
m

)1/4

+ 2β2

λ
(κ+

√
λ)2

√
log 1

δ

2m (98)

<

β1/4
(

2aqK(RGC/a)1/2q

(2q − 1)

)1/4

+

√
log 1

δ

2

 β2

λm1/8 max{4(κ+ 1), 2(κ+ 1)2}. (99)

The inequality (97) is obtained using ρ =
√

Ξ(0)/λ ≤ β/
√
λ, τ = κρ and ‖F ∗λ‖∞ ≤ κρ. Now, a common

assumption for smooth kernels is of logarithmic decay of regularization error, i.e., R∗(λ) ≤ c′λη, where
η ∈ (0, 1] and c′ > 0 (Micchelli et al., 2016). Then the generalization error is bounded by

E (Fz)− E (F ∗) ≤ c

λ
+ c′λη. (100)

Consider the function H (λ) = c
λ + c′λη, then the minimizer is obtained for λ∗ = (c/ηc′)1/(1+η) with

H (λ∗) = (ηc′)1/(1+η) [1 + 1/η] cη/(1+η). Therefore, for δ ∈ (0, 1), with confidence 1− δ we obtain

E (Fz)− E (F ∗) ≤ (ηc′)1/(1+η) (1 + 1/η)

β1/4
(

2aqK(RGC/a)1/2q

(2q − 1)

)1/4

+

√
log 1

δ

2

 β2

m1/8A

η/(1+η)

,

(101)
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where A = max{4(κ + 1), 2(κ + 1)2}. (101) ensures an upper bound for the generalization error with the
help of a bound on the Rademacher average for the problem (52) of learning the OVK Kz and the functional
map Fz in the induced RKHS corresponding to Kz by using a ball BK in corresponding RKHS with a fixed
radius (considered as 1). The task of establishing a bound on the regularization error R∗(λ) in (Micchelli
et al., 2016) considers an example prescribing value for η based on the hyperparameter in the RBF kernel.
A similar pursuit in our setting is not straightforward because of the functional nature of the input space.
Hence, we leave it for future work.

7 Experiments

In order to illustrate the effectiveness of the developed framework, we have used functional regression problem
with an unknown graph structure in the input data for both synthetic and real datasets. The task of
predicting output functions with the help of a Laplacian matrix denoting the relationship between the
set of p input functions has been illustrated in the experiments. As practical data is always available as
discrete observations corresponding to functions, standard FDA techniques can be used for the conversion
of functional data into vector representation using basis functions, e.g. Fourier basis, B-spline basis, etc.
Let X = (L2([a, b]))p and Y = L2([c, d]) be the input and output spaces, respectively. For our experiments,
the error metric used is residual sum of squares error (RSSE) (Kadri et al., 2016) defined as RSSE =∑
i

∫ d
c
{y(i)(t)− ŷ(i)(t)}2dt, where y(i) is the actual output function and ŷ(i) is the predicted output function.

RSSE is better suited to compare functional outputs. The integrals involved have been approximated by
using numerical integration in our implementation. The quadratic programs involved in (23) and (15) are
solved by using CVXOPT (Andersen et al., 2023).

Experimental Setting: All methods were coded in Python 3.7 and the codes are made public.1 All
experiments were run on a Linux box with 182 Gigabytes main memory and 28 CPU cores. As methods
to solve the problem of functional regression problem simultaneously with learning L and/or D are not
available, we use popular algorithms to first determine L. Then for the learned L, we use our alternating
minimization framework to learn D using projected gradient descent and u using OpMINRES. For the MCP-
based L learning and D learning in the proposed alternating minimization framework, we use a decaying
step-size in the projected gradient descent. The decaying step-size regime involves starting with an initial
step-size (e.g. 10−4) and reducing it by a fixed factor (e.g. 2) after a set of iterations (e.g. 5) continuously
till a final step-size (e.g. 10−9). In order to illustrate the effectiveness, we consider the following methods
for comparison.

fglasso-OpMINRES-D: L is determined using fglasso (Qiao et al., 2019), based on a Gaussian func-
tional model which provides a precision matrix (inverse of covariance matrix) corresponding to the
nodes with corresponding functional input data. The approach develops an extension of the glasso
criterion (Yuan & Lin, 2007) to fglasso for functional data. The learned L is then used with our
alternating minimization regime for optimizing u and D. OpMINRES is used with k1(x, x′;G) =
e−γ(x−x′)>(L+D)(x−x′) and k2(s, t) = e−γop|s−t|, where γ ∈ {10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 1, 10, 100}
and γop ∈ {10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 1, 10, 100}.

KGL-OpMINRES-D: L is obtained by using Kernel Graph Learning (KGL) (Pu et al., 2021b) prob-
lem with respect to two kernel Gram matrices obtained for input signals and their timestamps which
have been used to establish the relationship between input functions. RBF kernels have been consid-
ered for the input functions. The hyperparameters for KGL are tuned using cross-validation in our im-
plementation. The learned L is then used with our alternating minimization regime for optimizing u
and D. OpMINRES is used with k1(x, x′;G) = e−γ(x−x′)>(L+D)(x−x′) and k2(s, t) = e−γop|s−t|, where
γ ∈ {10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 1, 10, 100} and γop ∈ {10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 1, 10, 100}.

Sparse OpMINRES-L-D: This denotes our proposed method where we used Algorithm 2 to learn u, L and
D. Projected gradient descent is used in minimization with respect to L and D based on a decaying step-size.
The sparsity is aided by the MCP regularization considered in learning of L. The graph-induced operator-

1Codes used for the experiments can be found at https://github.com/akashsaha06/graph-inducedOVK.
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valued kernels are obtained using k1(x, x′;G) = e−γ(x−x′)>(L+D)(x−x′) and k2(s, t) = e−γop|s−t|, where
γ ∈ {10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 1, 10, 100} and γop ∈ {10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 1, 10, 100}.

Sparse Non-Pos-OpMINRES-L-D: As our framework is developed for OVKs, the proposed alternating
minimization is well adaptive to consider generalized non-positive semi-definite OVKs (Saha & Palaniappan,
2020) as graph-induced OVKs. We call this extension Sparse Non-Pos-OpMINRES-L-D. Here too, projected
gradient descent is used in minimization with respect to L and D using the decaying step-size similar
to Sparse OpMINRES-L-D. The sparsity is aided by the MCP regularization considered in learning of L.
The graph-induced operator-valued kernels are obtained using k1(x, x′;G) = e−γ(x−x′)>(L+D)(x−x′) and
k2(s, t) = e−γop1|s−t| − e−γop2|s−t|, where γ ∈ {10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 1, 10, 100} and γop1, γop2 ∈
{10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 1, 10, 100}. Note that k2 is not necessarily a positive semi-definite kernel.

Stopping Criteria: We elaborate on the stopping criteria for the different algorithms used in the alternating
minimization framework in Algorithm 2.

• OpMINRES: The stopping criterion for OpMINRES is based on the following condition: the loop
exits if the value of relative residual norms between the current residual norm and the initial residual
norm is less than a threshold (e.g. 10−3 was used in our implementation).

• Projected Gradient Descent: The projected gradient descent steps for both vech(L) and vech(D)
in Algorithm 2 use similar stopping criterion where the norm of difference between two consecutive
iterates is compared to be less than a threshold (e.g. 10−3 was used in our implementation).

• MCP Regularization: The sparsity-inducing MCP regularization of vech(L) in Algorithm 1 com-
pares the norm of difference between two consecutive iterates against a threshold (considered as
10−3 in our implementation) as the stopping criterion.

7.1 Experiments with synthetic data

Data Generation: For synthetic experiments, three sets of experiments have been considered with input
functions for graph structures having 3-nodes, 12-nodes and 25-nodes, respectively. The input functions are
generated based on weighted cosine functions and constant functions with random noise. The corresponding
output function is based on weighted sine functions sharing the weights between input functions and output
function (details are given in Appendix A.10).

For all the methods, a truncated trigonometric basis of L2([0, 2π]) with 30 basis functions has been consid-
ered for encoding the functional data. The experiments were run for three settings where the data has been
divided randomly into a training set, a validation set and a test set. The following data splits have been con-
sidered: (80/20/20), (160/40/40) and (320/80/80), representing the number of training samples/validation
samples/test samples.

The results for synthetic data with 12 nodes are summarized in Tables 1-2. From Table 2, we observe
that Sparse OpMINRES-L-D obtains comparable performance based on mean RSSE on the test data in all
three settings where 80 samples, 160 samples and 320 samples have been used for training. Both fglasso-
OpMINRES-D and KGL-OpMINRES-D essentially predict a graph structure first and then use it for the
functional regression problem. Sparse OpMINRES-L-D and Sparse Non-Pos-OpMINRES-L-D present a
unified approach which incorporates sparse graph learning with the functional regression task. In Table
1, the learned graphs are illustrated where darker colors of edges indicate larger edge weights. Table 1
illustrates that fglasso-OpMINRES-D fails to differentiate between the interactions of input functions and
results in a fully connected graph consistently. Though, KGL-OpMINRES-L-D in comparison to fglasso-
OpMINRES-L-D produces a sparser graph structure, Sparse-OpMINRES-L-D learns sparse graph structures
exhibiting relations that can incorporate the associations enforced in the generation process. The learned
associations provide required correlations which can benefit the functional regression task. Further details
of the synthetic data including experiments for 3 nodes and 25 nodes are given in Appendix A.10. Sparse
Non-Pos-OpMINRES-L-D also learns sparse graph structures which are informative of synthetic data used
for the functional regression task.
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Table 1: Graphs corresponding to learned L for 12-node synthetic data. [Best viewed in color]
Train/
Val/
Test

samples

Sparse
OpMINRES-L-D

fglasso-
OpMINRES-D

KGL-
OpMINRES-D

Non-Pos-
OpMINRES-L-D

80/20/20

160/40/40

320/80/80

Additional Experiments: Appendix A.10.5 contains the results of experiments conducted as an ablation
study in the 12-node setting.

7.2 Experiments on weather data

Weather data is dynamic and inter-relationships between different parameters can be hard to predict. As our
problem solves a functional regression problem based on a relationship between a set of input functions, we
intend to showcase the effectiveness of the proposed algorithm by predicting average dew-point temperature
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Table 2: Mean RSSE results for 12-node synthetic data.

Train/Val/Test samples Methods Mean RSSE
Train Val Test

Sparse OpMINRES-L-D 1.140691 1.780445 1.583640
80/20/20 fglasso-OpMINRES-D 1.243734 1.821687 1.700265

KGL-OpMINRES-D 1.061473 1.775388 1.554853
Sparse Non-Pos-OpMINRES-L-D 1.167264 1.806093 1.618175
Sparse OpMINRES-L-D 0.888574 1.229568 1.385952

160/40/40 fglasso-OpMINRES-D 0.956907 1.285154 1.305025
KGL-OpMINRES-D 0.983432 1.260719 1.286481
Sparse Non-Pos-OpMINRES-L-D 1.154356 1.362239 1.417921
Sparse OpMINRES-L-D 1.062102 1.294110 1.239181

320/80/80 fglasso-OpMINRES-D 0.947426 1.336192 1.271646
KGL-OpMINRES-D 0.980995 1.299266 1.252706
Sparse Non-Pos-OpMINRES-L-D 1.073292 1.295140 1.243346

(F) across 12 weather stations based on their respective air temperatures (F). We consider 1 minute data
of Wyoming ASOS data collected from IEM ASOS One Minute Data (Iowa Environmental Mesonet, 2022).
The data has been collected for an interval of 2 hours for both input functions and output function from
January, 2022 to August, 2022. Data collected at one minute interval for different 12 weather stations in
Wyoming was pre-processed to create 2 hour interval data by disregarding intervals where data was missing
in any of the 12 stations. A total of 718 samples have been collected after removing missing data.

For all the methods, a truncated trigonometric basis of L2([0, 1]) with 80 basis functions has been considered
for encoding the functional data. We segregate the weather data experiments into small weather data
experiments (Appendix A.10) by considering 120 samples and full weather data experiments. The following
random data splits have been considered: (80/20/20) and (472/123/123), representing the number of training
samples/validation samples/test samples in small weather data and full weather data settings, respectively.

Tables 3-4 showcase the performance of the algorithms for full weather data considering all 718 samples.
Sparse OpMINRES-L-D performs the best in terms of mean RSSE on the test data compared to fglasso-
OpMINRES-L-D and KGL-OpMINRES-L-D (Table 4). The maps in Table 3 describe the geographic posi-
tioning of the weather stations in Wyoming and the edges between them indicate potential inter-relations
between the stations. In Table 3, fglasso-OpMINRES-L-D and KGL-OpMINRES-L-D learn dense fully con-
nected graphs which do not provide much information regarding the impact of different weather stations on
the relationship of respective air temperature to the average dew point temperature. Sparse OpMINRES-L-D
learns a sparse L where stations BPI(1) and CPR(2), P60(7) and SHR(10) along with RIW(8) and WRL(12)
are connected. BPI(1) (42.58507,−110.11115) and CPR(2) (42.908,−106.46442) are 300.7 km apart with an
elevation of 2124 m and 1612 m, respectively. P60(7) (44.54444,−110.42111) and SHR(10) (44.77,−106.97)
are 274.85 km apart with an elevation of 2368 m and 1209 m, respectively. RIW(8) (43.06423,−108.45984)
and WRL(12) (43.96571,−107.95083) are 108.28 km apart with an elevation of 1688 m and 1294 m. It can
be observed that the connections in the learned graph structure have been established between stations with
varying elevations lying in close proximity latitude-wise.

To illustrate the utility of our proposed sample-based approximation algorithm, we use the full weather data
and evaluate it to produce the results in Table 5 for all algorithms. The results in Table 5 show that the
sample-based approximation algorithm provides comparable results using only a few samples. In 5 runs,
out of 472 training samples, the number of samples in the working set of the sample-based approximation
algorithm varies between 123 to 200. Sparse OpMINRES-L-D performs the best in terms of the mean RSSE
on test data.
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Table 3: Graphs corresponding to learned L for full weather (472/123/123) data. [Best viewed in color]

Sparse OpMINRES-L-D fglasso-OpMINRES-D KGL-OpMINRES-D

Table 4: Mean RSSE results for full weather data.

Train/Val/Test samples Methods Mean RSSE
Train Val Test

Sparse OpMINRES-L-D 0.002938 0.009891 0.010743
472/123/123 fglasso-OpMINRES-D 0.021094 0.013476 0.044216

KGL-OpMINRES-D 0.003474 0.010877 0.012797

Table 5: RSSE (mean ± standard deviation) results over 5 runs for sample-based approximation algorithm
using full weather data.

Methods Mean RSSE
Full Train Train subset Val Test

Sparse OpMINRES-L-D 0.083688± 0.011229 0.010584± 0.006664 0.013568± 0.000914 0.097118± 0.01392
fglasso-OpMINRES-D 0.112057± 0.004981 0.011457± 0.006908 0.014289± 0.000710 0.130591± 0.006171
KGL-OpMINRES-D 0.131076± 0.016523 0.010166± 0.005781 0.013702± 0.000561 0.100619± 0.017939
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Table 6: Mean RSSE results for NBA data.

Train/Val/Test samples Methods Mean RSSE
Train Val Test

233/59/59 Sparse OpMINRES-L-D 0.025200 0.087748 0.106344
OpMINRES-D 0.023261 0.191459 0.265513

Table 7: RSSE (mean ± standard deviation) results for sample-based approximation algorithm for NBA
data.

Methods Mean RSSE
Full Train Train subset Val Test

Sparse OpMINRES-L-D 0.215943± 0.002837 0.018371± 0.001624 0.066631± 0.003058 0.147214± 0.004665
OpMINRES-D 9.070595± 0.138830 0.005005± 0.002031 0.180238± 0.013534 0.452081± 0.020617

7.3 Experiments on NBA data

The movement of basketball and 21 players involved on the court (x-y coordinates) in the Atlanta Hawks
(ATL) vs Utah Jazz (UTA) match on November 15, 2015 has been considered in this experiment. This
data is available in the Github repo NBA Movement Data (Seward, 2018). The data has been collected for
different plays for both input functions of 21 players and output function denoting the position of the ball,
which includes missing data corresponding to some players in different plays. As plays in a basketball game
are of different time duration, we use a truncated trigonometric basis of L2([0, 1]) with 80 basis functions to
sample the functions at fixed 100 points on [0, 1]. A total of 351 samples have been collected after removing
missing data. A random data split of (233/59/59) representing the number of training samples/validation
samples/test samples has been considered. The problem requires solving a multi-dimensional functional
regression problem which is incompatible with fglasso and KGL algorithms, as both fglasso & KGL are based
on single dimensional input functions. Hence, we compare our method with the algorithm OpMINRES-D
where a fixed L is incorporated in our alternating minimization framework.

OpMINRES-D: A fixed L is considered corresponding to a fully connected network of 21 nodes. This
decision was made as fglasso mostly learns a fully connected graph in earlier experiments. Thus, a fixed L
(with no sparsity-inducing MCP) is used in the proposed alternating minimization regime for optimizing u
and D. OpMINRES is used with k1(x, x′;G) = e−γx(x−x′)>(L+D)(x−x′)−γy(x−x′)>(L+D)(x−x′) and k1

2(s, t) =
e−γ

1
op|s−t|, k1

2(s, t) = e−γ
2
op|s−t|, where γx, γy ∈ {10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 1, 10, 100} and γ1

op, γ
2
op ∈

{10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 1, 10, 100}.

Sparse OpMINRES-L-D: We consider the graph-induced operator-valued kernels using k1(x, x′;G) =
e−γx(x−x′)>(L+D)(x−x′)−γy(x−x′)>(L+D)(x−x′) and k1

2(s, t) = e−γ
1
op|s−t|, k2

2(s, t) = e−γ
2
op|s−t|, where γx, γy ∈

{10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 1, 10, 100} and γ1
op, γ

2
op ∈ {10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 1, 10, 100}.

Projected gradient descent is used in minimization with respect to L and D based on a decaying step-size.
The sparsity is aided by the MCP regularization considered in learning of L.

The results are illustrated in Tables 6 and 8 where comparison method OpMINRES-D uses a fully connected
graph, however Sparse OpMINRES-L-D performs better with a sparse learned graph in terms of mean RSSE
on the test data. Observations for the match have been published in the match reports ESPN match recap
and ESPN match scoreboard (ESPN, 2015a;b). In Table 8, the depiction of a basketball court is provided
where the players have been arranged on the court with ATL players on the left and UTA players on the
right. The graphical structure corresponding to the learned L in Table 8 illustrates strategic relationships
between players of both ATL and UTA. The connection between Derrick Favors—Trevor Booker (6—8) had
been pivotal for Utah Jazz. The performance of Al Horford in (4—7) and Kent Bazemore in (2—11) for
Atlanta Hawks has been captured. Though the partnership of Alec Burks—Trey Burke (9—18) for Utah
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Jazz is not evident in the match reports, their ball carrying interactions may be the reason for being learned
in L.

Table 8: Graphs corresponding to learned L for NBA data (233/59/59) of ATL (left) vs UTA (right) match
using Sparse OpMINRES-L-D. [Best viewed in color]

The performance of sample-based approximation algorithm has been showcased on NBA data in Table 7.
Using the sample-based approximation algorithm, out of 233 training samples, the number of samples chosen
in the working set of samples in 5 runs varies between 57 to 62. Sparse OpMINRES-L-D performs the best
in terms of the mean RSSE on test data. The remaining results and details of experiments are in Appendix
A.10. The best hyperparameters for the experiments conducted have been listed in Appendix A.10.4.
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8 Conclusion

In this work, we incorporate learning of a suitable graphical structure which drives a functional regression
problem where the output function depends on the input functions and also upon their inter-relationships
with each other. An alternating minimization based algorithm has been proposed to learn the Laplacian
matrix L, a non-negative diagonal matrix D characterizing the graphical structure, along with the map
from input space to the output space. For a fixed L and D, the functional regression learning problem is
formulated as an operator system of equations which is solved by using OpMINRES algorithm. Projected
gradient descent is used to learn the Laplacian matrix and the non-negative diagonal matrix in the alter-
nating minimization framework. A sparsity-inducing regularizer (e.g. MCP) in L has been incorporated
during the alternating minimization, which helps in learning a graphical structure and allows for improved
interpretability and can highlight interactions which are most relevant among input functions useful for the
prediction. To make the proposed algorithm scalable, a sample-based approximation algorithm has been
proposed which helps reduce the computations required for solving linear system of operator equations using
OpMINRES algorithm. An extension of the alternating minimization framework has also been proposed to
solve the multi-dimensional functional regression problem assuming a single graphical structure on the input
variables. The generalization analysis provides a bound on generalization error for learning a graph-induced
OVK. Experiments establish the utility of proposed graph-induced operator-valued kernels in functional
regression problems from diverse applications.

Broader Impact Statement

The framework and algorithms introduced in the paper with graph-induced operator-valued kernels aid in
learning a sparse graphical structure which drives a functional regression problem where the output function
depends on the input functions and their inter-relationships with each other. This will promote research in
investigating more sophisticated techniques for handling functional data with an inherent graphical structure
ingrained among them. To the best of our knowledge, our work does not have any negative impact.
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A Appendix

A.1 Functonal Regression with Known Graph Structure

In this section, we motivate functional regression problem with known graph structure. Consider a system
where a set of input functions determines the output (or response) function. Let the system be modeled
based on p input functional variables x1(t), x2(t), . . . , xp(t), where xi ∈ L2([0, 1]), i ∈ [p]. A functional
response variable y(t) is used to model output of the system where y ∈ L2([0, 1]). (Note that [0, 1] can be
replaced with any closed time interval based on the application.)

The undirected graph structure of the functional input variables is represented by G = (V,E), where V =
{v1, v2, . . . , vp} and E = {{vi, vj}|vi is connected to vj , 1 ≤ i, j ≤ p} is the edge set which characterizes the
underlying relationship between the variables. Note that the notation for an edge uses an unordered pair
{vi, vj} which characterizes the undirected nature of the graph G. In order to model the relation between
functional input variables x1, x2, . . . , xp and functional response variable y, we use the following map F :

y = F (x1, x2, . . . , xp, G). (102)

Note that F now depends explicitly on the graph G in addition to the input functions x1, x2, . . . , xp. Here,
we consider a scenario where G is known. Recall the example of a manufacturing factory, where the output of
emissions depends on the metrics of different components involved in the manufacturing process. The graph
G is determined in this case by understanding the components which are connected during the manufacturing
process.

We consider the notations x = (x1, x2, . . . , xp) ∈ X (= (L2([0, 1]))p) and y ∈ Y (= L2([0, 1])) to represent
an arbitrary sample (x, y). To learn the mapping F , consider the training data of n samples given as{

(x(i), y(i))
}n
i=1, where x

(i) = (x(i)
1 , x

(i)
2 , . . . , x

(i)
p ) ∈ X and y(i) ∈ Y. In order to learn F , we develop an

operator-valued kernel which can leverage the structural information of G.

Towards this, we first introduce an operator-valued kernel which maps the elements of X × X to a set of
bounded linear operators over the output space Y, denoted by L(Y). We formally define OVK as follows.
Definition A.1 (Operator-valued Kernel). (Kadri et al., 2016) An L(Y)-valued kernel K on X 2 is a
function K(., .) : X × X → L(Y), satisfying the following properties:

1. K is Hermitian, that is ∀w, z ∈ X ,K(w, z) = K(z, w)∗ (∗ denotes the adjoint operator),

2. K is positive semi-definite on X 2, that is K is Hermitian and for every natural number r and
all {(w(i), u(i))i∈[r]} ∈ X × Y, the matrix with (i, j)-th entry given by 〈K(w(i), w(j))u(i), u(j)〉Y is
positive semi-definite.

Constructing an operator-valued kernel based on Definition A.1 is a challenge as verifying both properties
of being Hermitian and positive semi-definiteness becomes non-trivial. A construction of OVK that satisfies
both the properties in Definition A.1 has been proposed in (Lian, 2007; Kadri et al., 2016). The OVK
construction in (Lian, 2007; Kadri et al., 2016) uses a scalar-valued kernel k1 on X × X and a Hilbert-
Schmidt integral (HSI) operator defined on the output space Y, and is given as follows:

(K(x, x′)y)(t) = k1(x, x′)
∫ 1

0
k2(s, t)y(s)ds, (103)

where k2 inside the HSI operator
∫ 1

0 k2(s, t)y(s)ds is a scalar-valued kernel on R × R. If k1 is positive
semi-definite and if k2 is positive semi-definite (implying that the HSI operator is positive semi-definite),
then the construction in (103) is known to be positive semi-definite (Kadri et al., 2016). We will now adapt
the OVK in (103) to include the graph structure information present in G. An obvious choice for using
the influence of graphical structure G in the functional regression task is to use the adjacency matrix of G,
but the adjacency matrix of G not being necessarily positive semi-definite makes its utility restrictive. The
Laplacian matrix of a graph G, on the other hand is useful in this respect as it has the desired property of
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being positive semi-definite which is useful in a kernel-based learning framework. The Laplacian matrix of
an undirected graph G = (V,E), with V as the node set and E as edge set is defined as L = D− A, where
D = diag(deg(v1),deg(v2), . . . ,deg(vp)) is the degree matrix and A is the adjacency matrix of the graph G.
The elements of L are given by

Li,j =


deg(vi), if i = j,

−1, if i 6= j and {vi, vj} ∈ E,
0, otherwise.

(104)

We propose to incorporate the graphical structure in Equation (103) within the scalar-valued kernel k1 itself,
as follows:

k1(x, x′;G) = γx>Lx′, γ > 0, (105)

= γ

p∑
i,j=1

∫ 1

0
xi(t)Lijx′j(t)dt. (106)

The construction of k1 in (105) involves capturing the graphical structure of G using L in x>Lx′. We use
an equivalent expression 〈x, Lx′〉p := x>Lx′, where the inner product 〈·, ·〉p : X × X → R is defined as
〈x, x′〉p =

∑p
i=1
∫ 1

0 xi(t)x
′
i(t)dt. The inner product 〈x, x′〉p measures the similarity between x and x′ in X .

Let L = [L1, L2, . . . , Lp], where Li represents the i-th column of L, then Lx′ is computed based on standard
matrix-vector multiplication where elements of L are multiplied with x′ by using scalar multiplication and
addition of functions as Lx′ =

∑p
i=1 Lix

′
i. Equation (105) provides a tool to measure similarity between

x, x′ ∈ X where the interactions are encoded in the underlying graph G using the Laplacian matrix L. If k1
defined in (105) can be proved to be a valid positive semi-definite scalar-valued kernel on X × X , then an
OVK can be defined similar to the construction in Equation (103). Next, we prove that such a construction
is indeed possible.
Proposition A.1. For an underlying graph G = (V,E) with |V | = p, functional variables x =
(x1, x2, . . . , xp) ∈ X (= (L2([0, 1]))p) and a functional response variable y ∈ Y (= L2([0, 1])), consider an
operator-valued kernel K : X × X → L(Y) defined as

(K(x, x′)y)(t) = k1(x, x′;G)
∫ 1

0
k2(s, t)y(s)ds,

where k1(x, x′;G) = γx>Lx′, γ > 0 and k2 is a positive semi-definite scalar-valued kernel on R× R. Then
K is positive semi-definite.

Proof. Please see Appendix A.3 for the proof.

Recall the construction of scalar-valued radial basis function (RBF) kernel defined over Rd×Rd (d ∈ Z+) as
e−γ‖x−x

′‖2 , for γ > 0, x,x′ ∈ Rd based on the kernel x>x. Similar to that construction, we now describe an
extension for kernel k1 defined in (105). The kernel notation k1(x, x′;G) = γx>Lx′ is overloaded to represent
the following RBF-type kernel:

k1(x, x′;G) = e−γ(x−x′)>L(x−x′), γ > 0. (107)

capturing the interaction of x, x′ using L (see Appendix A.3). The RBF-type kernel in (107) is an improved
version of the kernel in (105), as it can approximate higher dimensional relationships better owing to the
exponential nature and shift invariant property given by k1(x+h, x′+h;G) = k1(x, x′;G), ∀x, x′, h ∈ X . Note
that when computing (x − x′)>L(x − x′), where x = (x1, . . . , xp), x′ = (x′1, . . . , x′p) ∈ X , the interactions
between the unlike pair (xi, x′j), i 6= j would negate the influence of the like pair (xi, x′i), because of the
structure of L (defined in (104)). Therefore, we propose to use a diagonally perturbed Laplacian (Bapat
et al., 2001) to aid the functional regression task performance. Perturbed Laplacians have found applications
in spectral clustering, analysis of graphs (Kurras et al., 2014) and missing link prediction in networks
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(Aliakbarisani et al., 2022). A natural perturbation of Laplacian for the scalar-valued kernel k1 in (107)
involves the degree matrix D leading to the following definition for k1:

k1(x, x′;G) = e−γ(x−x′)>(L+D)(x−x′), γ > 0, for x, x′ ∈ X . (108)

Incorporating D with L in k1 improves the representation of individual components of x, x′ in prediction
of y as the like pair (xi, x′i) gets weighed by Di,i + Li,i in the kernel expression which compensates for the
negation effect described above. This enables us to define a family of operator-valued kernels discussed next,
which is induced by the graphical structure information.
Definition A.2 (Graph-induced Operator-valued Kernel for known G). A graph-induced operator-
valued kernel is defined as

(KG(x, x′)y)(t) = k1(x, x′;G)
∫ 1

0
k2(s, t)y(s)ds, (109)

where k2 is a scalar-valued kernel on R2, G is a graph associating the p input functions in (x1, . . . , xp) ∈ X
and k1 is defined as

k1(x, x′;G) = e−γ(x−x′)>(L+D)(x−x′),

for γ > 0 where L is the Laplacian matrix and D is the degree matrix of the graph G.

KG associates a pair x, x′ ∈ X with output function y ∈ Y where G is the graph which incorporates the
interaction of p constituent input functions of x and x′. The addition of D to L in (108) preserves the positive
semi-definiteness of the kernel k1 as D is a diagonal matrix with positive entries. Using graph-induced OVK
for functional regression problem requires associating KG with a function-valued reproducing kernel Hilbert
space where the map F from (102) resides. The existence of a bijection between the set of positive semi-
definite (Mercer) operator-valued kernels and function-valued reproducing kernel Hilbert spaces has been
established in (Kadri et al., 2016). A function-valued reproducing kernel Hilbert space (RKHS) is defined
as follows.
Definition A.3 (Function-valued RKHS). (Kadri et al., 2016) A Hilbert space H of functions from X
to Y is called a reproducing kernel Hilbert space if there is a positive semi-definite L(Y)-valued kernel K on
X 2 such that:

1. the function z 7→ K(w, z)g belongs to H, ∀w, z ∈ X and ∀g ∈ Y,

2. for every F ∈ H, w ∈ X and g ∈ Y, 〈F,K(w, .)g〉H = 〈F (w), g〉Y . (reproducing property)

Property 1 in Definition A.3 provides an association of OVK K with the space H which contains maps from
X to Y. The reproducing property in Definition A.3 helps to relate the inner product in H to the inner
product in Y. Using Proposition A.1 and Definition A.3, the positive semi-definiteness of KG constructed
using (109) ensures that there exists a unique RKHS HKG corresponding to KG (Theorem 1 (Kadri et al.,
2016)). This enables us to formulate a learning problem in HKG as follows:

F̃λ = arg min
F∈HKG

n∑
i=1
‖y(i) − F (x(i))‖2Y + λ‖F‖2HKG

, (110)

where HKG is the function-valued RKHS induced by the graph-induced operator-valued kernel KG and
‖ · ‖HKG

denotes the norm in HKG . In order to solve the optimization problem, we utilize the reproducing
property of operator-valued kernel (Definition A.3) given by

〈F,KG(x, .)h〉HKG
= 〈F (x), h〉Y , ∀x ∈ X , h ∈ Y. (111)

The minimization problem in (110) is not tractable using a search based procedure over HKG , hence the
reproducing property of operator-valued kernel KG in (111) can be leveraged to simplify the problem and
characterize the solution of (110) using elements of the output space Y. We now provide a representer theorem
for the minimization problem (110) in the function-valued RKHS HKG corresponding to the operator-valued
kernel KG.
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Theorem A.2 (Representer theorem). Let KG be an operator-valued kernel and HKG be its corre-
sponding function-valued reproducing kernel Hilbert space. The solution F̃λ ∈ HKG of the regularized
optimization problem: F̃λ = arg minF∈HKG

∑n
i=1 ‖y(i)−F (x(i))‖2Y +λ‖F‖2HKG

, where λ > 0, F ∈ HKG , has
the following form

F̃λ(.) =
n∑
i=1

KG(x(i), .)ui, where ui ∈ Y. (112)

Proof. Please find the proof in Appendix A.4.

Using the representer theorem with reproducing property of operator-valued kernel, we provide below (Ap-
pendix A.8) the linear system of operators to determine ui, for i ∈ [n]:

(K + λI)u = y, (113)

where K is a block operator matrix given by Ki,j = KG(x(i), x(j)), u = [u1, u2, . . . , un]> and y =
[y(1), y(2), . . . , y(n)]>. A simple inversion of K + λI may not be straightforward to obtain u in (113), for an
arbitrary choice of OVK KG. Saha & Palaniappan (2020) proposed an iterative operator minimum residual
(OpMINRES) algorithm which adapts a Krylov subspace minimal residual (MINRES) algorithm to solve
operator-based linear system of the form in (113). We delve deeper into the details of OpMINRES in Section
5.1.1. With the learned u obtained by solving (113), for any sample x̂ ∈ X , the prediction is given by

F̃λ(x̂) =
n∑
i=1

KG(x(i), x̂)ui, where ui ∈ Y. (114)

In (114), functions ui ∈ Y for i ∈ [n], can be considered as basis functions for the space Y and opera-
tors KG(x(i), x̂) for i ∈ [n], correspond to operator-valued coefficients of the basis functions. The term
KG(x(i), x̂)ui amounts to the total contribution of sample x(i) in determining the prediction for x̂.

A.2 Mathematical Derivations

We cover derivations which can transform the objective function where the optimization takes place over the
output space Y instead of the RKHS HK induced by the OVK K. The following derivation has been referred
in Section 5.1 to obtain (5) from (4), where we simplify the expression J(F,L,D) to obtain J(u, L,D).

min
F,L,D

J(F,L,D) =
n∑
i=1
‖y(i) − F (x(i))‖2Y + λ‖F‖2HK

+ ρL

n∑
i=1

x(i)>Lx(i) + ρD‖D‖2F (115)

=⇒ min
u,L,D

J(u, L,D) =
n∑
i=1

∥∥∥∥∥∥y(i) −
n∑
j=1

K(x(i), x(j))uj

∥∥∥∥∥∥
2

Y

+ λ

〈
n∑
i=1

K(x(i), .)ui,
n∑
j=1

K(x(j), .)uj

〉
HK

(116)

+ ρL

n∑
i=1

x(i)>Lx(i) + ρD‖D‖2F

=
n∑
i=1

∥∥∥∥∥∥y(i) −
n∑
j=1

K(x(i), x(j))uj

∥∥∥∥∥∥
2

Y

+ λ

n∑
i,j=1
〈K(x(i), x(j))ui, uj〉Y (117)

+ ρL

n∑
i=1

x(i)>Lx(i) + ρD‖D‖2F .

The expression (116) is obtained from (115) by using the representer theorem and the reproducibility property
of K is utilized to obtain (117).

Similarly, we obtain the objective function from (29) in Section 5.1.5 using representer theorem and the
reproducibility property of K given as follows:
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J(F 1, F 2, . . . , F s, L,D) =
s∑
l=1

(
n∑
i=1
‖y(i)
l − F

l(x(i))‖2Y + λ‖F l‖2Hl
K

)

+
r∑
l=1

ρl

(
n∑
i=1

x
(i)
l

>
Lx

(i)
l

)
+ ρD‖D‖2F

=⇒ J(u1,u2, . . . ,us, L,D) =

s∑
l=1

 n∑
i=1

∥∥∥∥∥∥y(i)
l −

n∑
j=1

Kl(x(i),x(j))ulj

∥∥∥∥∥∥
2

Y

+ λ

n∑
i,j=1
〈Kl(x(i),x(j))uli,Kl(x(j), .)ulj〉Y

 (118)

+
r∑

k=1

(
ρk

n∑
i=1

x
(i)
k

>
Lx

(i)
k

)
+ ρD‖D‖2F

=
s∑
l=1

 n∑
i=1

∥∥∥∥∥∥y(i)
l −

n∑
j=1

Kl(x(i),x(j))ulj

∥∥∥∥∥∥
2

Y

+ λ

n∑
i,j=1
〈Kl(x(i),x(j))uli, ulj〉Y

 (119)

+
r∑

k=1

(
ρk

n∑
i=1

x
(i)
k

>
Lx

(i)
k

)
+ ρD‖D‖2F .

A.3 Positive semi-definiteness of OVK

In this section, we cover the proof of Proposition A.1 in Section A.1 which helps in building a graph-induced
OVK. The major contribution is based on showing that the proposed scalar-valued kernel in graph-induced
OVK is a valid positive semi-definite kernel on X × X . We recall Proposition A.1 below.
Proposition A.3. For an underlying graph G = (V,E) with |V | = p, functional variables x =
(x1, x2, . . . , xp) ∈ X (= (L([0, 1]))p) and a functional response variable y ∈ Y(= L2([0, 1])), consider an
operator-valued kernel K : X × X → L(Y) defined as

(K(x, x′)y)(t) = k1(x, x′;G)
∫ 1

0
k2(s, t)y(s)ds,

where k1(x, x′;G) = γx>Lx′, γ > 0 and k2 is a positive semi-definite scalar-valued kernel on R× R. Then
K is positive semi-definite.

Proof. In order to prove the positive semi-definiteness of K, it is sufficient to prove the positive semi-
definiteness of k1 based on the construction followed in (Kadri et al., 2016). We focus on the term x>Lx′

in k1. Let {x1, x2, . . . , xl} ⊂ X be a finite set of points. Consider any vector α ∈ Rl and K be a l× l kernel
matrix given by K = [k1(xi, xj ;G)]i,j .

Now, we recall that the space L2([0, 1]) has the following inner product and norm:

〈f, g〉 =
∫ 1

0
f(t)g(t)dt, f, g ∈ L2([0, 1]),

‖f‖ =
(∫ 1

0
f2(t)dt

)1/2

.

We define 〈., .〉p : X × X → R as

〈x,w〉p = 〈x1, w1〉+ 〈x2, w2〉+ · · ·+ 〈xp, wp〉 (120)

=
p∑
i=1

∫ 1

0
xi(t)wi(t)dt, (121)
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where x = (x1, x2, . . . , xp) ∈ X , w = (w1, w2, . . . , wp) ∈ X . We can show that 〈., .〉p is an inner product on
X over the field R.

• The symmetry of 〈., .〉p follows from the definition in equation (121) as:

〈x,w〉p = 〈w, x〉p.

• Linearity:

〈ax+ bw, z〉p = 〈ax1 + bw1, z1〉+ 〈ax2 + bw2, z2〉+ · · ·+ 〈axp + bwp, zp〉

=
p∑
i=1

∫ 1

0
(axi(t) + bwi(t))z(t)dt

= a

p∑
i=1

∫ 1

0
xi(t)zi(t)dt+ b

p∑
i=1

∫ 1

0
wi(t)zi(t)dt

= a〈x, z〉p + b〈w, z〉p.

• Positive semi-definiteness: For any non-zero x ∈ X ,

〈x, x〉p = 〈x1, x1〉+ 〈x2, x2〉+ · · ·+ 〈xp, xp〉

=
p∑
i=1

∫ 1

0
x2
i (t)dt

=
p∑
i=1
‖xi‖2 ≥ 0.

The norm induced by 〈., .〉p on X is given by

‖x‖p =
√
〈x, x〉p

=
(

p∑
i=1

∫ 1

0
x2
i (t)dt

)1/2

.

On considering xi, xj ∈ X , L ∈ Rp×p, the quantity xi>Lxj can be defined as

xi
>
Lxj =

(
xi1 xi2 . . . xip

)

L1,1 L1,2 . . . L1,p
L2,1 L2,2 . . . L2,p
...

... . . . ...
Lp,1 Lp,2 . . . Lp,p



xj1
xj2
...
xjp



=
(
xi1 xi2 . . . xip

)

L1,1x

j
1 + L1,2x

j
2 + · · ·+ L1,px

j
p

L2,1x
j
1 + L2,2x

j
2 + · · ·+ L2,px

j
p

...
Lp,1x

j
1 + Lp,2x

j
2 + · · ·+ Lp,1x

j
p


= 〈xi1, L1,1x

j
1 + L1,2x

j
2 + · · ·+ L1,px

j
p〉

+ 〈xi2, L2,1x
j
1 + L2,2x

j
2 + · · ·+ L2,px

j
p〉

+ · · ·+ 〈xip, Lp,1x
j
1 + Lp,2x

j
2 + · · ·+ Lp,px

j
p〉

(122)

= 〈xi, Lxj〉p. (123)

Note that from equations (122 and 123), Lxj ∈ X . Now based on the positive semi-definiteness of L, we
can decompose L = V >ΛV , where V is an orthogonal matrix and Λ is the diagonal matrix containing the
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non-negative eigenvalues.

xi
>
Lxj = 〈xi, Lxj〉p

= 〈xi, V >ΛV xj〉p
= xi

>
V >ΛV xj . (124)

Consider A =
√

ΛV ,

xi
>
Lxj = xi

>
V >ΛV xj

= xi
>
A>Axj

= 〈Axi, Axj〉p. (125)

Note that xi>Lxj = 〈Axi, Axj〉p = 〈φ(xi), φ(xj)〉p (say) which is a characterization of kernels. For a finite
m ∈ N, let G ∈ Rm×m be the Gram (kernel) matrix induced by using 〈Ax,Aw〉 as a kernel. Let β ∈ Rm,
then we have:

β′G β =
m∑

i,j=1
βiGi,jβj

=
m∑

i,j=1
βiβj〈φ(xi), φ(xj)〉p

=
〈

m∑
i=1

βiφ(xi),
m∑
j=1

βjφ(xj)
〉
p

=
∥∥∥∥∥
m∑
i=1

βiφ(xi)
∥∥∥∥∥

2

p

.

This illustrates that xi>Lxj is positive semi-definite and defines a scalar-valued kernel. Now, using the
properties of a scalar-valued kernel, γx>Lx′, with γ > 0 is a valid positive semi-definite kernel. Thus the
kernel given by

k1(x, x′;G) = γx>Lx′, ∀x, x′ ∈ X , γ > 0,

is a valid positive semi-definite scalar kernel on X × X . Therefore, by the construction of OVK used in
(Kadri et al., 2016),

(K(x, x′)y)(t) = k1(x, x′;G)
∫ 1

0
k2(s, t)y(s)ds, (126)

defines an operator-valued kernel on X × X .
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Now, as exponential of a scalar-valued kernel provides us another valid scalar-valued kernel (Shawe-Taylor
et al., 2004), we consider the following normalized version:

exp(γx>Lx′)√
exp(γx>Lx) exp(γx′>Lx′)

= exp
(
γx>Lx′ − γ

2x
>Lx− γ

2x
′>Lx′

)
= exp

[
−γ2

(
x>Lx+ x′

>
Lx′ − 2x>Lx′

)]
= exp

[
−γ2

(
‖Ax‖2p + ‖Ax′‖2p − 2〈Ax,Ax′〉p

)]
= exp

[
−γ2

(
‖Ax−Ax′‖2p

)]
= exp

[
−γ2 (〈A(x− x′), A(x− x′)〉p)

]
= exp

[
−γ2 (〈A(x− x′), A(x− x′)〉p)

]
= exp

[
−γ2 (x− x′)>L(x− x′)

]
. (127)

As exponential of a scalar-valued kernel and normalization preserves the validity of a scalar-valued kernel,
we claim that the kernel in (127) defines a valid scalar-valued kernel. This illustrates that e−γ(x−x′)>L(x−x′)

is a valid positive semi-definite scalar-valued kernel on X × X for γ > 0 and an OVK with k1(x, x′;G) =
e−γ(x−x′)>L(x−x′), ∀x, x′ ∈ X , γ > 0 in (126) provides a valid graph-induced OVK.

A.4 Proof of Representer theorem

We provide a proof for the Representer theorem (Theorem A.2) stated in Section A.1. In the proof we use the
Gateaux derivative in an associated function-valued reproducing kernel Hilbert space for an operator-valued
kernel. We recall the theorem statement first and then provide a proof.
Theorem A.4 (Representer theorem). Let KG be an operator-valued kernel and HKG be its corre-
sponding function-valued reproducing kernel Hilbert space. The solution F̃λ ∈ HKG of the regularized
optimization problem:

F̃λ = arg min
F∈HKG

n∑
i=1
‖y(i) − F (x(i))‖2Y + λ‖F‖2HKG

, (128)

where λ > 0, F ∈ HKG , has the following form

F̃λ(.) =
n∑
i=1

KG(x(i), .)ui, where ui ∈ Y. (129)

Proof. We use the Gateaux derivative to obtain the condition for stationary point of the functional Jλ(F ),
given by

Jλ(F ) =
n∑
i=1
‖y(i) − F (x(i))‖2Y + λ‖F‖HK

, ∀F ∈ HKG .

In order to find the critical points in HKG , we use Gateaux derivative DG of Jλ with respect to F in the
direction H, which is defined by

DGJλ(F,H) = lim
τ→0

Jλ(F + τH)− Jλ(F )
τ

.

Let F̃ be the operator in HKG such that

F̃ = arg min
F∈HKG

Jλ(F ) =⇒ DGJλ(F,H) = 0, ∀H ∈ HKG .
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Jλ can be written as

Jλ(F ) =
n∑
i=1

Gi(F ) + λL(F ),

and as DGJλ(F,H) = 〈DGJλ(F ), H〉HKG
, ∀F,H ∈ HKG , we obtain the following.

noitemsep L(F ) = ‖F‖2HKG
= 〈F, F 〉HKG

. Therefore we have

lim
τ→0

〈F + τH, F + τH〉HKG
− 〈F, F 〉HKG

τ
= 2〈F,H〉HKG

=⇒ DGL(F ) = 2F.

noiitemsep Gi(F ) = ‖y(i) − F (x(i))‖2Y . Then we have

lim
τ→0

‖y(i) − F (x(i))− τH(x(i))‖2Y − ‖y(i) − F (x(i))‖2Y
τ

= −2〈y(i) − F (x(i)), H(x(i))〉Y (130)

= −2〈KG(x(i), .)(y(i) − F (x(i))), H〉HKG

(131)
= −2〈KG(x(i), .)ui, H〉HKG

, (132)
=⇒ DGGi(F ) = −2KG(x(i), .)ui.

We obtain equation (131) from equation (130) using the reproducibility property. In (131), we use ui =
y(i) − F (x(i)) to get (132). Using 1, 2, and DGJλ1,λ2(F̃ ) = 0, we obtain, F̃ (.) = 1

λ

∑n
i=1K

G(x(i), .)ui. The
constant 1

λ can be absorbed in functions ui’s, such that F̃ (.) =
∑n
i=1K

G(x(i), .)ui.

We provide a proof for the extended represeneter theorem (Theorem 5.1) based on the arguments used in
the earlier proof. We recall the theorem and then provide a proof.
Theorem A.5 (Extended representer theorem). Let K be an operator-valued kernel as defined in (26)
and HK = H1

K×H2
K×· · ·×HsK be its corresponding function-valued reproducing kernel Hilbert space based

on kernels k1, k
1
2, . . . , k

s
2. The solution F̃λ ∈ HK of the regularized optimization problem.

F̃λ = arg min
F=[F 1,F 2,...,F s]>∈HK

s∑
l=1

(
n∑
i=1
‖y(i)
l − F

l(x(i))‖2Y + λ‖F l‖2Hl
K

)
,

where λ > 0, F = [F 1, F 2, . . . , F s]> ∈ HK = H1
K ×H2

K × · · · × HsK , has the following form

F̃λ(.) =

F̃
1
λ(.)
...

F̃ sλ(.)

 =


∑n
i=1K

1(x(i), .)u1
i

...∑n
i=1K

s(x(i), .)usi

 , where u1
i , u

2
i , . . . , u

s
i ∈ Y. (133)

Proof. We use a similar argument as in case of the representer theorem proof. The Gateaux derivative is
used to obtain the condition for stationary points which minimize Jλ(F ) written as a sum of J lλ

(
F l
)
, for

l ∈ [s], given by

Jλ(F ) =
s∑
l=1

J lλ
(
F l
)

=
s∑
l=1

(
n∑
i=1
‖y(i)
l − F

l(x(i))‖2Y + λ‖F k‖Hl
K

)
, ∀F ∈ HK .
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In order to find the critical points in HK = H1
K ×H2

K × · · · ×HsK , we use Gateaux derivative DG of J lλ with
respect to F l in the direction H ∈ HlK , which is defined by

DGJ
l
λ(F l, H) = lim

τ→0

J lλ(F l + τH)− J lλ(F l)
τ

.

Let F̃ l be the operator in HlK such that

F̃ l = arg min
F l∈Hl

K

J lλ(F l) =⇒ DGJ
l
λ(F l, H) = 0, ∀H ∈ HlK , l ∈ [s].

Now, J lλ can be written as

J lλ(F l) =
n∑
i=1

Gli(F l) + λLl(F l),

and as DGJ lλ(F l, H) = 〈DGJ lλ(F l), H〉Hl
K
, ∀F,H ∈ HlK , l ∈ [s], we obtain the following.

noitemsep Ll(F l) = ‖F l‖2Hl
K

= 〈F l, F l〉Hl
K
. Therefore we have

lim
τ→0

〈F l + τH, F l + τH〉Hl
K
− 〈F l, F l〉Hl

K

τ
= 2〈F l, H〉Hl

K

=⇒ DGL
l(F l) = 2F l.

noiitemsep Gli(F l) = ‖y(i)
l − F l(x(i))‖2Y . Then we have

lim
τ→0

‖y(i)
l − F (x(i))− τH(x(i))‖2Y − ‖y

(i)
l − F (x(i))‖2Y

τ
= −2〈y(i)

l − F (x(i)), H(x(i))〉Y (134)

= −2〈Kl(x(i), .)(y(i)
l − F (x(i))), H〉Hl

K

(135)
= −2〈Kl(x(i), .)uli, H〉Hl

K
, (136)

=⇒ DGG
l
i(F l) = −2Kl(x(i), .)uli.

We obtain equation (135) from equation (134) using the reproducibility property. In (135), we use uli =
y

(i)
l − F l(x(i)) to get (136). Using 1, 2, and DGJ

l
λ(F̃ l) = 0, we obtain, F̃ l(.) = 1

λ

∑n
i=1K

l(x(i), .)uli. The
constant 1

λ can be absorbed in functions uli’s, such that F̃ l(.) =
∑n
i=1K

l(x(i), .)uli, l ∈ [s]. Therefore, we
obtain the following:

F̃λ(.) =

F̃
1
λ(.)
...

F̃ sλ(.)

 =


∑n
i=1K

1(x(i), .)u1
i

...∑n
i=1K

s(x(i), .)usi

 , where u1
i , u

2
i , . . . , u

s
i ∈ Y.

A.5 Properties of A,B,C,H, c and M matrices

This section deals with the construction and properties of matrices A,B,C,H, c and M which have been
used in the framework.

Determining A:
A is a matrix which is constructed to represent the constraint L1 = 0 as A vech(L) = 0. For a given vech(L),
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we can obtain the condition L1 = 0 with Avech(L) = 0 based on the following construction:

A =


ep 0p−1 0p−2 . . . 02 01
e2
p ep−1 0p−2 . . . 02 01
e3
p e2

p−1 ep−2 . . . 02 01
...

...
... . . . ...

...
epp ep−1

p−1 ep−2
p−2 . . . e2

2 e1

 ,

where 0k = [0, 0, . . . , 0] ∈ R1×k denotes a row vector containing k zeros, ek = [1, 1, . . . , 1] ∈ R1×k denotes a
row vector containing k ones, eik = [0, . . . , 1, . . . , 0] ∈ R1×k denotes a row vector with 1 in the i-th position
and zeros elsewhere, resulting in A ∈ Rp×

p(p+1)
2 .

Determining B:
B is a matrix which is constructed to represent the constraint Li,j ≤ 0, i 6= j as B vech(L) ≤ 0. For a given
vech(L), we reformulate the condition Li,j ≤ 0, ∀i 6= j as Bvech(L) ≤ 0. This can be achieved with the
following construction:

B =



e2
p 0p−1 0p−2 . . . 03 02 01
e3
p 0p−1 0p−2 . . . 03 02 01
...

...
... . . . ...

...
...

epp 0p−1 0p−2 . . . 03 02 01
0p e2

p−1 0p−2 . . . 03 02 01
...

...
... . . . ...

...
...

0p ep−1
p−1 0p−2 . . . 03 02 01

...
...

... . . . ...
...

...
0p 0p−1 0p−2 . . . e2

3 02 01
0p 0p−1 0p−2 . . . e3

3 02 01
0p 0p−1 0p−2 . . . 03 e2

2 01



.

Note that B ∈ R
p(p−1)

2 × p(p+1)
2 .

Determining C:
In section 5.1.3, C is a matrix which is used to deal with the constraint Dii ≥ 0, ∀i ∈ [p]. We construct a
matrix C ∈ Rp×

p(p+1)
2 which consists of 0’s and 1’s satisfying Cvech(D) = Diag(D). For a given vech(L),

we formulate the matrix C ∈ Rp×
p(p+1)

2 using 0’s and 1’s as follows:

C =


← C1: →
← C2: →
← C3: →
...

...
...

← Cp: →

 ,

where the row Ci: ∈ R1× p(p+1)
2 , and Ci: contains a 1 in the

(
i(i+1)

2

)
-th position and zeros elsewhere.

Determining H:
In section 5.1.4, we require a matrix H ∈ R

p(p+1)
2 × p(p+1)

2 comprising 0’s and 1’s such that Hvech(L) produces
a vector having the same structure as vech(L) with 0’s corresponding to diagonal entries of L and the same
off-diagonal entries as in L. For a given vech(L), we formulate the matrix H ∈ R

p(p+1)
2 × p(p+1)

2 using 0’s and
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1’s as follows:

H =


← H1: →
← H2: →
← H3: →
...

...
...

← H p(p+1)
2 : →

 ,

where the rows Hi: ∈ R1× p(p+1)
2 , and Hi: contains a 0 in the

(
i(i+1)

2

)
-th position and 1’s elsewhere.

Determining c:
In section 5.1.4, we consider a vector c ∈ R

p(p+1)
2 consisting of 0’s and 1’s, such that c>vech(L) = trace(L).

The vector c ∈ R
p(p+1)

2 is defined for obtaining the diagonal entries of D from vech(D) using 0’s and 1’s such
that

c>vech(D) = d1,1 + d2,2 + · · ·+ dp,p,

where c is given as follows:

c = [c1, c2, . . . , cp−1, cp]>,

where c ∈ R
p(p+1)

2 such that ci ∈ R1× i(i+1)
2 has all 0’s with 1 in

(
i(i+1)

2

)
-th element.

Determining M:
M is a matrix which is constructed to transform vech(L) to vec(L) using Mvech(L) = vec(L). Let the
Laplacian of the graph of p nodes be denoted by L which is symmetric,

L =


l1,1 l2,1 l3,1 . . . lp,1
l2,1 l2,2 l3,2 . . . lp,2
l3,1 l3,2 l3,3 . . . lp,3
...

...
... . . . ...

lp,1 lp,2 lp,3 . . . lp,p

 .

Now, vec(L) = [l1,1, . . . , lp,1, l2,1, . . . , lp,2, . . . , lp,1, . . . , lp,p]> is obtained by stacking the columns and

vech(L) = [l1,1, . . . , lp,1, l2,2, . . . , lp,2, l3,3, . . . , lp,3, . . . , lp,p]>,

which is obtained by eliminating the super-diagonal elements and then stacking them up. As illustrated,
vec(L) ∈ Rp2 and vech(L) ∈ Rp(p+1)/2. We can find a matrixM which satisfies

vec(L) =Mvech(L).

Hence observe thatM∈ Rp2× p(p+1)
2 . Therefore,

M> =
∑
i≥j

vi,j(vec(Ti,j))>,

where vi,j is a vector of order 1
2p(p+ 1) having the value 1 in the (j − 1)n+ i− 1

2j(j − 1)-th position and 0
elsewhere and Ti,j is a p× p matrix with 1 in positions (i, j) and (j, i), and 0 elsewhere.

The following relations are used in order to write the expression of objective function in terms of vec(L).

(x(i) − x(j))>(L+D)(x(i) − x(j)) = vec((x(i) − x(j))(x(i) − x(j))>)>vec(L+D),

= vec((x(i) − x(j))(x(i) − x(j))>)>(vec(L) + vec(D)),

x(i)>Lx(i) = vec(x(i)x(i)>)>vec(L),
‖D‖F = vec(D)>vec(D).

49



Published in Transactions on Machine Learning Research (03/2024)

A.6 Derivation of Gradients

In this section, we cover the derivation of∇vech(L)J and∇vech(D)J which are required in Algorithm 2. We use
(103) and (108) in the following expression to find the gradients. Recall k̄2(u)(t) =

∫ 1
0 e
−γop|s−t|u(s)ds, γop >

0, s, t ∈ R in the following derivations.

J(u, L,D) =
n∑
i=1

∥∥∥∥∥∥y(i) −
n∑
j=1

K(x(i), x(j))uj

∥∥∥∥∥∥
2

Y

+ λ

n∑
i,j=1
〈K(x(i), x(j))ui, uj〉Y

+ ρL

n∑
i=1

x(i)>Lx(i) + ρD‖D‖2F

=
n∑
i=1

∥∥∥∥∥∥y(i) −
n∑
j=1

k1(x(i), x(j);G)k̄2(uj)

∥∥∥∥∥∥
2

Y

+ λ

n∑
i=1,j=1

〈k1(x(i), x(j);G)k̄2(ui), uj〉Y

+ ρL

n∑
i=1

x(i)>Lx(i) + ρD‖D‖2F

=
n∑
i=1

∥∥∥∥∥∥y(i) −
n∑
j=1

e−γ(x(i)−x(j))>(L+D)(x(i)−x(j))k̄2(uj)

∥∥∥∥∥∥
2

Y

+ λ

n∑
i,j=1
〈e−γ(x(i)−x(j))>(L+D)(x(i)−x(j))k̄2(ui), uj〉Y + ρL

n∑
i=1

x(i)>Lx(i) + ρD‖D‖2F .

We consider the following variables for simplifying the computations:

Rij = vec((x(i) − x(j))(x(i) − x(j))>)>M, (137)

R̄i = vec(x(i)x(i)>)>M.

Therefore,

J =
n∑
i=1

∥∥∥∥∥∥y(i) −
n∑
j=1

e−γRij(vech(L)+vech(D))k̄2(uj)

∥∥∥∥∥∥
2

Y

+ λ

n∑
i,j=1
〈e−γRij(vech(L)+vech(D))k̄2(ui), uj〉Y + ρL

n∑
i=1

R̄ivech(L) + ρDvech(D)>M>Mvech(D)

=
n∑
i=1

〈
y(i) −

n∑
j=1

e−γRij(vech(L)+vech(D))k̄2(uj), y(i) −
n∑
j=1

e−γRij(vech(L)+vech(D))k̄2(uj)
〉
Y

+ λ

n∑
i,j=1

e−γRij(vech(L)+vech(D))〈k̄2(ui), uj〉Y + ρL

n∑
i=1

R̄ivech(L) + ρDvech(D)>M>Mvech(D)

=
n∑
i=1

〈y(i), y(i)
〉
Y
− 2

n∑
j=1

e−γRij(vech(L)+vech(D))
〈
y(i), k̄2(uj)

〉
Y

+
n∑

j,k=1
e−γ(Rij+Rik)(vech(L)+vech(D)) 〈k̄2(uj), k̄2(uk)

〉
Y

+ λ

n∑
i,j=1

e−γRij(vech(L)+vech(D))〈k̄2(ui), uj〉Y

+ ρL

n∑
i=1

R̄ivech(L) + ρDvech(D)>M>Mvech(D).
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The expression above for J can be used to determine the gradient with respect to vech(L) and vech(D). The
gradient of J with respect to vech(L) for a fixed u and D is given as follows:

∇vech(L)J = 2γ
n∑

i,j=1
R>ije

−γRij(vech(L)+vech(D))
〈
y(i), k̄2(uj)

〉
Y

− γ
n∑

i,j,k=1
(Rij +Rik)>e−γ(Rij+Rik)(vech(L)+vech(D)) 〈k̄2(uj), k̄2(uk)

〉
Y

− λγ
n∑

i,j=1
R>ije

−γRij(vech(L)+vech(D))〈k̄2(ui), uj〉Y + ρL

n∑
i=1

R̄>i .

Similarly, for a fixed u and vech(L) the gradient of J with respect to vech(D) can be written as

∇vech(D)J = 2γ
n∑

i,j=1
R>ije

−γRij(vech(L)+vech(D))
〈
y(i), k̄2(uj)

〉
Y

− γ
n∑

i,j,k=1
(Rij +Rik)>e−γ(Rij+Rik)(vech(L)+vech(D)) 〈k̄2(uj), k̄2(uk)

〉
Y

− λγ
n∑

i,j=1
R>ije

−γRij(vech(L)+vech(D))〈k̄2(ui), uj〉Y + 2ρDM>Mvech(D).

For the experiments on NBA data, we use the approach in Section 5.1.5 with r = 2 and s = 2. The inputs
x(i) = (x(i)

1 , x
(i)
2 ) ∈ X 2 and outputs y(i) = (y(i)

1 , y
(i)
2 ) ∈ Y2 with (25) and (26), for i ∈ [n]. We consider the

following variables for simplifying the computations:

R1
ij = vec((x(i)

1 − x
(j)
1 )(x(i)

1 − x
(j)
1 )
>

)>M,

R2
ij = vec((x(i)

2 − x
(j)
2 )(x(i)

2 − x
(j)
2 )
>

)>M,

R̄1
i = vec(x(i)

1 x
(i)
1
>

)>M,

R̄2
i = vec(x(i)

2 x
(i)
2
>

)>M.
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J(u1,u2, L,D) =
n∑
i=1

∥∥∥∥∥∥y(i)
1 −

n∑
j=1

K(x(i),x(j))u1
j

∥∥∥∥∥∥
2

Y

+
n∑
i=1

∥∥∥∥∥∥y(i)
2 −

n∑
j=1

K(x(i),x(j))u2
j

∥∥∥∥∥∥
2

Y

+ λ

n∑
i,j=1
〈K(x(i),x(j))u1

i , u
1
j 〉Y + λ

n∑
i,j=1
〈K(x(i),x(j))u2

i , u
2
j 〉Y

+ ρ1

n∑
i=1

x
(i)
1
>
Lx

(i)
1 + ρ2

n∑
i=1

x
(i)
2
>
Lx

(i)
2 + ρD‖D‖2F

=
n∑
i=1

∥∥∥∥∥∥y(i)
1 −

n∑
j=1

k1(x(i),x(j);G)k̄1
2(u1

j )

∥∥∥∥∥∥
2

Y

+
n∑
i=1

∥∥∥∥∥∥y(i)
2 −

n∑
j=1

k1(x(i),x(j);G)k̄2
2(u2

j )

∥∥∥∥∥∥
2

Y

+ λ

n∑
i=1,j=1

〈k1(x(i),x(j);G)k̄1
2(u1

i ), u1
j 〉Y + λ

n∑
i=1,j=1

〈k1(x(i),x(j);G)k̄2
2(u2

i ), u2
j 〉Y

+ ρ1

n∑
i=1

x
(i)
1
>
Lx

(i)
1 + ρ2

n∑
i=1

x
(i)
2
>
Lx

(i)
2 + ρD‖D‖2F

=
n∑
i=1

∥∥∥∥∥∥y(i)
1 −

n∑
j=1

e
−γ1
(
x

(i)
1 −x

(j)
1

)>
(L+D)

(
x

(i)
1 −x

(j)
1

)
−γ2
(
x

(i)
2 −x

(j)
2

)>
(L+D)

(
x

(i)
2 −x

(j)
2

)
k̄1

2(u1
j )

∥∥∥∥∥∥
2

Y

+
n∑
i=1

∥∥∥∥∥∥y(i)
2 −

n∑
j=1

e
−γ1
(
x

(i)
1 −x

(j)
1

)>
(L+D)

(
x

(i)
1 −x

(j)
2

)
−γ2
(
x

(i)
2 −x

(j)
2

)>
(L+D)

(
x

(i)
2 −x

(j)
2

)
k̄2

2(u2
j )

∥∥∥∥∥∥
2

Y

+ λ

n∑
i,j=1
〈e−γ1

(
x

(i)
1 −x

(j)
1

)>
(L+D)

(
x

(i)
1 −x

(j)
1

)
−γ2
(
x

(i)
2 −x

(j)
2

)>
(L+D)

(
x

(i)
2 −x

(j)
2

)
k̄1

2(u1
j ), u1

j 〉Y

+ λ

n∑
i,j=1
〈e−γ1

(
x

(i)
1 −x

(j)
1

)>
(L+D)

(
x

(i)
1 −x

(j)
1

)
−γ2
(
x

(i)
2 −x

(j)
2

)>
(L+D)

(
x

(i)
2 −x

(j)
2

)
k̄2

2(u2
j ), u2

j 〉Y

+ ρ1

n∑
i=1

x
(i)
1
>
Lx

(i)
1 + ρ2

n∑
i=1

x
(i)
2
>
Lx

(i)
2 + ρD‖D‖2F .

The gradient of J with respect to vech(L) for fixed u1,u2 and D is given by

∇vech(L)J = 2
n∑

i,j=1
(γ1R

1
ij + γ2R

2
ij)>e−(γ1R

1
ij+γ2R

2
ij)(vech(L)+vech(D))

(〈
y

(i)
1 , k̄1

2(u1
j )
〉
Y

+
〈
y

(i)
2 , k̄2

2(u2
j )
〉
Y

)

−
n∑

i,j,k=1
(γ1R

1
ij + γ2R

2
ij + γ1R

1
ik + γ2R

2
ik)>e−(γ1R

1
ij+γ2R

2
ij+γ1R

1
ik+γ2R

2
ik)(vech(L)+vech(D)) 〈k̄1

2(u1
j ), k̄1

2(u1
k)
〉
Y

−
n∑

i,j,k=1
(γ1R

1
ij + γ2R

2
ij + γ1R

1
ik + γ2R

2
ik)>e−(γ1R

1
ij+γ2R

2
ij+γ1R

1
ik+γ2R

2
ik)(vech(L)+vech(D)) 〈k̄2

2(u2
j ), k̄2

2(u2
k)
〉
Y

− λ
n∑

i,j=1
(γ1R

1
ij + γ2R

2
ij)>e−(γ1R

1
ij+γ2R

2
ij)(vech(L)+vech(D))〈k̄1

2(u1
i ), u1

j 〉Y

− λ
n∑

i,j=1
(γ1R

1
ij + γ2R

2
ij)>e−(γ1R

1
ij+γ2R

2
ij)(vech(L)+vech(D))〈k̄2

2(u2
i ), u2

j 〉Y + ρ1

n∑
i=1

R̄1>
i + ρ2

n∑
i=1

R̄2>
i .
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Similarly, for fixed u1,u2 and vech(L) the gradient of J with respect to vech(D) can be written as

∇vech(D)J = 2
n∑

i,j=1
(γ1R

1
ij + γ2R

2
ij)>e−(γ1R

1
ij+γ2R

2
ij)(vech(L)+vech(D))

(〈
y

(i)
1 , k̄1

2(u1
j )
〉
Y

+
〈
y

(i)
2 , k̄2

2(u2
j )
〉
Y

)

−
n∑

i,j,k=1
(γ1R

1
ij + γ2R

2
ij + γ1R

1
ik + γ2R

2
ik)>e−(γ1R

1
ij+γ2R

2
ij+γ1R

1
ik+γ2R

2
ik)(vech(L)+vech(D)) 〈k̄1

2(u1
j ), k̄1

2(u1
k)
〉
Y

−
n∑

i,j,k=1
(γ1R

1
ij + γ2R

2
ij + γ1R

1
ik + γ2R

2
ik)>e−(γ1R

1
ij+γ2R

2
ij+γ1R

1
ik+γ2R

2
ik)(vech(L)+vech(D)) 〈k̄2

2(u2
j ), k̄2

2(u2
k)
〉
Y

− λ
n∑

i,j=1
(γ1R

1
ij + γ2R

2
ij)>e−(γ1R

1
ij+γ2R

2
ij)(vech(L)+vech(D))〈k̄1

2(u1
i ), u1

j 〉Y

− λ
n∑

i,j=1
(γ1R

1
ij + γ2R

2
ij)>e−(γ1R

1
ij+γ2R

2
ij)(vech(L)+vech(D))〈k̄2

2(u2
i ), u2

j 〉Y + 2ρDM>Mvech(D).

A.7 OpMINRES Algorithm

A.7.1 OpLanczos Step

OpLanczos in OpMINRES is used to trigiagonalize the operator matrix P. The vectors obtained from
OpLanczos form an orthonormal set. Using the OpLanczosStep Algorithm 5, we can obtain,

PQk = QkTk, where Tk =



α1 β2 0
β2 α2 β3

β3 α3
. . .

. . . . . . βk−2
βk−1 αk−1 βk

0 βk αk


,

and Qk = [q1, q2, . . . , qk], where qi’s are obtained using OpLanczosStep Algorithm. The columns of Qk
belonging to Yn are orthonormal and the following equation is satisfied:

PQk = Qk+1T k, where T k =



α1 β2 0
β2 α2 β3

β3 α3
. . .

. . . . . . βk−2
βk−1 αk−1 βk

βk αk
0 βk+1


.

We intend to solve Au = y by obtaining a solution in the Krylov space Kk(P,y) =
span{y,Py,P2y, . . . ,Pk−1y}. For each iteration k, we obtain the following equations using the trans-
formation θ = Qkϑ, where θ ∈ Yn, ϑ ∈ Rk.

min
θ∈Kk(P,y)

‖y−Pϑ‖Yn = min
ϑ∈Rk

‖y−PQkϑ‖Yn = min
ϑ∈Rk

‖y−Qk+1T kϑ‖Yn

= min
ϑ∈Rk

‖Qk+1(β1e1 − T kϑ)‖Yn , (138)

(where β1 = ‖y‖Yn , e1 = [1 0 . . . 0]> and q1 = y)
= min
ϑ∈Rk

‖β1e1 − T kϑ‖2. (139)
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Algorithm 4 OpMINRES(P, b,maxiter)
Input: P, b,maxiter
Output: ϑ, φ, ψ, χ
β1 = ‖b‖Yn

q0 = 0
q1 = 1

β1
b

φ0 = τ0 = β1
χ0 = 0
δ

(1)
1 = 0
c0 = −1
s0 = 0
d0 = d−1 = ϑ0 = 0
k = 1
while stopping criteria not satisfied do
OpLanczosStep(P, qk, qk−1, βk)→ αk, βk+1, qk+1
//last left orthogonalization on middle two entries in last column of Tk+1,k

δ
(2)
k = ck−1δ

(1)
k + sk−1αk

γ
(1)
k = sk−1δ

(1)
k − ck−1αk

//last left orthogonalization to produce first two entries of Tk+2,k+1ek+1

ε
(1)
k+1 = sk−1βk+1

δ
(1)
k+1 = −ck−1βk+1
//current left orthogonalization to zero out βk+1

SymOrtho(γ(1)
k , βk+1)→ ck, sk, γ

(2)
k

//right-hand side, residual norms
τk = ckφk−1
φk = skφk−1

ψk−1 = φk−1

√
(γ(1)
k )2 + (δ(1)

k+1)2

//update solution
dk = 1

γ
(2)
k

(
vk − δ(2)

k dk−1 − ε(1)
k dk−2

)
ϑk = ϑk−1 + τkdk
χk = ‖ϑk‖
k ← k + 1

end while
ϑ = ϑk, φ = φk, ψ = φk

√
(γ(1)
k+1)2 + (δ(1)

k+2)2, χ = χk

The change in norms ‖.‖Yn in (138) to ‖.‖2 is obtained based on the following arguments. Let z =
[z1, z2, . . . , zk+1]> ∈ Rk+1 and Qk+1 = [q1, q2, . . . , qk+1], where qi ∈ Yn, for i = 1, 2, . . . , k + 1, then we
have

‖Qk+1zk+1‖Yn = ‖z1q1 + z2q2 + · · ·+ zk+1qk+1‖Yn

=
√
z2

1

∫
Ωy

q2
1(t)dt+ z2

2

∫
Ωy

q2
2(t)dt+ · · ·+ z2

k+1

∫
Ωy

q2
k+1(t)dt (140)

=
√
z2

1 + z2
2 + · · ·+ z2

k+1 (141)

= ‖z‖2.

Equation (140) reduces to (141) as the qi’s are orthonormal in Yn. Solving for ϑk = arg minϑ∈Rk ‖β1e1−T̄kϑ‖2
can be done using QR decomposition (Choi, 2006) which has been discussed in the next section. Now, the
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Algorithm 5 OpLanczosStep(P, qk, qk−1, βk)
Input: A, qk, qk−1, βk
Output: αk, βk+1, qk+1
q̄k+1 = Aqk − βkqk−1
αk = 〈q̄k+1, qk〉Yn

q̄k+1 ← q̄k+1 − αkqk
βk+1 = ‖q̄k+1‖Yn

qk+1 = 1
βk+1

q̄k+1

Algorithm 6 SymOrtho(a, b)
Input: a, b
Output: c, s, r
if b == 0 then
s = 0
r = |a|
if a == 0 then
c = 1

else
c = sign(a)

end
else if a == 0 then
c = 0
s = sign(b)
r = |b|

else if |b| > |a| then
τ = a/b
s = sign(b)/

√
1 + τ2

c = sτ
r = b/s

else if |a| > |b| then
τ = b/a
c = sign(a)/

√
1 + τ2

s = cτ
r = a/c

end

transformation from Rk back to Yn to obtain uk is achieved using by the following:

uk = Qkϑk = Qk

(
arg min

ϑ∈Rk
‖β1e1 − T kϑ‖2

)
.
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A.7.2 QR Decomposition

In order to apply QR decomposition on symmetric T k, we use Givens rotation Sk to obtain a upper-triangular
system.

SkT k =
[
Rk
0

]
=



γ
(1)
1 δ

(1)
2 ε

(1)
3 0

γ
(2)
2 δ

(2)
3 ε

(1)
4

. . . . . . . . .
γ

(2)
k−2 δ

(2)
k−1 ε

(1)
k

γ
(2)
k−1 δ

(2)
k

γ
(2)
k

0 0


, Sk(β1e1) =

[
tk
φk

]
,

where Sk = Sk,k+1 . . . S2,3S1,2 and Si,i+1 are Givens rotations created to annihilate the βi’s in sub-diagonal
of T k. The Si,i+1’s involved in the product to obtain Sk are given by,

Si,i+1 =


Ii−1

ci si
si −ci

Ik−i

 .
The matrices Si,i+1 are obtained using the SymOrtho Algorithm 6. The sub-problem can be rewritten with
ϑk = arg minϑ∈Rk ‖β1e1 − T kϑ‖2 as

ϑk = arg min
ϑ∈Rk

∥∥∥∥[ tkφk
]
−
[
Rk
0

]
ϑ

∥∥∥∥
2
,where tk = [τ1, τ2, . . . , τk]>and

[
tk
φk

]
= β1Sk,k+1 . . . S2,3

 c1
s1

0k−1

 = β1Sk,k+1 . . . S3,4


c1
s1c2
s1s2
0k−2

 = β1


c1
s1c2
...

s1 . . . sk−1ck
s1 . . . sk−1sk

 .

A shorthand way to represent the action of Sk,k+1 can be described as[
ck sk
sk −ck

] [
γ

(1)
k δ

(1)
k+1 0 φk−1

βk+1 αk+1 βk+2 0

]
=
[
γ

(2)
k δ

(2)
k+1 ε

(1)
k+2 τk

0 γ
(1)
k+1 δ

(1)
k+2 φk

]
.

OpMINRES computes uk in Kk(P,y) as an approximate solution to the problem Pu = y:

uk = Qkϑk = QkR
−1
k tk = Dk

[
tk−1
τk

]
=
[
Dk−1 dk

] [tk−1
τk

]
=uk−1 + τkdk.

The relation satisfied by dk is given by,

dk = 1
γ

(2)
k

(
vk − δ(2)

k dk−1 − ε(1)
k dk−2

)
.

These details have been incorporated in OpMINRES Algorithm A.7. The OpMINRES Algorithm A.7 is
based on approximating an infinite-dimensional problem in (150) by a finite-dimensional problem in (139).
As OpMINRES is based on MINRES algorithm (Choi, 2006), the convergence of OpMINRES follows from
the convergence of MINRES. The case of singular systems with OpMINRES needs more investigation. In
our experiments, the value of relative residual norms φk/φ0 has been used as the stopping criteria for
OpMINRES.
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A.8 Derivation of Linear system of operators

Derivation of (K + λI)u = y: We obtain a sufficient condition for stationary points for the optimization
problem in Theorem A.2.

Using the representer theorem, the minimization problem can be equivalently formulated as the following
problem:

ũλ = arg min
u∈Yn

n∑
i=1

∥∥∥∥∥∥yi −
n∑
j=1

K(x(i), x(j))uj

∥∥∥∥∥∥
2

Y

+ λ

〈 n∑
i=1

K(x(i), .)ui,
n∑
j=1

K(x(j), .)uj
〉
HKG

. (142)

We have the following simplification of the term
〈∑n

i=1K(x(i), .)ui,
∑n
j=1K(x(j), .)uj

〉
HKG

in problem

(142). We have〈 n∑
i=1

K(x(i), .)ui,
n∑
j=1

K(x(j), .)uj
〉
HKG

=
n∑
i=1

〈
K(x(i), .)ui,

n∑
j=1

K(x(j), .)uj
〉
HKG

(143)

=
n∑
i=1

n∑
j=1

〈
K(x(i), .)ui,K(x(j), .)uj

〉
HKG

(144)

=
n∑
i=1

n∑
j=1

〈
K(x(i), x(j))ui, uj

〉
Y
. (145)

Note that Eq. (143) and Eq. (144) follow from the property of bilinear forms and Eq. (145) follows from
the reproducing property of K. Thus we have the following simplified formulation:

ũλ = arg min
u∈Yn

n∑
i=1

∥∥∥∥∥∥yi −
n∑
j=1

K(x(i), x(j))uj

∥∥∥∥∥∥
2

Y

+ λ

n∑
i=1,j=1

〈K(x(i), x(j))ui, uj〉Y .

To solve this problem, we first construct the objective function Jλ(u) given by

Jλ(u) =
n∑
i=1

∥∥∥∥∥∥yi −
n∑
j=1

K(x(i), x(j))uj

∥∥∥∥∥∥
2

Y

+ λ

n∑
i=1,j=1

〈K(x(i), x(j))ui, uj〉Y , u ∈ Yn.

Letting Jλ(u) =
∑n
i=1Gi(u) + λL(u), we can find the directional derivative of Jλ(u) with respect to the

direction v as DvJλ(u).

DvGi(u) = lim
τ→0

Gi(u+ τv)−Gi(u)
τ

= −2
〈
yi −

n∑
j=1

K(xi, xj)uj ,
n∑
j=1

K(x(i), x(j))vj
〉
.

DvL(u) = lim
τ→0

L(u+ τv)− L(u)
τ

= λ

n∑
i,j

〈K(x(i), x(j))ui, vj〉+ λ

n∑
i,j

〈K(x(i), x(j))vi, uj〉.

As K is Hermitian from the definition of operator-valued kernel, we obtain

〈K(x(i), x(j))ui, vj〉 = 〈ui,K(x(i), x(j))vj〉, ∀i, j ∈ [n]. (146)
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Therefore,

DvL(u) = λ

n∑
i,j

〈K(x(i), x(j))ui, vj〉+ λ

n∑
i,j

〈K(x(i), x(j))vi, uj〉

= λ

n∑
i,j

〈ui,K(x(i), x(j))vj〉+ λ

n∑
i,j

〈K(x(i), x(j))vi, uj〉 (147)

= λ

n∑
i,j

〈ui,K(x(i), x(j))vj〉+ λ

n∑
i,j

〈uj ,K(x(j), x(i))vi〉 (148)

= 2λ
n∑
i,j

〈ui,K(x(i), x(j))vj〉. (149)

Eq. (147) follows from Eq. (146) and in Eq. (147), we use symmetry of 〈·, ·〉 to obtain Eq. (149). In order
to minimize Jλ(u), its directional derivative DvJλ(u) = 0, ∀v ∈ Yn.

DvJλ(u) = 0

=⇒
n∑
i=1

DvGi(u) + λDvL(u) = 0

=⇒ − 2
n∑
i=1

〈
yi −

n∑
j=1

K(x(i), x(j))uj ,
n∑
j=1

K(x(i), x(j))vj
〉

+ 2λ
n∑
i,j

〈ui,K(x(i), x(j))vj〉 = 0

=⇒
n∑
i=1

〈 n∑
j=1

K(x(i), x(j))uj − yi,
n∑
j=1

K(x(i), x(j))vj
〉

+
n∑
i,j

〈λui,K(x(i), x(j))vj〉 = 0

=⇒
n∑
i=1

〈 n∑
j=1

K(x(i), x(j))uj − yi,
n∑
j=1

K(x(i), x(j))vj
〉

+
n∑
i=1

〈
λui,

n∑
j=1

K(x(i), x(j))vj
〉

= 0

=⇒
n∑
i=1

〈 n∑
j=1

K(x(i), x(j))uj − yi + λui,

n∑
j=1

K(x(i), x(j))vj
〉

= 0,∀v ∈ Yn.

The above condition can be reduced to

(K + λI)u = y, (150)

where K is a matrix of operators formed by using K.

A.9 Results for Generalization Bounds

We recall the lemma 6.2 and provide the proof next.
Lemma A.6. Let F be a class of functions from X to Y. Consider a m-tuple of samples from input space
as (x(1), x(2), . . . , x(m)) ∈ Xm. Then the following hold:

1. E
[
supF∈F ‖ 1

m

∑m
i=1 F (x(i))− EF‖Y

]
≤ 2Rm;Y(F).

2. For every c ∈ R, Rm;Y(cF) = |c|Rm;Y(F).

3. For φ : Y → R, if φ is a Lipschitz function with Lipschitz constant L, then Rm;R(φ◦F) ≤ LRm;Y(F).

Proof. For part 1, we start with denoting S = (x(1), x(2), . . . , x(m)) ∈ Xm and another independent sample
as S̄ = (x̄(1), x̄(2), . . . , x̄(m)) ∈ Xm, we have

ES∼µm
X

[F (x)] = ES̄∼µm
X

[
1
m

m∑
i=1

F (x̄(i))
]
. (151)
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We note that the Rademacher random variables (ε1, ε2, . . . , εm) are uniformly distributed over {+1,−1} and
every possible value they take has an equal probability of 1/2m. Without loss of generality, we can always
permute (ε1, ε2, . . . , εm) to obtain εP1 = 1, . . . , εPk

= 1, εPk+1 = −1, . . . , εPm = −1, where 0 ≤ k ≤ m and
{P1, . . . , Pm} is a permutation of [m]. Therefore,

ES∼µm
X

[
ES̄∼µm

X

[
sup
F∈F

1
m

∥∥∥∥∥
m∑
i=1

εi

(
F (x(i))− F (x̄(i))

)∥∥∥∥∥
Y

]]

=ES∼µm
X

ES̄∼µm
X

 sup
F∈F

1
m

∥∥∥∥∥
k∑
i=1

(
F (x(i))− F (x̄(i))

)
+

m∑
i=k+1

(
F (x(i))− F (x̄(i))

)∥∥∥∥∥
Y


=ES∼µm

X

[
ES̄∼µm

X

[
sup
F∈F

1
m

∥∥∥∥∥
m∑
i=1

(
F (x(i))− F (x̄(i))

)∥∥∥∥∥
Y

]]
. (152)

The expressions above hold as x(i) and x̄(i) are independent and symmetric. We obtain the following based
on the arguments made above.

ES∼µm
X

[
sup
F∈F

∥∥∥∥∥ 1
m

m∑
i=1

F (x(i))− Ex(i)∼µXF (x(i))
∥∥∥∥∥
Y

]

=ES∼µm
X

[
sup
F∈F

∥∥∥∥∥ 1
m

m∑
i=1

F (x(i))− ES̄∼µm
X

[
1
m
F (x̄(i))

]∥∥∥∥∥
Y

]
(153)

=ES∼µm
X

[
sup
F∈F

∥∥∥∥∥ES̄∼µm
X

1
m

(
m∑
i=1

F (x(i))− F (x̄(i))
)∥∥∥∥∥
Y

]

≤ES∼µm
X

[
ES̄∼µm

X

[
sup
F∈F

∥∥∥∥∥ 1
m

(
m∑
i=1

F (x(i))− F (x̄(i))
)∥∥∥∥∥
Y

]]
(154)

=ES∼µm
X

[
ES̄∼µm

X

[
E

[
sup
F∈F

1
m

∥∥∥∥∥
m∑
i=1

εi

(
F (x(i))− F (x̄(i))

)∥∥∥∥∥
Y

]]]
(155)

≤ES∼µm
X

[
E

[
sup
F∈F

1
m

∥∥∥∥∥
m∑
i=1

εiF (x(i))
∥∥∥∥∥
Y

]]

+ ES̄∼µm
X

[
E

[
sup
F∈F

1
m

∥∥∥∥∥
m∑
i=1

εiF (x̄(i))
∥∥∥∥∥
Y

]]
(156)

=2Rm;Y(F).

Equation (153) follows from (151). Jensen’s inequality is used to obtain (154) and (155) follows from (152)
by the fact that using Rademacher variables does not change the value of the expression in (223) (see proof of
Theorem 4.1 in (Liao, 2020)). The inequality (156) uses the fact that εi and −εi follow the same Rademacher
distribution and triangle inequality for norm ‖ · ‖Y with supremum.

For part 2,

Rm;Y(cF) = E

[
sup
F∈F

1
m

∥∥∥∥∥
m∑
i=1

εicF (x(i))
∥∥∥∥∥
Y

]

= |c|E
[

sup
F∈F

1
m

∥∥∥∥∥
m∑
i=1

εiF (x(i))
∥∥∥∥∥
Y

]
= |c|Rm;Y(F).
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For part 3, consider a m-tuple of samples from input space X as (x(1), x(2), . . . , x(m)) ∈ Xm and Rademacher
random variables εi for i ∈ [m]. We assume φ : Y → R and φ is a Lipschitz function with Lipschitz constant
L. Then

Rm;R(φ ◦ F) =E

[
sup
F∈F

1
m

m∑
i=1

εi(φ ◦ F )(x(i))
]

=Ex(i)∼µm
X

1
m

[
Eε\εm

[
Eεm

[
sup
F∈F

um(F ) + εm(φ ◦ F )(x(m))
]]]

, (157)

where um(F ) =
∑m−1
i=1 εi(φ ◦ F )(x(i)).

From the definition of the supremum, for any εm > 0 (note that m is not an exponent in this notation),
there exists Fm1 , Fm2 ∈ F such that

um(Fm1 ) + εm(φ ◦ Fm1 )(x(m)) ≥ (1− εm)
[

sup
F∈F

um(F ) + εm(φ ◦ F )(x(m))
]

(158)

um(Fm2 )− εm(φ ◦ Fm2 )(x(m)) ≥ (1− εm)
[

sup
F∈F

um(F )− εm(φ ◦ F )(x(m))
]
, (159)

otherwise it leads to a contradiction to the supremum assumption.

Therefore,

(1− εm)Eεm

[
sup
F∈F

um(F ) + εm(φ ◦ F )(x(m))
]

= (1− εm)
[

1
2 sup
F∈F

um(F ) + (φ ◦ F )(x(m)) + 1
2 sup
F∈F

um(F )− (φ ◦ F )(x(m))
]

(160)

≤ 1
2

[
um(Fm1 ) + εm(φ ◦ Fm1 )(x(m)) + um(Fm2 )− εm(φ ◦ Fm2 )(x(m))

]
(161)

= 1
2

[
um(Fm1 ) + um(Fm2 ) + εm

(
(φ ◦ Fm1 )(x(m))− (φ ◦ Fm2 )(x(m))

)]
. (162)

≤ sup
F∈F

um(F ) + 1
2

[
εm

(
(φ ◦ Fm1 )(x(m))− (φ ◦ Fm2 )(x(m))

)]
. (163)

Equation (160) is obtained by using the definition of Rademacher random variable εm. The inequality (161)
is obtained using inequalities for Fm1 and Fm2 in (158) and (159), respectively. Inequality (163) is obtained
by introducing supremum in the terms um(Fm1 ) + um(Fm2 ). As the inequality (163) holds for any εm > 0,
we claim

Eεm

[
sup
F∈F

um(F ) + εm(φ ◦ F )(x(m))
]
≤ sup
F∈F

um(F ) + 1
2

[
εm

(
(φ ◦ Fm1 )(x(m))− (φ ◦ Fm2 )(x(m))

)]
. (164)

Using (164) in (157) we obtain

Rm;R(φ ◦ F) = Ex(i)∼µm
X

1
m

[
Eε\εm

[
Eεm

[
sup
F∈F

um(F ) + εm(φ ◦ F )(x(m))
]]]

≤ Ex(i)∼µm
X

1
m

[
Eε\εm

[
sup
F∈F

um(F ) + 1
2

[
εm

(
(φ ◦ Fm1 )(x(m))− (φ ◦ Fm2 )(x(m))

)]]]
(165)

≤ Ex(i)∼µm
X

1
m

[
Eε\{εm−1,εm}

[
Eεm−1

[
sup
F∈F

um−1 + εm−1(φ ◦ F )(x(m−1))
]

+1
2

[
εm

(
(φ ◦ Fm1 )(x(m))− (φ ◦ Fm2 )(x(m))

)]]]
, (166)
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where um−1 = supF∈F
∑m−2
i=1 εi(φ◦F )(x(i)). Now, for any εm−1 > 0 a similar approach is followed to obtain

Fm−1
1 , Fm−1

2 ∈ F such that

um−1(Fm−1
1 ) + εm−1(φ ◦ Fm−1

1 )(x(m−1)) ≥ (1− εm−1)
[

sup
F∈F

um−1(F ) + εm−1(φ ◦ F )(x(m−1))
]

(167)

um−1(Fm−1
2 )− εm−1(φ ◦ Fm−1

2 )(x(m−1)) ≥ (1− εm−1)
[

sup
F∈F

um−1(F )− εm−1(φ ◦ F )(x(m−1))
]
. (168)

Using (167) and (168), similar arguments as made earlier help us to claim

Eεm−1

[
sup
F∈F

um−1(F ) + εm−1(φ ◦ F )(x(m−1))
]

≤ sup
F∈F

um−1(F ) + 1
2

[
εm−1

(
(φ ◦ Fm−1

1 )(x(m−1))− (φ ◦ Fm−1
2 )(x(m−1))

)]
. (169)

Inequality (169) with (166) provides the following

Rm;R(φ ◦ F) ≤ Ex(i)∼µm
X

1
m

[
Eε\{εm−2,εm−1,εm}

[
Eεm−2

[
sup
F∈F

um−2 + εm−2(φ ◦ F )(x(m−2))
]

+1
2

m∑
i=m−1

[
εi

(
(φ ◦ F i1)(x(i))− (φ ◦ F i2)(x(i))

)]]]
, (170)

where um−2 = supF∈F
∑m−3
i=1 εi(φ ◦ F )(x(i)). We iterate till the last step where

Rm;R(φ ◦ F) ≤ Ex(i)∼µm
X

1
m

[
Eε1

[
sup
F∈F

ε1(φ ◦ F )(x(1))
]

+1
2

m∑
i=2

[
εi

(
(φ ◦ F i1)(x(i))− (φ ◦ F i2)(x(i))

)]]
. (171)

For any ε1 > 0, there exists F 1
1 , F

1
2 ∈ F such that

ε1(φ ◦ F 1
1 )(x(1)) ≥ (1− ε1)

[
sup
F∈F

ε1(φ ◦ F )(x(1))
]

(172)

−ε1(φ ◦ F 1
2 )(x(1)) ≥ (1− ε1)

[
sup
F∈F
−ε1(φ ◦ F )(x(1))

]
. (173)

Using (172) and (173), we obtain

Eε1

[
sup
F∈F

ε1(φ ◦ F )(x(1))
]
≤ 1

2

[
ε1

(
(φ ◦ F 1

1 )(x(1))− (φ ◦ F 1
2 )(x(1))

)]
. (174)

Next, we simplify (171) using (174),

1
2

m∑
i=1

[
εi

(
(φ ◦ F i1)(x(i))− (φ ◦ F i2)(x(i))

)]
≤ 1

2

[
m∑
i=1

εi

(
(φ ◦ F i1)(x(i))− (φ ◦ F i2)(x(i))

)]
(175)

= 1
2

[(
(φ ◦

m∑
i=1

εiF
i
1)(x(i))− (φ ◦

m∑
i=1

εiF
i
2)(x(i))

)]
(176)

≤ L

∥∥∥∥∥
m∑
i=1

(εi
2 F

i
1(x(i))− εi

2 F
i
2(x(i))

)∥∥∥∥∥
Y

(177)

≤ LE sup
F∈F

∥∥∥∥∥
m∑
i=1

εiF (x(i))
∥∥∥∥∥
Y

. (178)
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Inequality (175) is obtained by using F i1, F i2,∀i ∈ [m] which are obtained based on the procedure for Fm1 and
Fm2 . The definition of φ is utilized to establish (176). Inequality (177) is obtained by using Lipschitz conti-
nuity of Φ and (178) follows from the definition of supremum and expectation with respect to Rademacher
random variables. Hence using (178) with (174) and (171), we obtain

Rm;R(φ ◦ F) ≤ LRm;Y(F).

Next, we recall Lemma 6.6 and provide its proof.
Lemma A.7. E[Θ(z)] is bounded above as follows:

E[Θ(z)] ≤ 2ρL(τ)β1/4(Rm;Y(K0))1/4.

Proof.

E [Θ(z)] = E sup
F∈ρBK

[E (F )− Ez(F )] (179)

≤ 2E sup
F∈ρBK

[
1
m

m∑
i=1

εiL (y(i), F (x(i)))
]

(180)

≤ 2L(τ)Rm;Y(ρBK) (181)
= 2ρL(τ)Rm;Y(BK). (182)

Equation (179) involves a supremum of F ∈ ρBK as ‖F‖∞ is bounded by ρ and inequality (180) is obtained
by using Lemma A.9 in Appendix A.9. Part 3 of Lemma 6.2 is used with φi(.) = L (y(i), .) which has a
Lipschitz constant L(τ) in order to obtain (181). (182) follows from Part 2 of Lemma 6.2. Now,

Rm;Y(BK) = E

[
sup
F∈BK

1
m

∥∥∥∥∥
m∑
i=1

εiF (x(i))
∥∥∥∥∥
Y

]

= E

 sup
F∈BK

1
m

 m∑
i,j=1

εiεj

〈
F (x(i)), F (x(j))

〉
Y

1/2
 (183)

= E

 sup
F∈BK

1
m

 m∑
i,j=1

εiεj

〈
F,K(x(i), .)F (x(j))

〉
HK

1/2
 (184)

≤ E

 sup
K∈K

sup
F∈BK

sup
y∈Y

1
m

〈F, m∑
i,j=1

εiεjK(x(i), .)y
〉
HK

1/2
 (185)

≤ E

 sup
K∈K

sup
F∈BK:
‖F‖HK

≤1

sup
y∈Y

1
m

‖F‖HK

∥∥∥∥∥∥
m∑

i,j=1
εiεjK(x(i), .)y

∥∥∥∥∥∥
HK

1/2
 (186)

≤ E

 sup
K∈K

sup
y∈Y

1
m

∥∥∥∥∥∥
m∑

i,j=1
εiεjK(x(i), .)y

∥∥∥∥∥∥
HK

1/2
 (187)

≤ E

 sup
K∈K

sup
y∈Y

1√
m

∥∥∥∥∥
m∑
i=1

εiK(x(i), .)y
∥∥∥∥∥
HK

1/2
 (188)
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= E

 sup
K∈K

sup
y∈Y

1√
m

〈 m∑
i=1

εiK(x(i), .)y,
m∑
j=1

εjK(x(j), .)y
〉
HK

1/4
 (189)

≤ β1/4E

 sup
K∈K

sup
y∈Y

sup
x∈X

1√
m

 m∑
j=1

∥∥∥∥∥
m∑
i=1

εiK(x(i), x)y
∥∥∥∥∥
Y

1/4
 (190)

= β1/4E

( sup
K∈K

sup
y∈Y

sup
x∈X

1
m

∥∥∥∥∥
m∑
i=1

εiK(x(i), x)y
∥∥∥∥∥
Y

)1/4
 (191)

= β1/4 (Rm;Y(K0))1/4
. (192)

The steps in deriving Rm;Y(BK) ≤ β1/4(Rm;Y(K0))1/4 use properties of norm, inner product and reproducing
property of OVKs which have been discussed in Lemma A.8 (Appendix A.9). Therefore,

E[Θ(z)] ≤ 2ρL(τ)β1/4(Rm;Y(K0))1/4.

We discuss the steps involved in deriving Rm;Y(BK) ≤ β1/4(Rm;Y(K0))1/4 next.
Lemma A.8.

Rm;Y(BK) ≤ β1/4 (Rm;Y(K0))1/4
. (193)

Proof.

Rm;Y(BK) = E

[
sup
F∈BK

1
m

∥∥∥∥∥
m∑
i=1

εiF (x(i))
∥∥∥∥∥
Y

]

= E

 sup
F∈BK

1
m

〈 m∑
i=1

εiF (x(i)),
m∑
j=1

εmF (x(j))
〉
Y

1/2
 (194)

= E

 sup
F∈BK

1
m

 m∑
i,j=1

εiεm

〈
F (x(i)), F (x(j))

〉
Y

1/2
 (195)

= E

 sup
F∈BK

1
m

 m∑
i,j=1

εiεm

〈
F,K(x(i), .)F (x(j))

〉
HK

1/2
 (196)

= E

 sup
F∈BK

1
m

〈F, m∑
i,j=1

εiεmK(x(i), .)F (x(j))
〉
HK

1/2
 (197)

≤ E

 sup
K∈K

sup
F∈BK

1
m

〈F, m∑
i,j=1

εiεmK(x(i), .)F (x(j))
〉
HK

1/2
 (198)

≤ E

 sup
K∈K

sup
F∈BK

sup
y∈Y

1
m

〈F, m∑
i,j=1

εiεmK(x(i), .)y
〉
HK

1/2
 (199)
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≤ E

 sup
K∈K

sup
F∈BK

sup
y∈Y

1
m

‖F‖HK

∥∥∥∥∥∥
m∑

i,j=1
εiεmK(x(i), .)y

∥∥∥∥∥∥
HK

1/2
 (200)

= E

 sup
K∈K

sup
F∈BK:
‖F‖HK

≤1

sup
y∈Y

1
m

‖F‖HK

∥∥∥∥∥∥
m∑

i,j=1
εiεmK(x(i), .)y

∥∥∥∥∥∥
HK

1/2
 (201)

≤ E

 sup
K∈K

sup
y∈Y

1
m

∥∥∥∥∥∥
m∑

i,j=1
εiεmK(x(i), .)y

∥∥∥∥∥∥
HK

1/2
 (202)

= E

 sup
K∈K

sup
y∈Y

1
m

∥∥∥∥∥∥
m∑
j=1

εm

m∑
i=1

εiK(x(i), .)y

∥∥∥∥∥∥
HK

1/2
 (203)

≤ E

 sup
K∈K

sup
y∈Y

1
m

 m∑
j=1
|εm|

∥∥∥∥∥
m∑
i=1

εiK(x(i), .)y
∥∥∥∥∥
HK

1/2
 (204)

= E

 sup
K∈K

sup
y∈Y

1√
m

∥∥∥∥∥
m∑
i=1

εiK(x(i), .)y
∥∥∥∥∥
HK

1/2
 (205)

= E

 sup
K∈K

sup
y∈Y

1√
m

〈 m∑
i=1

εiK(x(i), .)y,
m∑
j=1

εmK(x(j), .)y
〉
HK

1/4
 (206)

= E

 sup
K∈K

sup
y∈Y

1√
m

 m∑
i,j=1

εiεm〈K(x(i), .)y,K(x(j), .)y〉HK

1/4
 (207)

= E

 sup
K∈K

sup
y∈Y

1√
m

 m∑
i,j=1

εiεm〈K(x(i), x(j))y, y〉Y

1/4
 (208)

= E

 sup
K∈K

sup
y∈Y

1√
m

〈 m∑
i,j=1

εiεmK(x(i), x(j))y, y
〉
Y

1/4
 (209)

≤ E

 sup
K∈K

sup
y∈Y

1√
m

∥∥∥∥∥∥
m∑

i,j=1
εiεmK(x(i), x(j))y

∥∥∥∥∥∥
Y

‖y‖Y

1/4
 (210)

≤ β1/4E

 sup
K∈K

sup
y∈Y

1√
m

∥∥∥∥∥∥
m∑

i,j=1
εiεmK(x(i), x(j))y

∥∥∥∥∥∥
Y

1/4
 (211)

= β1/4E

 sup
K∈K

sup
y∈Y

1√
m

∥∥∥∥∥∥
m∑
j=1

εm

m∑
i=1

εiK(x(i), x(j))y

∥∥∥∥∥∥
Y

1/4
 (212)

≤ β1/4E

 sup
K∈K

sup
y∈Y

1√
m

 m∑
j=1
|εm|

∥∥∥∥∥
m∑
i=1

εiK(x(i), x(j))y
∥∥∥∥∥
Y

1/4
 (213)
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= β1/4E

 sup
K∈K

sup
y∈Y

1√
m

 m∑
j=1

∥∥∥∥∥
m∑
i=1

εiK(x(i), x(j))y
∥∥∥∥∥
Y

1/4
 (214)

≤ β1/4E

 sup
K∈K

sup
y∈Y

sup
x∈X

1√
m

 m∑
j=1

∥∥∥∥∥
m∑
i=1

εiK(x(i), x)y
∥∥∥∥∥
Y

1/4
 (215)

= β1/4E

( sup
K∈K

sup
y∈Y

sup
x∈X

1
m

∥∥∥∥∥
m∑
i=1

εiK(x(i), x)y
∥∥∥∥∥
Y

)1/4
 (216)

= β1/4 (Rm;Y(K0))1/4
. (217)

Reproducing property of OVK K is used to obtain (196) and (208). Inequalities (200) and 210 are obtained
by using the Cauchy-Schwarz inequality. (202) is obtained by using the definition of BK with ‖F‖HK

≤ 1.
The rest of the steps follow from the properties of inner-product and norm in HK and Y.

Lemma A.9.

E sup
F∈ρBK

[E (F )− Ez(F )] ≤ 2E
[

sup
F∈ρBK

1
m

m∑
i=1

εiL (y(i), F (x(i)))
]
.

Proof.

E sup
F∈ρBK

[E (F )− Ez(F )] = Ez∼Zm sup
F∈ρBK

[
1
m

m∑
i=1

E(x′,y′)∼ZL (y′i, F (x′i))− Ez(F )
]

(218)

= Ez∼Zm sup
F∈ρBK

[
Ez′∼Zm

1
m

m∑
i=1

L (y′i, F (x′i))−
1
m

m∑
i=1

L (y(i), F (x(i)))
]

(219)

= Ez∼Zm

[
sup

F∈ρBK
Ez′∼Zm

[
1
m

m∑
i=1

(
L (y′i, F (x′i))−L (y(i), F (x(i)))

)]]
. (220)

Consider a function f dependent on two random variables X,Y in a class of functions F . Then

=⇒ f(X,Y ) ≤ sup
f∈F

f(X,Y )

=⇒ EY [f(X,Y )] ≤ EY [sup
f∈F

f(X,Y )]

=⇒ sup
f∈F

EY [f(X,Y )] ≤ EY [sup
f∈F

f(X,Y )]

=⇒ EX sup
f∈F

EY [f(X,Y )] ≤ EXEY [sup
f∈F

f(X,Y )]. (221)

Therefore, using the property established in (221), we obtain

E sup
F∈ρBK

[E (F )− Ez(F )] =Ez∼Zm

[
sup

F∈ρBK
Ez′∼Zm

[
1
m

m∑
i=1

(
L (y′i, F (x′i))−L (y(i), F (x(i)))

)]]
(222)

≤Ez∼ZmEz′∼Zm

[
sup

F∈ρBK

1
m

m∑
i=1

(
L (y′i, F (x′i))−L (y(i), F (x(i)))

)]
(223)

=Ez,z′∼Zm,ε

[
sup

F∈ρBK

1
m

m∑
i=1

εi

(
L (y′i, F (x′i))−L (y(i), F (x(i)))

)]
(224)
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=Ez,z′∼Zm,ε

[
sup

F∈ρBK

(
1
m

m∑
i=1

εiL (y′i, F (x′i))
)

+ sup
F∈ρBK

(
1
m

m∑
i=1

(−εi)L (y(i), F (x(i)))
)]

(225)

=Ez′∼Zm,ε

[
sup

F∈ρBK

(
1
m

m∑
i=1

εiL (y′i, F (x′i))
)]

+ Ez∼Zm,ε

[
sup

F∈ρBK

(
1
m

m∑
i=1

εiL (y(i), F (x(i)))
)]

(226)

=2E
[

sup
F∈ρBK

1
m

m∑
i=1

εiL (y(i), F (x(i)))
]
. (227)

(224) follows from (223) by the fact that using Rademacher variables does not change the value of the
expression in (223) (see proof of Theorem 4.1 in (Liao, 2020)). (225) follows from (224) as −εi has the same
distribution as εi. (227) is obtained from (226) as z and z′ follow identical distribution.

A.10 Details of Experiments

In order to illustrate the effectiveness of the developed framework, we have used functional regression problem
with an unknown graph structure in the input data for both synthetic and real datasets. The task of
predicting output functions with the help of a Laplacian matrix denoting the relationship between the
set of p input functions has been illustrated in the experiments. As practical data is always available as
discrete observations corresponding to functions, standard FDA techniques can be used for the conversion
of functional data into vector representation using basis functions, e.g. Fourier basis, B-spline basis, etc.
Let X = (L2([a, b]))p and Y = L2([c, d]) be the input and output spaces, respectively. For our experiments,
the error metric used is residual sum of squares error (RSSE) (Kadri et al., 2016) defined as RSSE =∫ d
c

∑
i{y(i)(t)− ŷ(i)(t)}2dt, where y(i) is the actual output function and ŷ(i) is the predicted output function.

RSSE is better suited to compare functional outputs. The integrals involved have been approximated by
using numerical integration in our implementation. The quadratic programs involved in (23) and (15) are
solved by using CVXOPT (Andersen et al., 2023).

Experimental Setting: All methods were coded in Python 3.7. All experiments were run on a Linux
box with 182 Gigabytes main memory and 28 CPU cores. As methods to solve the problem of functional
regression problem simultaneously with learning L and/or D are not available, we use popular algorithms
to first determine L. Then for the learned L, we use our alternating minimization framework to learn D
using projected gradient descent and u using OpMINRES. For the MCP-based L learning and D learning
in the proposed alternating minimization framework, we use a decaying step-size in the projected gradient
descent. The decaying step-size regime involves starting with an initial step-size (e.g. 10−4) and reducing
it by a fixed factor (e.g. 2) after a set of iterations (e.g. 5) continuously till a final step-size (e.g. 10−9).
Section 7 includes the details of the methods fglasso-OpMINRES-D, KGL-OpMINRES-D, Sparse Non-Pos-
OpMINRES-L-D and Sparse OpMINRES-L-D which we use in this section.

A.10.1 Experiments with synthetic data

Data Generation: For synthetic experiments, three sets of experiments have been considered with input
functions for graph structures having 3-nodes, 12-nodes and 25-nodes, respectively. Here, we discuss the
data generation for all three settings and results for 3-nodes and 25-nodes setting. For all the methods, a
truncated trigonometric basis of L2([0, 2π]) with 30 basis functions has been considered for encoding the
functional data. The experiments were run for three settings where the data has been divided randomly into
a training set, a validation set and a test set. The following data splits have been considered: (80/20/20),
(160/40/40) and (320/80/80), representing the number of training samples/validation samples/test samples.
The data generation is discussed below.
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Figure 3: Samples from the 3-node based synthetic data.

For 3-node setting,

x1(t) =
P∑
i=1

wi cos(αit) x2(t) =
P∑
i=1

wi cos(αit) + εi x3(t) = b,

y(t) =
P∑
i=1

wi sin(αit),

where t ∈ [0, 2π], wi, b ∈ U([−1, 1]), αi ∈ U([0, 1]), εi ∈ N(0, σ2), for i ∈ [P ], σ ∈ U([0, 0.25]). The functions
are sampled at 100 points and normalization has been done after introducing Gaussian noise with 0.02
standard deviation for both input and output functions. Figure 3 includes some samples generated from the
dataset. For 12-node setting,

x1(t) =
P∑
i=1

w1
i cos(α1

i t) x7(t) = b1 + noise1

x2(t) =
P∑
i=1

w2
i cos(α1

i t) x8(t) = b2 + noise2

x3(t) =
P∑
i=1

w3
i cos(α1

i t) x9(t) = b3 + noise3

x4(t) =
P∑
i=1

w1
i cos(α2

i t) x10(t) = b4

x5(t) =
P∑
i=1

w2
i cos(α2

i t) x11(t) = b5

x6(t) =
P∑
i=1

w3
i cos(α2

i t) x12(t) = b6
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y(t) =
P∑
i=1

(w1
i + w2

i + w3
i ) sin((α1

i + α2
i )t),

where t ∈ [0, 2π], wji , b1, b2, b3 ∈ U([−1, 1]), b4, b5, b6, αki ∈ U([0, 1]), εi ∈ N(0, σ2), for i ∈ [P ], j = 1, 2, 3, k =
1, 2, σ ∈ U([0, 0.25]) and noisel ∈ N(0, 0.252), l = 1, 2, 3 for l-th partition of [0, 2π]. The functions are
sampled at 100 points and normalized after Gaussian noise with 0.02 standard deviation being introduced
for both. Figure 4 includes some samples generated from the dataset. Note that results for 12 node case
have been discussed in the main paper.

Figure 4: Samples from the 12-node based synthetic data.

For 25-node setting,

x1(t) =
P∑
i=1

w1
i cos(α1

i t) x2(t) =
P∑
i=1

w2
i cos(α1

i t)

x3(t) =
P∑
i=1

w3
i cos(α1

i t) x4(t) =
P∑
i=1

w4
i cos(α1

i t)

x5(t) =
P∑
i=1

w5
i cos(α1

i t) x6(t) =
P∑
i=1

w1
i cos(α2

i t)

x7(t) =
P∑
i=1

w2
i cos(α2

i t) x8(t) =
P∑
i=1

w3
i cos(α2

i t)

x9(t) =
P∑
i=1

w4
i cos(α2

i t) x10(t) =
P∑
i=1

w5
i cos(α2

i t)
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x11(t) = b1 + noise1 x12(t) = b2 + noise2

x13(t) = b3 + noise3 x14(t) = b4 + noise4

x15(t) = b5 + noise5 x16(t) = c1

x17(t) = c2 x18(t) = c3

x19(t) = c4 x20(t) = c5

x21(t) = d1 x22(t) = d2 x23(t) = d3 x24(t) = d4 x25(t) = d5

y(t) =
P∑
i=1

(w1
i + w2

i + w3
i + w4

i ) sin((α1
i + α2

i )t),

where t ∈ [0, 2π], wji , bj ∈ U([−1, 1]), αki , cj ∈ U([0, 1]), dj ∈ U([0,−1])εi ∈ N(0, σ2), for i ∈ [P ], j ∈ [5], k =
1, 2, σ ∈ U([0, 0.25]) and noisel ∈ N(0, 0.252), l ∈ [5] for l-th partition of [0, 2π].The functions are sampled at
100 points and normalization has been done after introducing Gaussian noise with 0.02 standard deviation
for both input and output functions. Figure 5 includes some samples generated from the dataset.

Figure 5: Samples from the 25-node based synthetic data.

The results for synthetic data is summarized in Tables 9-13 where Sparse OpMINRES-L-D attains comparable
performance with learned sparse graphs illustrating important relationships driving the functional regression.
Table 9 shows that Sparse OpMINRES-L-D provides comparable results to other methods with respect to
the mean RSSE on test data for 3-nodes setting. Table 10 contains the D values learned for experiments
with 3 nodes which improves the performance in functional regression task in a regularized manner. For
3-nodes setting, the data generation process involves similar information corresponding to node 1 and 2,
whereas node 3 involves random constants. Sparse OpMINRES-L-D captures relationship which includes
sparse relation between nodes 1, 2 and 3. fglasso-OpMINRES-L-D and KGL-OpMINRES-L-D learn fully
connected graphs in Table 12.

Table 11 showcases the mean RSSE results for the functional regression problem for 25-nodes experiment
where Sparse OpMINRES-L-D produces comparable results on the test data. In 25-nodes setting, the data
generation process involves varied information in nodes 1-10, whereas nodes 11-25 contain information which
does not impact the generation of the output function y. The graphs obtained for Sparse OpMINRES-L-D in
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Table 9: Mean RSSE results for 3-node synthetic data.

Train/Val/Test samples Methods Mean RSSE
Train Val Test

Sparse OpMINRES-L-D 0.188184 0.117119 0.104051
80/20/20 fglasso-OpMINRES-D 0.109485 0.124759 0.124163

KGL-OpMINRES-D 0.086952 0.124781 0.183851
Sparse Non-Pos-OpMINRES-L-D 0.064445 0.158646 0.149415
Sparse OpMINRES-L-D 0.040655 0.211139 0.198398

160/40/40 fglasso-OpMINRES-D 0.062094 0.183526 0.193644
KGL-OpMINRES-D 0.07809 0.181575 0.201469
Sparse Non-Pos-OpMINRES-L-D 0.089997 0.19503 0.218885
Sparse OpMINRES-L-D 0.046926 0.153285 0.274924

320/80/80 fglasso-OpMINRES-D 0.095652 0.145256 0.281665
KGL-OpMINRES-D 0.057804 0.145889 0.271459
Sparse Non-Pos-OpMINRES-L-D 0.087422 0.150039 0.274598

Table 10: D for 3-node synthetic data.

Train/
Val/
Test

samples

Sparse OpMINRES-L-D fglasso-OpMINRES-D KGL-OpMINRES-D

80/20/20 0.011319 0.036068 0.119428 1.001583 1.002949 1.000191 1.000672 1.002477 0.999940
160/40/40 1.104571 0.747521 1.229991 1.008645 1.007241 1.001036 1.010710 1.009007 1.000914
320/80/80 1.227095 0.761956 0.956403 1.019795 1.012624 1.001624 1.026910 1.019523 1.004683

Table 11: Mean RSSE results for 25-node synthetic data.

Train/Val/Test samples Methods Mean RSSE
Train Val Test

Sparse OpMINRES-L-D 0.754677 1.567458 1.822983
80/20/20 fglasso-OpMINRES-D 0.905085 1.527465 1.605906

KGL-OpMINRES-D 0.934007 1.478522 1.594960
Sparse Non-Pos-OpMINRES-L-D 0.922789 1.53816 1.564855
Sparse OpMINRES-L-D 0.662029 1.549598 1.215493

160/40/40 fglasso-OpMINRES-D 0.678837 1.602842 1.231550
KGL-OpMINRES-D 0.742796 1.571745 1.212629
Sparse Non-Pos-OpMINRES-L-D 0.600849 1.573893 1.215729
Sparse OpMINRES-L-D 0.767516 1.436166 1.436166

320/80/80 fglasso-OpMINRES-D 1.063051 1.385366 1.429937
KGL-OpMINRES-D 1.069962 1.356429 1.425034
Sparse Non-Pos-OpMINRES-L-D 0.668318 1.418141 1.437544

Table 13 show connections majorly between nodes 1-15. Though the input functions for nodes 11-15 contain
noisy random constant values, this information seems to be associated with input functions for nodes 5-10.
Sparse Non-Pos-OpMINRES-L-D also discovers relations in the clusters of nodes 1-10 and 11-25 majorly.
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Table 12: Graphs corresponding to learned L for 3-node synthetic data.
Train/
Val/
Test

samples

Sparse
OpMINRES-L-D

fglasso-
OpMINRES-D

KGL-
OpMINRES-D

Sparse Non-Pos-
OpMINRES-L-D

80/20/20

160/40/40

320/80/80

A.10.2 Experiments on weather data

Weather data is dynamic and inter-relationships between different parameters can be hard to predict. As our
problem solves a functional regression problem based on a relationship between a set of input functions, we
intend to showcase the effectiveness of the proposed algorithm by predicting average dew-point temperature
(F) across 12 weather stations based on their respective air temperatures (F). We consider 1 minute data
of Wyoming ASOS data collected from IEM ASOS One Minute Data (Iowa Environmental Mesonet, 2022).
The data has been collected for an interval of 2 hours for both input functions and output function from
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Table 13: Graphs corresponding to learned L for 25-node synthetic data. [Best viewed in color]
Train/
Val/
Test

samples

Sparse
OpMINRES-L-D

fglasso-
OpMINRES-D

KGL-
OpMINRES-D

Sparse Non-Pos-
OpMINRES-L-D

80/20/20

160/40/40

320/80/80

January, 2022 to August, 2022. Data collected at one minute interval for different 12 weather stations in
Wyoming was pre-processed to create 2 hour interval data by disregarding intervals where data was missing
in any of the 12 stations. A total of 718 samples have been collected after removing missing data. The
following 12 weather stations in Wyoming have been considered: Big Piney (1), Casper/Natrona Intl (2),
Cheyenne/Warren AFB (3), Gillette (4), Laramie/Gen. Brees (5), Lander/Hunt Field (6), Yellowstone (7),
Riverton (8), Rawlins Municipal (9), Sheridan Co. Airport (10), Torrington Municipal Airport (11), Worland
Municipal (12).
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Table 14: Mean RSSE results for small weather data.

Train/Val/Test samples Methods Mean RSSE
Train Val Test

Sparse OpMINRES-L-D 0.004302 0.041949 0.092553
80/20/20 fglasso-OpMINRES-D 0.001716 0.059419 0.082662

KGL-OpMINRES-D 0.002357 0.049899 0.097951

For all the methods, a truncated trigonometric basis of L2([0, 1]) with 80 basis functions has been considered
for encoding the functional data. We segregate the weather data experiments into small weather data
experiments by considering 120 samples and full weather data experiments. The following random data splits
have been considered: (80/20/20) and (472/123/123), representing the number of training samples/validation
samples/test samples in small weather data and full weather data settings, respectively. We discuss the results
for the small weather data here. Note that results for full weather data related experimements are already
presented in the main paper.

Initially, we use a small dataset with 120 samples drawn at random from the considered 8 months. Tables 14-
15 showcase the performance of the algorithms for small weather data. Sparse OpMINRES-L-D performs the
best in terms of mean RSSE on the test data compared to fglasso-OpMINRES-L-D and KGL-OpMINRES-L-
D (Table 14). In Table 15, fglasso-OpMINRES-L-D and KGL-OpMINRES-L-D learn dense fully connected
graphs which do not provide much information regarding the impact of different weather stations on the
relationship of respective air temperature to the average dew point temperature. The plots illustrate location
based relation between the 12 weather stations considered in Wyoming. Sparse OpMINRES-L-D learns a
sparse L where stations CYS(3) and TOR(11), GCC(4) and WRL(12), LND(6) and RIW(8) along with
P60(7) and RWL(9) are connected. CYS(3) (41.15564,−104.81047) and TOR(11) (42.06472,−104.15278) are
114.89 km apart with an elevation of 1871 m and 1282 m, respectively. GCC(4) (44.34892,−105.53936) and
WRL(12) (43.96571,−107.95083) are 197.54 km apart with an elevation of 1230 m and 1294 m, respectively.
LND(6) (42.81524,−108.72984) and RIW(8) (43.06423,−108.45984) are 35.37 km apart with an elevation
of 1694 m and 1688 m. P60(7) (44.54444,−110.42111) and RWL(9) (41.8056,−107.19994) are 401.40 km
apart with an elevation of 2368 m and 2077 m. It can be observed that the connections in the learned graph
structure have been established between stations with varying distances lying in close proximity elevation-
wise (in 3 out of 4 cases) and latitude-wise.

A.10.3 Experiments on NBA data

The movement of basketball and 21 players involved on the court (x-y coordinates) in the Atlanta Hawks
(ATL) vs Utah Jazz (UTA) match on November 15, 2015 has been considered in this experiment. This
data is available in the Github repo NBA Movement Data (Seward, 2018). The data has been collected for
different plays for both input functions of 21 players and output function denoting the position of the ball,
which includes missing data corresponding to some players in different plays. The data corresponding to
the following players were used: Kyle Korver [ATL, G] (1), Thabo Sefolosha [ATL, G-F] (2), Paul Millsap
[ATL, F] (3), Al Horford [ATL, C-F] (4), Tiago Splitter [ATL, F-C] (5), Derrick Favors [UTA, F-C] (6),
Gordon Hayward [UTA, F] (7), Trevor Booker [UTA, F] (8), Alec Burks [UTA, G] (9), Shelvin Mack [ATL,
G] (10), Kent Bazemore [ATL, F-G] (11), Chris Johnson [UTA, F] (12), Justin Holiday [ATL, G] (13), Dennis
Schroder [ATL, G] (14), Jeff Withey [UTA, C] (15), Mike Muscala [ATL, F-C] (16), Rudy Gobert [UTA, C]
(17), Trey Burke [UTA, G] (18), Raul Neto [UTA, G] (19), Rodney Hood [UTA, G] (20), Joe Ingles [UTA,
F] (21), where the team, position and number assigned for the experiments has been provided. As plays in
a basketball game are of different time duration, we use a truncated trigonometric basis of L2([0, 1]) with
80 basis functions to sample the functions at fixed 100 points on [0, 1]. A total of 351 samples have been
collected based on removing missing data. A random data split of (233/59/59) representing the number
of training samples/validation samples/test samples has been considered. The problem requires solving a
multi-dimensional functional regression problem which is incompatible with fglasso and KGL algorithms, as
both fglasso & KGL are based on single dimensional input functions. Hence, we compare our method with
the algorithm OpMINRES-D where a fixed L is incorporated in our alternating minimization framework.
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Table 15: Graphs corresponding to learned L for small weather data. [Best viewed in color]
Train/
Val/
Test

samples

Sparse OpMINRES-L-D fglasso-OpMINRES-D KGL-OpMINRES-D

80/20/20

OpMINRES-D: A fixed L is considered corresponding to a fully connected network of 21 nodes. This
decision was made as fglasso mostly learns a fully connected graph in earlier experiments. Thus, a fixed L
(with no sparsity-inducing MCP) is used in the proposed alternating minimization regime for optimizing u
and D. OpMINRES is used with k1(x, x′;G) = e−γx(x−x′)>(L+D)(x−x′)−γy(x−x′)>(L+D)(x−x′) and k1

2(s, t) =
e−γ

1
op|s−t|, k1

2(s, t) = e−γ
2
op|s−t|, where γx, γy ∈ {10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 1, 10, 100} and γ1

op, γ
2
op ∈

{10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 1, 10, 100}.

Sparse OpMINRES-L-D: We consider the graph-induced operator-valued kernels using k1(x, x′;G) =
e−γx(x−x′)>(L+D)(x−x′)−γy(x−x′)>(L+D)(x−x′) and k1

2(s, t) = e−γ
1
op|s−t|, k2

2(s, t) = e−γ
2
op|s−t|, where γx, γy ∈

{10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 1, 10, 100} and γ1
op, γ

2
op ∈ {10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 1, 10, 100}.

Projected gradient descent is used in minimization with respect to L and D based on a decaying step-size.
The sparsity is aided by the MCP regularization considered in learning of L.

Table 17: Mean RSSE results for NBA data.

Train/Val/Test samples Methods Mean RSSE
Train Val Test

233/59/59 Sparse OpMINRES-L-D 0.025200 0.087748 0.106344
OpMINRES-D 0.023261 0.191459 0.265513

The results are illustrated in Tables 16-17. where comparison method OpMINRES-D uses a fully connected
graph, however Sparse OpMINRES-L-D performs better with a sparse learned graph in terms of mean
RSSE on the test data. The following major relations are obtained for the game based on graph structure
corresponding to the learned L in Table 16:

• Derrick Favors [UTA, F-C]—Trevor Booker [UTA, F] (6—8)

• Al Horford [ATL, C-F]—Gordon Hayward [UTA, F] (4—7)

• Alec Burks [UTA, G]—Trey Burke [UTA, G] (9—18)
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Table 16: Graph corresponding to learned L for NBA data. [Best viewed in color]
Train/
Val/
Test

samples

Sparse OpMINRES-L-D

233/59/59

• Thabo Sefolosha [ATL, G-F]—Kent Bazemore [ATL, F-G] (2—11)

• Dennis Schroder [ATL, G]—Rodney Hood [UTA, G] (14—20)

• Tiago Splitter [ATL, F-C]—Jeff Withey [UTA, F-C] (5—15).

From the match report published in ESPN match recap and ESPN match scoreboard (ESPN, 2015a;b), it
is clear that the relation Derrick Favors—Trevor Booker (6—8) had been pivotal in the win of Utah Jazz.
The performance of Al Horford and Kent Bazemore for Atlanta Hawks was mentioned and captured by the
relations (4—7) and (2—11). Though the partnership of Alec Burks—Trey Burke (9—18) for Utah Jazz is
not evident in the match reports, their ball carrying interactions may be the reason for being learned in L.

A.10.4 Hyperparameters for Experiments

In this section, we list the hyperparameters used for Sparse OpMINRES-L-D for different experiments
illustrated in this work.

Common hyperparameters: λreg = 0.5, γreg = 1 (MCP), maxiter = 1000, tol = 10−3 (OpMINRES). The
decaying step-size regime for projected gradient descent in L and D-based minimization involves starting
with an initial step-size 10−4 and reducing it by a fixed factor 2 after a set of 5 iterations continuously till a
final step-size (or learning rate) 10−9.

As our proposed approach Sparse OpMINRES-L-D aggregates many components, we provide some ablation
studies to illustrate effectiveness in the next section.
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Table 18: Hyperparameters used for experiments with Sparse OpMINRES-L-D on different data sets
Experiment No. of Training Samples γop λ γ ρL ρD mtrace

3-node
80 10 10−5 10−4 10−3 100 2
160 10 10−4 10−2 10−3 10 2
320 10 10−4 10−2 10−3 10 2

12-node
80 1 10−5 10−6 10−2 1000 6
160 10 10−6 10−6 10−2 10 6
320 10 10−4 10−5 10−1 10−5 6

25-node
80 10−1 10−3 10−4 10−1 10 13
160 10 10−3 10−3 10−2 100 13
320 100 10−2 10−2 10−1 100 13

Weather Data 80 10−3 10−2 10−1 10−4 1 6
472 1 10−2 10−1 10−4 10−1 6

NBA Data 233 γ1
op = 100
γ2
op = 100 10−2 γx = 0.5

γy = 0.5 102 102 11

A.10.5 Experiments for Ablation Studies

In order to understand the impact of different components of Sparse OpMINRES-L-D, we have run experi-
ments for 12-node synthetic data by varying different hyperparameters and switching off different components
in our approach. In order to enforce sparsity of learned graphs, we introduce mtrace based constraint in Sec-
tion 5.1.4. In Table 19, we tabulate the graphs corresponding to learned L with Sparse OpMINRES-L-D for
12-node experiments using mtrace ∈ {0.1p, 0.25p, 0.5p, 0.75p, 0.9p} with p = 12. From Table 19, we observe
that most of the edges are being retained as mtrace value is increased. The connections learned are illustra-
tive of the generation process of synthetic data in Section A.10.1 as mtrace is increased. Choice of mtrace can
be based on the error corresponding to the validation set as well as the desired number of connections to be
learned since the number of edges increases with increase in mtrace. Table 20 illustrates that the performance
with different mtrace is comparable and a trade-off is expected when varying mtrace.

To illustrate the impact of choosing different kernels in our framework, we utilize different kernels as k2 in
(2) by utilizing the following:

• ABS: k2(s, t) = e−γop|s−t|

• DIFFABS: k2(s, t) = e−γop1 |s−t| − e−γop2 |s−t|

• RBF: k2(s, t) = e−γop1 |s−t|
2

• EPAN: k2(s, t) = max(0, 1− γop|s− t|2),

with γop, γop1 , γop2 ∈ {10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 1, 10, 100}. Note that we use k1 as defined in (108)
which incorporates L and D of the learned graph. Table 21 showcases comparable performance of different
kernels as k2, but Table 22 illustrates the graphs learned different connections for ABS, DIFFABS. We see
that RBF and EPAN kernel choices learn different graphs which contain some useful connections which can
be related to the generation of the synthetic data. It can be interpreted that most of the connections learned
by ABS, DIFFABS and RBF kernels better represent the generation of 12-node synthetic data.

Next, we study the impact of the mtrace constraint in the sparsity regularization and the complete sparsity
regularization framework as proposed in Section 5.1.4. Table 23 illustrates comparable performance based
on mean RSSE error where mtrace constraint is removed and L and D-based regularization is removed by
setting ρL and ρD as 0. Similarly, Table 24 illustrates comparable performance when MCP regularization is
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Table 19: Graph corresponding to learned L by considering mtrace in {0.1p, 0.25p, 0.5p, 0.75p, 0.9p} in Sparse
OpMINRES-L-D for 12-node experiments (p = 12). [Best viewed in color]

Train/
Val/
Test

samples

mtrace = 0.1p mtrace = 0.25p mtrace = 0.5p mtrace = 0.75p mtrace = 0.9p

80/20/20

160/40/40

320/80/80

completely removed and L and D-based regularization is removed by setting ρL and ρD as 0. Although the
performance is comparable in terms of mean RSSE error, however we note that Tables 25 and 26 illustrate the
failure to learn meaningful graphs since most of the graphs have connections with equal weights providing no
relevant information. Without the mtrace constraint, Table 25 showcases negligible weights being assigned to
each connection, while without the complete MCP regularization framework Table 26 showcases uniformly
distributed weights across fully connected graphs.
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Table 20: Mean RSSE results for mtrace in {0.1p, 0.25p, 0.5p, 0.75p, 0.9p} using Sparse OpMINRES-L-D in
12-node synthetic data (p = 12).

Train/Val/Test samples mtrace in Sparse OpMINRES-L-D Mean RSSE
Train Val Test

mtrace = 0.1p 1.250593 1.727192 1.532670
mtrace = 0.25p 1.234657 1.735397 1.587149

80/20/20 mtrace = 0.5p 1.140691 1.735397 1.583640
mtrace = 0.75p 1.092453 1.904231 1.636385
mtrace = 0.9p 1.075372 1.916426 1.640379
mtrace = 0.1p 0.873584 1.291735 1.380035
mtrace = 0.25p 0.886945 1.263236 1.368678

160/40/40 mtrace = 0.5p 0.888574 1.229568 1.385952
mtrace = 0.75p 0.849892 1.265577 1.412620
mtrace = 0.9p 0.831497 1.284316 1.425376
mtrace = 0.1p 1.073370 1.291374 1.237471
mtrace = 0.25p 1.071354 1.295419 1.238216

320/80/80 mtrace = 0.5p 1.062102 1.294110 1.239181
mtrace = 0.75p 1.056678 1.295300 1.242216
mtrace = 0.9p 1.053001 1.296809 1.241735

Table 21: Mean RSSE results for different kernels as k2 with 12-node synthetic data.

Train/Val/Test samples k2 in Sparse OpMINRES-L-D Mean RSSE
Train Val Test

ABS 1.140691 1.780445 1.583640
80/20/20 DIFFABS 1.167264 1.806093 1.618175

RBF 1.111369 2.092855 1.754655
EPAN 0.759214 2.035527 1.838925
ABS 0.888574 1.229568 1.385952

160/40/40 DIFFABS 1.154356 1.362239 1.417921
RBF 0.846649 1.236121 1.428687
EPAN 0.906656 1.260602 3.626625
ABS 1.062102 1.294110 1.239181

320/80/80 DIFFABS 1.073292 1.295140 1.243346
RBF 0.931760 1.330628 1.283005
EPAN 1.026490 1.304147 1.247868

Further, we perform experiments where we utilize a lasso based regularization to induce sparsity instead
of depending upon the proposed sparsity inducing framework. We introduce ρD

∑p
i=1 |Dii|, ρD > 0 in (3)

instead of ρL
∑n
i=1 x

(i)>Lx(i) + ρD‖D‖2F and ignore the proposed MCP regularization framework. Table
28 illustrates comparable performance in terms of mean RSSE error but Table 27 showcases the failure to
distinguish meaningful interactions in the learned graphs.
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Table 22: Graph corresponding to learned L by considering different kernels for k2 in Sparse OpMINRES-L-D
for 12-node experiments. [Best viewed in color]

Train/
Val/
Test

samples

ABS DIFFABS RBF EPAN

80/20/20

160/40/40

320/80/80
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Table 23: Mean RSSE results for 12-node synthetic data using Sparse OpMINRES-L-D with no mtrace

constraint and ablation of regularization with respect to L and D.
Train/Val/
Test samples Methods Mean RSSE

Train Val Test
Sparse OpMINRES-L-D 1.140691 1.780445 1.583640

80/20/20 Sparse OpMINRES-L-D with no mtrace 1.274110 1.729524 1.530376
Sparse OpMINRES-L-D with no mtrace and ρL = 0 1.273360 1.729269 1.530041
Sparse OpMINRES-L-D with no mtrace and ρD = 0 0.790852 1.891594 1.407203
Sparse OpMINRES-L-D 0.888574 1.229568 1.385952

160/40/40 Sparse OpMINRES-L-D with no mtrace 0.896321 1.229568 1.371430
Sparse OpMINRES-L-D with no mtrace and ρL = 0 0.896311 1.280351 1.371432
Sparse OpMINRES-L-D with no mtrace and ρD = 0 0.833068 1.291457 1.410686
Sparse OpMINRES-L-D 1.062102 1.294110 1.239181

320/80/80 Sparse OpMINRES-L-D with no mtrace 1.078058 1.291549 1.237178
Sparse OpMINRES-L-D with no mtrace and ρL = 0 1.078026 1.291574 1.237129
Sparse OpMINRES-L-D with no mtrace and ρD = 0 1.078058 1.291550 1.237179

Table 24: Mean RSSE results for 12-node synthetic data using Sparse OpMINRES-L-D without MCP
regularization and ablation of regularization with respect to L and D.

Train/Val/
Test samples Methods Mean RSSE

Train Val Test
Sparse OpMINRES-L-D 1.140691 1.780445 1.583640

80/20/20 Sparse OpMINRES-L-D with no MCP 0.911711 1.893550 1.481332
Sparse OpMINRES-L-D with no MCP and ρL = 0 0.911711 1.893550 1.481332
Sparse OpMINRES-L-D with no MCP and ρD = 0 0.755296 1.892366 1.399945
Sparse OpMINRES-L-D 0.888574 1.229568 1.385952

160/40/40 Sparse OpMINRES-L-D with no MCP 0.838759 1.282838 1.397084
Sparse OpMINRES-L-D with no MCP and ρL = 0 0.838759 1.282838 1.397084
Sparse OpMINRES-L-D with no MCP and ρD = 0 0.793097 1.289822 1.429700
Sparse OpMINRES-L-D 1.062102 1.294110 1.239181

320/80/80 Sparse OpMINRES-L-D with no MCP 1.062727 1.298913 1.240176
Sparse OpMINRES-L-D with no MCP and ρL = 0 1.062727 1.298913 1.240176
Sparse OpMINRES-L-D with no MCP and ρD = 0 1.062727 1.298926 1.240208
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Table 25: Graph corresponding to learned L by no mtrace constraint and controlling ρL in L-based regular-
ization and ρD in D-based regularization for 12-node experiments. [Best viewed in color]

Train/
Val/

Test samples
80/20/20 160/40/40 320/80/80

No mtrace

ρL = 0, no mtrace

ρD = 0, no mtrace
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Table 26: Graph corresponding to learned L by switching off the MCP-based regularization and controlling
ρL in L-based regularization and ρD in D-based regularization for 12-node experiments. [Best viewed in
color]

Train/
Val/

Test samples
80/20/20 160/40/40 320/80/80

No MCP

ρL = 0, no MCP

ρD = 0, no MCP
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Table 27: Graph corresponding to learned L by using only D-lasso based regularization without MCP-based
sparsity inducing regularization instead of Sparse OpMINRES-L-D for 12-node experiments. [Best viewed
in color]

Train/
Val/

Test samples
80/20/20 160/40/40 320/80/80

Sparse OpMINRES-L-D

D-lasso without MCP

Table 28: Mean RSSE results for 12-node synthetic data using Sparse OpMINRES-L-D without MCP
regularization and lasso regularization for D.

Train/Val/
Test samples Methods Mean RSSE

Train Val Test
80/20/20 Sparse OpMINRES-L-D 1.140691 1.780445 1.583640

Sparse OpMINRES-L-D with no MCP and D lasso 0.745433 1.891283 1.402357
160/40/40 Sparse OpMINRES-L-D 0.888574 1.229568 1.385952

Sparse OpMINRES-L-D with no MCP and D lasso 0.821067 1.284889 1.409910
320/80/80 Sparse OpMINRES-L-D 1.062102 1.294110 1.239181

Sparse OpMINRES-L-D with no MCP and D lasso 1.073490 1.297428 1.241109
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