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Abstract

Recent advances in generative AI have accelerated the discovery of novel chemicals1

and materials. However, scaling these discoveries to industrial production remains2

a major bottleneck due to the synthesis gap—the need to develop entirely new3

manufacturing processes. This challenge requires detailed engineering blueprints:4

Process Flow Diagrams (PFDs) for equipment layouts and material/energy flows,5

and Piping and Instrumentation Diagrams (PIDs) for process plant operations. Cur-6

rent AI systems cannot yet reliably generate these critical engineering schematics,7

creating a fundamental obstacle to manufacturing scale-up of novel discoveries.8

We present a closed-loop, physics-aware framework for automated generation of in-9

dustrially viable PFDs and PIDs. The framework integrates three key components:10

(1) domain-specialized small language models (SLMs) trained for auto-generation11

of PFDs and PIDs, (2) a hierarchical knowledge graph containing process flow and12

instrumentation descriptions for 1,020+ chemicals for Graph Retrieval-Augmented13

Generation (GRAG), and (3) an open-source chemical process simulator for mod-14

eling, simulation, optimization, and analysis of novel chemical processes. The15

SLMs are trained through a multi-stage pipeline combining Supervised Fine-16

Tuning (SFT), Direct Preference Optimization (DPO), and Retrieval-Augmented17

Instruction Tuning (RAIT) on synthetic datasets, with process simulator-in-the-18

loop validation ensuring feasibility. To enhance computational efficiency, the19

framework implements structural pruning (width and depth) guided by importance20

heuristics to reduce language model size while preserving accuracy, followed by21

advanced inference optimizations including FlashAttention, Lookahead Decoding,22

PagedAttention with KV-cache quantization, and Test-Time Inference Scaling.23

Experimental results demonstrate that our framework generates simulator-validated24

process descriptions with high fidelity, outperforms baseline methods in correctness,25

and generalizes effectively to unseen chemicals. By bridging AI-driven molec-26

ular and material design with industrial-scale feasibility, this work significantly27

accelerates the path-to-production for AI-discovered chemicals.28

1 Introduction29

Recent advancements in generative AI are transforming chemical and materials science [7, 54, 34,30

61, 16, 23, 46, 58, 20, 58], accelerating the autonomous discovery of next-generation specialty31

chemicals and the development of high-performance, materials-based products. These advancements32

reduce dependence on manual, trial-and-error experimentation and computationally intensive first-33

principles simulation workflows, enabling faster and more sustainable innovation. However, many AI-34

discovered molecules and materials are not immediately manufacturable at scale. Transitioning them35

from computer simulations or wet-lab experiments to industrial production requires the development36

of new processes—a significant challenge in bringing better products to market rapidly. Bridging37
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the gap from in silico design to industrial synthesis involves addressing the challenges of scalable38

process development. While generative AI has revolutionized molecular and materials discovery, its39

application to the design of scalable production processes remains largely underexplored. This gap is40

critical because Process Flow Diagrams (PFDs) and Piping and Instrumentation Diagrams (PIDs)41

serve as essential bridges between laboratory-scale innovations and industrial-scale manufacturing.42

These blueprints(or schematics) provide the foundational basis for the simulation, optimization, and43

control of chemical processes; thus, the ability to generate accurate PFDs and PIDs is fundamental to44

overcoming the scale-up bottleneck in AI-driven chemical innovation. PFDs and PIDs are standard45

engineering diagrams used in the chemical process industry. A PFD provides a high-level schematic46

of the flow of materials and energy through a chemical production process, depicting major equipment,47

process streams, and key operating conditions for specific units without detailing instrumentation48

or control systems. In contrast, PIDs build upon PFDs by offering a more detailed schematic of the49

instrumentation and control systems essential for monitoring, operational control, safety, and plant50

maintenance. The purpose of a PFD (see Figure 1) is to illustrate what happens in the process—such51

as key physical or chemical transformations—and where it occurs (i.e., in which major equipment52

units), rather than how the process is controlled. Conversely, a PID (see Figure 2) focuses on how53

the process operates and is controlled, including valves, sensors, and control loops, rather than54

just the transformations or equipment involved. Together, PFDs and PIDs serve as foundational55

documents for chemical process simulations, which drive the development of digital twins. These56

digital twins integrate first-principles or data-driven models with real-time sensor and actuator data,57

enabling dynamic monitoring, predictive control, and AI-driven automation for closed-loop process58

optimization.59

Figure 1: The figure shows a high-level schematic of a chemical process, depicting material flow
from reactant inlets (A and B) through a mixer (MIX-1), a continuous stirred-tank reactor (CSTR-1),
a heat exchanger (HX-1), and a distillation column (DCOL-1), yielding product streams F and G.
Major equipment and stream connections are illustrated, excluding instrumentation and control logic.
This schematic facilitates understanding of the core process operations and transformations.

Figure 2: The figure shows the detailed PID of a chemical process showing instrumentation and
control systems, including: level control (LC) on reactor CSTR-1 regulating feed A; temperature
control (TC) on column feed E adjusting HX-1 utility flow; pressure control (PC) at DCOL-1 overhead
controlling product F; and flow control (FC) on bottoms product G. The diagram specifies control
strategies and safety-critical parameters.

Current methods [53, 41, 19, 2, 14, 47] are not designed to auto-generate process flow schematics60

(e.g., PFDs) or instrumentation and control layouts (e.g., PIDs) for novel industrial-scale chemical61

production processes, significantly limiting their practical utility. These approaches also fail to62

incorporate essential process context: for PFDs, this includes high-level objectives—such as what63
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the process achieves and in what sequence—while for PIDs, it requires operational details on how64

the process is monitored, controlled, and executed. Consequently, they cannot justify critical design65

choices or the control and instrumentation logic necessary for efficient plant operations. Another66

major limitation is the lack of integration with first-principles-based simulators to verify the physical67

and operational feasibility of generated PFDs and PIDs, further undermining their industrial reliability.68

Current AI-driven discovery pipelines frequently optimize molecular properties without production69

feasibility checks. Auto-generating and simulating PFDs (to verify unit operations, mass/energy70

balances, and phase behavior) and PIDs (to validate control logic, safety interlocks, and equipment71

specifications), chemical process simulators can flag scale-up issues like equipment sizing errors,72

utility mismatches, or unsafe designs before lab-scale synthesis. This moves manufacturability73

screening from retrospective correction to proactive design. Moreover, the reliance on manual,74

expertise-intensive creation of novel PFDs and PIDs introduces a bottleneck that adversely impacts75

simulation fidelity, digital twin accuracy, and scalable AI deployment in industrial manufacturing. To76

address these limitations, we present a closed-loop, self-driving lab framework for the auto-generation77

of high-fidelity process flow and instrumentation descriptions, accelerating the development of novel78

chemical processes. Implemented as an enterprise-grade, cloud-based SaaS solution, our framework79

significantly expedites the simulation-to-lab-to-pilot-to-plant scale-up pipeline, ensuring that only80

industrially viable, sustainable, and efficient processes advance to commercialization. Serving as an81

end-to-end process schematics modeling tool, the platform automates design, simulation, and opti-82

mization with minimal human intervention. By integrating first-principles, physics-aware modeling83

with iterative reflection and adaptive learning, the framework continuously self-improves, enhancing84

the reliability of AI-generated process schematics and control strategies. Our approach combines85

three key innovations: (1) custom chemical database curation and knowledge graph construction86

for Retrieval-Augmented Generation (RAG), (2) domain-specialized small-scale language models87

(SLMs) fine-tuned through multi-stage training, and (3) physics-aware simulator validation using88

DWSIM. This closed-loop system enables robust generation and verification of the industrial-scale89

feasibility of scalable manufacturing processes and AI-driven discoveries. In the following sections,90

we present our methodology in detail, describe the experimental setup, and report results.91
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Figure 3: Overview of the integrated framework. (a) The SLM fine-tuning pipeline depicts initial
DPO alignment followed by supervised instruction tuning or policy-gradient reinforcement learning,
with optional width/depth pruning. (b) The operational RAG framework illustrates a Meta-Agent
coordinating with the specialized SLM (from part a), which accesses memory and graph databases for
context. The SLM’s inference is accelerated via optimizations (FlashAttention, Paged KV Caching,
Lookahead Decoding, Test-Time Scaling). Generated responses are refined iteratively through a
feedback loop managed by a Critique-Agent employing diverse judges (e.g., Nemotron-4-340B
reward model, LLM-as-a-judge like GPT-4o/Haiku, or human evaluation).

2 Methodology92

Our methodology integrates data curation, advanced small language model (SLM) fine-tuning, knowl-93

edge graph construction for retrieval augmentation, inference optimization, and engineering validation94

to create specialized and efficient SLMs for chemical process engineering tasks—specifically, the95

interpretation, analysis, and generation of PFDs and PIDs (refer to Figure 3). The pipeline begins96

with the curation of a custom database comprising over 1,120 chemicals drawn from sectors such97
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as electronics, energy storage, pharmaceuticals, advanced manufacturing, and utilities, with a focus98

on chemicals essential to modern industrial applications. The data were programmatically extracted99

from product catalogs of leading manufacturers—including BASF, Dow Chemical, DuPont, Solvay,100

Mitsubishi Chemical, Bayer, Evonik, SABIC, and LyondellBasell—ensuring both reliability and101

broad industrial coverage. The dataset consists of two components: ChemAtlas and ChemEval.102

ChemAtlas is a core collection of 1,020 chemicals. For each chemical in ChemAtlas, we employ an103

AI-driven agentic web navigation framework that autonomously retrieves, interprets, and synthesizes104

multimodal data from diverse public sources to generate detailed descriptions of production processes105

(textual descriptions of both PFDs and PIDs). This structured data serves as the foundation for popu-106

lating chemical knowledge graphs, where text chunks are processed by GPT-4o to extract semantic107

triples (subject–predicate–object). Entities are canonicalized based on high semantic similarity (via108

embeddings) and string similarity (via normalized Levenshtein distance), and the resulting graph109

is partitioned into hierarchical communities using the Leiden algorithm to optimize modularity for110

efficient retrieval. Our Graph RAG framework leverages this structured graph representation to111

enhance both contextual reasoning and retrieval efficiency, enabling SLMs to deliver accurate and112

context-sensitive answers. To ensure consistency and correctness, we further use advanced large113

language models (LLMs)—specifically, GPT-4o and Anthropic Claude Haiku—to generate and114

cross-validate chemical-specific production process descriptions derived from agentic web navigation,115

leveraging their pre-trained knowledge for automated validation. The second component, ChemEval,116

comprises a held-out evaluation set of 100 chemicals curated to rigorously test the framework’s117

zero-shot generalization performance in auto-generating process flow and instrumentation descrip-118

tions for chemicals not present in ChemAtlas. Additionally, we adopt a teacher–student transfer119

learning approach by generating custom synthetic datasets from the ChemAtlas database. This120

includes 20K instruction–response (QA) pairs created by teacher LLMs—specifically, GPT-4o and121

Anthropic Claude Haiku—to train SLMs such as LLaMA-3.2-1B and SmolLM-135M on complex,122

domain-specific process engineering tasks. These tasks include equipment and piping layout gener-123

ation, sensor and instrumentation placement (i.e., the analysis, interpretation, and auto-generation124

of PFDs and PIDs). A small seed set of human-authored instruction–response pairs was used as125

demonstrations to initiate high-quality QA dataset generation through iterative synthesis, guided by126

predefined templates and a self-instruct bootstrapping strategy. The generated outputs are scored,127

validated, and filtered using NVIDIA’s Nemotron-4-340B reward model. The resulting datasets128

span a diverse range of QA types, including factual knowledge, preference alignment, process flow129

and instrumentation interpretation, logical and multi-step chain-of-thought reasoning, sensor layout130

planning, comparative process analysis, and error detection and correction. The curated 20K synthetic131

QA dataset consists of six specialized subsets—Factual QA, SynDIP, LogiCore, DPO, Local RAIT,132

and Global RAIT—each systematically constructed to induce reasoning, alignment, and generation133

abilities in SLMs. The Factual QA dataset, constructed through hierarchical topic decomposition of134

chemical process engineering concepts, enhances foundational domain knowledge and factual recall.135

The SynDIP dataset contains QA pairs describing process flow and instrumentation, equivalent in136

content to knowledge retrieved via the agentic web navigation framework, but instead generated from137

the pretrained knowledge of base LLMs. The LogiCore dataset consists of multi-step reasoning QA138

pairs grounded in process flow and instrumentation descriptions. These pairs are crafted to justify139

process design choices, validate control logic, and explain flow sequencing within chemical process140

diagrams. The DPO dataset comprises preference-labeled QA pairs, each including a preferred141

and a dispreferred response, distinguished using score differentials from a reward model to support142

alignment tuning via Direct Preference Optimization. The RAIT (Retrieval-Augmented Instruction143

Tuning) datasets are designed to enhance the SLMs’ ability to incorporate retrieved context into144

generation for grounded and context-aware responses. Local RAIT grounds QA pairs in individual145

SynDIP-derived text chunks, enabling precise and context-specific information extraction. In contrast,146

Global RAIT leverages semantically clustered groups of chunks—potentially spanning multiple Syn-147

DIP-derived documents—to support cross-contextual reasoning and synthesis across related segments.148

The complete 20K synthetic QA dataset, encompassing all six categories, is randomly split into 80%149

training, 10% validation, and 10% internal test sets for evaluating generalization performance. In150

addition, we construct a 1.5K QA-pair out-of-distribution (OOD) benchmark dataset from ChemAtlas151

using a self-instruct approach with teacher LLMs (OpenAI o3 and o1-mini) to generate synthetic QA152

pairs. These pairs are iteratively created from SynDIP-retrieved information and filtered for quality153

using a reward model to evaluate whether fine-tuned SLMs can generalize across core capabilities,154

including factual knowledge, reasoning, instruction following, and the interpretation and analysis of155

process flow and instrumentation tasks. Finally, we evaluate the framework’s ability to generate accu-156
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rate PFD and PID descriptions for unseen chemicals using ChemEval. Specifically, for each chemical157

in ChemEval, GPT-4o and Claude Haiku produced process flow and instrumentation descriptions in158

the form of QA pairs using the same self-instruct bootstrapping method. These QA pairs served as159

reference targets (ground truth) for quantitative evaluation. Base SLMs—specifically, LLaMA-3.2-1B160

and SmolLM-135M—are customized using Quantized Low-Rank Adaptation (QLoRA) [10, 56] with161

frozen base weights. We employ two distinct fine-tuning strategies on synthetic datasets. The first162

follows a sequential, modular pipeline: Supervised Fine-Tuning (SFT) on the combined Factual QA,163

SynDIP, and LogiCore datasets; Direct Preference Optimization (DPO) on curated preference-labeled164

DPO datasets; and Retrieval-Augmented Instruction Tuning (RAIT) on Local and Global RAIT165

datasets. The second strategy adopts a reinforcement learning approach using Group Relative Policy166

Optimization (GRPO) [43, 15, 27], applied first to the SFT datasets and then refined on RAIT datasets.167

This approach optimizes a composite reward function combining ROUGE-L F1 scores, length ratio168

penalties, and LLM-as-a-judge quality scores, stabilized by KL divergence regularization. We com-169

pare these strategies to assess whether modular fine-tuning or end-to-end reinforcement learning better170

aligns SLMs with complex, multi-objective benchmarks. The fine-tuned SLMs are integrated with171

the structured knowledge graph through a Graph RAG framework. During inference, the framework172

retrieves relevant graph communities by comparing query embeddings to pre-computed community173

summaries, dynamically selects the most relevant communities, and constructs a subgraph containing174

interconnected entities, semantic relationships, and source text chunks. This contextual subgraph175

is then used for grounded, multi-hop reasoning. To enhance performance, a suite of inference opti-176

mization and reliability techniques is implemented: structural pruning (width and depth) guided by177

importance heuristics reduces model size; PagedAttention combined with KV cache quantization178

mitigates memory fragmentation and reduces cache footprint; Lookahead Decoding accelerates179

generation latency through parallel token speculation; FlashAttention optimizes the core attention180

computation to reduce memory bandwidth bottlenecks; and Test-Time Inference Scaling improves181

output reliability using self-consistency sampling, confidence-weighted entropy scoring, iterative182

self-reflection/revision, and consensus aggregation. Finally, the practical engineering feasibility of183

generated process flow and instrumentation descriptions is validated using the DWSIM open-source184

chemical process simulator, where PFDs are translated into flowsheets to verify material/energy185

balances and thermodynamic consistency, while PIDs are operationally validated by implementing186

control loops in DWSIM’s dynamic environment to evaluate stability and control performance (e.g.,187

setpoint tracking, disturbance rejection). DWSIM validates AI-generated PFDs/PIDs by converting188

textual descriptions into executable simulations, verifying adherence to chemical engineering princi-189

ples (mass/energy balances, thermodynamic consistency, and equipment feasibility) while flagging190

errors, inconsistencies, and optimization opportunities through first-principles analysis. Figure 3191

visually outlines the overall architecture. Part (a) depicts the SLM fine-tuning pipeline, showing192

the progression from a general pre-trained model to initial preference alignment (DPO), followed193

by task-specific fine-tuning via either instruction tuning or reinforcement learning (GRPO), and194

concluding with model compression (pruning). Part (b) illustrates the operational RAG framework,195

where a user query passes through guardrails before being processed by a Meta-Agent. This agent196

employs the specialized SLM developed in part (a) as its core reasoning engine. Guided by the197

Meta-Agent, the SLM retrieves necessary context by accessing both a Memory database (e.g., for198

conversational history) and a Graph database (containing structured process knowledge), which199

informs its response generation. The SLM’s inference process is enhanced by integrated optimiza-200

tions (FlashAttention, PagedAttention KV caching, Lookahead Decoding, and Test-Time Scaling).201

An initial SLM-generated response is evaluated by a Critique-Agent using feedback mechanisms202

(SLM-as-a-judge, Reward Model-as-a-judge, or Human-as-a-judge) to potentially trigger refinement203

before final output delivery. In summary, our integrated framework combines knowledge graph-204

based retrieval augmentation, domain-specific SLM fine-tuning pipelines, comprehensive inference205

optimizations, and feedback-driven refinement. This approach achieves robust performance on com-206

plex reasoning tasks and demonstrates effective generalization through the generation of plausible,207

simulator-validated process descriptions for previously unseen chemicals.208

3 Experiments209

3.1 Experimental Setup210

Graph Retrieval-Augmented Generation (Graph RAG) integrates structured knowledge graphs with211
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large language models to enhance retrieval and reasoning. Our implementation begins with domain-212

specific documents—focused on chemical production processes—retrieved through autonomous213

agentic web navigation from the ChemAtlas database. The raw text is segmented into overlapping214

chunks using a sliding window approach, preserving local context while ensuring cross-chunk conti-215

nuity. Each text chunk is processed by GPT-4o to extract subject-predicate-object triples, forming216

semantic edges between entity nodes in the knowledge graph. Reference edges connect each entity217

to its source chunk, preserving document-graph alignment and enabling traceability. To resolve218

redundancy, we apply a canonicalization step: entities are merged only if they exhibit both high219

semantic similarity (measured via text-embedding-3-small embeddings) and high string simi-220

larity (evaluated using normalized Levenshtein distance), with both metrics exceeding predefined221

thresholds. For efficient retrieval, we partition the graph into hierarchical communities using the222

Leiden algorithm [52], optimizing for modularity to ensure semantically coherent clustering. Prior223

to inference, each community is summarized by GPT-4o, and these summaries are embedded for224

fast similarity comparison. Given a query, the framework retrieves the top-K most relevant com-225

munities, dynamically constructing a subgraph that includes their interconnected entities, semantic226

relationships, and originating chunks. This structured context is then passed to the reasoning model,227

ensuring grounded, multi-hop generation. We fine-tuned the Llama-3-1B and SmolLM-135M models228

using Quantized Low-Rank Adaptation (QLoRA) [10], which adapts low-rank matrices to key trans-229

former projection layers while keeping the base model weights frozen in 4-bit NormalFloat (NF4)230

precision. All experiments used identical training parameters: an 8-bit AdamW optimizer (β1 = 0.9,231

β2 = 0.999), a learning rate of 2× 10−4 with linear decay, weight decay of 0.01, and an effective232

batch size of 8 (achieved via a per-device batch size of 2 with 4 gradient accumulation steps). We233

set a maximum sequence length of 4096 tokens, enabled by gradient checkpointing. Training was234

conducted on NVIDIA V100 GPUs using mixed precision (BF16 for matrix operations, FP16 for235

gradients). We explored two distinct fine-tuning strategies(refer Figure 4). The first strategy employed236

a sequential, multi-phase pipeline consisting of three stages: (1) Supervised Fine-Tuning (SFT) on237

the combined training splits of the Factual QA, SynDIP, and LogiCore datasets for 15 epochs to238

integrate instruction-following capabilities and foundational domain knowledge into the SLMs; (2)239

Direct Preference Optimization (DPO) on the curated DPO dataset’s training split for 5 epochs to240

align the SLM’s outputs with human preferences; and (3) Retrieval-Augmented Instruction Tuning241

(RAIT) leveraging the training splits of the Local and Global datasets for 15 epochs to enhance the242

SLM’s ability to generate contextually grounded responses. The second strategy utilized the Group243

Relative Policy Optimization (GRPO) reinforcement learning algorithm [43], adapted for direct244

policy optimization. This approach proceeded through two sequential stages: initially fine-tuning245

the pretrained base model on the training splits of the combined Factual QA, SynDIP, and LogiCore246

datasets, followed by refining the resulting SFT checkpoint using the training splits of the Local247

RAIT and Global RAIT datasets. Both stages employed the same QLoRA configuration described248

earlier. The optimization process maximized a clipped surrogate objective [40], conceptually similar249

to Proximal Policy Optimization (PPO), using normalized advantages derived from a composite250

reward function with three components: ROUGE-L F1 score (weight=0.3), a length ratio penalty251

to encourage similarity to reference response lengths (weight=0.2), and an LLM-as-a-Judge quality252

score evaluating answer correctness and relevance (weight=0.5). Rewards and advantages were253

computed relative to groups (G = 4) of responses sampled from the policy for each input. Training254

stability was maintained through β-weighted KL divergence regularization against the relevant ref-255

erence policy (either the pretrained base model or SFT checkpoint), with GRPO training running256

for 15 epochs per stage until convergence. To isolate the comparative effects of learning paradigms,257

we implemented parallel adaptation strategies under identical conditions: (1) supervised fine-tuning258

versus (2) GRPO-based reinforcement learning. Using fixed architectures and shared datasets (Factu-259

alQA, SynDIP, LogiCore, and Local/Global RAIT), this controlled experiment quantifies how each260

paradigm influences SLM performance metrics across knowledge acquisition, reasoning, and genera-261

tion tasks. All implementations were developed in PyTorch using Hugging Face libraries, including262

transformers, datasets, peft, and trl. We evaluated fine-tuned SLMs through four key dimen-263

sions: (1) quantitative textual analysis comparing model outputs against ground-truth references using264

BLEU, ROUGE (1, 2, L), METEOR, SacreBLEU, BERTScore, and Sentence-BERT embedding265

cosine similarity; (2) qualitative scoring via the Nvidia Nemotron-4-340B reward model (0-4 ratings266

for correctness and coherence); (3) system-level efficiency benchmarks measuring inference latency267

(ms/token), throughput (tokens/sec), and GPU memory utilization; and (4) process engineering268

simulations in DWSIM to validate auto-generated PFDs and PIDs for industrial-scale feasibility. We269

investigated the trade-off between model compression and predictive fidelity (e.g., accuracy, reason-270
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ing) in SLMs through structural pruning techniques. Both width-level (neuron-level) and depth-level271

(layer-level) pruning were guided by importance heuristics computed during fine-tuning, enabling272

systematic parameter reduction while monitoring per-task downstream performance impact. To273

improve inference-time reliability—particularly for factual accuracy and reasoning consistency—we274

implemented a test-time scaling mechanism combining multi-path exploration through stochastic275

sampling, confidence-based candidate ranking, iterative self-reflection and revision, and consensus276

aggregation. These techniques collectively enhanced output robustness compared to standard deter-277

ministic decoding, as measured by qualitative reward model metrics. We conducted a systematic278

evaluation of optimization techniques to improve performance (speed, memory usage, throughput)279

during autoregressive inference of fine-tuned SLMs, including the LLaMA-3.2-1B architecture on280

NVIDIA V100 GPUs, focusing on three key inference-time methods: PagedAttention [24] with KV-281

cache quantization for memory efficiency, Lookahead Decoding [12] for throughput improvement,282

and FlashAttention [9, 8] for latency reduction. Benchmarking across metrics including inference283

throughput (tokens/sec), average generation latency (sec), maximum batch size, and peak GPU284

memory usage (GB) demonstrated their complementary benefits for demanding engineering applica-285

tions. PagedAttention addressed memory fragmentation and throughput limitations by organizing286

the Key-Value cache into non-contiguous blocks, improving memory efficiency and enabling larger287

batch sizes compared to traditional contiguous caching. Lookahead Decoding reduced end-to-end288

latency through parallel token generation and verification within each forward pass while maintaining289

output equivalence with greedy decoding, with its effectiveness quantified through comparative290

measurements of generation latency and throughput. FlashAttention optimized attention computation291

by alleviating memory bandwidth bottlenecks in Transformer architectures through its I/O-aware292

approach, with improvements evaluated on both training/inference throughput and peak memory293

consumption during training. Finally, we validated engineering feasibility using the DWSIM [32], an294

open-source chemical process simulator to construct and simulate PFDs/PIDs from auto-generated295

textual descriptions of novel chemical processes. DWSIM functions as a virtual chemical plant,296

enabling users to design, simulate, and analyze chemical processes. It supports both steady-state297

and dynamic modeling, computes material and energy balances, and simulates various physical and298

chemical operations such as mixing, reactions, separations, and etc. Additionally, it predicts key299

properties like phase behavior, heat duties, and equipment sizing while offering optimization and300

sensitivity analysis for process improvement. DWSIM enables chemical process design and simula-301

tion through drag-and-drop PFD creation, supporting unit operations like pumps, reactors, distillation302

columns, and heat exchangers. Users define components and select thermodynamic models (e.g.,303

Peng-Robinson, NRTL, PC-SAFT) to simulate systems, obtaining flow rates, temperatures, pressures,304

and compositions. The software performs advanced calculations: phase diagrams, enthalpy-entropy305

charts, and property tables. It includes optimization tools for cost/yield/efficiency, sensitivity analysis,306

and reaction modeling (CSTRs, PFRs, Gibbs reactors) with conversion/yield tracking. Equipment307

sizing (PSVs, vessels, exchangers) and dynamic simulations (startups, shutdowns, upsets) are also308

supported, allowing real-time process change analysis. In our work, DWSIM provides rigorous309

validation of auto-generated PFD and PID descriptions by converting textual process information310

into executable simulations. The software performs multi-level verification through material/energy311

balance calculations, thermodynamic consistency checks (using appropriate property packages like312

NRTL or Peng-Robinson), and equipment compatibility analysis. It identifies structural gaps in313

process descriptions by mapping unit operations to mathematical models and detecting missing314

connections or undefined parameters. Through steady-state and dynamic simulation, DWSIM evalu-315

ates operational feasibility, verifying control strategies, equipment specifications, and safety limits316

against simulated performance. The validation process flags inconsistencies in phase behavior, stream317

properties, and process conditions, while convergence analysis ensures numerical robustness. This318

systematic approach transforms textual process descriptions into validated, implementable designs319

by bridging the gap between conceptual documentation and physical realizability. In summary,320

DWSIM goes beyond checking if the outputs ’look right’ textually—it proves they would operate as321

executable chemical processes by subjecting them to rigorous physical/chemical laws and engineering322

constraints. This bridges the gap between LLM-generated text and real-world implementability.323

3.2 Results324

Figure 5 presents a comprehensive evaluation of customized SLMs on the ChemEval benchmark for325

automatic PFD/PID generation, using the NVIDIA/Nemotron-4-340B reward model and standard326

NLP metrics. Note: Ground truth for the ChemEval benchmark is generated using OpenAI’s327

advanced reasoning models o3/o3-mini. We compare fine-tuned Llama-3.2 1B and SmolLM2-135M328
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Figure 4: The figure illustrates the multi-stage instruction-tuning pipeline used to train specialized
student models—such as Llama-3.2-1B and SmolLM2-135M—for PFD/PID interpretation tasks. The
pipeline integrates synthetic datasets including Factual QA, SynDIP, LogiCore, DPO, Local-RAIT,
and Global-RAIT—each generated using teacher LLMs (e.g., GPT-4o, Claude-3-Haiku) and validated
with reward models such as NVIDIA’s Nemotron-4-340B. These datasets target diverse capabilities
including factual question answering, process flow and instrumentation descriptions generation,
logical reasoning, preference optimization, and retrieval-augmented comprehension. The combined
instruction-tuning process refines general-purpose SLMs into domain-optimized models capable of
performing chemical process engineering tasks with high fidelity.

against GPT-4o to assess zero-shot generation quality. Figure 5(a) reports mean reward scores329

(0–4 scale) across five dimensions: helpfulness, correctness, coherence, complexity, and verbosity.330

GPT-4o establishes the performance upper bound, while Llama-3.2 1B achieves the second-best331

results, outperforming SmolLM2-135M in helpfulness and coherence with more concise outputs332

but greater variance. SmolLM2-135M scores lowest overall yet performs comparably in complexity333

and verbosity. Figure 5(b) examines architectural components within Llama-3.2 1B across three334

configurations: the base pretrained model, the model with GraphRAG, and the fully enhanced variant335

with fine-tuning, GraphRAG, and feedback. Both retrieval and feedback contribute independently to336

performance improvements, with their combination yielding the strongest gains. Figure 5(c) presents337

quantitative evaluation using BLEU, METEOR, ROUGE, SacreBLEU, BERTScore, and cosine338

similarity. Llama-3.2 1B achieves higher overlap-based scores, while both models demonstrate strong339

semantic similarity alignment, confirming that appropriately fine-tuned smaller LLMs can preserve340

semantic fidelity. Figures 6 and 7 present high-level PFDs for nitric acid and sulfuric acid production,341

respectively. These diagrams were constructed in DWSIM based on textual outputs generated by342

our framework and manually assembled using DWSIM’s unit operation blocks, thermodynamic343

models, and stream configuration tools. The nitric acid PFD (Figure 6) illustrates a structured344

sequence of operations, beginning with feed mixing and catalytic oxidation, followed by gas cooling,345

intermediate conversion, absorption, and final distillation—all represented through interconnected346

unit operations and material flow paths. Similarly, the sulfuric acid PFD (Figure 7) outlines key347

stages, including sulfur combustion, catalytic oxidation, SO3 absorption, oleum dilution, and product348

purification, arranged in a logical progression of process units. Figures 8 and 9 illustrate PIDs for the349

industrial synthesis of nitric acid via the Ostwald process and sulfuric acid via the Contact Process,350

respectively. Each diagram details key equipment, instrumentation (temperature, pressure, flow, and351

level sensors), control elements (valves, PID controllers, cascade and feedforward strategies), and352

piping materials—all designed to ensure efficient, safe, and regulation-compliant chemical production.353

These flowsheets reflect realistic industrial workflows and were configured in DWSIM for simulation-354

based verification. The resulting simulations enable rigorous evaluation of material and energy355

balances, phase behavior, and equipment performance. By translating language-model-generated356

flowsheet descriptions into executable DWSIM simulations, we ensure engineering feasibility, identify357

configuration issues, and support process optimization in accordance with fundamental chemical358

engineering principles.359

4 Conclusion360

Automating the generation of industrially viable PFDs and PIDs is critical for accelerating chemical361

process scale-up. Current AI-assisted drug and materials discovery pipelines often prioritize molecular362

property optimization while neglecting production feasibility. Integrating early-stage auto-generation363

and validation of PFDs—which capture unit operations, material balances, and thermodynamic364

consistency—and PIDs—which define instrumentation, control logic, and safety systems—enables365

process simulation tools to detect scale-up conflicts in equipment sizing, utility demands, and366

hazardous material handling before experimental work begins. This proactive, concurrent design-367
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for-manufacturing approach replaces post-hoc feasibility checks, mitigating late-stage reengineering368

risks. Our closed-loop framework addresses this gap by integrating domain-adapted small language369

models (SLMs) with physics-aware validation to enable end-to-end automation. The approach370

combines multi-stage SLM fine-tuning—leveraging synthetic datasets and retrieval augmentation371

from a hierarchical chemical knowledge graph—with rigorous simulation-based verification using372

DWSIM. Results demonstrate the framework’s robust performance in zero-shot synthesis of novel373

chemical production processes and its strong capabilities in core engineering QA tasks, including374

PFD/PID interpretation and analysis. By unifying generative AI with first-principles engineering375

constraints, the framework effectively bridges the gap between digital discovery and industrial376

deployment, addressing key R&D bottlenecks.377
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(a) Model performance comparison on the ChemEval benchmark
for PFD/PID generation, evaluated using the NVIDIA/Nemotron-
4-340B reward model (0–4 scale). Performance ranking: GPT-4o
(highest), fine-tuned Llama-3.2 1B (second, with lower verbosity
but higher variance), and SmolLM2-135M (lowest, though match-
ing Llama-3.2 1B in complexity and verbosity).
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on the ChemEval benchmark. Performance ranking: fully en-
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base pretrained model (orange, lowest), demonstrating the cumula-
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(c) Quantitative comparison of fine-tuned Llama-3.2 1B and
SmolLM2-135M using BLEU, METEOR, ROUGE, Sacre-
BLEU, BERTScore, and cosine similarity metrics on the
ChemEval benchmark. Llama-3.2 1B achieves superior
overlap-based scores, while both models demonstrate com-
parable semantic similarity performance.

Figure 5: Comprehensive evaluation of model performance on the ChemEval benchmark for automatic
PFD/PID generation. (a) Compares GPT-4o, fine-tuned Llama-3.2 1B, and fine-tuned SmolLM2-
135M using reward model evaluation (ranked by performance). (b) Analyzes the impact of fine-tuning,
GraphRAG, and feedback components on Llama-3.2 1B performance. (c) Benchmarks Llama-3.2 1B
against SmolLM2-135M using standard NLP metrics.
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5 Technical Appendix565

The production of nitric acid (HNO3) follows a systematic sequence of steps. The pro-
cess begins with feed preparation, where ammonia (NH3) from storage and compressed
air (O2) are introduced. Ammonia is stored at ambient temperature and atmospheric
pressure, while air is compressed to 1–2 atm. In the next step, ammonia undergoes
oxidation in a plug flow reactor (PFR) using a platinum-rhodium (Pt-Rh) catalyst,
converting NH3 and O2 into nitric oxide (NO) and water vapor at 900°C and 9 atm.
The hot gas stream is then cooled to 30–40°C using a heat exchanger (HX1). Nitric
oxide (NO) is subsequently oxidized to nitrogen dioxide (NO2) in a continuous stirred
tank reactor (CSTR) at atmospheric pressure and a temperature of 30–40°C. The
resulting NO2 gas is absorbed in water inside an absorption tower, where it reacts to
form nitric acid (HNO3) and nitric oxide (NO) at 60–70°C and 1–2 atm. The nitric acid
solution is then purified in a multi-stage distillation column, concentrating it to 60–68%
while separating impurities, with the reboiler operating at 85–90°C and the condenser
at 30°C. Key operational conditions include maintaining optimal temperatures and
pressures in reactors and separation units to enhance efficiency. This optimized nitric
acid production process ensures high efficiency, minimizes environmental impact, and
is well-suited for large-scale industrial applications.

Figure 6: The figure shows the nitric acid (HNO3) PFD showing key unit operations (NH3 oxidation,
NO/NO2 conversion, absorption, distillation) with operating conditions. Generated in DWSIM from
framework text.

5.1 Agentic Web Search for Automated Extraction and Synthesis of PFD/PID Descriptions566

for Chemical Processes567

PFDs and PIDs are fundamental engineering schematics in the chemical process industry, serving as568

the primary graphical representations of chemical plants. A Process Flow Diagram (PFD) provides a569

high-level overview of a plant’s major process units, piping, and material/energy flows, illustrating the570

transformation of raw materials into final products. In contrast, a Piping and Instrumentation Diagram571

(PID) offers a detailed schematic of mechanical components, including valves, instrumentation, and572

control systems, which are essential for safe and efficient operation. To generate textual descriptions573

of PFDs and PIDs for chemical processes in the ChemAtlas database, we employ agentic web574

navigation—an advanced autonomous framework for web-based information retrieval. This system575

scrapes, parses, and synthesizes process engineering information from open-access web sources to576

build foundational knowledge about established manufacturing processes. The framework generates577

structured textual descriptions of process designs, including: PFDs (equipment layouts, stream578

connections, mass/energy balances) and PIDs (instrumentation tags, control logic, safety interlocks).579

At the core of the agentic web search framework is a meta-agent responsible for query decomposition,580

task delegation, and response integration. Given a complex input query Q, the meta-agent decomposes581

it into a set of subtasks {q1, q2, . . . , qn}, where each subtask represents a semantically coherent582

information need. For each subtask qi, the meta-agent selects the optimal expert agent—such as583

the Visual Miner Agent, Research Agent, Patent Agent, or Wiki Agent—based on the highest584
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The Contact Process for sulfuric acid (H2SO4) synthesis involves several key steps:
sulfur combustion, sulfur dioxide oxidation, sulfur trioxide absorption, oleum dilution,
and final purification. Initially, elemental sulfur (S) combusts with oxygen (O2) in
a furnace at 1000–1200°C under atmospheric pressure, producing sulfur dioxide
(SO2). The SO2 then enters a series of fixed-bed reactors, where it undergoes catalytic
oxidation with vanadium pentoxide (V2O5) at 400–600°C and 1–5 atm to form sulfur
trioxide (SO3). Next, SO3 is absorbed in concentrated sulfuric acid within a packed
absorption tower at 30–60°C, forming oleum (H2S2O7). The oleum is then diluted
with water in a mixing tank to produce concentrated sulfuric acid. A heat exchanger
cools the reactor effluents, and a distillation column purifies the final product, yielding
93–98% pure H2SO4. Safety measures include gas detection, automated controls,
emergency protocols, and corrosion-resistant materials. Potential bottlenecks include
catalyst deactivation in fixed-bed reactors, foaming in absorption towers, and inefficient
heat recovery. This optimized process flow ensures efficient, large-scale sulfuric acid
production with energy recovery and environmental sustainability.

Figure 7: The figure illustrates the PFD of sulfuric acid (H2SO4) production, dynamically simulated
in DWSIM. It details critical stages—including sulfur (S) combustion, catalytic SO2 oxidation, SO3
absorption, and oleum (H2S2O7) dilution—along with associated operating parameters (temperature,
pressure, flow rates).

semantic similarity between the vector representation of the subtask and that of the agent’s capability.585

This approach goes beyond naïve task-to-tool mapping by embedding both task intent and agent586

capabilities into a shared semantic space, enabling principled and adaptive agent selection.587

t∗j = argmax
j

simcos(v(qi), v(dj))

where,
simcos(v(qi), v(dj)) =

v(qi) · v(dj)
∥v(qi)∥∥v(dj)∥

588

Here, v(qi) and v(dj) denote the dense vector embeddings of the subtask and the expert agent’s589

capabilities, respectively. The agent embedding v(dj) encodes domain expertise (i.e., specialized590

knowledge and skills relevant to retrieving and interpreting information within a specific content591

domain), tool access (e.g., SerpAPI), and reasoning modality (e.g., extractive or abstractive). Each592

expert agent operates within a multimodal, domain-specific retrieval regime. The Visual Miner Agent593

uses SerpAPI to retrieve high-quality industrial schematics and parses them to generate semantic594

summaries using an LLM. The Research, Patent, and Wiki Agents also leverage SerpAPI to retrieve595

content from domain-specific corpora, including peer-reviewed scientific papers, technical reports,596

patents, and Wikipedia articles, respectively, and synthesize structured, contextual summaries using597

LLMs. Subtasks are then structured as nodes V = {v1, . . . , vn} in a Directed Acyclic Graph (DAG)598

G = (V, E), where edges eij ∈ E represent precedence constraints. This introduces formalisms into599

agent planning, moving away from fixed chain-of-thought paths to dynamic computation graphs. The600

DAG allows for topological sorting, task parallelism, and dependency resolution, supporting robust601

and interpretable execution flows. In particular, when no edge exists between subtasks qi and qj ,602
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The optimized PID for nitric acid synthesis via the Ostwald process presents a compre-
hensive layout incorporating essential components, sensors, control mechanisms, and
safety systems to facilitate efficient process monitoring and compliance with industry
regulations. The system comprises key equipment such as the Ammonia Storage Tank,
Air Compressor, Plug Flow Reactor, Heat Exchangers, Continuous Stirred Tank Reac-
tor, Absorption Tower, Distillation Column, Gas Recycling System, and Wastewater
Treatment Unit. Instrumentation includes temperature sensors (T-1 to T-7) placed at
the ammonia tank, PFR outlet, HX1 outlet, CSTR, absorption tower, and distillation
column reboiler and condenser; pressure sensors (P-1 to P-5) at critical points such as
the ammonia tank, PFR, CSTR, absorption tower, and distillation column; flow meters
(F-1 to F-5) for monitoring ammonia feed, air feed, NO and nitric acid product flow,
and wastewater; and level sensors (L-1, L-2) for the ammonia and nitric acid storage
tanks. The control infrastructure features valves (CV-1 to CV-4) to regulate ammonia
and air feeds, NO, and nitric acid flow, with electric or pneumatic actuators deployed
as required. Control strategies employ feedback control via PID controllers to stabilize
PFR and CSTR temperatures and pressures, feedforward control to adjust downstream
conditions based on upstream flow, and cascade control for distillation column temper-
ature regulation. Recommended piping materials include carbon steel with coatings or
stainless steel (e.g., 316L) for ammonia and NO, glass-lined or high-alloy stainless
steel (e.g., Hastelloy) for nitric acid, and titanium or stainless steel for heat exchangers
handling corrosive streams.

Figure 8: The figure shows the PID for nitric acid production via the Ostwald process, generated using
Visual Paradigm Online. The diagram highlights key process units—including the ammonia storage
tank, plug flow reactor (PFR), absorption tower, and distillation column—along with instrumentation
(temperature, pressure, flow, and level sensors) and control systems (valves, PID controllers, and
cascade control). The design reflects process monitoring requirements and compliance with industry
standards..

their associated agents—such as the Visual Miner Agent, Research Agent, Patent Agent, or Wiki603

Agent—are executed in parallel to optimize latency and throughput. Each agent executes its assigned604

subtask qi, retrieving a set of k candidate results M = {m1, . . . ,mk}, each scored using cosine605

similarity:606

simcos(v(mi), v(qi)) =
v(mi) · v(qi)
∥v(mi)∥∥v(qi)∥

607

The top-K ≤ k candidates are selected by ranking the retrieved items mi ∈M in descending order608

of cosine similarity to v(qi), retaining the most relevant results for language model-based synthesis.609
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Creating an optimized PID for the synthesis of sulfuric acid via the Contact Process
involves integrating best practices, emphasizing critical sensors, control elements,
redundancy, reliability, piping materials, and control systems integration. The equip-
ment and piping layout should include a multi-tube furnace for sulfur combustion,
a series of fixed-bed reactors with heat exchangers for SO2 oxidation, and a packed
absorption tower with cooling jackets for absorbing SO3 into concentrated H2SO4. A
mixing tank for oleum dilution must be equipped with level sensors and flow control
for water and oleum, while a heat exchanger is needed for cooling and heat recov-
ery, monitored by temperature and flow sensors. The system should also feature a
distillation column with reboiler and condenser controls for sulfuric acid purification,
a scrubber system with gas detection for unreacted SO2, and a filtration system for
removing solid impurities. Instrumentation must include temperature sensors (T1 to
T9) at critical points such as the furnace outlet, reactor inlets/outlets, absorption tower,
distillation column, heat exchanger, and mixing tank. Pressure sensors (P1 to P5)
should be installed at the furnace outlet, reactors, absorption tower, and distillation
column, while flow sensors (F1 to F7) should monitor sulfur, air, SO2, SO3, oleum,
water, and final H2SO4 flows. Level sensors (L1 and L2) should monitor the mixing
tank and distillation column sump. Control valves (CV1 to CV6) must regulate feeds
of sulfur, air, SO2, SO3, water, and oleum, operated by electric or pneumatic actuators
for fast, reliable responses. Control strategies should include feedback control through
PID loops for temperature and pressure in critical areas, feedforward control to adjust
sulfur and air feed rates based on production goals and data analytics, and cascade
control for reactor pressure with temperature as the inner loop. Safety instrumentation
is vital. In conclusion, this optimized PID framework for sulfuric acid synthesis via
the Contact Process ensures efficient, safe, and reliable industrial-scale production.
Incorporating redundancy, advanced control, and real-time monitoring significantly
enhances both operational efficiency and safety.

Figure 9: The figure presents the PID for sulfuric acid production via the Contact Process, created
using Visual Paradigm Online from framework-generated descriptions. It highlights core equipment
including the multi-tube furnace, fixed-bed reactors, absorption tower, and distillation column, along
with critical instrumentation (temperature/pressure/flow sensors, control valves) and control strategies
(PID loops, feedforward control) for efficient, safe operation.

Each expert agent then leverages a language model to perform information synthesis, semantic610

abstraction, and contextual reasoning over the selected top-ranked results, producing a coherent sub-611

answer Rqi . The global answer A is constructed by integrating sub-answers: A = FMeta({Rqi}ni=1).612

To enhance quality and alignment, the framework introduces an iterative refinement loop for a613

predefined number of iterations:614
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Ai+1 = FMeta(Ai, Fi)615

Here, Fi includes feedback from: (a) LLM-as-Judge (e.g., GPT-4o, Anthropic Sonnet), applying616

ReAct-based reasoning and qualitative critique (e.g., correctness, coherence, and factuality); and (b)617

Reward Models (e.g., the Nemotron-4-340B multidimensional reward model), which score candidate618

outputs based on five key attributes: helpfulness, correctness, coherence, complexity, and verbosity.619

These mechanisms form a self-correcting feedback loop, enabling reward-aligned output generation620

and enhancing factuality and task relevance. This modular, explainable framework extends RAG from621

static retrieval to agentic, feedback-driven generation of high-quality textual descriptions—enabling622

automated generation of regulation-compliant PFD and PID descriptions for complex chemical623

synthesis pipelines. Figure 10 outlines our agentic framework for automated PFD/PID synthesis via624

query decomposition, expert routing, and iterative refinement.625
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Figure 10: The figure illustrates an autonomous framework for generating textual descriptions of
PFDs and PIDs for user-specified chemical processes to construct property graphs. A meta-agent
decomposes complex queries into subtasks, routes them to domain-specific expert agents (e.g., Visual
Miner, Research), and structures execution using a DAG. The agents retrieve multimodal content
(e.g., PDFs, patents, HTML documents), rank results by relevance, and synthesize summaries using
LLMs. The outputs are iteratively refined through LLM-as-Judge feedback and reward models to
ensure accuracy and coherence.

5.2 Synthetic Datasets Generation for PFD/PID Analysis626

We adopt a teacher–student transfer learning framework [64, 21, 51, 37, 57] that leverages large627

language models (LLMs), such as OpenAI’s GPT-4o and Anthropic’s Claude Haiku, as teacher628

models to generate high-quality synthetic training data. This synthetic dataset is then used to fine-tune629

smaller, open-source student models such as Llama-3.2-1B and SmolLM2-135M, enhancing their630

ability to follow complex instructions, provide helpful and context-aware responses, and perform631

specialized domain tasks—particularly the interpretation, analysis, and generation of PFDs and PIDs632

for chemical processes. From a Bayesian learning perspective, the teacher model approximates633

a posterior distribution over possible outputs, while the student model learns a compressed yet634

effective representation of this distribution. Through this knowledge distillation process, the student635

model achieves performance comparable to that of the teacher model on out-of-distribution (OOD)636

tasks while being significantly more efficient to deploy. Our data generation pipeline employs637

self-instruct prompting, where the teacher LLM is first conditioned on a small seed set of human-638

written instruction–response pairs, denoted as Dseed = {(xi, yi)}Ni=1, and then recursively generates639

synthetic pairs Dgen = {(x̃j , ỹj)}Mj=1, with (x̃j , ỹj) ∼ pLLM(· | Dseed). Here, x̃j represents a640

synthetic instruction, ỹj its corresponding generated response, and pLLM denotes the teacher LLM’s641

probability distribution. This bootstrapped approach generates structured instruction–response pairs642

without extensive human annotation, forming the core of our training corpus. In this section, we643

18



discuss the generation of multiple synthetic instruction–response datasets, all formatted as QA pairs,644

to support the development of expert language models for interpreting and generating PFD and PID645

descriptions in chemical process engineering. These datasets include: Factual QA, which targets646

domain-specific factual knowledge; SynDIP, designed to capture schematic-level descriptions of647

industrial processes; LogiCore, which elicits multi-step reasoning and logical understanding; DPO,648

comprising chosen–rejected response pairs for preference optimization; and Local and Global RAIT,649

which incorporate retrieval-augmented prompts with intra- and inter-cluster contextual grounding.650

All datasets are generated using a self-instruct bootstrapping pipeline with LLM-based prompting651

and validated through reward models to ensure alignment, informativeness, and response quality. (a)652

We generate a factual QA dataset (refer to Figure 11) by first selecting a domain-level topic T ∈ T653

(e.g., PFDs or PIDs), where T denotes the set of all possible topics. The teacher model M (e.g.,654

GPT-4o) decomposes T into subtopics ST = {s1, . . . , sn} and then synthesizes question–answer655

pairs (q̃jk, ãjk) for each subtopic sj , where j = 1, . . . , n indexes the subtopics and k = 1, . . . ,mj656

indexes the QA pairs within subtopic sj . Each pair is generated as:657

(q̃jk, ãjk) ∼M(· | sj ,DFQA
seed )658

Here, DFQA
seed = {(xi, yi)}Ni=1 denotes a seed set of human-written QA examples. The syn-659

thetic pairs form the dataset DFQA
gen = {(q̃jk, ãjk)}j,k, which is filtered via a reward model (e.g.,660

Nemotron-4-340B-Reward), defined as: R(q̃, ã) =
∑5

l=1 αl ·Metricl(q̃, ã), where {Metricl}5l=1 =661

{H,C,Co,Cx, V } represent helpfulness, correctness, coherence, complexity, and verbosity, respec-662

tively, and αl ≥ 0 are predefined scalar weights. Only QA pairs satisfying the quality threshold663

R(q̃, ã) ≥ τ are retained, ensuring the dataset meets the quality standards required for downstream664

student model fine-tuning. The resulting dataset DFQA
gen contains factual QA pairs related to chemical665

process engineering. (b) The Direct Preference Optimization (DPO) dataset (refer to Figure 12)666

is generated using the teacher model M (e.g., GPT-4o or Claude Haiku) and the reward model667

R. For each subtopic sj ∈ ST (derived from a domain-level topic T ) and each synthetic question668

q̃jk ∈ DFQA
gen , we sample two candidate responses from M :669

(ã+jk, ã
−
jk) ∼M(· | q̃jk,DDPO

seed )670

Here, ã+jk is the preferred response, ã−jk is the dispreferred response, and DDPO
seed is a seed set671

of human-annotated preference pairs. The reward model R then computes the preference gap:672

∆Rjk = R(q̃jk, ã
+
jk)−R(q̃jk, ã

−
jk), where R is defined as a weighted sum over five quality metrics:673

{H,C,Co,Cx, V }, representing helpfulness, correctness, coherence, complexity, and verbosity,674

respectively. Only preference triplets satisfying the quality threshold ∆Rjk ≥ τDPO are retained,675

forming the final dataset:676

DDPO
gen = {(q̃jk, ã+jk, ã

−
jk) | ∆Rjk ≥ τDPO}677

In summary, this pipeline automates the generation of high-quality preference-labeled datasets for678

PFD/PID analysis tasks by combining teacher-model synthesis (ã+jk, ã
−
jk) ∼ M with multi-metric679

reward-based filtering R, resulting in a DPO-optimized dataset tailored for domain-specific student680

model training. (c) The SynDIP dataset (refer to Figure 13) extends the teacher–student framework681

to generate chemical process context, PFDs, and PIDs textual descriptions, organized as sequential682

instruction–response pairs. The process context overview explains the why and how of a process683

design, covering its background, operation, engineering decisions, and control. It outlines unit684

operations, flow, reactions, and the rationale behind equipment and controls. For each target chemical,685

the teacher model M (e.g., GPT-4o or Claude-3-Haiku) generates a process blueprint b̃k in response686

to a fixed instruction template xSYN
k (e.g., “Describe a chemical process for producing chemical X,687

including raw materials, reactions, and equipment”), with: b̃k ∼ M(· | xSYN
k ,DSYN

seed ) where DSYN
seed688

is a seed set of human-authored process blueprints. Each blueprint b̃k is then processed in two689

stages: (1) PFD generation via prompt xPFD
k (e.g., “Convert this blueprint to a PFD: [b̃k]”), yielding:690

f̃k ∼ M(· | xPFD
k , b̃k,DPFD

seed ) where DPFD
seed contains human-annotated PFD exemplars; and (2) PID691

generation using prompt xPID
k (e.g., “Generate a PID for this PFD: [f̃k]”), resulting in:692

p̃k ∼M(· | xPID
k , f̃k,DPID

seed)693
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where DPID
seed contains human-annotated PID exemplars. The reward model R evaluates each694

instruction–response pair (xk, ỹk)—where ỹk ∈ {b̃k, f̃k, p̃k}—using the composite metric set695

{H,C,Co,Cx, V } (helpfulness, correctness, coherence, complexity, verbosity). The final Syn-696

DIP dataset is defined as:697

DSynDIP
gen = {(xSYN

k , b̃k, x
PFD
k , f̃k, x

PID
k , p̃k) | R(xSYN

k , b̃k) +R(xPFD
k , f̃k) +R(xPID

k , p̃k) ≥ τSYN}698

ensuring that each entry includes validated process context, PFD, and PID descriptions for a complete699

chemical process representation. (d) The LogiCore Dataset (refer to Figure 14) extends our teacher–700

student framework to generate multi-step reasoning question–answer pairs for PFD/PID analysis by701

building upon theDSynDIP
gen dataset and extracting logical reasoning chains from its process descriptions.702

For each seed instruction xi ∈ Dchem
seed (human-annotated exemplars), the teacher model M (e.g.,703

GPT-4o) generates multiple logical QA pairs (q̃ij , ãij) ∼ M(· | xi,Dchem
seed ), where j indexes the704

generated pairs per seed and each ãij contains explicit chain-of-thought reasoning. These pairs are705

filtered via the established reward model R (Nemotron-4-340B-Reward) using the same metrics:706

R(q̃ij , ãij) =
∑4

l=1 αl · Metricl(q̃ij , ãij), where {Metricl}4l=1 = {H,C,Co,Cx} (helpfulness,707

correctness, coherence, complexity). The final dataset708

DLogiCore
gen = {(q̃ij , ãij) | R(q̃ij , ãij) ≥ τlogic}709

retains only high-quality reasoning chains, with logical validity implicitly ensured through C (factual710

alignment with PFD/PID schematics) and Co (stepwise flow coherence), maintaining full consistency711

with our synthetic data generation framework. (e) The Local RAIT Dataset (refer to Figure 15)712

extends our teacher–student framework to retrieval-augmented generation. Unlike DFQA
gen and DSynDIP

gen ,713

Local RAIT integrates retrieval mechanisms to ground M ’s outputs in source documents, mitigating714

hallucination risks. For each chemical process description from the SynDIP datasets in the ChemAtlas715

database (stored as PDF documents containing process flow and instrumentation descriptions), the716

raw text T is extracted and parsed into semantically coherent chunks CT = {c1, ..., cK}, where ck ∼717

Chunk(T ) and each ck retains contextual continuity with neighboring chunks. The teacher model718

M (GPT-4o) then synthesizes QA pairs (q̃k, ãk) ∼ M(· | ck,DRAIT
seed ), conditioned on seed human719

examples DRAIT
seed = {(xi, yi)} that include both questions and gold-standard retrieval-augmented720

answers. This approach ensures (q̃k, ãk) are document-grounded, with ck providing explicit source721

references for generated answers—critical for technical domains where factual alignment with722

PFD/PID schematics is required.723

DLocalRAIT
gen = {(q̃k, ck, ãk) | R(q̃k, ãk) ≥ τ ∧ L(q̃k, ãk) ≥ 4}724

The QA pairs are filtered using the same reward model R and Likert scoring L as DFQA
gen , where725

the reward score R(q̃k, ãk) =
∑5

l=1 αl ·Metricl(q̃k, ãk) incorporates five metrics: H=Helpfulness,726

C=Correctness, Co=Coherence, Cx=Complexity, and V =Verifiability against ck. The Likert scale727

L(q̃k, ãk) ∈ {1, . . . , 5} (1=Poor, 3=Average, 5=Excellent) independently assesses answer quality728

across three dimensions: helpfulness, correctness, and coherence. Only instances meeting both729

criteria—τ for R and 4+ for L—are included in DLocalRAIT
gen . (f) The Global RAIT Dataset (refer to730

Figure 16) scales retrieval-augmented generation to both intra- and inter-document comprehension.731

Chunks CT are clustered into semantically related groups Gj via cosine similarity sim(ϕ(ci), ϕ(cj)) ≥732

γ, where ϕ is a domain-tuned embedding model (fine-tuned on T using contrastive learning) optimized733

for cross-document semantic relationships. For cross-document groups, Gj aggregates chunks from734

multiple source PDFs. The teacher model M generates answers ãj ∼M(·|Gj ,DGlobal
seed ), conditioned735

on seed examples DGlobal
seed that include inter-document QA pairs.736

DGlobalRAIT
gen = {(q̃j ,Gj , ãj) |

R(ãj) ≥ τ ∧ L ≥ 4}
737

where ãj provides structured reasoning with evidence from multiple document chunks. Filtering738

follows the same criteria as DSynDIP
gen , applying both the reward threshold τ and a Likert score739

of L ≥ 4. By leveraging grouped chunk clusters, Global RAIT enables the student model to740

generate contextually grounded responses that synthesize information across intra- and inter-document741

contexts.742
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Figure 11: The figure shows the pipeline for generating synthetic Factual QA dataset.
GPT-4o or claude-3-Haiku decomposes domain topics into subtopics and creates question-
answer pairs, which are filtered by the Nvidia Nemotron-4-340B reward model based on
metrics like correctness, coherence and etc. Only high-scoring pairs are retained for the
final dataset.
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Figure 12: The figure illustrates the workflow for synthetic DPO dataset generation. GPT-4o
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The Nvidia Nemotron-4-340B reward model scores responses, and pairs are filtered to
ensure the preferred response ranks significantly higher in quality.
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Figure 15: The figure depicts the workflow for the Local RAIT dataset generation. Text
chunks are extracted from the seed SynDIP dataset, and GPT-4o generates retrieval-
grounded question-answer pairs. Outputs are evaluated using the Nemotron-4-340B reward
model and additional LLM-based validation. High-quality pairs are retained to build a
dataset for retrieval augmented instruction-tuning in process engineering tasks.
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Figure 16: The figure illustrates the Global RAIT dataset generation workflow. PDFs
are parsed, chunked, and grouped via semantic clustering to preserve context. A retriever
selects top-k relevant chunks using vector similarity of embeddings obtained from a sentence
embedding model. GPT-4o generates questions and multi-turn refined answers grounded in
the cross-document chunks. Outputs are validated through the Nvidia Nemotron-4-340B
reward model, LLM-based checks, and Likert-scale feedback, yielding a high-quality
dataset for instruction-tuning.
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5.2.1 Computational Time Analysis for Synthetic Dataset Generation743

Synthetic dataset generation follows a unified three-step pipeline: QA pair synthesis via teacher744

LLMs (e.g., GPT-4o, Claude Haiku), reward model validation (Nemotron-4-340B), and multi-metric745

filtering. SynDIP is the most time-intensive (2179.6 min) due to its sequential generation of PFDs746

and PIDs. LogiCore (600.6 min) emphasizes multi-step reasoning; Global RAIT (480.4 min) involves747

cross-document clustering; and Local RAIT (320.7 min) targets chunk-level QA generation. DPO748

(201.8 min) and Factual QA (155.4 min) are faster, reflecting their simpler generation logic. This749

reflects a clear trade-off between dataset complexity and computational cost (Figure 17).750
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Figure 17: Computational time for generating self-instruct synthetic datasets, including QA pair
creation, verification (using either the Nvidia Nemotron-4-340B reward model or an LLM-as-a-judge
approach), and quality filtering. SynDiP’s multi-stage generation (process context→ PFD→ PID)
requires significantly more time than simpler factual QA generation due to its iterative refinement
process

5.2.2 Carbon Emissions for Synthetic Dataset Generation751

Carbon emissions from synthetic dataset generation, tracked via CodeCarbon1, vary by dataset752

type. SynDIP has the highest footprint (∼1.25 kg CO2) from its sequential PFD/PID generation.753

LogiCore (∼0.34 kg) and Global RAIT (∼0.26 kg) show moderate emissions, while DPO, Local754

RAIT, and Factual QA achieve ∼0.18–0.22 kg through optimized workflows. Figure 18 illustrates755

these efficiency tradeoffs between data quality and sustainability.756
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Figure 18: Carbon emissions (kg CO2) for synthetic dataset generation. SynDIP incurs the highest
emissions, while Factual QA, DPO, and Local RAIT exhibit the lowest.

1https://codecarbon.io/
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5.2.3 Evaluation of Synthetic Datasets757

Our teacher-student transfer learning framework utilizes large language models (LLMs) - with758

GPT-4o and Claude-3-Haiku for generation and the NVIDIA-Nemotron-4-340B reward model for759

evaluation - to create high-quality synthetic datasets for fine-tuning SLMs including Llama 3.2-1B,760

Qwen 2.5-1.5B, and SmolLM2-135M. These models are specifically optimized for domain-specific761

tasks involving PFD and PID analysis, interpretation, and generation. The approach enables precise762

output ranking and filtering that aligns with human preference criteria throughout the synthetic763

dataset creation and evaluation process. We rigorously evaluated each synthetic dataset using the764

NVIDIA-Nemotron-4-340B reward model, which scores outputs on a 0-4 scale across five key metrics:765

helpfulness, correctness, coherence, complexity, and verbosity. Figure 19 presents the evaluation766

results for the Factual QA dataset, while Figures 20 and 21 show the performance comparison767

between chosen and rejected responses in the DPO dataset. Figure 22 demonstrates the quality768

of the multi-stage SynDIP dataset generation process for producing PFDs and PIDs. Figure 23769

shows the evaluation of the multi-step reasoning in the LogiCore dataset. Figures 24 (Local RAIT)770

and 25 (Global RAIT) collectively demonstrate the quality and training-objective suitability of the771

retrieval-augmented datasets.772
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Figure 19: Evaluation results for the generated Factual QA dataset using the NVIDIA-Nemotron-4-
340B reward model. Each QA pair is scored on a 0–4 scale across five quality dimensions: helpfulness,
correctness, coherence, complexity, and verbosity, ensuring high-quality data for instruction tuning.
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Figure 20: Evaluation of chosen responses from the DPO dataset using the NVIDIA-Nemotron-4-
340B reward model. High-scoring responses across quality dimensions (helpfulness, correctness,
coherence) guide model fine-tuning toward human-preferred outputs.
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Figure 21: Evaluation of rejected responses from the DPO dataset using the NVIDIA-Nemotron-
4-340B reward model. Low-scoring responses across evaluation metrics demonstrate undesirable
output characteristics for preference optimization.
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Figure 22: Quality evaluation of the synthetic SynDIP dataset using the NVIDIA-Nemotron-4-340B
reward model. Each chemical process description (PFD→ PID) is scored across five key dimensions:
helpfulness, correctness, coherence, complexity, and verbosity, validating alignment with actual
process schematics.
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Figure 23: Quality evaluation of the reasoning-augmented LogiCore dataset using the NVIDIA-
Nemotron-4-340B reward model. Each multi-step response is scored across five dimensions (help-
fulness, correctness, coherence, complexity, and verbosity) to ensure logical validity and faithful
representation of PFD/PID schematics.

25



helpfulness correctness coherence complexity verbosity
Quality Mterics

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

M
ea

n 
Sc

or
es

Figure 24: Quality evaluation of the Local RAIT synthetic dataset using the NVIDIA-Nemotron-4-
340B reward model. Performance across five metrics (helpfulness, correctness, coherence, complexity,
and verbosity) demonstrates the quality of retrieval-augmented QA pairs grounded in individual
document chunks.
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Figure 25: Quality evaluation of the synthetic Global RAIT dataset using the NVIDIA-Nemotron-
4-340B reward model. The scores reflect the effectiveness of answers generated from clustered
document chunks, demonstrating robust intra-document and inter-document reasoning capabilities.
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Figure 26: The figure illustrates the end-to-end Graph Retrieval-Augmented Generation (Graph
RAG) pipeline for PFD/PID interpretation in chemical process engineering. A multimodal agentic
framework—comprising expert agents coordinated by a meta-agent—retrieves and processes data
for knowledge graph construction. Unstructured documents are parsed into text chunks, from which
knowledge graph triples are extracted and structured into a property graph. The resulting graph is
vector-indexed for similarity-based retrieval. Validation leverages LLM-as-a-Judge (GPT-4o) and
reward models (NVIDIA Nemotron-4-340B) to optimize knowledge extraction, ensuring factual
accuracy, coherence, and task relevance.
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5.3 Graph Retrieval-Augmented Generation (Graph RAG)773

Retrieval-Augmented Generation (RAG) enhances large language models (LLMs) by integrating774

external knowledge databases, enabling precise fact retrieval for domain-specific question answer-775

ing. Graph RAG [17, 11, 18](refer Figure 26) extends this paradigm by incorporating structured776

knowledge graphs, which offer three key advantages: (1) relational data organization for complex777

reasoning tasks; (2) explicit relationship traversal; and (3) multi-source information synthesis. This778

architecture supports multi-hop reasoning across interconnected knowledge nodes, significantly779

improving contextual understanding and response accuracy in open-domain question answering780

(ODQA). The structured representation leads to more precise and contextually grounded responses781

than conventional RAG approaches. As previously discussed, our framework employs specialized782

agents for autonomous web navigation to collect chemical-specific multimodal data from online783

sources, focusing on PFD and PID documentation. The aggregated web data is first stored as raw784

documents and then transformed into knowledge graphs. This transformation begins by processing785

unstructured documents into property graphs through the following steps. For each document ti, we786

first segment its text into smaller chunks using a sliding window approach. Let Ci = {c1, c2, . . . , cM}787

represent the set of text chunks from ti, where each chunk cj has length |cj |. Using a window size w788

and stride s, the sliding window technique generates chunks spanning positions pj to pj + w − 1,789

where pj = 1 + (j − 1) · s. This overlapping segmentation preserves contextual continuity be-790

tween chunks. To enhance semantic representation, we employ the language modelMθ to generate791

relational descriptions Dj that capture inter-chunk relationships:792

Dj =Mθ(cj , Ci \ {cj})793

The enriched chunk c′j = cj ⊕ Dj combines original content with its relational context, where ⊕794

denotes concatenation, forming nodes in the knowledge graph. These augmented chunks support795

downstream graph operations via structured triple representations of the form (subject, predicate,796

object), where entities (subjects/objects) are connected through semantic predicates. For a given797

enriched chunk c′j , the extraction process involves the following steps: (1) Entities are represented798

as distinct nodes. Let Ej = {ej1, ej2, . . . , ejKj
} denote the set of entities extracted from c′j , where799

ejk is the k-th entity and Kj = |Ej | is the entity count. (2) Inter-entity relations are represented800

as directed edges. Define the set of predicates as Pj = {rjkm | 1 ≤ k ̸= m ≤ Kj}, where rjkm801

denotes the relation between entities ejk and ejm. The extracted triples from c′j are:802

Tj = {(ejk, rjkm, ejm) | 1 ≤ k ̸= m ≤ Kj}803

Each triple (ejk, rjkm, ejm) represents a directed relation from ejk to ejm via predicate rjkm. The804

union of triples from all enriched chunks C ′
i = {c′1, c′2, . . . , c′M} forms the knowledge graph Gi,805

where entity nodes connect via predicate edges. Each entity ejk is linked to its source chunk c′j using806

an origin relation:807

(ejk, BELONGS_TO, c′j), ∀ejk ∈ Ej808

where BELONGS_TO denotes the entity-chunk association. The resulting knowledge graph captures809

both semantic relationships (via triples) and source attribution (via origin links). The knowledge810

graph Gi is formally defined as a directed graph Gi = (Vi, Ei), with:811

Vi = {c′1, . . . , c′M} ∪ {ejk | j = 1, . . . ,M ; k = 1, . . . ,Kj}812

comprising chunk nodes c′j and entity nodes ejk. The edge set Ei includes: (1) Semantic relation813

edges:814

E rel
i = {(ejk, rjkm, ejm) | j = 1, . . . ,M ; 1 ≤ k ̸= m ≤ Kj}815

(2) Structural containment edges:816

Econt
i = {(c′j , ejk) | j = 1, . . . ,M ; k = 1, . . . ,Kj}817

The complete edge set is Ei = E rel
i ∪Econt

i . This heterogeneous graph structure—combining chunk and818

entity nodes with relational and containment edges—enables robust graph-based retrieval, reasoning,819

and generation. To improve knowledge retrieval accuracy, we implement a two-step entity resolution820

process to identify and merge duplicate entities referring to the same concept. Each entity ejk is821

encoded as a vector embedding vjk using a text embedding model to capture semantic representation.822
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For any pair of entities ejk (from chunk c′j) and ej′k′ (from chunk c′j′), we assess conceptual823

equivalence through sequential similarity evaluations. First, we compute cosine similarity between824

their embeddings:825

sim(vjk, vj′k′) =
vjk · vj′k′

∥vjk∥ ∥vj′k′∥826

If the semantic similarity exceeds a threshold τsim, we conduct a secondary evaluation using normal-827

ized Levenshtein distance:828

str_sim(ejk, ej′k′) = 1− dlev(ejk, ej′k′)

max(|ejk|, |ej′k′ |)
829

Here, dlev(ejk, ej′k′) is the Levenshtein distance between entity strings, and |ejk|, |ej′k′ | are their830

lengths. Entities are merged as duplicates only when both similarity metrics exceed their respective831

thresholds τsim (semantic) and τstr (string-based), ensuring robust entity consolidation. We apply the832

hierarchical Leiden algorithm to detect communities Ck at various granularities within the knowledge833

graph Gi, aiming to optimize modularity MMod. Modularity measures the quality of a community834

structure by comparing the density of intra-community edges to the expected density if edges were835

placed randomly while preserving node degrees. It is defined as:836

MMod =
1

2m

∑
i,j

[
Aij −

didj
2m

]
δ(ci, cj)837

where Aij is the adjacency matrix (1 if an edge exists between nodes i and j, 0 otherwise), di and dj838

are the degrees of nodes i and j, respectively, and m is the total number of edges in the graph. The839

term didj

2m represents the expected number of edges between i and j under the configuration model.840

The function δ(ci, cj) is the Kronecker delta, equal to 1 if nodes i and j belong to the same community841

and 0 otherwise. A community Ck = (VCk
, ECk

) is a subgraph where the nodes VCk
⊆ Vi and edges842

ECk
⊆ Ei are more densely connected internally than to nodes outside the community. These843

communities organize the graph into densely connected subgraphs, typically representing specific844

topics or contexts. This structure enhances retrieval by scoping searches within relevant communities845

and facilitates reasoning by grouping related facts necessary for multi-step inference. The hierarchical846

Leiden algorithm decomposes Gi = (Vi, Ei) into L disjoint communities {Ck}Lk=1 through modularity847

maximization, where Ck = (VCk
, ECk

) denotes the k-th community subgraph. This optimization848

proceeds iteratively through three phases: (1) local node reassignment to neighboring communities849

to improve modularity; (2) aggregation of communities into super-nodes to construct a reduced850

graph; and (3) repetition of this procedure on the coarse-grained graph until convergence, yielding851

a hierarchical community structure. For complex reasoning tasks, relevant information often spans852

multiple communities, necessitating efficient retrieval by identifying communities aligned with query-853

specific subgraphs. To achieve this, we rank the top-K communities {C1, C2, . . . , CK} based on their854

cosine similarity to the user query Q and the summaries of relationship paths within each community.855

Each community Ck is summarized using the language modelMθ, which encodes its relational edges856

E rel
Ck

(subject-predicate-object triples) into a summary sk. The summarization process is formalized857

as:858

sk =Mθ(E rel
Ck
) = argmax

S
P (S | E rel

Ck
)859

where P (S | E rel
Ck
) is the likelihood of generating a summary S conditioned on the set of relation860

edges. The summary sk retains the semantic (predicate) relationships of the original subgraph. These861

summaries are then encoded into vector embeddings v(sk) using a text-embedding model, enabling862

efficient similarity computation with the query embedding v(Q):863

sim(Q, Ck) =
⟨v(Q), v(sk)⟩
∥v(Q)∥ ∥v(sk)∥

864

The top-K communities with the highest similarity scores are selected and combined into a query-865

specific subgraph GQ = (VQ, EQ), defined as:866

VQ =
K⋃

k=1

VCk
, EQ =

K⋃
k=1

ECk
867
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where VQ and EQ are the union of nodes and edges, respectively, from the selected top-K communities.868

This subgraph captures dependencies across disparate facts while retaining critical relationships869

necessary to answer the user query. Communities Ck are precomputed via the Leiden algorithm,870

ensuring modularity-optimized clustering. The top-K selection scales sublinearly with graph size, as871

coarse-grained retrieval via community summaries reduces search space before fine-grained traversal.872

Finally, the language modelMθ generates the answer Â by conditioning on the query Q and the873

subgraph GQ:874

Â =Mθ(Q,GQ) = argmax
Â

P (Â | Q,GQ)875

where P (Â | Q,GQ) denotes the likelihood of generating the answer grounded in the retrieved876

subgraph. Figure 27 visualizes the Neo4j knowledge graph’s nodes (chunks and entities) and edges,877

supporting Graph RAG’s reasoning and retrieval process.878

Figure 27: Visualization of the Neo4j knowledge graph constructed for the Graph RAG framework,
showing a subset of a larger graph containing 10,605 nodes and 29,901 edges. The graph includes
two types of nodes: chunk nodes (text segments enriched with contextual relationships) and entity
nodes (named concepts extracted from text). Edges represent MENTIONS (linking entities to their
originating chunks) and semantic relationships between entities, modeled as subject–predicate–object
triples. This structured organization supports multi-hop reasoning and community-based retrieval,
enabling the generation of accurate, context-rich descriptions of chemical processes such as PFDs
and PIDs.

5.4 Additional Results879

We present a comparative evaluation of Llama-3.2-1B and SmolLM-135M across successive fine-880

tuning stages on the respective test splits of SFT datasets (Factual QA, SynDIP, and LogiCore), pref-881

erence alignment fine-tuning datasets (DPO), and retrieval-augmented fine-tuning (RAFT) datasets882

(Local/Global RAIT). We report their performance against a comprehensive set of evaluation metrics.883

As shown in Figures 28a–28f, the evaluation was conducted using both token-level n-gram overlap884

metrics (BLEU, ROUGE-1/2/L, METEOR, SacreBLEU) and embedding-based semantic similarity885

metrics (BERTScore and Sentence-BERT cosine similarity), with all scores normalized to the [0,1]886

interval. We report the Llama-3.2-1B performance on the test splits of the Factual QA, SynDIP, and887

LogiCore datasets (see Figure 28a). The language model demonstrates strong semantic alignment,888

evidenced by high BERTScore and sentence similarity, despite lower performance on n-gram metrics,889

indicating a preference for paraphrastic generation over lexical overlap. In contrast, SmolLM-135M890

performance on the same test splits (see Figure 28d) exhibits relatively higher n-gram scores and891

sentence similarity while achieving moderate BERTScore, suggesting a tendency toward surface-level892

fidelity. When evaluated on the DPO dataset test split, Llama-3.2-1B (refer to Figure 28b) achieves893

high semantic similarity scores, whereas SmolLM-135M (Figure 28e) demonstrates balanced im-894

provements across both lexical and semantic metrics, reflecting effective alignment via instruction895

tuning. For the retrieval-augmented tasks, Llama-3.2-1B performance on the test splits of the Local896

and Global RAIT datasets (refer to Figure 28c) continues to show dominant semantic scores relative897

to n-gram metrics. SmolLM-135M (Figure 28f) exhibits comparatively lower scores across most898

metrics, with sentence similarity remaining the strongest, suggesting diminished generalization ability899
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(a) Llama-3.2-1B evaluated on test splits of Factual
QA, SynDIP, and LogiCore after Supervised Fine-
Tuning (SFT).
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(b) Llama-3.2-1B evaluated on the DPO test split
after Direct Preference Optimization (DPO).
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(c) Llama-3.2-1B evaluated on test splits of Local
and Global RAIT after Retrieval-Augmented Instruc-
tion Tuning (RAIT).
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(d) SmolLM-135M evaluated on test splits of Fac-
tual QA, SynDIP, and LogiCore after Supervised
Fine-Tuning (SFT).
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(e) SmolLM-135M evaluated on the DPO test split
after Direct Preference Optimization (DPO).
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(f) SmolLM-135M evaluated on test splits of Local
and Global RAIT after Retrieval-Augmented Instruc-
tion Tuning (RAIT).

Figure 28: Quantitative evaluation of Llama-3.2-1B and SmolLM-135M across three fine-tuning
stages: (1) Supervised Fine-Tuning (SFT) on Factual QA, SynDIP, and LogiCore; (2) Direct Prefer-
ence Optimization (DPO) using the DPO dataset; and (3) Retrieval-Augmented Instruction Tuning
(RAIT) on Local and Global RAIT. Performance is evaluated on held-out test splits for each phase
using both n-gram overlap metrics (BLEU, ROUGE, METEOR, SacreBLEU) and semantic similarity
measures (BERTScore, sentence similarity).

under retrieval-augmented long-context settings. These plots(see Figures 28a-e) provide phase-by-900

phase performance insights, highlighting how successive fine-tuning regimes induce distinct response901

behaviors across models in terms of semantic coherence, lexical fidelity, and alignment with training902

objectives.903

30



A B C D E F
Model variants

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

H
el

pf
ul

ne
ss

 S
co

re

A:Llama W/FT W/GraphRAG
B:Llama W/FT W/o GraphRAG
C:Llama W/o FT W/o GraphRAG
D:Llama W/o FT W/GraphRAG
E:SmolLM W/GraphRAG
F:SmolLM W/o GraphRAG

(a) Comparison of reward model helpfulness scores
showing that both fine-tuning and retrieval augmen-
tation improve practical utility, with Llama-3.2-1B
variants consistently outperforming SmolLM2-135M
across all configurations
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(b) Correctness evaluation demonstrating Graph
RAG’s substantial improvement in factual accuracy,
particularly for Llama-3.2-1B, confirming its effec-
tiveness in reducing hallucinations for knowledge-
intensive tasks
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(c) Coherence analysis revealing that fine-tuned mod-
els produce more logically structured outputs, with
Llama-3.2-1B exhibiting superior contextual conti-
nuity and narrative fluency
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(d) Complexity scores showing fine-tuned models
generate more detailed responses, while retrieval aug-
mentation further enhances their capacity for multi-
layered reasoning
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(e) Verbosity measurements indicating that fine-
tuning increases response length, while Graph RAG
produces more concise yet informative completions
by grounding generation in retrieved context

Figure 29: Performance evaluation of six model configurations on a 1.5K QA-pair out-of-distribution
benchmark, independent of all synthetic training datasets (Factual QA, SynDIP, LogiCore, DPO, and
RAIT). The Nvidia Nemotron-4-340B reward model assessed five key dimensions: (1) helpfulness
(practical utility), (2) correctness (factual accuracy), (3) coherence (logical flow), (4) complexity
(content depth), and (5) verbosity (response length). Results demonstrate that fine-tuning enhances
structural quality and content depth while Graph RAG significantly improves factual precision. The
Llama-3.2-1B model combining both techniques achieves optimal performance across all dimensions,
highlighting the complementary benefits of domain adaptation and structured knowledge retrieval for
complex chemical process understanding.
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Additionally, we conduct a systematic evaluation of how fine-tuning (FT) and Graph RAG affect904

quantitative performance across six language model variants, comprising two architectures at different905

scales: the larger Llama-3.2-1B and the more compact SmolLM2-135M. Each variant represents a906

distinct configuration (where W/ = With and W/o = Without): (a) Llama-3.2-1B W/FT W/Graph RAG,907

(b) Llama-3.2-1B W/FT W/o Graph RAG, (c) Llama-3.2-1B W/o FT W/o Graph RAG, (d) Llama-908

3.2-1B W/o FT W/Graph RAG, (e) SmolLM2-135M W/FT W/Graph RAG, and (f) SmolLM2-135M909

W/FT W/o Graph RAG. We rigorously evaluate these variants using the NVIDIA Nemotron-4-340B910

reward model across five key quantitative dimensions: helpfulness (practical utility), correctness911

(factual accuracy), coherence (logical flow), complexity (depth of content), and verbosity (response912

length), with detailed results presented in Figures 29a-e on the 1.5K QA-pair out-of-distribution913

benchmark. The evaluation reveals several key findings regarding model scale and methodological914

impact. Among Llama-3.2-1B variants, the FT+Graph RAG configuration (variant a) demonstrates915

superior performance, achieving peak scores in correctness and complexity by combining fine-916

tuned capabilities with retrieved knowledge, albeit with increased verbosity from incorporating917

supplementary knowledge graph content. The FT-only variant (b) maintains strong coherence and918

helpfulness but shows limitations in knowledge-intensive tasks without retrieval support. Notably, the919

Graph RAG-enabled Llama variant without FT (d) outperforms the baseline (c) in correctness, proving920

retrieval augmentation can partially compensate for missing task-specific tuning. The complete921

absence of both methods (variant c) yields the weakest performance, revealing the limitations of922

relying solely on pretrained knowledge. For SmolLM2-135M, Graph RAG improves correctness923

(variant e vs. f), but both configurations underperform relative to comparable Llama-3.2-1B variants924

across all metrics, particularly in coherence and complexity, highlighting scale’s importance for925

effectively utilizing both techniques. Results demonstrate FT substantially enhances overall response926

quality by aligning models with domain requirements, while Graph RAG provides complementary927

factual accuracy benefits. This synergy proves especially valuable in specialized domains like928

chemical process synthesis, where both task adaptation and external knowledge integration are929

crucial. The optimal configuration—Llama-3.2-1B with both FT and Graph RAG—achieves balanced930

performance across all dimensions, successfully integrating structured retrieval with fine-tuned931

understanding while maintaining reasonable verbosity. These findings carry significant implications932

for deploying language models in technical domains requiring both factual precision and contextual933

understanding. Figures 30a–30f present the training loss curves for Llama-3.2-1B and SmolLM2-934

135M models fine-tuned using QLoRA on synthetic datasets from the ChemAtlas corpus. The935

Llama-3.2-1B model shows strong convergence during supervised fine-tuning (SFT) on the Factual936

QA, SynDIP, and LogiCore datasets (Figure 30a), with loss decreasing from ∼1.5 to 0.35 within 5937

epochs (blue curve) and further improving to ∼0.1 after 15 epochs (red curve). Direct Preference938

Optimization (DPO) training (Figure 30b) achieves near-zero loss within the first epoch and maintains939

stable performance throughout both 2-epoch and 5-epoch runs. For Retrieval-Augmented Instruction940

Tuning (RAIT) (Figure 30c), the loss consistently decreases from∼0.15 to below 0.05 over 15 epochs.941

In contrast, the smaller SmolLM2-135M exhibits slower convergence with higher variance across all942

tasks. During SFT (Figure 30d), its loss declines from ∼2.2 to 0.6 but shows significant training943

instability. While DPO fine-tuning (Figure 30e) also achieves near-zero loss rapidly, RAIT training944

(Figure 30f) demonstrates more gradual improvement (∼1.5 to 0.2) with persistent fluctuations.945

These results highlight two key observations: (1) Llama-3.2-1B benefits substantially from extended946

training durations, and (2) SmolLM2-135M shows stronger dependence on fine-tuning methodology,947

with DPO yielding more stable convergence than SFT. The computational cost analysis (Figures948

31a–31d) reveals DPO requires the fewest GPU hours, while SFT and RAIT costs vary with dataset949

complexity.950

5.4.1 Evaluation on a Generalization Benchmark951

We conduct a comparative evaluation of the fine-tuned Llama-3 1B model (Llama FT) against952

GPT-4o using a held-out 1.5K QA-pair generalization benchmark dataset, as shown in Figure 32.953

Performance is assessed across five core metrics—helpfulness, correctness, coherence, complexity,954

and verbosity—each scored on a 0–4 scale using the Nvidia/Nemotron-4-340B reward model. This955

out-of-distribution (OOD) benchmark is entirely disjoint from the synthetic datasets used during956

model development—including both training and evaluation phases—which comprise Factual QA,957

SynDIP, LogiCore, and Local/Global RAIT and DPO. Each dataset features predefined training,958

validation, and test splits. As illustrated in Figure 32, GPT-4o consistently achieves high scores across959

all metrics, establishing a strong performance baseline.960
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(a) Supervised fine-tuning (SFT) loss for Llama 3.2
1B on Factual QA, SynDIP, and LogiCore datasets.
Training loss decreases from ∼1.4 to 0.35 in 5 epochs
(blue) and reaches ∼0.1 after 15 epochs (red), show-
ing consistent convergence.
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(b) Direct Preference Optimization (DPO) loss for
Llama 3.2 1B. The loss converges to near-zero within
one epoch and maintains stability through both 2-
epoch (red) and 5-epoch (blue) training runs.
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(c) Training loss for Llama 3.2 1B on multi-scale
RAIT datasets (Local/Global RAIT). The 5-epoch run
(blue) achieves ∼0.15 loss, while 15 epochs (red)
reduce loss below 0.05, indicating effective learning.
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(d) SFT loss for SmolLM2-135M on Factual QA,
SynDIP, and LogiCore datasets. Loss decreases from
∼2.1 to ∼0.6 over 15 epochs, with higher variance
than larger models.
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(e) DPO loss for SmolLM2-135M. Initial loss of
0.35 reaches near-zero within one epoch and re-
mains stable through 5 epochs, demonstrating effi-
cient preference learning.
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(f) Training loss for SmolLM2-135M on RAIT
datasets (Local/Global RAIT). Loss improves from
∼1.4 to 0.2 over 15 epochs despite higher noise,
showing gradual learning.

Figure 30: Training loss curves across different fine-tuning approaches and model sizes. Top row
shows Llama 3.2 1B results for (a) supervised fine-tuning, (b) direct preference optimization, and
(c) RAIT training. Bottom row presents corresponding results for SmolLM2-135M, demonstrating
consistent learning patterns across model scales with expected variance differences.
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(a) Computational requirements for Llama-3.2-1B.
RAIT demanded the most wall-clock time (1463.4
min), followed by supervised QA tuning (1315.2
min), with DPO being the fastest (108.1 min).
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(b) Environmental impact for Llama-3.2-1B. Super-
vised QA tuning produced the highest CO2 emis-
sions (0.89 kg), followed by RAIT (0.76 kg), with
DPO being the most efficient (0.06 kg).
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(c) Computational requirements for SmolLM2-
135M. Supervised QA tuning required the most time
(640.3 min), followed by RAIT (442.3 min), with
DPO being the fastest (41.5 min).
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(d) Environmental impact for SmolLM2-135M.
RAIT emitted the most CO2 (0.41 kg), followed
by supervised QA tuning (0.26 kg), with DPO being
the most efficient (0.04 kg).

Figure 31: Comparison of computational efficiency and environmental impact for fine-tuning Llama-
3.2-1B (top) and SmolLM2-135M (bottom) across three approaches: (1) supervised QA tuning, (2)
DPO, and (3) RAIT. Left panels (a,c) show wall-clock training time as a measure of computational
requirements. Right panels (b,d) show the resulting CO2 emissions as a measure of environmental
impact. DPO was consistently the most efficient method in both dimensions.
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Figure 32: Performance comparison between the fine-tuned Llama-3.2-1B model and GPT-4o on
a held-out 1.5K QA-pair generalization benchmark, evaluated using the Nvidia/Nemotron-4-340B
reward model. GPT-4o establishes a strong baseline, outperforming Llama-3.2-1B in most metrics
(helpfulness, correctness, complexity). However, Llama-3.2-1B achieves comparable coherence and
significantly lower verbosity. Larger error bars indicate higher variance in Llama-3.2-1B’s responses.
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Figure 33: Zero-shot performance of the pretrained Llama-3.2-1B model across three configurations:
(1) GraphRAG + feedback, (2) GraphRAG only, and (3) no enhancements. Evaluated on the same
1.5K QA benchmark with the Nvidia/Nemotron-4-340B reward model (0–4 scale), the combined
GraphRAG+feedback variant achieves the highest scores, particularly in helpfulness and correctness.
Performance degrades progressively when either component is removed, demonstrating their syner-
gistic role in zero-shot generalization.

The fine-tuned Llama-3 1B model demonstrates competitive results: it nearly matches GPT-4o in961

coherence, trails slightly in helpfulness and correctness, and produces significantly more concise962

responses, as reflected by lower verbosity scores. However, the larger error bars for Llama-3 1B963

suggest greater variability in performance across the generalization dataset. These results indicate964

that despite its smaller size, Llama-3 1B rivals GPT-4o in key quality dimensions while offering965

practical advantages in response brevity and computational efficiency. We further evaluate the zero-966

shot performance of the pretrained Llama-3 1B model, augmented with GraphRAG and feedback967

mechanisms, without any additional fine-tuning on synthetic datasets. As shown in Figure 33, we968

test three configurations on the same 1.5K QA-pair generalization benchmark dataset: (1) Llama-3969

1B with both GraphRAG and feedback, (2) Llama-3 1B with GraphRAG but without feedback, and970

(3) Llama-3 1B without either GraphRAG or feedback. All configurations are evaluated using the971

Nvidia/Nemotron-4-340B reward model across the same five metrics. The results demonstrate that972

the configuration incorporating both GraphRAG and feedback consistently outperforms the other two973

variants, with especially notable gains in helpfulness and correctness—approaching a reward score of974

3.0. These findings underscore the synergistic benefit of retrieval and critique mechanisms, even in975

the absence of task-specific fine-tuning, for improving zero-shot generalization. While coherence976

remains largely similar across all configurations, the improvements in helpfulness and correctness977

are more pronounced. Overall, GraphRAG substantially enhances language model performance by978

enabling more accurate and useful responses, while feedback mechanisms independently contribute979

meaningful quality improvements.980

5.4.2 Ablation Study: Head-to-Head Multi-Metric Evaluation of Framework Variants.981

We evaluate six framework variants to analyze the individual and combined effects of fine-tuning982

(FT) and GraphRAG. Variant (A) represents the Llama-3.2 1B model w/ both fine-tuning and983

GraphRAG enabled. Variant (B) uses the fine-tuned Llama-3.2 1B model but excludes GraphRAG984

(w/o GraphRAG). Variant (C) employs the pre-trained Llama-3.2 1B model w/o fine-tuning but985

w/ GraphRAG, while variant (D) serves as the baseline, featuring the pre-trained Llama-3.2 1B986

model w/o fine-tuning and w/o GraphRAG. For the smaller model, variant (E) applies the fine-tuned987

SmolLM2-135M model w/ GraphRAG, and variant (F) represents the fine-tuned SmolLM2-135M988

model w/o GraphRAG. As shown in Figure 35, across all metrics—BERT (semantic similarity),989

BLEU (n-gram precision), METEOR (lexical and semantic alignment), and ROUGE (unigram,990

bigram, and longest-sequence overlap)—the results demonstrate that Variant A (Llama-3.2 1B w/991

both fine-tuning and GraphRAG) consistently achieves the highest performance. Both fine-tuning992

and GraphRAG independently improve performance beyond the baseline, while their combination993

achieves peak performance. Specifically, Figure 35(a) presents BERT scores, which assess semantic994

similarity across the six framework variants. The results highlight the benefits of fine-tuning and995

GraphRAG: Variant A (Llama-3.2 1B w/FT w/GraphRAG) achieves the highest score ( 0.9), indicating996

superior semantic alignment. Comparisons among the Llama-3.2 1B variants (A–D) show that997

fine-tuning and GraphRAG each independently improve performance over the baseline (D). A998
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similar positive effect occurs for the fine-tuned SmolLM2-135M model, where GraphRAG enhances999

performance (E vs. F). These findings confirm that both methods improve semantic quality, with the1000

optimized Llama-3.2 1B model (Variant A) delivering the best performance. Figure 35(b) displays1001

BLEU scores, measuring n-gram precision across the six framework variants. Variant A (Llama-1002

3.2 1B w/FT w/GraphRAG) achieves the highest score ( 0.17), outperforming other variants by a1003

wide margin. Analysis of Llama-3.2 1B variants (A–D) shows that fine-tuning alone significantly1004

improves precision over the pre-trained baseline (D), while the addition of GraphRAG further boosts1005

performance (A vs. B). A comparable but smaller improvement occurs for the fine-tuned SmolLM2-1006

135M model with GraphRAG (E vs. F). These results indicate that both fine-tuning and GraphRAG1007

independently enhance precision, with their combined implementation in Variant A yielding optimal1008

results. Figure 35(c) presents METEOR scores evaluating lexical and semantic alignment across the1009

six variants. Fine-tuned Llama-3.2 1B models (Variants A and B, both >0.3) significantly outperform1010

non-fine-tuned counterparts (Variants C and D). GraphRAG provides additional gains for both Llama-1011

3.2 1B (A vs. B, C vs. D) and fine-tuned SmolLM2-135M (E vs. F), confirming fine-tuning’s primary1012

role in score enhancement with GraphRAG offering secondary benefits. Notably, the top Llama1013

configurations (A and B) consistently surpass all SmolLM2-135M variants. Figure 35(d) shows1014

ROUGE-1 unigram overlap results, with Variant A (Llama-3.2 1B w/FT w/GraphRAG) achieving1015

the highest score (>0.5). Both fine-tuning and GraphRAG independently improve performance over1016

the pre-trained baseline (Variant D), while GraphRAG also benefits the fine-tuned SmolLM2-135M1017

(E vs. F), demonstrating their synergistic effect on unigram overlap optimization with Variant A1018

delivering peak performance. Figure 35(e) displays ROUGE-2 scores measuring bigram overlap1019

across the six framework variants. Variant A (Llama-3.2 1B with both fine-tuning and GraphRAG)1020

achieves the highest score (>0.20). Both components independently enhance performance relative1021

to the baseline (Variant D), with the fine-tuned SmolLM2-135M also showing GraphRAG benefits1022

(E vs. F). Figure 35(f) shows ROUGE-L scores evaluating sentence-level alignment, where Variant1023

A again leads ( 0.26). Fine-tuning drives most improvement for Llama-3.2 1B (A vs. B) while1024

GraphRAG provides complementary gains, a pattern mirrored in SmolLM2-135M (E vs. F). These1025

results demonstrate that Variant A’s combined approach yields optimal performance, with fine-tuning1026

contributing primary improvements and GraphRAG offering secondary enhancements across both1027

metrics. The consistent pattern across ROUGE-2 and ROUGE-L confirms the synergistic effect of1028

these components in improving both bigram matching and longer-sequence alignment. Figure 34(a)1029

reports SacreBLEU scores (n-gram precision) across six model variants. Variant A (Llama-3.21030

1B w/FT w/GraphRAG) achieves superior performance (≈ 0.168). Fine-tuning alone substantially1031

boosts Llama-3.2 1B’s scores (B vs. D), with GraphRAG providing further enhancement (A vs.1032

B). The pretrained baseline (D) performs weakest, while GraphRAG also benefits the fine-tuned1033

SmolLM2-135M (E vs. F). Llama-3.2 1B consistently outperforms SmolLM2-135M across all1034

variants. Figure 34(b) shows semantic alignment scores (> 0.85), with Variant A peaking at ≈ 0.93.1035

Fine-tuning drives most improvement (B vs. D), while GraphRAG provides smaller gains (A vs. B).1036

The trend holds for both Llama-3.2 1B (A,B) and SmolLM2-135M (E,F), with baseline D performing1037

weakest.1038
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(a) SacreBLEU evaluation showing n-gram precision.
Variant A (≈0.168) demonstrates optimal performance,
with fine-tuning providing major gains and GraphRAG
further enhancing results.

A B C D E F
Model Variants

0.0

0.2

0.4

0.6

0.8

1.0

Si
m

ila
ri

ty
 S

co
re

A:Llama W/FT W/Graph RAG
B:Llama W/FT W/o Graph RAG
C:Llama W/o FT W/Graph RAG
D:Llama W/o FT W/o Graph RAG
E:SmolLM W/FT W/Graph RAG
F:SmolLM W/FT W/o Graph RAG

(b) Similarity score analysis reveals high semantic align-
ment (>0.85) across variants. Variant A peaks at ≈0.93,
slightly exceeding Variant B and significantly outper-
forming smaller model configurations.

Figure 34: Additional metric evaluation (SacreBLEU, Similarity Score) for the six framework variants
on the 1.5K QA-pair generalization benchmark. Results confirm the pattern observed in Figure 35: (1)
fine-tuned Llama-3.2 1B variants (A and B) consistently outperform SmolLM2-135M counterparts
(E and F), (2) the baseline configuration (D) remains the weakest, and (3) Variant A (with both
fine-tuning and GraphRAG) delivers optimal performance across all quality dimensions.
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(a) BERTScore evaluation across six framework
variants on the 1.5K QA-pair generalization
benchmark. Variant A (Llama-3.2 1B w/FT

w/GraphRAG) achieves the highest semantic
similarity (∼0.9), demonstrating the combined

benefit of fine-tuning and GraphRAG.
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(b) BLEU score analysis showing n-gram precision
improvements. Variant A (Llama-3.2 1B w/FT

w/GraphRAG) leads with a ∼0.17 score,
outperforming other configurations by significant

margins.
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(c) METEOR scores assessing lexical and semantic
alignment. Fine-tuned Llama-3.2 1B variants (A
and B) score >0.3, with GraphRAG providing

additional gains (A vs. B).
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(d) ROUGE-1 evaluation of unigram overlap.
Variant A (Llama-3.2 1B w/FT w/GraphRAG)

achieves a >0.5 score, showing that both
fine-tuning and GraphRAG independently improve

performance.
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(e) ROUGE-2 analysis of bigram overlap. Variant A
maintains the lead (>0.20), with the fine-tuned

SmolLM2-135M also benefiting from GraphRAG
(E vs. F).
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(f) ROUGE-L assessment of longest common
subsequence. Variant A shows the best performance
(∼0.26), with fine-tuning driving most improvement
and GraphRAG providing complementary benefits.

Figure 35: Comprehensive evaluation of six framework variants (A–F) using standard NLP met-
rics on the 1.5K QA-pair generalization benchmark. Results demonstrate that Variant A consis-
tently achieves the highest scores, with fine-tuning and GraphRAG offering complementary im-
provements. Configuration details: A=Llama-3.2 1B w/FT w/GraphRAG, B=Llama-3.2 1B w/FT
w/o GraphRAG, C=Llama-3.2 1B w/o FT w/GraphRAG, D=baseline (Llama-3.2 1B w/o FT w/o
GraphRAG), E=SmolLM2-135M w/FT w/GraphRAG, F=SmolLM2-135M w/FT w/o GraphRAG.
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5.4.3 Computational Tradeoffs: Runtime and Carbon Costs Across Framework Variants1039

We analyze the computational efficiency and environmental footprint of the six framework variants1040

during evaluation on the 1.5K QA-pair generalization benchmark. Figure 36 quantifies runtime1041

and estimated CO2 emissions across Llama-3.2 1B and SmolLM2-135M configurations. Larger1042

Llama variants (A–D) consistently require more inference time (Figure 36a) and produce higher1043

carbon emissions (Figure 36b) than compact SmolLM counterparts (E, F). Within each model family,1044

GraphRAG increases computational overhead and emissions—evident from comparisons A vs B, D1045

vs C, and E vs F. Variant D (Llama-3.2 1B w/o FT w/GraphRAG) incurs the highest computational1046

cost and carbon output, while Variant F (SmolLM2-135M w/FT w/o GraphRAG) is the most resource-1047

efficient. These results highlight a clear tradeoff between model size, retrieval augmentation, and1048

evaluation efficiency.1049
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(a) Model runtime (minutes) on the 1.5K QA-pair gen-
eralization benchmark. Llama-3.2 1B variants (A–D) re-
quire substantially longer inference time than SmolLM2-
135M variants (E, F). Enabling GraphRAG increases
model runtime across all variants (A vs B, D vs C, E vs
F). Variant D is slowest; Variant F is fastest.
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(b) Estimated model CO2 emissions during evaluation.
Llama-3.2 1B variants (A–D) show higher emissions than
SmolLM2-135M variants (E, F). GraphRAG consistently
increases environmental cost across all model variants
(A vs B, D vs C, E vs F). Variant D yields the highest
emissions; Variant F yields the lowest.

Figure 36: Evaluation-time computational cost and carbon impact across six framework variants
(A–F) on the 1.5K QA-pair generalization benchmark. (a) Model runtime in minutes. (b) Estimated
model CO2 emissions in kg. SmolLM2-135M variants (E, F) are markedly more efficient than Llama
variants. GraphRAG increases both runtime and emissions across all configurations.

5.5 Inference Optimization Techniques1050

5.5.1 Width and Depth Pruning1051

Transformer-based language models are computationally expensive, with inference cost proportional1052

to model size multiplied by the sum of input and output tokens: Inference Cost ∝ Model Size ×1053

(Input Tokens + Output Tokens). Pruning[22, 49, 55, 65, 48, 39, 50, 13, 30] is a model compression1054

technique that removes less critical components to reduce model size and inference costs while1055

preserving accuracy. This enables efficient deployment of smaller, faster, and more cost-effective1056

models in resource-constrained environments. We consider a small-scale transformer-based language1057

model represented as a parameterized function:1058

Fθ : RT×dmodel → RT×V1059

where T is the sequence length, dmodel is the hidden dimensionality, and V is the vocabulary size. The1060

model consists of L stacked transformer blocks {Tℓ}Lℓ=1, each comprising a Grouped Query Attention1061

(GQA) module, a feedforward network (FFN), residual connections, and pre-layer normalization.1062

Grouped Query Attention (GQA) separates the number of query heads from key-value heads to1063

improve efficiency. Let Hq and Hkv denote the number of query and key-value heads, respectively,1064

with Hq ≥ Hkv. The grouping factor g = Hq/Hkv represents the number of query heads that1065

share each key-value head, and dh = dmodel/Hq is the dimensionality per query head. Given input1066

X ∈ RT×dmodel , the linear projections are:1067

Q = XWQ ∈ RT×Hq×dh , K = XWK ∈ RT×Hkv×dh ,

V = XWV ∈ RT×Hkv×dh

1068
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For each query head i ∈ {1, . . . ,Hq}, its associated key-value head is determined by k(i) =1069

⌊(i− 1)/g⌋, which maps each query head to its corresponding key-value head by grouping g query1070

heads per key-value head. The attention output for head i is:1071

Oi = softmax

(
QiK

⊤
k(i)√
dh

)
Vk(i) ∈ RT×dh1072

The final GQA output is obtained by concatenating all attention heads and applying an output1073

projection:1074

GQA(X) = Concat(O1, . . . ,OHq
)WO1075

where WO ∈ Rdmodel×dmodel is the output projection matrix. The decoder language models implement1076

FFNs using Gated Linear Units (GLUs), which apply an activation function to one projection and use1077

it to gate another projection:1078

FFN(h) = W2

(
ϕ(W

(a)
1 · h)⊙ (W

(b)
1 · h)

)
1079

where W (a)
1 ,W

(b)
1 ∈ Rdff×dmodel are the gate and up-projection matrices, W2 ∈ Rdmodel×dff is the down-1080

projection matrix, ϕ is an activation function (typically SiLU or GELU), and ⊙ denotes element-wise1081

multiplication. The Width pruning reduces the intermediate FFN dimensionality dff by eliminating1082

unimportant neurons. For the j-th neuron output zj from the GLU, we estimate its importance using1083

gradient-based scoring:1084

Ij = Ex∼D

[∣∣∣∣ ∂L∂zj · zj
∣∣∣∣]1085

where L is the task loss andD is the data distribution. This importance score Ij quantifies the average1086

contribution of neuron j to the task loss. Neurons with the lowest Ij values are pruned, reducing1087

the width to d̃ff < dff by removing corresponding rows in W
(a)
1 and W

(b)
1 , and columns in W2. The1088

depth pruning removes entire transformer blocks based on their contribution to the task. For layer1089

ℓ ∈ {1, . . . , L}, its importance is computed as:1090

I(ℓ) = Ex∼D

[∣∣∣∣〈 ∂L
∂h(ℓ)

,h(ℓ)

〉∣∣∣∣]1091

where h(ℓ) is the residual output of block ℓ, and ⟨·, ·⟩ denotes the inner product. Layers with small1092

I(ℓ) values are removed, and the retained set is denoted S ⊂ {1, . . . , L} with |S| = L̃ ≪ L. For1093

joint width and depth pruning, we introduce binary gates to control both layer and neuron retention:1094

γ(ℓ) ∈ {0, 1} for layer ℓ retention and g
(ℓ)
j ∈ {0, 1} for neuron j retention in layer ℓ. The forward1095

computation becomes:1096

h(ℓ) = h(ℓ−1) + γ(ℓ) · FFN(g)
ℓ

(
GQAℓ(LN(h(ℓ−1)))

)
1097

where LN denotes layer normalization, and the gated FFN is defined as:1098

FFN(g)
ℓ (h) =

dff∑
j=1

g
(ℓ)
j ·

[
W2[:, j] ·

(
ϕ(W

(a)
1 [j, :] · h) · (W (b)

1 [j, :] · h)
)]

1099

The constrained optimization objective combines empirical risk minimization with sparsity penalties1100

to achieve structured pruning:1101

min
θ,γ,g

E(x,y)∼D [L(Fθ,γ,g(x), y)] + λ1

L∑
ℓ=1

(1− γ(ℓ)) + λ2

L∑
ℓ=1

dff∑
j=1

(1− g
(ℓ)
j )1102

where Fθ,γ,g is the pruned model with parameters θ and gates γ, g, (x, y) represents input-output1103

pairs from the training distribution D, L(·, ·) is the task-specific loss function (e.g., cross-entropy),1104

λ1 controls the depth sparsity penalty (number of pruned layers), and λ2 controls the width sparsity1105

penalty (number of pruned neurons). To enable end-to-end differentiability, we relax the binary gates1106

using the Concrete distribution (also known as the Gumbel-Softmax trick). Each gate g
(ℓ)
j ∈ [0, 1] is1107

sampled as:1108

g
(ℓ)
j = σ

(
1

τ

(
logα

(ℓ)
j + log u− log(1− u)

))
, u ∼ U(0, 1)1109
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where u ∼ U(0, 1) is a uniform random variable, σ(·) is the sigmoid function, α(ℓ)
j is a learnable1110

logit parameter, and τ > 0 is a temperature parameter controlling the smoothness of the relaxation.1111

A similar sampling strategy is applied to layer-level gates γ(ℓ). The joint pruning approach performs1112

structured pruning during fine-tuning to simultaneously optimize model performance and sparsity. The1113

optimization process learns both the pruned model structure and the corresponding parameters θ. After1114

training, components with binarized gates γ(ℓ) = 0 or g(ℓ)j = 0 are permanently removed, retaining1115

only the most important neurons and layers. This structured sparsity approach achieves significant1116

model compression while maintaining downstream task accuracy. The regularization hyperparameters1117

λ1 and λ2 control the trade-off between accuracy and compression, allowing practitioners to tune1118

the desired level of sparsity based on deployment constraints. Figure 37 demonstrates the effects of1119

width and depth pruning on model performance using five qualitative metrics scored from 0 to 4 scale1120

by the Nemotron-4-340B-Reward model. Both pruning methods generally decrease performance1121

scores as pruning percentages increase. Width pruning (Figure 37a) particularly affects correctness,1122

complexity, and helpfulness, showing notable drops at the 20% level, while coherence remains1123

relatively stable. Depth pruning (Figure 37b) more severely impacts coherence and complexity,1124

especially at higher pruning ratios (20% and 50%). Correctness shows resilience to low-level depth1125

pruning (1-5%) but declines significantly thereafter. Verbosity remains the least affected metric across1126

both methods at low to moderate pruning levels. Figures 38a and 38b show the impact of width1127

and depth pruning on ChemEval benchmark performance for PFD/PID generation tasks involving1128

unseen chemicals. Both methods demonstrate quality degradation across all metrics as pruning1129

percentages increase. Width pruning (Figure 38a) at higher levels (particularly 20%) significantly1130

reduces correctness and complexity scores. Depth pruning (Figure 38b) similarly reduces overall1131

quality, with coherence and correctness notably impacted at 20% and 50% levels. Verbosity remains1132

the least affected metric for both pruning approaches on ChemEval tasks, indicating that structural1133

compression via either method hinders the model’s ability to generate accurate and coherent PFD/PID1134

descriptions for novel chemical processes. Figures 39a and 39b present the relationship between1135

computational time and pruning percentages for width and depth pruning, respectively. Figure 39a1136

shows that increasing width pruning correlates with decreased computational time: baseline (0%)1137

required 1350.2 minutes, 5% pruning took 1269.1 minutes, and 20% pruning took 1066.2 minutes.1138

Similarly, Figure 39b indicates that depth pruning also reduces computational time, with baseline1139

at 1350.2 minutes, decreasing through 1% (1342.8 min), 5% (1296.2 min), and 20% (1120.7 min),1140

achieving the most significant reduction at 50% depth pruning (796.6 minutes). Both figures illustrate1141

a consistent inverse relationship between pruning percentage and computational time.1142
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(a) Impact of width pruning on fine-tuned model perfor-
mance using reward model scores (0-4 scale) across five met-
rics on the 1.5K QA-pair generalization benchmark. Higher
pruning percentages degrade correctness and helpfulness
most significantly.
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(b) Impact of depth pruning on fine-tuned model perfor-
mance using reward model scores (0-4 scale) across five
metrics on the 1.5K QA-pair generalization benchmark. Per-
formance decline is most pronounced in coherence and com-
plexity.

Figure 37: Evaluation of width (a) and depth (b) pruning effects on fine-tuned model quality.
Performance measured using reward model scores across five dimensions on the 1.5K QA-pair
generalization benchmark, demonstrating trade-offs between model compression and response quality.
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(a) Impact of width pruning on PFD/PID generation per-
formance using reward model scores (0-4 scale) on the
ChemEval benchmark. Quality degradation increases with
higher pruning percentages.
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(b) Impact of depth pruning on PFD/PID generation per-
formance using reward model scores (0-4 scale) on the
ChemEval benchmark. Layer removal leads to progressive
performance decline.

Figure 38: Evaluation of width (a) and depth (b) pruning effects on specialized task performance for
zero-shot PFD/PID generation. Performance measured using reward model scores on the ChemEval
benchmark, illustrating compression impact on domain-specific capabilities.
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(a) Computational time reduction (minutes) as
a function of width pruning percentage on the
fine-tuned model during evaluation.
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(b) Computational time reduction (minutes) as
a function of depth pruning percentage on the
fine-tuned model during evaluation.

Figure 39: Computational efficiency gains from width (a) and depth (b) pruning during evaluation.
Plots demonstrate runtime reduction (minutes) as pruning percentage increases, showing the potential
for faster inference with compressed models.

5.5.2 Test-Time Inference Scaling via Self-Consistency, Confidence-Weighted Entropy, and1143

Self-Reflection1144

To address limitations in factual accuracy, reliability, and reasoning robustness in small-scale language1145

models (SLMs), we propose a test-time inference scaling mechanism [3, 62, 29, 28, 44, 45, 25, 62,1146

59, 4, 60, 5, 36] that combines three complementary strategies: (1) self-consistency decoding, (2)1147

confidence-weighted entropy scoring, and (3) a self-reflection-based revision mechanism. Unlike fine-1148

tuning or prompt engineering approaches, this method operates purely at inference time, requiring no1149

model parameter updates, and is particularly well-suited for tasks involving multi-step reasoning, such1150

as automatic generation of PFDs and PIDs. The first step involves multiple candidate generation via1151

Chain-of-Thought sampling. Given an input query x, the model generates a set of N diverse reasoning1152

trajectories Y = y(1), y(2), . . . , y(N), where each candidate sequence y(i) = (y
(i)
1 , y

(i)
2 , . . . , y

(i)
T ) ∈1153

VT is produced using stochastic decoding (e.g., nucleus sampling or top-k sampling) under a Chain-1154

of-Thought (CoT) prompting strategy. Here, V denotes the model vocabulary and T represents the1155

maximum generation length. At each decoding step t, the token y
(i)
t is sampled from the conditional1156

distribution:1157

Pθ(v | x, y(i)<t), ∀v ∈ V,1158

where θ denotes the LLM’s parameters and y
(i)
<t refers to the prefix tokens up to decoding step t− 1.1159

Next, we discuss the confidence-weighted entropy scoring mechanism. We evaluate the quality of1160

each generated sequence y(i) via a confidence-weighted entropy score that reflects model uncertainty1161
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per decoding step and overall sequence likelihood. At decoding step t, the model provides the1162

predictive distribution P
(i)
t over the vocabulary V , conditioned on the input x and prefix y

(i)
<t:1163

P
(i)
t (v) = Pθ(v | x, y(i)<t), ∀v ∈ V.1164

The entropy of this distribution at decoding step t for candidate i is:1165

H
(i)
t = −

∑
v∈V

P
(i)
t (v) logP

(i)
t (v),1166

where H
(i)
t quantifies the model’s uncertainty about the token choice at decoding step t. To reflect1167

the relative importance or semantic salience of each token position in the generated output y(i), we1168

derive importance weights w(i)
1 , . . . , w

(i)
T using an attention-weighted gradient attribution method.1169

Specifically, let α(i)
t denote the average attention weight received by the t-th generated token y

(i)
t1170

across all attention heads and layers in the LLM. We define the importance weight for decoding step1171

t as:1172

w
(i)
t =

α
(i)
t ·

∣∣∣∣∂L(i)

∂ℓ
(i)
t

∣∣∣∣∑T
t′=1 α

(i)
t′ ·

∣∣∣∣∂L(i)

∂ℓ
(i)

t′

∣∣∣∣ · T,1173

where L(i) is the negative log-likelihood loss over the candidate sequence y(i), defined as:1174

L(i) = −
T∑

t=1

logPθ(y
(i)
t | x, y

(i)
<t).1175

Here, ℓ(i)t denotes the language model’s output logits at decoding step t for candidate i, which are1176

used to compute the gradient ∂L(i)

∂ℓ
(i)
t

for the attention-weighted attribution. The gradient term
∣∣∣∣∂L(i)

∂ℓ
(i)
t

∣∣∣∣1177

captures the sensitivity of the loss with respect to the predicted logits for token y
(i)
t . This formulation1178

ensures the weights are normalized such that:1179
T∑

t=1

w
(i)
t = T.1180

These weights w(i)
t provide a profile of token importance across the sequence, influenced by both1181

attention patterns and gradient magnitudes. Using the token-level entropies H(i)
t and the importance1182

weights w(i)
t , we compute the weighted average entropy for the complete candidate sequence y(i):1183

H̄(i)
w =

1

T

T∑
t=1

w
(i)
t ·H

(i)
t .1184

This metric aggregates token-level uncertainty, assigning greater significance to uncertainty occurring1185

at decoding steps deemed important by the attention-gradient attribution. Lower values of H̄(i)
w1186

indicate higher confidence, particularly for semantically salient tokens. To measure the overall1187

likelihood of a generated sequence according to the model, we compute the normalized average1188

log-probability:1189

ℓ̄(i) =
1

T

T∑
t=1

logPθ(y
(i)
t | x, y

(i)
<t).1190

A higher (less negative) value of ℓ̄(i) indicates that the sequence is more fluent or probable under the1191

model Pθ. To combine model confidence and fluency, we assign a final score to each candidate y(i)1192

by balancing its weighted entropy and average log-likelihood:1193

Score(y(i)) = λ · H̄(i)
w − (1− λ) · ℓ̄(i),1194

where λ ∈ [0, 1] is a tunable hyperparameter controlling the trade-off between minimizing uncertainty1195

(favoring lower H̄(i)
w ) and maximizing sequence likelihood (favoring higher ℓ̄(i)). A lower overall1196
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Score(y(i)) indicates a more desirable candidate sequence, reflecting a better balance between1197

confidence and fluency. Next, we will discuss about the Top-K Candidate Selection. After computing1198

scores for all N generated sequences in Y , we rank them and select the top-K candidates:1199

Ytop-K = TopK y ∈ Y (−Score(y),K) ,1200

where TopK(S,K) denotes selecting the K elements with the highest values in set S (corresponding1201

here to the lowest scores after negation). Next, we will discuss about the Self-Reflection Mechanism.1202

Following the selection of top-K candidates Ytop-K, a self-reflection mechanism is applied to1203

enhance reasoning robustness. In the critique phase, an auxiliary model ϕ (which may be identical1204

to θ or a separately fine-tuned model) critiques each candidate y(i) ∈ Ytop-K, generating a critique1205

c(i) = Critiqueϕ(y
(i)) that aims to identify logical inconsistencies, missing justifications, or factual1206

inaccuracies in the reasoning trajectory. Subsequently, in the revision phase, the model uses the1207

critique to generate an improved sequence: y(i)rev = Reflectϕ(y(i), c(i)). This yields a set of revised1208

candidates: Yrev = y
(i)
rev : y(i) ∈ Ytop-K. Next, we will discuss the final Consensus Selection. For1209

the final aggregation, we form a consensus candidate pool combining the top-K original candidates1210

and their revisions: Ycons = Ytop-K ∪ Yrev. A deterministic extraction function a(·) is then applied1211

to each candidate y ∈ Ycons to retrieve its final proposed answer (e.g., the concluding statement),1212

resulting in an answer set: A = {a(y) : y ∈ Ycons}. The final output a∗ is determined by majority1213

vote over the extracted answers: a∗ = mode(A), selecting the most frequently occurring answer1214

among the candidates. This multi-stage inference process—combining exploration through sampling,1215

confidence-weighted evaluation, targeted self-reflection, and robust consensus selection—significantly1216

improves output reliability without requiring model retraining. We demonstrate the efficacy of our1217

test-time inference scaling mechanism in significantly improving the reliability of Small Language1218

Models (SLMs) while maintaining their original parameterization. Our evaluation employs Llama-1219

3.2 1B model variants with a sophisticated inference pipeline combining: (1) Chain-of-Thought1220

sampling with N = 4 diverse reasoning trajectories, (2) confidence-weighted entropy scoring1221

(λ = 0.5) for uncertainty-aware candidate selection, (3) Top-K filtering (K = 2) to retain high-quality1222

outputs, (4) internal self-reflection for iterative refinement, and (5) self-consistency aggregation1223

for final predictions. The experimental framework evaluates performance across three critical1224

benchmarks: instruction following (via Direct Preference Optimization; DPO), knowledge-intensive1225

question answering (using Retrieval-Augmented Generation; RAG), and general question answering1226

(through Supervised Fine-Tuning; SFT). Assessment leverages both traditional NLP metrics and fine-1227

grained qualitative dimensions—including Correctness, Coherence, Helpfulness, Complexity, and1228

Verbosity—with qualitative judgments provided by the Nemotron-4-340B reward model for consistent1229

evaluation. Results demonstrate consistent improvements across standard NLP metrics—including1230

METEOR, ROUGE variants, BERTScore, and Similarity (Figures 40–42)—indicating enhanced1231

lexical and semantic alignment. Qualitative assessment reveals particularly strong gains in factual1232

correctness (Figure 44) and helpfulness (Figure 45), while maintaining baseline coherence levels1233

(Figure 43). These improvements are accompanied by moderate increases in output complexity1234

and verbosity (Figures 46 and 47), representing an expected trade-off between generation richness1235

and conciseness. The success stems from the multi-stage architecture synergistically combining1236

exploratory sampling for diverse solution generation, confidence-guided filtering for high-quality1237

candidate selection, reflective refinement for iterative improvement, and consensus-based selection1238

for robust final predictions. This pipeline delivers markedly improved model reliability with strong1239

gains in factual accuracy, making it well-suited for high-stakes applications where computational1240

overhead is justified by the need for dependable performance.1241

5.6 Related Work1242

This section reviews recent advances in data-driven PFD and PID generation, highlighting their1243

methodologies, limitations, and gaps in industrial applicability. The Generative Flowsheet Trans-1244

former [53] introduces a transformer-based model that autocompletes chemical process flowsheets by1245

treating them as linear text sequences using the SFILES 2.0 notation—a structured, text-based format1246

for representing process flow diagrams. The model is pre-trained on synthetic data and fine-tuned on1247

real flowsheet data, with both datasets converted into SFILES 2.0 strings. These strings serve as input1248

for learning the structural grammar of flowsheets, achieving low perplexity while enabling realistic1249

autocompletion. However, the method relies heavily on synthetic data, which poorly reflects industrial1250

variability, and suffers from limited real-world data, leading to unstable generalization. To address1251

the challenge of limited data availability, the **Randomized SFILES-based Data Augmentation1252
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DPO: Baseline vs. Test-Time Scaling Metrics
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Figure 40: Comparison of standard NLP metrics on the DPO dataset using a fine-tuned Llama-3.2-
1B model. The plot contrasts baseline greedy decoding (blue) against test-time inference scaling
(orange). The scaling mechanism consistently improves metrics such as METEOR, ROUGE variants,
BERTScore, and Similarity, demonstrating enhanced output quality without model parameter updates.
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RAG: Baseline vs. Test-Time Scaling Metrics

Baseline
w/ Test-Time Scaling

Figure 41: Comparison of standard NLP metrics on the RAG dataset using a fine-tuned Llama-3.2-1B
model. Results from baseline greedy decoding (blue) are compared against those from test-time
inference scaling (orange). The scaling mechanism notably improves ROUGE-1, ROUGE-L, and
Similarity, showcasing its effectiveness over standard decoding.
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QA: Baseline vs. Test-Time Scaling Metrics
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Figure 42: Comparison of standard NLP metrics on the General QA dataset using a fine-tuned
Llama-3.2-1B model. Test-time inference scaling (orange) outperforms baseline greedy decoding
(blue) across ROUGE-1, ROUGE-L, BERTScore, and Similarity, reinforcing the approach’s utility in
enhancing SLM robustness after fine-tuning.
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Figure 43: Effect of test-time inference scaling on Coherence Score across four Llama-3.2-1B vari-
ants (A: Fine-tuned with GraphRAG, B: Fine-tuned without GraphRAG, C: Base without GraphRAG,
D: Base with GraphRAG), evaluated on the LogiCore-DPO, GraphRAG-RetrievalQA, and Factual
QA datasets. Compared to baseline greedy decoding (‘Original’), the scaling mechanism (‘Test-
TimeScaling’) generally maintains or slightly improves coherence.
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Figure 44: Effect of test-time inference scaling on Correctness Score across four Llama-3.2-
1B variants, evaluated on the LogiCore-DPO, GraphRAG-RetrievalQA, and Factual QA datasets.
Compared to baseline decoding (‘Original’), the scaling mechanism (‘TestTimeScaling’) yields
consistent and significant improvements in correctness across all configurations.
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Figure 45: Effect of test-time inference scaling on Helpfulness Score across four Llama-3.2-1B
variants, evaluated on the LogiCore-DPO, GraphRAG-RetrievalQA, and Factual QA datasets. The
scaling mechanism consistently improves helpfulness over baseline decoding across all variants.

A B C D
Model variants

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Co
m

pl
ex

it
y 

Sc
or

e

A: Llama W/FT W/GraphRAG
B: Llama W/FT W/o GraphRAG

C: Llama W/o FT W/o GraphRAG
D: Llama W/o FT W/GraphRAG

Dataset
Original
TestTimeScaling

Figure 46: Effect of test-time inference scaling on Complexity Score across four Llama-3.2-1B
variants, evaluated on the LogiCore-DPO, GraphRAG-RetrievalQA, and Factual QA datasets. The
scaling mechanism introduces a slight but consistent increase in generation complexity.

technique** [41] proposes a text-based augmentation method for chemical process flowsheets using1253

SFILES 2.0 notation. This approach introduces an algorithm that applies randomized flowsheet1254

graph traversal and template-based mutations to generate structurally varied (non-canonical) yet1255

semantically equivalent flowsheet strings. The technique supports flowsheet-based process modeling1256

by expanding the diversity of machine-readable training data. However, the method is limited by its1257

dependence on the number of branching points, offering minimal augmentation for small flowsheets1258

while risking overrepresentation of larger flowsheets. Additionally, it only introduces syntactic varia-1259

tions without altering functional or topological features, limiting its ability to improve generalization1260

to structurally novel process designs. The SFILES2Seq framework [19] proposes a data-driven1261

sequence-to-sequence approach for the automatic prediction of control structures, generating PIDs1262

from PFDs. Using the SFILES 2.0 notation, both diagrams are encoded as structured text strings, en-1263

abling transformer-based translation. A T5 encoder-decoder model is trained to map PFD sequences1264

to corresponding PID sequences, guided by a custom tokenizer that captures the syntax of unit1265

operations and control elements. The model is first pre-trained on synthetically generated examples,1266

created through a Markov chain-like process that assembles subprocess modules and inserts control1267

structures based on design heuristics. It is then fine-tuned on a small real-world dataset, though1268
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Figure 47: Effect of test-time inference scaling on Verbosity Score across four Llama-3.2-1B variants,
evaluated on the LogiCore-DPO, GraphRAG-RetrievalQA, and Factual QA datasets. The scaling
mechanism leads to a marginal yet consistent increase in verbosity compared to baseline decoding.

performance is limited by dataset size and variability. To improve generalization, augmented SFILES1269

2.0 strings are generated by varying branching and control unit placements. Beam search is used1270

during inference to produce multiple PID predictions, demonstrating that NLP models can effectively1271

support automated control structure generation from PFDs. Despite strong performance on synthetic1272

data, the method struggles with real-world generalization due to limited and diverse training samples.1273

The lack of constrained decoding and oversimplified synthetic data further limits its reliability in cap-1274

turing complex industrial control structures. PID-TALK [2] is a three-stage methodology for enabling1275

natural language interaction with PIDs. First, PIDs are transformed into graph representations that1276

capture both domain hierarchies and lexical interconnections among components. These graphs are1277

then enriched with semantic labels and properties to form labeled property graphs within a knowledge1278

graph framework. Finally, a graph-based retrieval-augmented generation (graph-RAG) approach1279

is employed, where the high-level knowledge graph provides context for large language models,1280

enabling efficient, context-aware querying of PID information while improving interpretability and1281

reducing hallucinations. Despite recent innovations, these approaches exhibit critical limitations1282

that restrict their practical applicability. Current methods are unable to autonomously generate1283

novel industrial PFDs and PIDs, limiting their ability to support new or customized process designs.1284

They often neglect the broader process context—such as operational objectives, feedstock-product1285

relationships, safety constraints, and design rationales—which is essential for producing technically1286

sound schematics. Additionally, many approaches rely heavily on inadequately curated synthetic1287

datasets, failing to capture the complexity and variability of real-world industrial processes. The1288

absence of rigorous simulator-backed validation further compounds these issues, as generated PFDs1289

and PIDs are not tested for operational safety, control robustness, or engineering feasibility, posing1290

significant risks in practical deployment.1291

5.7 Auxiliary Results1292

5.7.1 Composite Reward Group Relative Policy Optimization (GRPO)1293

We propose a modification to the standard Group Relative Policy Optimization (GRPO) [43,1294

15, 27, 26] algorithm for direct fine-tuning of a small-scale language model (SLM). The SLM1295

acts as a policy network with parameters θ ∈ Θ, where Θ ⊂ Rd denotes the parameter space. It1296

implements a stochastic, autoregressive policy πθ(y | x), mapping an input prompt x ∈ X to a1297

generated output y ∈ Y . Our goal is to optimize θ such that the model’s responses better align1298

with a ground-truth reference answer rx. For each prompt x, we sample a group of G responses:1299

O(x) = {o1, o2, . . . , oG}, where oi ∼ πθold(· | x). This group-level sampling enables relative1300

comparison of outputs within each group, facilitating targeted policy updates. We assign a composite1301

reward to each generated output o using a weighted combination of three quality metrics:1302
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r(o, rx) = 0.3 · rrouge(o, rx) + 0.2 · rlength(o, rx) + 0.5 · rLLM(o, rx),1303

where rrouge(o, rx) is the ROUGE-L F1 score between o and the reference rx, measuring lexical and1304

semantic overlap. The length penalty rlength(o, rx) is defined as:1305

rlength(o, rx) =


min

(
len(o), len(rx)

)
max

(
len(o), len(rx)

) × 0.5, if len(rx) > 0,

0, otherwise,
1306

with len(·) denoting token count. This term penalizes responses that deviate from the reference1307

length, yielding values in [0, 0.5]. Lastly, rLLM(o, rx) is a normalized score ( ∈ [0, 1]) from an1308

auxiliary LLM evaluating the correctness of o against rx. For each generated output oi ∈ O(x) where1309

i ∈ {1, . . . , G}, we compute its composite reward ri ≜ r(oi, rx). To assess relative performance1310

within the group, we normalize these rewards by calculating the sample mean:1311

µx =
1

G

G∑
i=1

ri1312

and the sample standard deviation:1313

σx =

√√√√ 1

G

G∑
i=1

(ri − µx)2.1314

The normalized advantage for each output oi is then computed as:1315

Âi =
ri − µx

σx
,1316

This converts rewards to z-scores, highlighting outputs that significantly differ from the group mean1317

for policy updates. During fine-tuning, the SLM policy πθ autoregressively generates each output1318

oi = (oi,1, . . . , oi,Ti), where Ti ≜ |oi|. For each token position t ∈ {1, . . . , Ti}, the policy outputs1319

the probability πθ(oi,t | x, oi,<t) given prompt x and preceding tokens oi,<t ≜ (oi,1, . . . , oi,t−1). To1320

maintain training stability, we sample the group O(x) using the old policy πθold . For each token oi,t1321

in output oi, we compute the probability ratio:1322

ri,t(θ) =
πθ(oi,t | x, oi,<t)

πθold(oi,t | x, oi,<t)
.1323

Combining this ratio with the normalized advantage Âi, we define our modified GRPO objective:1324

JGRPO(θ) = E x∼X ,
O(x)∼πθold

[
1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

min
(
ri,t(θ)Âi,

clip(ri,t(θ), 1− ϵ, 1 + ϵ)Âi

)]
− βDKL

(
πθ(· | x)

∥∥πref(· | x)
)

1325

Here, ϵ clips the probability ratio ri,t(θ) to [1− ϵ, 1+ ϵ], preventing overly aggressive policy updates.1326

The KL divergence term βDKL(πθ∥πref) regularizes updates, where β controls the penalty strength1327

and πref is typically the initial supervised fine-tuned model. This constraint ensures the policy1328

doesn’t deviate excessively from the reference, avoiding catastrophic forgetting of previously learned1329

knowledge. The fine-tuning procedure iterates through the following steps. For each input prompt x,1330

we first sample a group of G outputs O(x) = {o1, . . . , oG} independently from the old policy πθold .1331

Next, we compute composite rewards r(oi, rx) for each output oi using our weighted combination of1332

ROUGE, length, and LLM-based metrics. These rewards are normalized within the group via mean µx1333

and standard deviation σx calculations, producing relative advantage scores Âi. For every token oi,t in1334

each generated output, we compute probability ratios ri,t(θ) = πθ(oi,t | x, oi,<t)/πθold(oi,t | x, oi,<t)1335

and construct the clipped surrogate objective JGRPO(θ). The policy parameters θ are updated via1336

gradient ascent on this objective, followed by synchronizing the old policy (θold ← θ) for the next1337

iteration. This process holistically improves response quality by combining multiple reward metrics.1338

We use gradient ascent because GRPO maximizes the reward objective JGRPO(θ), unlike supervised1339
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learning which minimizes losses. The update θ ← θ + α∇θJGRPO(θ) is mathematically equivalent1340

to descent on −JGRPO(θ). Our modified GRPO algorithm eliminates the need for a separate value1341

network through three key mechanisms: (1) computing composite rewards for each output, (2)1342

normalizing these rewards within each group to obtain relative advantages, and (3) performing direct1343

policy optimization via token-level updates. The SLM πθ thereby achieves efficient, end-to-end1344

reinforcement learning that enhances performance while preserving generation diversity, all within1345

a computationally lightweight framework. Figures 48 and 49 present the training loss trajectories1346

for a Llama 3.2 1B model fine-tuned using Group Relative Policy Optimization (GRPO) on two1347

distinct synthetic dataset categories. Figure 48 displays results for QA-style datasets (Factual QA,1348

SynDIP, and LogiCore), which enhance domain knowledge and reasoning for PFD/PID interpretation.1349

Figure 49 shows corresponding results for retrieval-augmented instruction datasets (Local RAIT1350

and Global RAIT), designed to ground responses in retrieved contextual information. Both figures1351

demonstrate consistent convergence patterns: a rapid initial loss reduction followed by gradual1352

stabilization over approximately 10 epochs for QA datasets and 13 epochs for RAIT datasets. These1353

results confirm GRPO’s effectiveness in optimizing language models for specialized chemical process1354

engineering tasks. Figures 50 and 51 compare the performance of Supervised Fine-Tuning (SFT)1355

and Composite Reward Group Relative Policy Optimization (GRPO) applied to the Llama 3.2 1B1356

and SmolLM2-135M models across five quality dimensions, as evaluated by a reward model. On the1357

1.5K QA-pair generalization benchmark (Figure 50), the GRPO-trained Llama 3.2 1B demonstrates1358

superior performance in helpfulness and correctness, while its SFT-trained counterpart achieves the1359

highest coherence. In contrast, when evaluated on the out-of-distribution ChemEval dataset (Figure1360

51)—designed to test generalization to unseen chemical processes—the GRPO-trained Llama 3.2 1B1361

consistently outperforms both the SFT-trained Llama 3.2 1B and the SFT-trained SmolLM2-135M1362

across helpfulness, correctness, coherence, and complexity, while all models show comparable1363

verbosity. These results highlight GRPO’s advantage in producing more robust and accurate model1364

behavior on novel chemical tasks compared to standard SFT.1365
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Figure 48: Training loss progression for Llama 3.2 1B fine-tuned with GRPO on QA datasets (Factual
QA, SynDIP, LogiCore), showing convergence within 10 epochs.
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Figure 49: Training loss progression for Llama 3.2 1B fine-tuned with GRPO on retrieval-augmented
datasets (Local RAIT, Global RAIT), achieving convergence in 13 epochs.
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Figure 50: Performance comparison of GRPO and SFT fine-tuning on Llama 3.2 1B and SmolLM2-
135M models, evaluated on the 1.5K QA-pair generalization benchmark. Bars show mean scores
across five quality metrics: helpfulness, correctness, coherence, complexity, and verbosity.
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Figure 51: Generalization performance of GRPO vs. SFT fine-tuning on Llama 3.2 1B and SmolLM2-
135M models, evaluated on the out-of-distribution ChemEval dataset. GRPO shows clear advantages
across helpfulness, correctness, coherence, and complexity, with similar verbosity across models.

5.7.2 t-SNE/PCA Analysis of Semantic Structure in LLMs vs. Web-Derived Process1366

Descriptions1367

We performed t-SNE and PCA visualizations to analyze the clustering behavior of process flow and1368

instrumentation text embeddings derived from structured language model outputs (GPT-4o, Claude1369

Haiku) and agentic web-retrieved ChemAtlas corpus data. These projections quantify inter-chemical1370

consistency (semantic similarity of process descriptions across related substances) and intra-chemical1371

coherence (semantic similarity across multiple descriptions of the same chemical, per LLM and1372

web-retrieved data), revealing how chemically analogous production processes group in embedding1373

space. Differences are illustrated using OpenAI’s text-embedding-3-small embeddings [33], which1374

encode latent structural relationships and semantic similarities among chemical processes. For1375

GPT-4o-generated outputs, Figures 52 and 53 display tight, well-separated clusters, indicating strong1376

semantic alignment among chemicals with analogous synthesis pathways, equipment types, or control1377

strategies. Descriptions of related chemical processes—such as those sharing similar unit operations or1378

instrumentation—are embedded proximally, while distinct processes remain clearly differentiated. In1379

contrast, Haiku-generated outputs (Figures 54 and 55) exhibit moderately compact clusters, reflecting1380

consistent grouping of chemically similar processes with enhanced structural fidelity compared to1381

web-derived data. Conversely, web-retrieved content (Figures 56 and 57) shows diffuse, overlapping1382

clusters, reflecting greater variability in process descriptions from heterogeneous sources. The t-SNE1383

and PCA plots of web-retrieved process flow and instrumentation descriptions reveal a combination1384

of overlapping and distinct clusters, demonstrating partial inter-chemical consistency. Although some1385

chemical processes form well-defined groupings, the overall dispersion highlights structural diversity1386

and semantic variability inherent in uncurated web content. These clustering patterns enable few-shot1387

prompting by identifying semantically similar chemical processes, allowing language models to1388

transfer structural knowledge—including unit operation sequences, flow configurations, and control1389

logic—from established processes to novel chemical production scenarios. This capability can be1390

further enhanced through teacher-student transfer learning. Larger models initially learn to recognize1391

and leverage these semantic clusters, then distill this knowledge into smaller, more efficient language1392

models. By retrieving industrial production processes from chemically similar neighbors within the1393
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same cluster, even compact models can generate accurate, contextually grounded process descriptions1394

for previously unseen chemicals—requiring only minimal task-specific supervision. Overall, the1395

PCA and t-SNE visualizations (Figures 52–57) reveal that LLM-generated structured outputs produce1396

tighter clustering with higher semantic consistency and clearer inter-chemical separation compared1397

to web-derived content, which exhibits noisier, less discriminative patterns. The similarity score1398

distributions between text embeddings (Figures 58–60) further illustrate these differences. GPT-1399

4o and Claude-3-Haiku show the strongest alignment (Figure 58), peaking at 0.7–0.8, indicating1400

robust semantic consistency in chemical process representations. While GPT-4o also aligns with1401

web-retrieved data (Figure 59), the similarity scores peak at a lower range (0.6–0.7), reflecting greater1402

variability and reduced structural coherence. Haiku-web comparisons (Figure 60) follow a similar1403

but more dispersed trend, with weaker overall alignment. These results demonstrate that while web1404

content shows partial semantic overlap, LLM-generated descriptions exhibit significantly stronger1405

internal consistency. The higher inter-model similarity underscores the reliability of synthetic outputs1406

in representing chemical processes compared to unstructured web sources.1407
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Figure 52: t-SNE visualization of GPT-4o-generated process embeddings (SynDIP dataset) from the
ChemAtlas corpus. Well-separated, compact clusters demonstrate high inter-chemical consistency in
PFD/PID descriptions.
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Figure 53: PCA visualization of GPT-4o-generated process embeddings from the ChemAtlas corpus.
Tight clustering in the first two principal components reflects high semantic consistency and strong
domain alignment across chemical production pathways.

5.8 KV Caching and Paged Attention1408

We implement a critical optimization technique to enhance the memory efficiency and computational1409

throughput of fine-tuned SLMs during autoregressive decoding. In autoregressive transformer1410
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Figure 54: t-SNE visualization of Claude-3-Haiku-generated process flow and instrumentation
description embeddings from the ChemAtlas corpus. Distinct clusters reveal semantic relationships
in the embedding space, showing moderate separation. This indicates improved inter-chemical
consistency and more stable intra-chemical representations compared to web-retrieved data.
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Figure 55: PCA visualization of Claude-3-Haiku-generated process description embeddings from
the ChemAtlas corpus (first two principal components). Moderate clustering quality indicates better
structural consistency and improved grouping of chemically similar production processes compared
to web-sourced data.

decoding, at each step i, the model processes previously available tokens—comprising (1) the original1411

prompt tokens {x1, . . . , xm} and (2) the generated tokens up to that point {xm+1, . . . , xi−1}—and1412

computes a query vector qi ∈ Rd. This query attends to all previously processed tokens via their1413

cached key vectors kj ∈ Rd and value vectors vj ∈ Rd, where j = 1, . . . , i − 1. The attention1414

mechanism computes a weighted sum over the values based on query-key interactions:1415

Attention(qi,K, V ) =

i−1∑
j=1

softmax
(
q⊤i kj√

d

)
vj1416

Here, K = [k1, . . . , ki−1] ∈ R(i−1)×d and V = [v1, . . . , vi−1] ∈ R(i−1)×d denote the cached1417

key-value (KV) matrices for all previously processed tokens. The memory contiguity issue arises1418

because the logical KV cache expands dynamically during decoding, necessitating storage of (i−1419

1) × d-dimensional matrices per layer and head at each step i. The linearly growing KV cache in1420

standard autoregressive attention consumes significant memory, causing fragmentation and restricting1421

achievable batch sizes. Coupled with its quadratic computational complexity, this substantially1422

reduces overall throughput. Conventionally, the KV cache is stored contiguously, requiring pre-1423
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Figure 56: t-SNE visualization of web-retrieved process description embeddings from the ChemAtlas
corpus. Diffuse, overlapping cluster formations indicate weaker inter-chemical consistency and lower
structural coherence compared to LLM-generated data.
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Figure 57: PCA visualization of web-retrieved process description embeddings from the ChemAtlas
corpus (primary variance directions). Loosely distributed embeddings suggest weaker structural
coherence and less distinct process groupings compared to synthetic sources.
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Figure 58: Cosine similarity distribution between GPT-4o and Claude-3-Haiku process description
embeddings. The 0.7–0.8 peak reflects strong semantic agreement and structural coherence in
PFD/PID representations.
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Figure 59: Cosine similarity distribution between GPT-4o-generated and web-retrieved process
embeddings. The broader 0.6–0.7 peak indicates moderate alignment with greater variability than
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representations.

allocation of a fixed-size buffer for the maximum sequence length Lmax per sequence to avoid1424

expensive reallocations. This approach exhibits inefficiency due to variable sequence lengths and1425

dynamic growth. It induces internal fragmentation where allocated memory remains underutilized1426

when L ≪ Lmax. More critically, it causes external fragmentation: concurrent sequences each1427

occupy a contiguous block, and asynchronous completion creates variably-sized gaps between active1428

allocations. GPU memory evolves into a discontiguous layout of allocated and free regions. Even1429

with sufficient aggregate free memory, non-contiguous segmentation may prevent allocation of large1430

contiguous blocks. Reallocation for sequences exceeding Lmax imposes substantial O(L) time and1431

memory overhead. These inefficiencies reduce maximum viable batch sizes and degrade serving1432

throughput. To address these memory inefficiencies, PagedAttention [24, 38, 35] adapts the virtual1433

memory paging paradigm from operating systems. The system replaces contiguous GPU memory1434

allocations with a block-based KV cache management strategy, partitioning each sequence’s key-1435

value cache into fixed-size blocks storing B consecutive tokens. We formally define the j-th KV1436

block as:1437

Kj = [k(j−1)B+1, . . . , kjB ] ∈ RB×d, Vj = [v(j−1)B+1, . . . , vjB ] ∈ RB×d1438

The architecture’s innovation centers on per-sequence block tables that map logical block indices to1439

physical memory locations. This indirection enables three critical features: (1) non-contiguous storage1440

where blocks occupy arbitrary GPU memory addresses, (2) the system only allocates physical memory1441

for a block when that specific block is actually needed for computation (a "cache miss"), rather than1442
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reserving all memory upfront, and (3) memory sharing where multiple sequences reference identical1443

blocks (particularly beneficial for shared prompt prefixes). Attention computation reformulates as a1444

block-wise operation. For token position i, the output oi becomes:1445

oi =

⌈i/B⌉∑
j=1

softmax
(
q⊤i Kj√

d

)
Vj1446

The softmax operation maintains mathematical equivalence with standard attention through global1447

normalization across all blocks. Each block contributes a score matrix Aij = q⊤i Kj/
√
d ∈ RB , with1448

the implementation optimizing performance through (i) efficient grouped memory reads (coalescing),1449

(ii) predictive loading of upcoming data blocks (prefetching), and (iii) thread-safe block allocation1450

(atomic resolution). This design eliminates internal fragmentation via fixed B-sized blocks and1451

removes external fragmentation through non-contiguous allocation, while copy-on-write semantics1452

preserve memory sharing benefits. The result is significantly improved memory utilization that1453

directly enables larger batch sizes, longer sequence handling, and superior throughput - critical1454

advantages for production deployment. While PagedAttention eliminates memory fragmentation1455

through non-contiguous block-level KV caching, it preserves the original memory footprint per1456

parameter since key and value vectors remain stored in high-precision formats (FP32/FP16). To1457

achieve further compression, we implement group-wise quantization for the KV cache—a training-1458

free technique that reduces memory requirements during autoregressive decoding. For each cached1459

block containing key matrix Kj ∈ RB×d and value matrix Vj ∈ RB×d, we independently quantize1460

column-wise groups using group-specific parameters (αg, zg). The quantization of group g in Kj1461

follows:1462

K̃
(g)
j =

⌊
K

(g)
j

αg
− zg

⌉
, K̂

(g)
j = αg · (K̃(g)

j + zg)1463

where K̃
(g)
j ∈ ZB×dg contains quantized integers (typically INT4/8), and K̂

(g)
j denotes the de-1464

quantized approximation. An identical transformation applies to value matrices Vj . To minimize1465

quantization error, we incorporate second-order Hessian information that identifies sensitive parame-1466

ters through the diagonal Hessian matrix H ∈ Rd×d:1467

αg =
max(K

(g)
j )−min(K

(g)
j )

2n − 1
, zg =

⌊
min(K

(g)
j )

αg

⌉
1468

This Hessian-aware approach enables aggressive 4-bit quantization while maintaining model accu-1469

racy by preserving high-curvature parameters. The block structure of PagedAttention optimizes1470

dequantization efficiency through contiguous storage of group metadata (αg, zg). The combined1471

technique delivers dual benefits: PagedAttention manages memory fragmentation through block1472

paging, while quantization reduces memory consumption per parameter by 4× (INT4 vs FP16).1473

This enables larger batch sizes (increased throughput), longer sequence lengths (expanded context),1474

and efficient deployment on memory-constrained hardware. We evaluate the inference-time effi-1475

ciency gains enabled by PagedAttention combined with KV cache quantization. By managing the1476

Key-Value (KV) cache in non-contiguous, fixed-size blocks, this approach mitigates internal and1477

external memory fragmentation inherent in standard contiguous caching while significantly improving1478

inference performance. Since PagedAttention is an inference-only optimization that preserves model1479

output quality, we focus exclusively on system-level metrics rather than quality measures such as1480

BLEU, ROUGE, or reward scores discussed elsewhere. The efficiency metrics evaluated include1481

inference throughput (tokens generated per second), maximum batch size (largest number of parallel1482

sequences processed), peak GPU memory usage (in GB), and average per-sequence latency (gen-1483

eration time in seconds). We benchmarked our best-performing fine-tuned model, LLaMA-3.2 1B1484

(with fine-tuning and Graph RAG, Variant A), on an NVIDIA V100 GPU using a 500-example subset1485

of the held-out 1.5K QA-pair generalization benchmark dataset. The results, shown in Figure 61,1486

demonstrate significant efficiency improvements. PagedAttention enabled an approximately 2.0×1487

increase in maximum batch size (16 versus 8) and improved inference throughput by nearly 1.8×1488

( 100 vs. 55 tokens/sec) compared to the baseline. While the LLaMA-3.2 1B model requires only1489

2.3 GB of VRAM in FP16 precision, the larger batch size with PagedAttention increased peak GPU1490

memory usage slightly ( 4.8 GB vs. 4.5 GB) due to greater sequence parallelism. However, memory1491

utilization was substantially more efficient due to reduced fragmentation. The average generation1492
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latency for a 2048-token sequence was approximately 39.8 seconds, with only a marginal increase1493

(5–10%) attributable to block management overhead. These findings demonstrate PagedAttention’s1494

practical benefits for serving fine-tuned SLMs, especially in RAG-based applications with long,1495

variable-length contexts. This technique complements model-centric optimizations, enabling more1496

scalable real-world deployments.1497
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Figure 61: Inference performance comparison between standard KV cache and PagedAttention
combined with KV cache quantization on LLaMA-3.2 1B. Four key metrics are displayed: maximum
achievable batch size, inference throughput (tokens/sec), peak GPU memory (GB) at maximum batch
size, and average generation latency (s) for 2048-token sequences.

5.9 Low-Latency LLM Decoding Strategies1498

Let V = {1, 2, . . . , |V|} ⊂ Z>0 denote the vocabulary of a causal language model M with parameters1499

θ, where |V| is the vocabulary size. Given a fixed input prompt x0 = (x1, x2, . . . , xs) ∈ Vs of length1500

s, the goal is to autoregressively generate a target sequence Y = (y1, y2, . . . , yT ) ∈ VT of length T ,1501

where each token yt ∈ V . The language model defines a conditional probability distribution over the1502

next token:1503

PM (yt | y<t, x0; θ), where y<t = (y1, . . . , yt−1)1504

This reflects the causal (left-to-right) nature of the generation process—each token prediction depends1505

only on previous tokens and the fixed prompt. In greedy (deterministic) decoding, the most probable1506

token is selected at each step:1507

yt = argmax
v∈V

PM (v | y<t, x0; θ)1508

This results in decoding latency that scales linearly with the sequence length T . To enable parallel1509

decoding, we reformulate the generation task as a system of fixed-point equations. For each position1510

t ∈ {1, . . . , T}, define:1511

Ft(yt, y<t, x0) = yt − argmax
v∈V

PM (v | y<t, x0; θ) = 01512

This system can be solved using Jacobi iteration, which computes speculative updates in parallel at1513

each iteration based on previous estimates. The method trades increased per-step latency for reduced1514

total generation time (i.e., faster completion of the full response). Speculation involves parallel1515

guessing of multiple future tokens without sequential verification. Verification checks whether these1516

speculative guesses match the outputs that greedy decoding would produce. Let k ∈ Z≥0 denote the1517

iteration index, and let y[k]t ∈ V be the estimate of token yt at iteration k. The Jacobi update rule is:1518

y
[k]
t = argmax

v∈V
PM (v | y[k−1]

<t , x0; θ)1519

where y
[k−1]
<t = (y

[k−1]
1 , . . . , y

[k−1]
t−1 ). While Jacobi iteration enables parallel updates, speculative1520

tokens generated without sequential verification may introduce inconsistencies, potentially discarding1521

valid generation paths. Consequently, Jacobi decoding alone lacks convergence guarantees and1522

offers limited empirical speedup. To address these limitations, Lookahead Decoding [12, 63, 31]1523

introduces a hybrid approach combining speculative Jacobi-based multi-token generation with a1524

structured verification mechanism. While each decoding step incurs higher latency due to parallel1525

computation and verification overhead, the method reduces the total number of sequential steps1526

required to generate the complete response. The decoding process maintains several key components:1527

The confirmed output prefix o = (o1, . . . , ot−1) ∈ Vt−1 consists of tokens verified to match1528
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standard greedy decoding outputs. A token trajectory window W ∈ VN×L tracks speculative1529

predictions, where N ∈ Z>1 represents the number of retained Jacobi iterations and L ∈ Z>01530

denotes the number of parallel lookahead positions, with L≪ T constraining the local speculation1531

horizon. Each entry Wr,j corresponds to the token predicted at iteration r for lookahead position1532

j. For each column j ∈ {1, . . . , L}, the system constructs vertical decoding trajectories as N -gram1533

candidates gj = (W1,j , . . . ,WN,j) ∈ VN by vertically traversing the window W across iterations,1534

with each gj representing a complete speculative decoding path originating from the confirmed1535

prefix o. These trajectories are aggregated in the N -gram candidate pool C ⊂ VN defined as1536

C = {gj | j ∈ {1, . . . , L}}. During the lookahead phase, the system updates the final row WN,1:L1537

through parallel speculative token generation across all lookahead positions. For each position1538

j ∈ {1, . . . , L}, the speculative token WN,j is predicted via:1539

WN,j = argmax
v∈V

PM

(
v
∣∣∣ (Wmin(N−1,j−1),j−1, . . . ,W1,j−min(N−1,j−1)

)
, o, x0; θ

)
1540

This prediction considers three factors: (1) the confirmed prefix o = (o1, . . . , ot−1), (2) the original1541

input prompt x0, and (3) a causal diagonal context from window W ∈ VN×L containing up to N−11542

previously predicted tokens. The context is selected through a systematic traversal decreasing both1543

row index r from min(N−1, j−1) to 1 and column index j′ from j−1 to j − min(N−1, j−1),1544

strictly maintaining autoregressive dependencies while enabling parallel computation. This allows1545

efficient generation of the complete final row WN,1:L without violating causal constraints. Following1546

lookahead updates, the system constructs vertical N -grams gj = (W1,j , . . . ,WN,j) for each position1547

and adds them to candidate pool C. The verification phase then retrieves up to G candidates from1548

C satisfying g1j = ot−1 and sequentially verifies each candidate gj = (g1j , . . . , g
N
j ) for r = 1 to N1549

through the comparison:1550

grj
?
= argmax

v∈V
PM

(
v
∣∣∣ (x0, o1, . . . , ot−1, g

1
j , . . . , g

r−1
j

)
; θ
)

1551

Verification yields either full acceptance, where all N tokens match greedy decoding outputs and1552

are appended to o, or partial acceptance where only the verified prefix (g1j , . . . , g
r−1
j ) is retained1553

when verification fails at position r. The window W then shifts rightward by the number of accepted1554

tokens, discarding unverified speculative entries, thereby maintaining equivalence to standard greedy1555

decoding while enabling speculative parallel generation. The lookahead and verification phases1556

form a hybrid predict–verify–commit decoding pipeline, enabling speculative multi-token generation1557

while preserving exact output semantics. While increasing per-step latency, Lookahead Decoding1558

is a lossless, parallel algorithm that maintains exact output fidelity while reducing the total number1559

of sequential steps needed to generate the complete response. It combines token-level Jacobi1560

speculation with N -gram-level greedy verification through a structured two-dimensional window and1561

N -gram cache. This architecture trades increased FLOPs per step for reduced total generation time,1562

scales effectively with parallel compute, and requires no model modifications or auxiliary networks.1563

In summary, the Lookahead Decoding significantly reduces generation latency by speculatively1564

predicting multiple future tokens in parallel and verifying them against the base model. This1565

approach decodes multiple tokens per forward pass, cutting sequential steps while maintaining greedy1566

decoding’s exact output. We evaluated two metrics: generation latency (total time per sequence) and1567

throughput (tokens/second). We evaluated the fine-tuned LLaMA-3.2 1B model using both standard1568

greedy decoding and Lookahead Decoding (with N=5 iterations and L=10 lookahead positions) on1569

an NVIDIA V100 GPU, benchmarking performance across 500 examples from our 1.5K QA test1570

set. The results demonstrate substantial gains: latency for 2048-token sequences dropped from 40.5s1571

to 21.3s (1.9× speedup), while throughput rose from 50.6 to 96.1 tokens/sec. Although parallel1572

speculation increases per-step FLOPs, it reduces total generation time without requiring auxiliary1573

models. This technique proves especially effective for SLMs like Llama-3.2 1B, nearly halving1574

latency without compromising output quality—particularly valuable for time-sensitive applications1575

like PFD/PID autogeneration. Its efficiency synergizes with optimizations such as Paged Attention1576

and pruning. Figure 62 illustrates these performance improvements.1577

5.10 FlashAttention (Optimizing Attention Computation)1578

FlashAttention [9, 8, 42, 6, 1] improves attention computation by increasing throughput, reducing1579

latency, and lowering memory usage while maintaining exact equivalence to standard attention. For1580
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the standard scaled dot-product attention mechanism, given query Q ∈ RN×dk , key K ∈ RN×dk ,1581

and value V ∈ RN×dv matrices, where N is sequence length and dk, dv are dimensions, the attention1582

scores are computed as:1583

S =
QK⊤
√
dk

1584

A causal mask M ∈ RN×N with Mij = −∞ for j > i prevents attention to future positions. The1585

row-wise softmax produces attention probabilities:1586

Pij =
exp(Sij)∑N
k=1 exp(Sik)

1587

yielding output O = PV ∈ RN×dv . This standard approach requires materializing intermediate1588

matrices S, P ∈ RN×N , creating O(N2) memory overhead. The implementation suffers from1589

significant HBM-SRAM data movement: (1) Loading Q,K, V from HBM to SRAM; (2) Computing1590

S in SRAM; (3) Writing S back to HBM if SRAM overflows; (4) Reloading S to compute P ; (5)1591

Writing P to HBM; (6) Reloading P and V for final output. These O(N2dk) memory transfers1592

make bandwidth the dominant bottleneck. FlashAttention solves this via blockwise computation,1593

partitioning Q into Tr blocks {Q1, ..., QTr} (Qi ∈ RBr×dk ) and K,V into Tc blocks {K1, ...,KTc},1594

{V1, ..., VTc
} (Kj ∈ RBc×dk , Vj ∈ RBc×dv ). Block sizes satisfy:1595

Brdk +Bcdk +Bcdv +BrBc ≪M1596

where M is SRAM capacity. The FlashAttention algorithm begins by initializing three components for1597

each query block Qi ∈ RBr×dk : an output block Oi ∈ RBr×dv (initialized to zero), a normalization1598

vector li ∈ RBr (set to zero), and a maximum vector mi ∈ RBr (initialized to−∞). The computation1599

proceeds through nested loops where the outer loop iterates over query blocks while the inner loop1600

processes corresponding key-value blocks (Kj ∈ RBc×dk , Vj ∈ RBc×dv ). For each block pair, the1601

algorithm first loads (Kj , Vj) into SRAM and computes the local attention scores:1602

Sij =
QiK

⊤
j√

dk
1603

When causal masking is required, the algorithm sets Sij [r, c] = −∞ for all positions where query1604

index r precedes key index c. The computation then progresses through three sequential steps: first1605

calculating row-wise maxima mij [r] = max1≤c≤Bc Sij [r, c], then computing exponentiated weights1606

P hat
ij = exp(Sij − mij), and finally determining normalization factors lij [r] =

∑Bc

c=1 P
hat
ij [r, c].1607

These local statistics are incorporated into running values through numerically stable updates:1608

mnew
i [r] = max(mi[r],mij [r])1609

lnew
i [r] = exp(mi[r]−mnew

i [r])li[r] + exp(mij [r]−mnew
i [r])lij [r]1610

The output block updates through careful combination of previous partial results with new attention-1611

weighted values:1612
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Onew
i =

exp(mi −mnew
i )liOi + exp(mij −mnew

i )(P hat
ij Vj)

lnew
i

1613

After processing all key-value blocks for a given query block, the final output Oi writes back to1614

HBM. The backward pass employs an analogous blockwise strategy, recomputing Sij and P̂ij using1615

saved statistics mi and li to avoid storing full O(N2) matrices. This approach computes gradients for1616

Vj as P̂⊤
ij dOi while deriving Qi and Kj gradients through standard softmax backpropagation with1617

recomputed P̂ij . Although increasing FLOPs by approximately 2×, this strategy dramatically reduces1618

memory requirements from O(N2) to O(Ndk) while preserving the exact O(N2dk) computational1619

complexity of standard attention. Through these combined optimizations - blockwise computation,1620

online softmax, and selective recomputation - FlashAttention achieves exact equivalence with standard1621

attention while minimizing HBM-SRAM transfers, delivering 2-4× fewer memory accesses and1622

up to 3× speedups for long sequences through its I/O-aware algorithm design. We implemented1623

FlashAttention to optimize memory access between GPU HBM and on-chip SRAM during inference1624

through its innovative tiling, recomputation, and kernel fusion techniques. This implementation-1625

level optimization computes mathematically identical attention outputs while significantly reducing1626

memory overhead and improving computational speed, particularly for long sequences, without1627

affecting model outputs or task metrics like BLEU and ROUGE scores. Benchmarking on an1628

NVIDIA H100 GPU with LLaMA-3.2 1B revealed substantial performance gains compared to1629

standard PyTorch attention. During training, FlashAttention doubled throughput from 8 to 161630

examples per second while reducing peak GPU memory consumption by 15.6% (from 4.5 GB to 3.81631

GB), enabling potential batch size increases or longer sequence training within the same memory1632

budget. For inference, we observed a 1.3× throughput improvement, increasing generation speed from1633

52 to 68 tokens per second, which typically corresponds to reduced latency. These improvements,1634

detailed in Figure 63, stem from FlashAttention’s I/O-aware design that minimizes costly data1635

movement between HBM and SRAM - a critical advantage for memory-bound attention operations.1636

FlashAttention works synergistically with other optimizations in our framework: Paged Attention1637

efficiently manages KV cache, Lookahead Decoding reduces sequential generation steps, while1638

FlashAttention accelerates the core attention computation itself. This combined approach creates a1639

highly efficient system for both training and deploying SLMs, particularly beneficial for compute-1640

intensive tasks like PFD/PID generation where it reduces development cycles and operational costs1641

while maintaining model performance.1642
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Dataset Type Prompt
Factual QA
Dataset You must generate exactly {n_questions} questions that are strictly and directly

related to the specific subtopic provided. No tangential, broad, or off-topic
questions are allowed.
The subtopic is: {sub_topics}
Your response must consist of precisely {n_questions} questions, each directly
pertaining to the subtopic, separated by a newline character, with absolutely no
additional text, numbering, explanations, or any other characters.
Deviation from the subtopic or any failure to generate exactly {n_questions}
questions as instructed will result in the output being considered invalid.

DPO Dataset
Chosen Response Prompt Template:
Generate a concise, relevant response to the given question. The response
should be directly related to the question, clear, and free of any unnecessary
information. It should be helpful, polite, and factually accurate.
The question is: {question}.
Provide only one response in plain text, with no additional explanations, intro-
ductions, or concluding remarks.
Rejected Response Prompt Template:
Generate a rejected response to the given question that is moderately inaccurate
compared to the accurate response. The rejected response may be incomplete or
less accurate, but it should still be relevant to the question.
The question is: {question}
Provide only one response in plain text, with no additional explanations, intro-
ductions, or concluding remarks.

LogiCore
Dataset Provide clear, accurate, and concise answers to the following questions. Adhere

strictly to the following rules to ensure high scores in the following categories:
Helpfulness: Ensure each answer is maximally helpful, fully addressing the
question in a way that effectively resolves the query.
Correctness: Every answer must be factually correct, accurately referencing
relevant details from the synthesis description (process context), Process Flow
Diagram (PFD), and Piping and Instrumentation Diagram (P&ID).
Coherence: Ensure that each answer is logically structured and flows smoothly,
making it easy for the reader to follow.
Complexity: Balance complexity appropriately; provide necessary depth with-
out making the answer overly complicated. Ensure the response is insightful
when needed.
Verbosity: Be concise but thorough. Include all essential details without adding
unnecessary information. Ensure that the length of the answer aligns perfectly
with the complexity of the question.
Failure to adhere to these rules will lead to lower scores and suboptimal perfor-
mance.
Synthesis Description: {synthesis_description}
Process Flow Diagram: {pfd_description}
Piping and Instrumentation Diagrams: {pid_description}
Questions: {questions}

Global/Local
RAIT Dataset Question: {question}

Context: {chunk}
Provide a concise, accurate, and fact-based answer to the question, using only
the information available in the provided context. The answer must be directly
derived from the context and should not include any external knowledge, specu-
lation, or interpretation. Ensure that the response is precise and strictly adheres
to the content of the context without introducing any additional information.

Table 1: Illustrative prompt templates employed within the self-instruct framework to generate distinct
synthetic datasets (Factual QA, DPO, LogiCore, RAIT) via teacher LLMs for subsequent instruction
tuning.
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Dataset
Type Prompt

SynDIP
Dataset

Industrial Synthesis Generation Prompt Template:
Provide a comprehensive and detailed description of the industrial synthesis process for
{chemical_name}. Your description should include:
• All key chemical reactions, including reactants, intermediates, and products.
• The types of reactors used (e.g., CSTR, PFR) and their operating conditions (e.g., tempera-

ture, pressure).
• Details of any purification steps, such as distillation, crystallization, or filtration, including

the equipment used.
• Handling and treatment of by-products and waste streams.
• Any recycling loops and the integration of heat exchange systems to optimize energy use.
• Specific safety measures taken during the synthesis, especially when dealing with hazardous

chemicals.
The description should be suitable for an engineer looking to understand the process in detail
for implementation in a large-scale industrial setting.
PFD Generation Prompt Template:
Based on the following synthesis description, create a detailed textual Process Flow Diagram
(PFD) for the synthesis of {chemical_name}. Your PFD should include:
• Major equipment involved at each step, such as reactors, heat exchangers, distillation

columns, separators, pumps, and compressors.
• The flow of raw materials, intermediates, and products through the process, including any

recycling streams.
• Details of heat integration, such as the use of heat exchangers to recover energy from

exothermic reactions or to preheat reactants.
• A clear representation of phases (e.g., gas, liquid, solid) in each unit operation, highlighting

phase transitions where applicable.
• Specific operating conditions at key stages, including temperatures, pressures, and flow

rates, to ensure proper operation.
• The identification of potential bottlenecks in the process flow, and suggestions for optimizing

throughput.
Ensure that the PFD is designed according to industry standards and is suitable for scaling up
to large-scale production.
P&ID Generation Prompt Template:
Create a detailed Piping and Instrumentation Diagram (P&ID) based on the following process
flow diagram (PFD) for the synthesis of {chemical_name}. The P&ID should include:
• Detailed placement of sensors (e.g., temperature, pressure, flow, and level sensors) at critical

points in the process to ensure precise monitoring.
• Specification of control valves, actuators, and control loops required to maintain process

parameters within the desired range, including examples of typical control strategies (e.g.,
feedback, feedforward, cascade control).

• Identification of safety instrumentation, such as pressure relief valves, emergency shutdown
systems, interlocks, and alarms, to prevent accidents and ensure compliance with safety
regulations.

• Details of the instrumentation needed for process optimization, such as advanced process
control (APC) systems, model predictive control (MPC), and real-time data analytics.

• Consideration of redundancy and reliability in the placement of key sensors and control
elements to ensure continuous operation and minimize downtime.

• Recommendations for the types of piping materials to be used, considering chemical
compatibility, temperature, and pressure of the process streams.

• Suggestions for the integration of control systems with a distributed control system (DCS)
or supervisory control and data acquisition (SCADA) system for centralized monitoring and
control.

Your P&ID suggestions should align with industry best practices and standards (e.g.,
ANSI/ISA-5.1) and be suitable for large-scale industrial production.

Table 2: Sequential prompt templates used for the multi-stage generation of the SynDIP dataset,
covering industrial synthesis descriptions, textual PFD generation, and subsequent textual P&ID
generation.
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Dataset
Type Question Ground Truth Response Model Response

Factual
QA
Dataset

What are the
challenges asso-
ciated with heat
transfer in high-
temperature re-
actors?

Challenges associated with heat transfer
in high-temperature reactors include ma-
terial degradation, reduced thermal con-
ductivity, increased risk of overheating,
and the need for advanced cooling sys-
tems to manage extreme temperatures
effectively.

Key heat transfer challenges
in high-temperature reactors in-
clude material degradation, po-
tentially reduced thermal con-
ductivity at extreme tempera-
tures, and increased risk of over-
heating, often necessitating ad-
vanced cooling solutions.

DPO
Dataset

How does the
scale of pro-
duction impact
reactor design
choices?

Chosen Response: The scale of pro-
duction impacts reactor design choices
by influencing the type of reactor se-
lected (batch vs. continuous), size and
capacity requirements, heat and mass
transfer considerations, and the need for
automation and control systems to en-
sure efficiency and consistency at larger
scales.
Rejected Response: The scale of pro-
duction impacts reactor design choices
mainly by determining the reactor’s
shape and color. Larger scales tend to
favor simpler designs, but they do not
significantly affect material selection or
the technology used.

Production scale heavily influ-
ences reactor design, affecting
the choice between batch and
continuous reactors, determining
size and capacity, impacting heat
and mass transfer requirements,
and dictating the necessary level
of automation and control sys-
tems.

LogiCore
Dataset

What are the
implications
of reactor
type selection
(CSTR vs. PFR)
on the overall
efficiency and
yield of the ace-
tone synthesis
process?

CSTRs (Continuous Stirred-Tank Reac-
tors) typically offer lower efficiency and
yield for acetone synthesis due to back-
mixing, leading to reactant dilution and
reduced conversion. PFRs (Plug Flow
Reactors) provide higher efficiency and
yield by maintaining concentration gra-
dients, enabling better reactant conver-
sion and selectivity.

Selecting a PFR generally leads
to higher efficiency and yield
in acetone synthesis because it
maintains reactant concentration
gradients for better conversion.
Conversely, a CSTR often re-
sults in lower efficiency due to
backmixing and reactant dilu-
tion, although it might offer sim-
pler temperature control.

Global
RAIT
Dataset

How can unre-
acted hydrocar-
bons and hydro-
gen by-products
be managed in
the synthesis of
1,3-butadiene?

Unreacted hydrocarbons and hydrogen
by-products from the synthesis of 1,3-
butadiene can be effectively managed
through several strategies. Unreacted
hydrocarbons can be recycled back into
the reactor or directed to a separate re-
covery unit for further processing, ensur-
ing that valuable feedstock is not wasted.
Hydrogen, on the other hand, can be
captured and utilized as a fuel source
or for other chemical processes, thereby
enhancing overall efficiency and sustain-
ability. This approach minimizes waste
and maximizes the utilization of raw ma-
terials in the production process.

In 1,3-butadiene synthesis, un-
reacted hydrocarbons are typi-
cally managed by recycling them
back to the reactor or separat-
ing them for recovery. Hydro-
gen by-products can be captured
and utilized, for instance, as fuel
or in other chemical processes,
which improves overall process
efficiency and material utiliza-
tion.

Local
RAIT
Dataset

What are the
operating condi-
tions for the fi-
nal synthesis of
ammonium sul-
fate?

The operating conditions for the final
synthesis of ammonium sulfate are a
temperature maintained at 60-80°C and
atmospheric pressure. The reactor type
used for this synthesis is a Continuous
Stirred-Tank Reactor (CSTR).

The final synthesis of ammo-
nium sulfate typically operates
at a temperature of 60-80°C and
atmospheric pressure, using a
Continuous Stirred-Tank Reac-
tor (CSTR).

Table 3: Comparison of model responses and ground truth responses across different synthetic dataset
types.
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