© ® N O o A~ W N =

30
31
32
33
34
35
36
37

AutoChemSchematic AI: Agentic Physics-Aware
Automation for Chemical Manufacturing Scale-Up

Anonymous Author(s)
Affiliation
Address

email

Abstract

Recent advances in generative Al have accelerated the discovery of novel chemicals
and materials. However, scaling these discoveries to industrial production remains
a major bottleneck due to the synthesis gap—the need to develop entirely new
manufacturing processes. This challenge requires detailed engineering blueprints:
Process Flow Diagrams (PFDs) for equipment layouts and material/energy flows,
and Piping and Instrumentation Diagrams (PIDs) for process plant operations. Cur-
rent Al systems cannot yet reliably generate these critical engineering schematics,
creating a fundamental obstacle to manufacturing scale-up of novel discoveries.
We present a closed-loop, physics-aware framework for automated generation of in-
dustrially viable PFDs and PIDs. The framework integrates three key components:
(1) domain-specialized small language models (SLMs) trained for auto-generation
of PFDs and PIDs, (2) a hierarchical knowledge graph containing process flow and
instrumentation descriptions for 1,020+ chemicals for Graph Retrieval-Augmented
Generation (GRAG), and (3) an open-source chemical process simulator for mod-
eling, simulation, optimization, and analysis of novel chemical processes. The
SLMs are trained through a multi-stage pipeline combining Supervised Fine-
Tuning (SFT), Direct Preference Optimization (DPO), and Retrieval-Augmented
Instruction Tuning (RAIT) on synthetic datasets, with process simulator-in-the-
loop validation ensuring feasibility. To enhance computational efficiency, the
framework implements structural pruning (width and depth) guided by importance
heuristics to reduce language model size while preserving accuracy, followed by
advanced inference optimizations including FlashAttention, Lookahead Decoding,
PagedAttention with KV-cache quantization, and Test-Time Inference Scaling.
Experimental results demonstrate that our framework generates simulator-validated
process descriptions with high fidelity, outperforms baseline methods in correctness,
and generalizes effectively to unseen chemicals. By bridging Al-driven molec-
ular and material design with industrial-scale feasibility, this work significantly
accelerates the path-to-production for Al-discovered chemicals.

1 Introduction

Recent advancements in generative Al are transforming chemical and materials science [7} 154, [34]
611 116l 23 146l 58, 20}, 58], accelerating the autonomous discovery of next-generation specialty
chemicals and the development of high-performance, materials-based products. These advancements
reduce dependence on manual, trial-and-error experimentation and computationally intensive first-
principles simulation workflows, enabling faster and more sustainable innovation. However, many Al-
discovered molecules and materials are not immediately manufacturable at scale. Transitioning them
from computer simulations or wet-lab experiments to industrial production requires the development
of new processes—a significant challenge in bringing better products to market rapidly. Bridging

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

60
61
62
63

the gap from in silico design to industrial synthesis involves addressing the challenges of scalable
process development. While generative Al has revolutionized molecular and materials discovery, its
application to the design of scalable production processes remains largely underexplored. This gap is
critical because Process Flow Diagrams (PFDs) and Piping and Instrumentation Diagrams (PIDs)
serve as essential bridges between laboratory-scale innovations and industrial-scale manufacturing.
These blueprints(or schematics) provide the foundational basis for the simulation, optimization, and
control of chemical processes; thus, the ability to generate accurate PFDs and PIDs is fundamental to
overcoming the scale-up bottleneck in Al-driven chemical innovation. PFDs and PIDs are standard
engineering diagrams used in the chemical process industry. A PFD provides a high-level schematic
of the flow of materials and energy through a chemical production process, depicting major equipment,
process streams, and key operating conditions for specific units without detailing instrumentation
or control systems. In contrast, PIDs build upon PFDs by offering a more detailed schematic of the
instrumentation and control systems essential for monitoring, operational control, safety, and plant
maintenance. The purpose of a PFD (see Figure[T) is to illustrate what happens in the process—such
as key physical or chemical transformations—and where it occurs (i.e., in which major equipment
units), rather than how the process is controlled. Conversely, a PID (see Figure2)) focuses on how
the process operates and is controlled, including valves, sensors, and control loops, rather than
just the transformations or equipment involved. Together, PFDs and PIDs serve as foundational
documents for chemical process simulations, which drive the development of digital twins. These
digital twins integrate first-principles or data-driven models with real-time sensor and actuator data,
enabling dynamic monitoring, predictive control, and Al-driven automation for closed-loop process
optimization.

DCOL-1

G
Figure 1: The figure shows a high-level schematic of a chemical process, depicting material flow
from reactant inlets (A and B) through a mixer (MIX-1), a continuous stirred-tank reactor (CSTR-1),
a heat exchanger (HX-1), and a distillation column (DCOL-1), yielding product streams F and G.
Major equipment and stream connections are illustrated, excluding instrumentation and control logic.
This schematic facilitates understanding of the core process operations and transformations.

R @ | X
LRS- i = 7
o= ﬂ-(inﬁz_@.

| Mx1 ¢ — D
=> CSTRA e

Figure 2: The figure shows the detailed PID of a chemical process showing instrumentation and
control systems, including: level control (LC) on reactor CSTR-1 regulating feed A; temperature
control (TC) on column feed E adjusting HX-1 utility flow; pressure control (PC) at DCOL-1 overhead
controlling product F; and flow control (FC) on bottoms product G. The diagram specifies control
strategies and safety-critical parameters.

Current methods [53) 41}, (19} 2| [14} /47 are not designed to auto-generate process flow schematics
(e.g., PFDs) or instrumentation and control layouts (e.g., PIDs) for novel industrial-scale chemical
production processes, significantly limiting their practical utility. These approaches also fail to
incorporate essential process context: for PFDs, this includes high-level objectives—such as what

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

92

93
94
95
96
97

the process achieves and in what sequence—while for PIDs, it requires operational details on how
the process is monitored, controlled, and executed. Consequently, they cannot justify critical design
choices or the control and instrumentation logic necessary for efficient plant operations. Another
major limitation is the lack of integration with first-principles-based simulators to verify the physical
and operational feasibility of generated PFDs and PIDs, further undermining their industrial reliability.
Current Al-driven discovery pipelines frequently optimize molecular properties without production
feasibility checks. Auto-generating and simulating PFDs (to verify unit operations, mass/energy
balances, and phase behavior) and PIDs (to validate control logic, safety interlocks, and equipment
specifications), chemical process simulators can flag scale-up issues like equipment sizing errors,
utility mismatches, or unsafe designs before lab-scale synthesis. This moves manufacturability
screening from retrospective correction to proactive design. Moreover, the reliance on manual,
expertise-intensive creation of novel PFDs and PIDs introduces a bottleneck that adversely impacts
simulation fidelity, digital twin accuracy, and scalable Al deployment in industrial manufacturing. To
address these limitations, we present a closed-loop, self-driving lab framework for the auto-generation
of high-fidelity process flow and instrumentation descriptions, accelerating the development of novel
chemical processes. Implemented as an enterprise-grade, cloud-based SaaS solution, our framework
significantly expedites the simulation-to-lab-to-pilot-to-plant scale-up pipeline, ensuring that only
industrially viable, sustainable, and efficient processes advance to commercialization. Serving as an
end-to-end process schematics modeling tool, the platform automates design, simulation, and opti-
mization with minimal human intervention. By integrating first-principles, physics-aware modeling
with iterative reflection and adaptive learning, the framework continuously self-improves, enhancing
the reliability of Al-generated process schematics and control strategies. Our approach combines
three key innovations: (1) custom chemical database curation and knowledge graph construction
for Retrieval-Augmented Generation (RAG), (2) domain-specialized small-scale language models
(SLMs) fine-tuned through multi-stage training, and (3) physics-aware simulator validation using
DWSIM. This closed-loop system enables robust generation and verification of the industrial-scale
feasibility of scalable manufacturing processes and Al-driven discoveries. In the following sections,
we present our methodology in detail, describe the experimental setup, and report results.

(@)
Instruction-tuned
SLM

Reinforcement
Fine-tuned SLM
(GRPO)

General Purpose

Pre-trained SLM

Width and Depth
pruning

Policy Optimized
SLM

8 &

Memory Graph Feedback
database ’

Initial
Response

5

KV Caching
paged attention
Look-ahead

Output

Flash attention
Test Time Scaling

User Question
Guardrails

database) L
4 e e

~- -

Figure 3: Overview of the integrated framework. (a) The SLM fine-tuning pipeline depicts initial
DPO alignment followed by supervised instruction tuning or policy-gradient reinforcement learning,
with optional width/depth pruning. (b) The operational RAG framework illustrates a Meta-Agent
coordinating with the specialized SLM (from part a), which accesses memory and graph databases for
context. The SLM’s inference is accelerated via optimizations (FlashAttention, Paged KV Caching,
Lookahead Decoding, Test-Time Scaling). Generated responses are refined iteratively through a
feedback loop managed by a Critique-Agent employing diverse judges (e.g., Nemotron-4-340B
reward model, LLM-as-a-judge like GPT-40/Haiku, or human evaluation).

2 Methodology

Our methodology integrates data curation, advanced small language model (SLM) fine-tuning, knowl-
edge graph construction for retrieval augmentation, inference optimization, and engineering validation
to create specialized and efficient SLMs for chemical process engineering tasks—specifically, the
interpretation, analysis, and generation of PFDs and PIDs (refer to Figure[3). The pipeline begins
with the curation of a custom database comprising over 1,120 chemicals drawn from sectors such

https://dwsim.org/

104

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

as electronics, energy storage, pharmaceuticals, advanced manufacturing, and utilities, with a focus
on chemicals essential to modern industrial applications. The data were programmatically extracted
from product catalogs of leading manufacturers—including BASF, Dow Chemical, DuPont, Solvay,
Mitsubishi Chemical, Bayer, Evonik, SABIC, and LyondellBasell—ensuring both reliability and
broad industrial coverage. The dataset consists of two components: ChemAtlas and ChemEval.
ChemAtlas is a core collection of 1,020 chemicals. For each chemical in ChemAtlas, we employ an
Al-driven agentic web navigation framework that autonomously retrieves, interprets, and synthesizes
multimodal data from diverse public sources to generate detailed descriptions of production processes
(textual descriptions of both PFDs and PIDs). This structured data serves as the foundation for popu-
lating chemical knowledge graphs, where text chunks are processed by GPT-40 to extract semantic
triples (subject—predicate—object). Entities are canonicalized based on high semantic similarity (via
embeddings) and string similarity (via normalized Levenshtein distance), and the resulting graph
is partitioned into hierarchical communities using the Leiden algorithm to optimize modularity for
efficient retrieval. Our Graph RAG framework leverages this structured graph representation to
enhance both contextual reasoning and retrieval efficiency, enabling SLMs to deliver accurate and
context-sensitive answers. To ensure consistency and correctness, we further use advanced large
language models (LLMs)—specifically, GPT-40 and Anthropic Claude Haiku—to generate and
cross-validate chemical-specific production process descriptions derived from agentic web navigation,
leveraging their pre-trained knowledge for automated validation. The second component, ChemEval,
comprises a held-out evaluation set of 100 chemicals curated to rigorously test the framework’s
zero-shot generalization performance in auto-generating process flow and instrumentation descrip-
tions for chemicals not present in ChemAtlas. Additionally, we adopt a teacher—student transfer
learning approach by generating custom synthetic datasets from the ChemAtlas database. This
includes 20K instruction—response (QA) pairs created by teacher LLMs—specifically, GPT-40 and
Anthropic Claude Haiku—to train SLMs such as LLaMA-3.2-1B and SmolLM-135M on complex,
domain-specific process engineering tasks. These tasks include equipment and piping layout gener-
ation, sensor and instrumentation placement (i.e., the analysis, interpretation, and auto-generation
of PFDs and PIDs). A small seed set of human-authored instruction—response pairs was used as
demonstrations to initiate high-quality QA dataset generation through iterative synthesis, guided by
predefined templates and a self-instruct bootstrapping strategy. The generated outputs are scored,
validated, and filtered using NVIDIA’s Nemotron-4-340B reward model. The resulting datasets
span a diverse range of QA types, including factual knowledge, preference alignment, process flow
and instrumentation interpretation, logical and multi-step chain-of-thought reasoning, sensor layout
planning, comparative process analysis, and error detection and correction. The curated 20K synthetic
QA dataset consists of six specialized subsets—Factual QA, SynDIP, LogiCore, DPO, Local RAIT,
and Global RAIT—each systematically constructed to induce reasoning, alignment, and generation
abilities in SLMs. The Factual QA dataset, constructed through hierarchical topic decomposition of
chemical process engineering concepts, enhances foundational domain knowledge and factual recall.
The SynDIP dataset contains QA pairs describing process flow and instrumentation, equivalent in
content to knowledge retrieved via the agentic web navigation framework, but instead generated from
the pretrained knowledge of base LLMs. The LogiCore dataset consists of multi-step reasoning QA
pairs grounded in process flow and instrumentation descriptions. These pairs are crafted to justify
process design choices, validate control logic, and explain flow sequencing within chemical process
diagrams. The DPO dataset comprises preference-labeled QA pairs, each including a preferred
and a dispreferred response, distinguished using score differentials from a reward model to support
alignment tuning via Direct Preference Optimization. The RAIT (Retrieval-Augmented Instruction
Tuning) datasets are designed to enhance the SLMs’ ability to incorporate retrieved context into
generation for grounded and context-aware responses. Local RAIT grounds QA pairs in individual
SynDIP-derived text chunks, enabling precise and context-specific information extraction. In contrast,
Global RAIT leverages semantically clustered groups of chunks—potentially spanning multiple Syn-
DIP-derived documents—to support cross-contextual reasoning and synthesis across related segments.
The complete 20K synthetic QA dataset, encompassing all six categories, is randomly split into 80%
training, 10% validation, and 10% internal test sets for evaluating generalization performance. In
addition, we construct a 1.5K QA-pair out-of-distribution (OOD) benchmark dataset from ChemAtlas
using a self-instruct approach with teacher LLMs (OpenAl 03 and ol-mini) to generate synthetic QA
pairs. These pairs are iteratively created from SynDIP-retrieved information and filtered for quality
using a reward model to evaluate whether fine-tuned SLMs can generalize across core capabilities,
including factual knowledge, reasoning, instruction following, and the interpretation and analysis of
process flow and instrumentation tasks. Finally, we evaluate the framework’s ability to generate accu-

157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182

184
185
186
187
188
189
190
191
192
193
194
195

197
198
199
200
201
202

204
205
206
207
208

209

210

211

rate PFD and PID descriptions for unseen chemicals using ChemEval. Specifically, for each chemical
in ChemEval, GPT-40 and Claude Haiku produced process flow and instrumentation descriptions in
the form of QA pairs using the same self-instruct bootstrapping method. These QA pairs served as
reference targets (ground truth) for quantitative evaluation. Base SLMs—specifically, LLaMA-3.2-1B
and SmolLM-135M—are customized using Quantized Low-Rank Adaptation (QLoRA) [10}56] with
frozen base weights. We employ two distinct fine-tuning strategies on synthetic datasets. The first
follows a sequential, modular pipeline: Supervised Fine-Tuning (SFT) on the combined Factual QA,
SynDIP, and LogiCore datasets; Direct Preference Optimization (DPO) on curated preference-labeled
DPO datasets; and Retrieval-Augmented Instruction Tuning (RAIT) on Local and Global RAIT
datasets. The second strategy adopts a reinforcement learning approach using Group Relative Policy
Optimization (GRPO) [43} (15, 27], applied first to the SFT datasets and then refined on RAIT datasets.
This approach optimizes a composite reward function combining ROUGE-L F1 scores, length ratio
penalties, and LLM-as-a-judge quality scores, stabilized by KL divergence regularization. We com-
pare these strategies to assess whether modular fine-tuning or end-to-end reinforcement learning better
aligns SLMs with complex, multi-objective benchmarks. The fine-tuned SLMs are integrated with
the structured knowledge graph through a Graph RAG framework. During inference, the framework
retrieves relevant graph communities by comparing query embeddings to pre-computed community
summaries, dynamically selects the most relevant communities, and constructs a subgraph containing
interconnected entities, semantic relationships, and source text chunks. This contextual subgraph
is then used for grounded, multi-hop reasoning. To enhance performance, a suite of inference opti-
mization and reliability techniques is implemented: structural pruning (width and depth) guided by
importance heuristics reduces model size; PagedAttention combined with KV cache quantization
mitigates memory fragmentation and reduces cache footprint; Lookahead Decoding accelerates
generation latency through parallel token speculation; FlashAttention optimizes the core attention
computation to reduce memory bandwidth bottlenecks; and Test-Time Inference Scaling improves
output reliability using self-consistency sampling, confidence-weighted entropy scoring, iterative
self-reflection/revision, and consensus aggregation. Finally, the practical engineering feasibility of
generated process flow and instrumentation descriptions is validated using the DWSIM open-source
chemical process simulator, where PFDs are translated into flowsheets to verify material/energy
balances and thermodynamic consistency, while PIDs are operationally validated by implementing
control loops in DWSIM’s dynamic environment to evaluate stability and control performance (e.g.,
setpoint tracking, disturbance rejection). DWSIM validates Al-generated PFDs/PIDs by converting
textual descriptions into executable simulations, verifying adherence to chemical engineering princi-
ples (mass/energy balances, thermodynamic consistency, and equipment feasibility) while flagging
errors, inconsistencies, and optimization opportunities through first-principles analysis. Figure 3]
visually outlines the overall architecture. Part (a) depicts the SLM fine-tuning pipeline, showing
the progression from a general pre-trained model to initial preference alignment (DPO), followed
by task-specific fine-tuning via either instruction tuning or reinforcement learning (GRPO), and
concluding with model compression (pruning). Part (b) illustrates the operational RAG framework,
where a user query passes through guardrails before being processed by a Meta-Agent. This agent
employs the specialized SLM developed in part (a) as its core reasoning engine. Guided by the
Meta-Agent, the SLM retrieves necessary context by accessing both a Memory database (e.g., for
conversational history) and a Graph database (containing structured process knowledge), which
informs its response generation. The SLM’s inference process is enhanced by integrated optimiza-
tions (FlashAttention, PagedAttention KV caching, Lookahead Decoding, and Test-Time Scaling).
An initial SLM-generated response is evaluated by a Critique-Agent using feedback mechanisms
(SLM-as-a-judge, Reward Model-as-a-judge, or Human-as-a-judge) to potentially trigger refinement
before final output delivery. In summary, our integrated framework combines knowledge graph-
based retrieval augmentation, domain-specific SLM fine-tuning pipelines, comprehensive inference
optimizations, and feedback-driven refinement. This approach achieves robust performance on com-
plex reasoning tasks and demonstrates effective generalization through the generation of plausible,
simulator-validated process descriptions for previously unseen chemicals.

3 Experiments

3.1 Experimental Setup

Graph Retrieval-Augmented Generation (Graph RAG) integrates structured knowledge graphs with

212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237

239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257

259
260
261
262
263
264
265
266
267
268
269
270

large language models to enhance retrieval and reasoning. Our implementation begins with domain-
specific documents—focused on chemical production processes—retrieved through autonomous
agentic web navigation from the ChemAtlas database. The raw text is segmented into overlapping
chunks using a sliding window approach, preserving local context while ensuring cross-chunk conti-
nuity. Each text chunk is processed by GPT-40 to extract subject-predicate-object triples, forming
semantic edges between entity nodes in the knowledge graph. Reference edges connect each entity
to its source chunk, preserving document-graph alignment and enabling traceability. To resolve
redundancy, we apply a canonicalization step: entities are merged only if they exhibit both high
semantic similarity (measured via text-embedding-3-small embeddings) and high string simi-
larity (evaluated using normalized Levenshtein distance), with both metrics exceeding predefined
thresholds. For efficient retrieval, we partition the graph into hierarchical communities using the
Leiden algorithm [52]], optimizing for modularity to ensure semantically coherent clustering. Prior
to inference, each community is summarized by GPT-40, and these summaries are embedded for
fast similarity comparison. Given a query, the framework retrieves the top-K most relevant com-
munities, dynamically constructing a subgraph that includes their interconnected entities, semantic
relationships, and originating chunks. This structured context is then passed to the reasoning model,
ensuring grounded, multi-hop generation. We fine-tuned the Llama-3-1B and SmolLM-135M models
using Quantized Low-Rank Adaptation (QLoRA) [10], which adapts low-rank matrices to key trans-
former projection layers while keeping the base model weights frozen in 4-bit NormalFloat (NF4)
precision. All experiments used identical training parameters: an 8-bit AdamW optimizer (5; = 0.9,
Bo = 0.999), a learning rate of 2 x 10~* with linear decay, weight decay of 0.01, and an effective
batch size of 8 (achieved via a per-device batch size of 2 with 4 gradient accumulation steps). We
set a maximum sequence length of 4096 tokens, enabled by gradient checkpointing. Training was
conducted on NVIDIA V100 GPUs using mixed precision (BF16 for matrix operations, FP16 for
gradients). We explored two distinct fine-tuning strategies(refer Figure[d). The first strategy employed
a sequential, multi-phase pipeline consisting of three stages: (1) Supervised Fine-Tuning (SFT) on
the combined training splits of the Factual QA, SynDIP, and LogiCore datasets for 15 epochs to
integrate instruction-following capabilities and foundational domain knowledge into the SLMs; (2)
Direct Preference Optimization (DPO) on the curated DPO dataset’s training split for 5 epochs to
align the SLM’s outputs with human preferences; and (3) Retrieval-Augmented Instruction Tuning
(RAIT) leveraging the training splits of the Local and Global datasets for 15 epochs to enhance the
SLM’s ability to generate contextually grounded responses. The second strategy utilized the Group
Relative Policy Optimization (GRPO) reinforcement learning algorithm [43]], adapted for direct
policy optimization. This approach proceeded through two sequential stages: initially fine-tuning
the pretrained base model on the training splits of the combined Factual QA, SynDIP, and LogiCore
datasets, followed by refining the resulting SFT checkpoint using the training splits of the Local
RAIT and Global RAIT datasets. Both stages employed the same QLoRA configuration described
earlier. The optimization process maximized a clipped surrogate objective [40], conceptually similar
to Proximal Policy Optimization (PPO), using normalized advantages derived from a composite
reward function with three components: ROUGE-L F1 score (weight=0.3), a length ratio penalty
to encourage similarity to reference response lengths (weight=0.2), and an LLM-as-a-Judge quality
score evaluating answer correctness and relevance (weight=0.5). Rewards and advantages were
computed relative to groups (G = 4) of responses sampled from the policy for each input. Training
stability was maintained through /3-weighted KL divergence regularization against the relevant ref-
erence policy (either the pretrained base model or SFT checkpoint), with GRPO training running
for 15 epochs per stage until convergence. To isolate the comparative effects of learning paradigms,
we implemented parallel adaptation strategies under identical conditions: (1) supervised fine-tuning
versus (2) GRPO-based reinforcement learning. Using fixed architectures and shared datasets (Factu-
alQA, SynDIP, LogiCore, and Local/Global RAIT), this controlled experiment quantifies how each
paradigm influences SLM performance metrics across knowledge acquisition, reasoning, and genera-
tion tasks. All implementations were developed in PyTorch using Hugging Face libraries, including
transformers, datasets, peft, and trl. We evaluated fine-tuned SLMs through four key dimen-
sions: (1) quantitative textual analysis comparing model outputs against ground-truth references using
BLEU, ROUGE (1, 2, L), METEOR, SacreBLEU, BERTScore, and Sentence-BERT embedding
cosine similarity; (2) qualitative scoring via the Nvidia Nemotron-4-340B reward model (0-4 ratings
for correctness and coherence); (3) system-level efficiency benchmarks measuring inference latency
(ms/token), throughput (tokens/sec), and GPU memory utilization; and (4) process engineering
simulations in DWSIM to validate auto-generated PFDs and PIDs for industrial-scale feasibility. We
investigated the trade-off between model compression and predictive fidelity (e.g., accuracy, reason-

271
272
273
274
275
276
277
278
279
280
281
282

284
285
286
287
288
289

291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322

324

325

327
328

ing) in SLMs through structural pruning techniques. Both width-level (neuron-level) and depth-level
(layer-level) pruning were guided by importance heuristics computed during fine-tuning, enabling
systematic parameter reduction while monitoring per-task downstream performance impact. To
improve inference-time reliability—particularly for factual accuracy and reasoning consistency—we
implemented a test-time scaling mechanism combining multi-path exploration through stochastic
sampling, confidence-based candidate ranking, iterative self-reflection and revision, and consensus
aggregation. These techniques collectively enhanced output robustness compared to standard deter-
ministic decoding, as measured by qualitative reward model metrics. We conducted a systematic
evaluation of optimization techniques to improve performance (speed, memory usage, throughput)
during autoregressive inference of fine-tuned SLMs, including the LLaMA-3.2-1B architecture on
NVIDIA V100 GPUs, focusing on three key inference-time methods: PagedAttention [24]] with K'V-
cache quantization for memory efficiency, Lookahead Decoding [12]] for throughput improvement,
and FlashAttention [9, 8] for latency reduction. Benchmarking across metrics including inference
throughput (tokens/sec), average generation latency (sec), maximum batch size, and peak GPU
memory usage (GB) demonstrated their complementary benefits for demanding engineering applica-
tions. PagedAttention addressed memory fragmentation and throughput limitations by organizing
the Key-Value cache into non-contiguous blocks, improving memory efficiency and enabling larger
batch sizes compared to traditional contiguous caching. Lookahead Decoding reduced end-to-end
latency through parallel token generation and verification within each forward pass while maintaining
output equivalence with greedy decoding, with its effectiveness quantified through comparative
measurements of generation latency and throughput. FlashAttention optimized attention computation
by alleviating memory bandwidth bottlenecks in Transformer architectures through its I/O-aware
approach, with improvements evaluated on both training/inference throughput and peak memory
consumption during training. Finally, we validated engineering feasibility using the DWSIM [32], an
open-source chemical process simulator to construct and simulate PFDs/PIDs from auto-generated
textual descriptions of novel chemical processes. DWSIM functions as a virtual chemical plant,
enabling users to design, simulate, and analyze chemical processes. It supports both steady-state
and dynamic modeling, computes material and energy balances, and simulates various physical and
chemical operations such as mixing, reactions, separations, and etc. Additionally, it predicts key
properties like phase behavior, heat duties, and equipment sizing while offering optimization and
sensitivity analysis for process improvement. DWSIM enables chemical process design and simula-
tion through drag-and-drop PFD creation, supporting unit operations like pumps, reactors, distillation
columns, and heat exchangers. Users define components and select thermodynamic models (e.g.,
Peng-Robinson, NRTL, PC-SAFT) to simulate systems, obtaining flow rates, temperatures, pressures,
and compositions. The software performs advanced calculations: phase diagrams, enthalpy-entropy
charts, and property tables. It includes optimization tools for cost/yield/efficiency, sensitivity analysis,
and reaction modeling (CSTRs, PFRs, Gibbs reactors) with conversion/yield tracking. Equipment
sizing (PSVs, vessels, exchangers) and dynamic simulations (startups, shutdowns, upsets) are also
supported, allowing real-time process change analysis. In our work, DWSIM provides rigorous
validation of auto-generated PFD and PID descriptions by converting textual process information
into executable simulations. The software performs multi-level verification through material/energy
balance calculations, thermodynamic consistency checks (using appropriate property packages like
NRTL or Peng-Robinson), and equipment compatibility analysis. It identifies structural gaps in
process descriptions by mapping unit operations to mathematical models and detecting missing
connections or undefined parameters. Through steady-state and dynamic simulation, DWSIM evalu-
ates operational feasibility, verifying control strategies, equipment specifications, and safety limits
against simulated performance. The validation process flags inconsistencies in phase behavior, stream
properties, and process conditions, while convergence analysis ensures numerical robustness. This
systematic approach transforms textual process descriptions into validated, implementable designs
by bridging the gap between conceptual documentation and physical realizability. In summary,
DWSIM goes beyond checking if the outputs "look right’ textually—it proves they would operate as
executable chemical processes by subjecting them to rigorous physical/chemical laws and engineering
constraints. This bridges the gap between LLM-generated text and real-world implementability.

3.2 Results

Figure [5 presents a comprehensive evaluation of customized SLMs on the ChemEval benchmark for
automatic PFD/PID generation, using the NVIDIA/Nemotron-4-340B reward model and standard
NLP metrics. Note: Ground truth for the ChemEval benchmark is generated using OpenAl’s
advanced reasoning models 03/03-mini. We compare fine-tuned Llama-3.2 1B and SmolLM2-135M

329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345

347
348
349
350
351
352
353
354
355
356
357
358

360

361
362
363
364
365
366
367

Instruction-Tuning
SynDiP Dataset
Instruction-Tuning
LogiCore dataset
Instruction-Tuning
DPO dataset
Instruction-Tuning
General purpose SLMs
Local-RAIT dataset
Instruction-Tuning
Global-RAIT dataset
Instruction-Tuning

-
I
a
©
i
©
©
o
L
e}
[=4
s
o
Q
a
o
(s}

General purpose SLMs
General purpose SLMs
General purpose SLMs
General purpose SLMs
General purpose SLMs

Fine-Tuned Model

Figure 4: The figure illustrates the multi-stage instructio?l—tuning pipeline used to train specialized
student models—such as Llama-3.2-1B and SmolLM2-135M—for PFD/PID interpretation tasks. The
pipeline integrates synthetic datasets including Factual QA, SynDIP, LogiCore, DPO, Local-RAIT,
and Global-RAIT—each generated using teacher LLMs (e.g., GPT-40, Claude-3-Haiku) and validated
with reward models such as NVIDIA’s Nemotron-4-340B. These datasets target diverse capabilities
including factual question answering, process flow and instrumentation descriptions generation,
logical reasoning, preference optimization, and retrieval-augmented comprehension. The combined
instruction-tuning process refines general-purpose SLMs into domain-optimized models capable of
performing chemical process engineering tasks with high fidelity.

against GPT-4o to assess zero-shot generation quality. Figure [5(a) reports mean reward scores
(0—4 scale) across five dimensions: helpfulness, correctness, coherence, complexity, and verbosity.
GPT-40 establishes the performance upper bound, while Llama-3.2 1B achieves the second-best
results, outperforming SmolLM2-135M in helpfulness and coherence with more concise outputs
but greater variance. SmolLM2-135M scores lowest overall yet performs comparably in complexity
and verbosity. Figure[5[b) examines architectural components within Llama-3.2 1B across three
configurations: the base pretrained model, the model with GraphRAG, and the fully enhanced variant
with fine-tuning, GraphRAG, and feedback. Both retrieval and feedback contribute independently to
performance improvements, with their combination yielding the strongest gains. Figure[5[c) presents
quantitative evaluation using BLEU, METEOR, ROUGE, SacreBLEU, BERTScore, and cosine
similarity. Llama-3.2 1B achieves higher overlap-based scores, while both models demonstrate strong
semantic similarity alignment, confirming that appropriately fine-tuned smaller LLMs can preserve
semantic fidelity. Figures[6]and [7 present high-level PFDs for nitric acid and sulfuric acid production,
respectively. These diagrams were constructed in DWSIM based on textual outputs generated by
our framework and manually assembled using DWSIM’s unit operation blocks, thermodynamic
models, and stream configuration tools. The nitric acid PFD (Figure |§]) illustrates a structured
sequence of operations, beginning with feed mixing and catalytic oxidation, followed by gas cooling,
intermediate conversion, absorption, and final distillation—all represented through interconnected
unit operations and material flow paths. Similarly, the sulfuric acid PFD (Figure [7) outlines key
stages, including sulfur combustion, catalytic oxidation, SO3 absorption, oleum dilution, and product
purification, arranged in a logical progression of process units. Figures[8|and Q] illustrate PIDs for the
industrial synthesis of nitric acid via the Ostwald process and sulfuric acid via the Contact Process,
respectively. Each diagram details key equipment, instrumentation (temperature, pressure, flow, and
level sensors), control elements (valves, PID controllers, cascade and feedforward strategies), and
piping materials—all designed to ensure efficient, safe, and regulation-compliant chemical production.
These flowsheets reflect realistic industrial workflows and were configured in DWSIM for simulation-
based verification. The resulting simulations enable rigorous evaluation of material and energy
balances, phase behavior, and equipment performance. By translating language-model-generated
flowsheet descriptions into executable DWSIM simulations, we ensure engineering feasibility, identify
configuration issues, and support process optimization in accordance with fundamental chemical
engineering principles.

4 Conclusion

Automating the generation of industrially viable PFDs and PIDs is critical for accelerating chemical
process scale-up. Current Al-assisted drug and materials discovery pipelines often prioritize molecular
property optimization while neglecting production feasibility. Integrating early-stage auto-generation
and validation of PFDs—which capture unit operations, material balances, and thermodynamic
consistency—and PIDs—which define instrumentation, control logic, and safety systems—enables
process simulation tools to detect scale-up conflicts in equipment sizing, utility demands, and
hazardous material handling before experimental work begins. This proactive, concurrent design-

368
369
370
371
372
373
374
375
376
377

378

379
380

381
382
383

for-manufacturing approach replaces post-hoc feasibility checks, mitigating late-stage reengineering
risks. Our closed-loop framework addresses this gap by integrating domain-adapted small language
models (SLMs) with physics-aware validation to enable end-to-end automation. The approach
combines multi-stage SLM fine-tuning—Ileveraging synthetic datasets and retrieval augmentation
from a hierarchical chemical knowledge graph—with rigorous simulation-based verification using
DWSIM. Results demonstrate the framework’s robust performance in zero-shot synthesis of novel
chemical production processes and its strong capabilities in core engineering QA tasks, including
PFD/PID interpretation and analysis. By unifying generative Al with first-principles engineering
constraints, the framework effectively bridges the gap between digital discovery and industrial
deployment, addressing key R&D bottlenecks.

B smollM
35 = GPT 3.5
I Llama

B Llama W/o FT W/GraphRAG W/o Feedback
[Llama W/o FT W/o GraphRAG W/o Feedback
I Llama W/FT W/GraphRAG W/Feedback

Mean Scores
Mean Scores

correctness coherence correctness complexity verbosity

Quality Metrics

helpfulness complexity verbosity helpfulness

coherence
Quality Metrics

(a) Model performance comparison on the ChemEval benchmark
for PFD/PID generation, evaluated using the NVIDIA/Nemotron-
4-340B reward model (0—4 scale). Performance ranking: GPT-40
(highest), fine-tuned Llama-3.2 1B (second, with lower verbosity
but higher variance), and SmolLM2-135M (lowest, though match-

(b) Performance comparison of three Llama-3.2 1B configurations
on the ChemEval benchmark. Performance ranking: fully en-
hanced variant with fine-tuning, GraphRAG, and feedback (green,
highest) outperforms GraphRAG-only version (blue, middle) and
base pretrained model (orange, lowest), demonstrating the cumula-

ing Llama-3.2 1B in complexity and verbosity). tive benefits of retrieval and feedback mechanisms.

1.0
B Llama
o.s/ HEE SmolLM

0.6

Scores

0.0

Metrics

(¢) Quantitative comparison of fine-tuned Llama-3.2 1B and

SmolLM?2-135M using BLEU, METEOR, ROUGE, Sacre-

BLEU, BERTScore, and cosine similarity metrics on the

ChemEval benchmark. Llama-3.2 1B achieves superior

overlap-based scores, while both models demonstrate com-

parable semantic similarity performance.
Figure 5: Comprehensive evaluation of model performance on the ChemEval benchmark for automatic
PFD/PID generation. (a) Compares GPT-4o0, fine-tuned Llama-3.2 1B, and fine-tuned SmolLM2-
135M using reward model evaluation (ranked by performance). (b) Analyzes the impact of fine-tuning,
GraphRAG, and feedback components on Llama-3.2 1B performance. (c) Benchmarks Llama-3.2 1B
against SmolLM2-135M using standard NLP metrics.

References

[1] Vincent Abbott and Gioele Zardini. Flashattention on a napkin: A diagrammatic approach to
deep learning io-awareness. arXiv preprint arXiv:2412.03317, 2024.

[2] Achmad Anggaviya Alimin, Dominik P. Goldstein, Lukas Schulze Balhorn, and Artur M.
Schweidtmann. Talking like piping and instrumentation diagrams (p&ids). arXiv preprint
arXiv:2502.18928, 2025.

384
385
386

394

395
396
397

398
399

400
401
402

403
404
405

406
407
408

409
410

411
412
413

414
415
416

417
418
419

420
421

422
423
424

425
426
427
428

429
430
431

[3] Vidhisha Balachandran, Jingya Chen, Lingjiao Chen, Shivam Garg, Neel Joshi, Yash Lara, John
Langford, Besmira Nushi, Vibhav Vineet, Yue Wu, et al. Inference-time scaling for complex
tasks: Where we stand and what lies ahead. arXiv preprint arXiv:2504.00294, 2025.

[4] Zhenni Bi, Kai Han, Chuanjian Liu, Yehui Tang, and Yunhe Wang. Forest-of-thought: Scaling
test-time compute for enhancing llm reasoning. arXiv preprint arXiv:2412.09078, 2024.

[5] Jiefeng Chen, Jie Ren, Xinyun Chen, Chengrun Yang, Ruoxi Sun, and Sercan O Arik. Sets:
Leveraging self-verification and self-correction for improved test-time scaling. arXiv preprint
arXiv:2501.19306, 2025.

[6] Shimao Chen, Zirui Liu, Zhiying Wu, Ce Zheng, Peizhuang Cong, Zihan Jiang, Yuhan Wu, Lei
Su, and Tong Yang. Int-flashattention: Enabling flash attention for int8 quantization. arXiv
preprint arXiv:2409.16997, 2024.

[7] Yuan Chiang, Elvis Hsieh, Chia-Hong Chou, and Janosh Riebesell. LLAMP: Large language
model made powerful for high-fidelity materials knowledge retrieval and distillation. arXiv
preprint arXiv:2401.17244, 2024.

[8] Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

[9] Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and
memory-efficient exact attention with io-awareness. Advances in neural information processing
systems, 35:16344-16359, 2022.

[10] Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient
finetuning of quantized llms. Advances in neural information processing systems, 36:10088—
10115, 2023.

[11] Darren Edge, Ha Trinh, Newman Cheng, Joshua Bradley, Alex Chao, Apurva Mody, Steven
Truitt, Dasha Metropolitansky, Robert Osazuwa Ness, and Jonathan Larson. From local to global:
A graph rag approach to query-focused summarization. arXiv preprint arXiv:2404.16130, 2024.

[12] Yichao Fu, Peter Bailis, Ion Stoica, and Hao Zhang. Break the sequential dependency of llm
inference using lookahead decoding. arXiv preprint arXiv:2402.02057, 2024.

[13] Yuan Gao, Zujing Liu, Weizhong Zhang, Bo Du, and Gui-Song Xia. Bypass back-propagation:
Optimization-based structural pruning for large language models via policy gradient. arXiv
preprint arXiv:2406.10576, 2024.

[14] Shreesha Gowiakar, Srinivasan Iyengar, Sameer Segal, and Shivkumar Kalyanaraman. An
agentic approach to automatic creation of p&id diagrams from natural language descriptions.
arXiv preprint arXiv:2412.12898, 2024.

[15] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-rl: Incentivizing reasoning capability in
Ilms via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

[16] Jeff Guo and Philippe Schwaller. Saturn: Sample-efficient generative molecular design using
memory manipulation. arXiv preprint arXiv:2405.17066, 2024.

[17] Haoyu Han, Yu Wang, Harry Shomer, Kai Guo, Jiayuan Ding, Yongjia Lei, Mahantesh Halap-
panavar, Ryan A Rossi, Subhabrata Mukherjee, Xianfeng Tang, et al. Retrieval-augmented
generation with graphs (graphrag). arXiv preprint arXiv:2501.00309, 2024.

[18] Xiaoxin He, Yijun Tian, Yifei Sun, Nitesh Chawla, Thomas Laurent, Yann LeCun, Xavier
Bresson, and Bryan Hooi. G-retriever: Retrieval-augmented generation for textual graph
understanding and question answering. Advances in Neural Information Processing Systems,
37:132876-132907, 2024.

[19] Edwin Hirretier, Lukas Schulze Balhorn, and Artur M. Schweidtmann. Towards automatic
generation of piping and instrumentation diagrams (p&ids) with artificial intelligence. arXiv
preprint arXiv:2211.05583, 2022.

10

432
433
434

435
436
437

438
439
440

441
442
443

444
445
446
447

448
449

450
451
452

453
454
455

456
457

459
460
461

462

464
465

466
467
468

470
471

472
473
474
475

476
477
478

[20] Chenglong Kang, Xiaoyi Liu, and Fei Guo. Retrointext: A multimodal large language model
enhanced framework for retrosynthetic planning via in-context representation learning. In The
Thirteenth International Conference on Learning Representations.

[21] Aum Kendapadi, Kerem Zaman, Rakesh R Menon, and Shashank Srivastava. Interact: Enabling
interactive, question-driven learning in large language models. arXiv preprint arXiv:2412.11388,
2024.

[22] Bo-Kyeong Kim, Geonmin Kim, Tae-Ho Kim, Thibault Castells, Shinkook Choi, Junho Shin,
and Hyoung-Kyu Song. Shortened llama: Depth pruning for large language models with
comparison of retraining methods. arXiv preprint arXiv:2402.02834, 2024.

[23] Agustinus Kristiadi, Felix Strieth-Kalthoff, Marta Skreta, Pascal Poupart, Alan Aspuru-Guzik,
and Geoff Pleiss. A sober look at llms for material discovery: Are they actually good for
bayesian optimization over molecules? arXiv preprint arXiv:2402.05015, 2024.

[24] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th Symposium on Operating Systems
Principles, pages 611-626, 2023.

[25] Xinzhe Li. A survey on llm test-time compute via search: Tasks, 1lm profiling, search algorithms,
and relevant frameworks. arXiv preprint arXiv:2501.10069, 2025.

[26] Zhihang Lin, Mingbao Lin, Yuan Xie, and Rongrong Ji. Cppo: Accelerating the training of
group relative policy optimization-based reasoning models. arXiv preprint arXiv:2503.22342,
2025.

[27] Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

[28] Qin Liu, Wenxuan Zhou, Nan Xu, James Y Huang, Fei Wang, Sheng Zhang, Hoifung Poon,
and Muhao Chen. Metascale: Test-time scaling with evolving meta-thoughts. arXiv preprint
arXiv:2503.13447, 2025.

[29] Yue Liu, Jiaying Wu, Yufei He, Hongcheng Gao, Hongyu Chen, Baolong Bi, Jiaheng Zhang,
Zhiqi Huang, and Bryan Hooi. Efficient inference for large reasoning models: A survey. arXiv
preprint arXiv:2503.23077, 2025.

[30] Haiquan Lu, Yefan Zhou, Shiwei Liu, Zhangyang Wang, Michael W Mahoney, and Yaoqing
Yang. Alphapruning: Using heavy-tailed self regularization theory for improved layer-wise
pruning of large language models. Advances in Neural Information Processing Systems,
37:9117-9152, 2024.

[31] Jonathan Mamou, Oren Pereg, Daniel Korat, Moshe Berchansky, Nadav Timor, Moshe
Wasserblat, and Roy Schwartz. Dynamic speculation lookahead accelerates speculative decoding
of large language models. arXiv preprint arXiv:2405.04304, 2024.

[32] Daniel Medeiros. Dwsim: Open source process simulator, 2025. Accessed April 15, 2025.

[33] OpenAl. text-embedding-3-small model. https://platform.openai.com/docs/guides/
embeddings, 2024. Accessed: August 2024.

[34] Elton Pan, Soohyoung Kwon, Sulin Liu, Mingrou Xie, Yifei Duan, Thorben Prein, Killian
Sheriff, Yuriy Roman, Manuel Moliner, Rafael Gémez-Bombarelli, et al. A chemically-guided
generative diffusion model for materials synthesis planning. In Al for Accelerated Materials
Design—NeurlPS 2024, 2024.

[35] Ramya Prabhu, Ajay Nayak, Jayashree Mohan, Ramachandran Ramjee, and Ashish Panwar.

vattention: Dynamic memory management for serving llms without pagedattention. arXiv
preprint arXiv:2405.04437, 2024.

11

https://platform.openai.com/docs/guides/embeddings
https://platform.openai.com/docs/guides/embeddings
https://platform.openai.com/docs/guides/embeddings

479
480
481

482
483
484
485

486
487

488
489

490
491

492
493
494

495
496
497

498
499
500

501
502
503

504

519
520
521

522
523
524
525

[36] Yuxiao Qu, Matthew YR Yang, Amrith Setlur, Lewis Tunstall, Edward Emanuel Beeching,
Ruslan Salakhutdinov, and Aviral Kumar. Optimizing test-time compute via meta reinforcement
fine-tuning. arXiv preprint arXiv:2503.07572, 2025.

[37] Ankit Singh Rawat, Veeranjaneyulu Sadhanala, Afshin Rostamizadeh, Ayan Chakrabarti, Wit-
tawat Jitkrittum, Vladimir Feinberg, Seungyeon Kim, Hrayr Harutyunyan, Nikunj Saunshi,
Zachary Nado, et al. A little help goes a long way: Efficient llm training by leveraging small
Ims. arXiv preprint arXiv:2410.18779, 2024.

[38] Isaac Rehg. Kv-compress: Paged kv-cache compression with variable compression rates per
attention head. arXiv preprint arXiv:2410.00161, 2024.

[39] Fabrizio Sandri, Elia Cunegatti, and Giovanni lacca. 2ssp: A two-stage framework for structured
pruning of llms. arXiv preprint arXiv:2501.17771, 2025.

[40] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[41] Lukas Schulze Balhorn, Edwin Hirretier, Lynn Luderer, and Artur M Schweidtmann. Data
augmentation for machine learning of chemical process flowsheets. arXiv e-prints, pages
arXiv-2302, 2023.

[42] Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, and Tri Dao.
Flashattention-3: Fast and accurate attention with asynchrony and low-precision. Advances in
Neural Information Processing Systems, 37:68658-68685, 2024.

[43] Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

[44] Nishad Singhi, Hritik Bansal, Arian Hosseini, Aditya Grover, Kai-Wei Chang, Marcus Rohrbach,
and Anna Rohrbach. When to solve, when to verify: Compute-optimal problem solving and
generative verification for 1lm reasoning. arXiv preprint arXiv:2504.01005, 2025.

[45] Charlie Snell, Jachoon Lee, Kelvin Xu, and Aviral Kumar. Scaling 1lm test-time compute opti-
mally can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314,
2024.

[46] Henry W Sprueill, Carl Edwards, Khushbu Agarwal, Mariefel V Olarte, Udishnu Sanyal, Conrad
Johnston, Hongbin Liu, Heng Ji, and Sutanay Choudhury. Chemreasoner: Heuristic search over
a large language model’s knowledge space using quantum-chemical feedback. arXiv preprint
arXiv:2402.10980, 2024.

[47] Sakhinana Sagar Srinivas, Akash Das, Shivam Gupta, and Venkataramana Runkana. Accelerat-
ing manufacturing scale-up from material discovery using agentic web navigation and retrieval-
augmented ai for process engineering schematics design. arXiv preprint arXiv:2412.05937,
2024.

[48] Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning
approach for large language models. arXiv preprint arXiv:2306.11695, 2023.

[49] Wenfang Sun, Xinyuan Song, Pengxiang Li, Lu Yin, Yefeng Zheng, and Shiwei Liu. The curse
of depth in large language models. arXiv preprint arXiv:2502.05795, 2025.

[50] Shengkun Tang, Oliver Sieberling, Eldar Kurtic, Zhigiang Shen, and Dan Alistarh. Darwinlm:
Evolutionary structured pruning of large language models. arXiv preprint arXiv:2502.07780,
2025.

[51] Yijun Tian, Yikun Han, Xiusi Chen, Wei Wang, and Nitesh V Chawla. Beyond answers:
Transferring reasoning capabilities to smaller llms using multi-teacher knowledge distillation.
In Proceedings of the Eighteenth ACM International Conference on Web Search and Data
Mining, pages 251-260, 2025.

12

526
527

528
529
530

532
533

534
535

537
538

539
540
541

542
543
544
545

546
547

549

550
551

552
553
554

555
556
557
558

559
560
561

562
563
564

[52] Vincent A Traag, Ludo Waltman, and Nees Jan Van Eck. From louvain to leiden: guaranteeing
well-connected communities. Scientific reports, 9(1):1-12, 2019.

[53] Gabriel Vogel, Lukas Schulze Balhorn, and Artur M Schweidtmann. Learning from flowsheets:
A generative transformer model for autocompletion of flowsheets. Computers & Chemical
Engineering, 171:108162, 2023.

[54] Haorui Wang, Marta Skreta, Cher-Tian Ser, Wenhao Gao, Lingkai Kong, Felix Strieth-Kalthoff,
Chenru Duan, Yuchen Zhuang, Yue Yu, Yangqiao Zhu, et al. Efficient evolutionary search over
chemical space with large language models. arXiv preprint arXiv:2406.16976, 2024.

[55] Haihang Wu. Llm-bip: Structured pruning for large language models with block-wise forward
importance propagation. arXiv preprint arXiv:2412.06419, 2024.

[56] Yuhui Xu, Lingxi Xie, Xiaotao Gu, Xin Chen, Heng Chang, Hengheng Zhang, Zhengsu Chen,
Xiaopeng Zhang, and Qi Tian. Qa-lora: Quantization-aware low-rank adaptation of large
language models. arXiv preprint arXiv:2309.14717, 2023.

[57] Junjie Yang, Junhao Song, Xudong Han, Ziqian Bi, Tianyang Wang, Chia Xin Liang, Xinyuan
Song, Yichao Zhang, Qian Niu, Benji Peng, et al. Feature alignment and representation transfer
in knowledge distillation for large language models. arXiv preprint arXiv:2504.13825, 2025.

[58] Sherry Yang, Simon Batzner, Ruiqi Gao, Muratahan Aykol, Alexander Gaunt, Brendan C
McMorrow, Danilo Jimenez Rezende, Dale Schuurmans, Igor Mordatch, and Ekin Dogus
Cubuk. Generative hierarchical materials search. Advances in Neural Information Processing
Systems, 37:38799-38819, 2024.

[59] Wenkai Yang, Shuming Ma, Yankai Lin, and Furu Wei. Towards thinking-optimal scaling of
test-time compute for llm reasoning. arXiv preprint arXiv:2502.18080, 2025.

[60] Zhaojian Yu, Yinghao Wu, Yilun Zhao, Arman Cohan, and Xiao-Ping Zhang. Z1: Efficient
test-time scaling with code. arXiv preprint arXiv:2504.00810, 2025.

[61] Huan Zhang, Yu Song, Ziyu Hou, Santiago Miret, and Bang Liu. Honeycomb: A flexible
Ilm-based agent system for materials science. arXiv preprint arXiv:2409.00155, 2024.

[62] Qiyuan Zhang, Fuyuan Lyu, Zexu Sun, Lei Wang, Weixu Zhang, Zhihan Guo, Yufei Wang,
Irwin King, Xue Liu, and Chen Ma. What, how, where, and how well? a survey on test-time
scaling in large language models. arXiv preprint arXiv:2503.24235, 2025.

[63] Yao Zhao, Zhitian Xie, Chen Liang, Chenyi Zhuang, and Jinjie Gu. Lookahead: An inference
acceleration framework for large language model with lossless generation accuracy. In Proceed-
ings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pages
6344-6355, 2024.

[64] Ming Zhong, Chenxin An, Weizhu Chen, Jiawei Han, and Pengcheng He. Seeking neural
nuggets: Knowledge transfer in large language models from a parametric perspective. arXiv
preprint arXiv:2310.11451, 2023.

[65] Xunyu Zhu, Jian Li, Yong Liu, Can Ma, and Weiping Wang. A survey on model compression
for large language models. Transactions of the Association for Computational Linguistics,
12:1556-1577, 2024.

13

ss 5 Technical Appendix

] ‘D' g

[NO3 + Nt Reboler(85-90°C)
(30°C-40° c)

] = mmm+—@— @ B —]

NH3 <02 PFR-1 NO+H2O CSTRinlet |

=
Air(02) (900°C + 1atm)

CSTRA No

Condensor(30°C)

:

) [—

DISTILLATION COLUMN HNO3
H20 =

H20

The production of nitric acid (HNO3) follows a systematic sequence of steps. The pro-
cess begins with feed preparation, where ammonia (NH3) from storage and compressed
air (O;) are introduced. Ammonia is stored at ambient temperature and atmospheric
pressure, while air is compressed to 1-2 atm. In the next step, ammonia undergoes
oxidation in a plug flow reactor (PFR) using a platinum-rhodium (Pt-Rh) catalyst,
converting NH3 and O, into nitric oxide (NO) and water vapor at 900°C and 9 atm.
The hot gas stream is then cooled to 30-40°C using a heat exchanger (HX1). Nitric
oxide (NO) is subsequently oxidized to nitrogen dioxide (NO,) in a continuous stirred
tank reactor (CSTR) at atmospheric pressure and a temperature of 30—40°C. The
resulting NO; gas is absorbed in water inside an absorption tower, where it reacts to
form nitric acid (HNO3) and nitric oxide (NO) at 60—70°C and 1-2 atm. The nitric acid
solution is then purified in a multi-stage distillation column, concentrating it to 60-68%
while separating impurities, with the reboiler operating at 85-90°C and the condenser
at 30°C. Key operational conditions include maintaining optimal temperatures and
pressures in reactors and separation units to enhance efficiency. This optimized nitric
acid production process ensures high efficiency, minimizes environmental impact, and
is well-suited for large-scale industrial applications.

_ J
Figure 6: The figure shows the nitric acid (HNO3) PFD showing key unit operations (NH3 oxidation,

NO/NO; conversion, absorption, distillation) with operating conditions. Generated in DWSIM from
framework text.

se6 5.1 Agentic Web Search for Automated Extraction and Synthesis of PFD/PID Descriptions
567 for Chemical Processes

ses PFDs and PIDs are fundamental engineering schematics in the chemical process industry, serving as
s69 the primary graphical representations of chemical plants. A Process Flow Diagram (PFD) provides a
570 high-level overview of a plant’s major process units, piping, and material/energy flows, illustrating the
571 transformation of raw materials into final products. In contrast, a Piping and Instrumentation Diagram
s72 (PID) offers a detailed schematic of mechanical components, including valves, instrumentation, and
573 control systems, which are essential for safe and efficient operation. To generate textual descriptions
s74 of PFDs and PIDs for chemical processes in the ChemAtlas database, we employ agentic web
575 navigation—an advanced autonomous framework for web-based information retrieval. This system
576 scrapes, parses, and synthesizes process engineering information from open-access web sources to
577 build foundational knowledge about established manufacturing processes. The framework generates
s78 structured textual descriptions of process designs, including: PFDs (equipment layouts, stream
579 connections, mass/energy balances) and PIDs (instrumentation tags, control logic, safety interlocks).
s80 At the core of the agentic web search framework is a meta-agent responsible for query decomposition,
s81 task delegation, and response integration. Given a complex input query (), the meta-agent decomposes
se2 it into a set of subtasks {q1, g2, - .., ¢}, where each subtask represents a semantically coherent
s83 information need. For each subtask ¢;, the meta-agent selects the optimal expert agent—such as
584 the Visual Miner Agent, Research Agent, Patent Agent, or Wiki Agent—based on the highest

14

585
586
587

588

589
590
591
592
593
594
595
596
597
598
599
600
601
602

=

(1atm)
sulphur(s) (1000-2000 *C) S Cone. H2504

WX S<02 fumace 02 FER 503
(400-500 °C)

Air(02)

water
=

> [Hes04 of

Mik2 =

Yk

Absarption Tower [=
Oleum(H25207) =

93.98% H2504

()
The Contact Process for sulfuric acid (H,SO,4) synthesis involves several key steps:
sulfur combustion, sulfur dioxide oxidation, sulfur trioxide absorption, oleum dilution,
and final purification. Initially, elemental sulfur (S) combusts with oxygen (O;) in
a furnace at 1000—1200°C under atmospheric pressure, producing sulfur dioxide
(S0O3). The SO, then enters a series of fixed-bed reactors, where it undergoes catalytic
oxidation with vanadium pentoxide (V,0s) at 400-600°C and 1-5 atm to form sulfur
trioxide (SO3). Next, SO; is absorbed in concentrated sulfuric acid within a packed
absorption tower at 30—60°C, forming oleum (H,S,07). The oleum is then diluted
with water in a mixing tank to produce concentrated sulfuric acid. A heat exchanger
cools the reactor effluents, and a distillation column purifies the final product, yielding
93-98% pure H,SO4. Safety measures include gas detection, automated controls,
emergency protocols, and corrosion-resistant materials. Potential bottlenecks include
catalyst deactivation in fixed-bed reactors, foaming in absorption towers, and inefficient
heat recovery. This optimized process flow ensures efficient, large-scale sulfuric acid
production with energy recovery and environmental sustainability.

_ /)
Figure 7: The figure illustrates the PFD of sulfuric acid (H,SO4) production, dynamically simulated
in DWSIM. It details critical stages—including sulfur (S) combustion, catalytic SO, oxidation, SO;

absorption, and oleum (H,S,07) dilution—along with associated operating parameters (temperature,
pressure, flow rates).

semantic similarity between the vector representation of the subtask and that of the agent’s capability.
This approach goes beyond naive task-to-tool mapping by embedding both task intent and agent
capabilities into a shared semantic space, enabling principled and adaptive agent selection.
t; = arg mjaX Simcos(v(qi)v U(dj))
where,) U(Qi) ~U(dj)
st (0008 D) =) o,

Here, v(g;) and v(d;) denote the dense vector embeddings of the subtask and the expert agent’s
capabilities, respectively. The agent embedding v(d;) encodes domain expertise (i.e., specialized
knowledge and skills relevant to retrieving and interpreting information within a specific content
domain), tool access (e.g., SerpAPI), and reasoning modality (e.g., extractive or abstractive). Each
expert agent operates within a multimodal, domain-specific retrieval regime. The Visual Miner Agent
uses SerpAPI to retrieve high-quality industrial schematics and parses them to generate semantic
summaries using an LLM. The Research, Patent, and Wiki Agents also leverage SerpAPI to retrieve
content from domain-specific corpora, including peer-reviewed scientific papers, technical reports,
patents, and Wikipedia articles, respectively, and synthesize structured, contextual summaries using
LLMs. Subtasks are then structured as nodes V' = {v1, ..., v, } in a Directed Acyclic Graph (DAG)
G = (V, &), where edges e;; € € represent precedence constraints. This introduces formalisms into
agent planning, moving away from fixed chain-of-thought paths to dynamic computation graphs. The
DAG allows for topological sorting, task parallelism, and dependency resolution, supporting robust
and interpretable execution flows. In particular, when no edge exists between subtasks ¢; and g;,

15

603
604
605
606

607

608
609

)

Fleboler(85-90°C)
NO

e I
e T ®

Ammania D Pi-Rh ? ﬁ?&ﬂ-oa-q =
% e 0)) @ =
|

= N3 02 PRR-1 KO+ H20 Wt CSTR Inle
Aw(02) (900°C + tatm)

=

W20

The optimized PID for nitric acid synthesis via the Ostwald process presents a compre-
hensive layout incorporating essential components, sensors, control mechanisms, and
safety systems to facilitate efficient process monitoring and compliance with industry
regulations. The system comprises key equipment such as the Ammonia Storage Tank,
Air Compressor, Plug Flow Reactor, Heat Exchangers, Continuous Stirred Tank Reac-
tor, Absorption Tower, Distillation Column, Gas Recycling System, and Wastewater
Treatment Unit. Instrumentation includes temperature sensors (T-1 to T-7) placed at
the ammonia tank, PFR outlet, HX1 outlet, CSTR, absorption tower, and distillation
column reboiler and condenser; pressure sensors (P-1 to P-5) at critical points such as
the ammonia tank, PFR, CSTR, absorption tower, and distillation column; flow meters
(F-1 to F-5) for monitoring ammonia feed, air feed, NO and nitric acid product flow,
and wastewater; and level sensors (L-1, L-2) for the ammonia and nitric acid storage
tanks. The control infrastructure features valves (CV-1 to CV-4) to regulate ammonia
and air feeds, NO, and nitric acid flow, with electric or pneumatic actuators deployed
as required. Control strategies employ feedback control via PID controllers to stabilize
PFR and CSTR temperatures and pressures, feedforward control to adjust downstream
conditions based on upstream flow, and cascade control for distillation column temper-
ature regulation. Recommended piping materials include carbon steel with coatings or
stainless steel (e.g., 316L) for ammonia and NO, glass-lined or high-alloy stainless
steel (e.g., Hastelloy) for nitric acid, and titanium or stainless steel for heat exchangers
handling corrosive streams.

\ ~J
Figure 8: The figure shows the PID for nitric acid production via the Ostwald process, generated using
Visual Paradigm Online. The diagram highlights key process units—including the ammonia storage
tank, plug flow reactor (PFR), absorption tower, and distillation column—along with instrumentation
(temperature, pressure, flow, and level sensors) and control systems (valves, PID controllers, and

cascade control). The design reflects process monitoring requirements and compliance with industry
standards..

their associated agents—such as the Visual Miner Agent, Research Agent, Patent Agent, or Wiki
Agent—are executed in parallel to optimize latency and throughput. Each agent executes its assigned
subtask ¢;, retrieving a set of &k candidate results M = {my, ..., my}, each scored using cosine
similarity:

SimCOS(U(mi)7U(qi)) _ 'U(mi) ’U(C.h)

 lv(ma)llllo(ga)l

The top-K < k candidates are selected by ranking the retrieved items m; € M in descending order
of cosine similarity to v(g;), retaining the most relevant results for language model-based synthesis.

16

610
611
612
613
614

Ple @

(tatm)

Sulphurté) (1000-2000 4 } vzos Conc. H2504 @
= @ (R
M 540 fumae
=)

=% man.sno)
.\u;m{

@

Absorption Tower = : (: :)7

Oleum{HZ207)

=
@ peos 93.95% H2S04

(N\
Creating an optimized PID for the synthesis of sulfuric acid via the Contact Process
involves integrating best practices, emphasizing critical sensors, control elements,
redundancy, reliability, piping materials, and control systems integration. The equip-
ment and piping layout should include a multi-tube furnace for sulfur combustion,
a series of fixed-bed reactors with heat exchangers for SO» oxidation, and a packed
absorption tower with cooling jackets for absorbing SOj3 into concentrated HoSO4. A
mixing tank for oleum dilution must be equipped with level sensors and flow control
for water and oleum, while a heat exchanger is needed for cooling and heat recov-
ery, monitored by temperature and flow sensors. The system should also feature a
distillation column with reboiler and condenser controls for sulfuric acid purification,
a scrubber system with gas detection for unreacted SO5, and a filtration system for
removing solid impurities. Instrumentation must include temperature sensors (T1 to
T9) at critical points such as the furnace outlet, reactor inlets/outlets, absorption tower,
distillation column, heat exchanger, and mixing tank. Pressure sensors (P1 to P5)
should be installed at the furnace outlet, reactors, absorption tower, and distillation
column, while flow sensors (F1 to F7) should monitor sulfur, air, SO5, SOz, oleum,
water, and final H,SO,4 flows. Level sensors (L1 and L2) should monitor the mixing
tank and distillation column sump. Control valves (CV1 to CV6) must regulate feeds
of sulfur, air, SOz, SO3, water, and oleum, operated by electric or pneumatic actuators
for fast, reliable responses. Control strategies should include feedback control through
PID loops for temperature and pressure in critical areas, feedforward control to adjust
sulfur and air feed rates based on production goals and data analytics, and cascade
control for reactor pressure with temperature as the inner loop. Safety instrumentation
is vital. In conclusion, this optimized PID framework for sulfuric acid synthesis via
the Contact Process ensures efficient, safe, and reliable industrial-scale production.
Incorporating redundancy, advanced control, and real-time monitoring significantly
enhances both operational efficiency and safety.

Figure 9: The figure presents the PID for sulfuric acid production via the Contact Process, created
using Visual Paradigm Online from framework-generated descriptions. It highlights core equipment
including the multi-tube furnace, fixed-bed reactors, absorption tower, and distillation column, along

with critical instrumentation (temperature/pressure/flow sensors, control valves) and control strategies
(PID loops, feedforward control) for efficient, safe operation.

Each expert agent then leverages a language model to perform information synthesis, semantic
abstraction, and contextual reasoning over the selected top-ranked results, producing a coherent sub-
answer R, . The global answer A is constructed by integrating sub-answers: A = Fyjera({ Ry, 1)
To enhance quality and alignment, the framework introduces an iterative refinement loop for a
predefined number of iterations:

17

615

616
617
618
619
620
621
622
623
624
625

626

627
628
629
630

632
633
634
635
636
637
638
639
640
641
642
643

Ait1 = Fuea(Ais Fy)

Here, F; includes feedback from: (a) LLM-as-Judge (e.g., GPT-40, Anthropic Sonnet), applying
ReAct-based reasoning and qualitative critique (e.g., correctness, coherence, and factuality); and (b)
Reward Models (e.g., the Nemotron-4-340B multidimensional reward model), which score candidate
outputs based on five key attributes: helpfulness, correctness, coherence, complexity, and verbosity.
These mechanisms form a self-correcting feedback loop, enabling reward-aligned output generation
and enhancing factuality and task relevance. This modular, explainable framework extends RAG from
static retrieval to agentic, feedback-driven generation of high-quality textual descriptions—enabling
automated generation of regulation-compliant PFD and PID descriptions for complex chemical
synthesis pipelines. Figure [I0]outlines our agentic framework for automated PFD/PID synthesis via
query decomposition, expert routing, and iterative refinement.

Tools

| (}\ 1
LLM Ethanol is synthesized through

— = — | P . 7 o P .
O * _____ —Tthe esterification of salicylic acid]7

with ethanol anhydride...

Image Extracted images Top K images
Agent
LN
.00 ’ {LLM Production of ethanol begins with
L v\/ |DE| 4:[/Ihe reaction of salicylic acid and @

PFD and Document ethanol anhydride...
P&ID for Agent Extracted PDFs Top K PDFs
Ethanol ? Knowledge

Agglomeration

0.
=\
. — e (‘E'LMEthanoI manufacturing involves
g I? """" 7*[;1ixing salicylic acid with acetic
MLs

. anhydride in the...
User Question HTMLAgent Extracted HTMLs ~ ToP KHT

Web Search

Synthesis Description

o
2O\ X
LLM The synthesis of
—> Q > %H (\» To produce ethanol, ethanol MEBE
J . = = W .. ﬂ' reacts with salicylic acid in the k I (DR E
Journal Agent Extracted Journals resence of ...

Top K journals PFD Description

Prompt The PFD for the
Enhancement N (,g\ synthesis of ethanol
LM i
L . . outlines the ...
L — % _ % Industrial synthesis of ethanol p&.ID Description
..... involves heating salicylic... The P&ID for efhanc,_':
Patent Agent Extracted Patents "
\ g Top K patents] Final Document

Tools

Figure 10: The figure illustrates an autonomous framework for generating textual descriptions of
PFDs and PIDs for user-specified chemical processes to construct property graphs. A meta-agent
decomposes complex queries into subtasks, routes them to domain-specific expert agents (e.g., Visual
Miner, Research), and structures execution using a DAG. The agents retrieve multimodal content
(e.g., PDFs, patents, HTML documents), rank results by relevance, and synthesize summaries using
LLMs. The outputs are iteratively refined through LL.M-as-Judge feedback and reward models to
ensure accuracy and coherence.

5.2 Synthetic Datasets Generation for PFD/PID Analysis

We adopt a teacher—student transfer learning framework [64} 21} |51} 37, I57]] that leverages large
language models (LLMs), such as OpenAI’s GPT-40 and Anthropic’s Claude Haiku, as teacher
models to generate high-quality synthetic training data. This synthetic dataset is then used to fine-tune
smaller, open-source student models such as Llama-3.2-1B and SmolLM2-135M, enhancing their
ability to follow complex instructions, provide helpful and context-aware responses, and perform
specialized domain tasks—particularly the interpretation, analysis, and generation of PFDs and PIDs
for chemical processes. From a Bayesian learning perspective, the teacher model approximates
a posterior distribution over possible outputs, while the student model learns a compressed yet
effective representation of this distribution. Through this knowledge distillation process, the student
model achieves performance comparable to that of the teacher model on out-of-distribution (OOD)
tasks while being significantly more efficient to deploy. Our data generation pipeline employs
self-instruct prompting, where the teacher LLM is first conditioned on a small seed set of human-
written instruction—response pairs, denoted as Dyeeq = { (24, yz)}f\il and then recursively generates
synthetic pairs Dgen = {(Z;,7;)}3L,, with (Z;,7;) ~ pm(- | Dwed). Here, I; represents a
synthetic instruction, g; its corresponding generated response, and py v denotes the teacher LLM’s
probability distribution. This bootstrapped approach generates structured instruction—response pairs
without extensive human annotation, forming the core of our training corpus. In this section, we

18

644
645
646
647
648
649
650
651
652
653
654
655
656
657

658

659
660
661
662
663
664
665
666

668
669

670

671
672
673

674
675
676

677

678
679
680
681
682
683
684
685

686
687

688
689
690
691

692

693

discuss the generation of multiple synthetic instruction—response datasets, all formatted as QA pairs,
to support the development of expert language models for interpreting and generating PFD and PID
descriptions in chemical process engineering. These datasets include: Factual QA, which targets
domain-specific factual knowledge; SynDIP, designed to capture schematic-level descriptions of
industrial processes; LogiCore, which elicits multi-step reasoning and logical understanding; DPO,
comprising chosen-rejected response pairs for preference optimization; and Local and Global RAIT,
which incorporate retrieval-augmented prompts with intra- and inter-cluster contextual grounding.
All datasets are generated using a self-instruct bootstrapping pipeline with LLM-based prompting
and validated through reward models to ensure alignment, informativeness, and response quality. (a)
We generate a factual QA dataset (refer to Figure by first selecting a domain-level topic 7' € T
(e.g., PFDs or PIDs), where 7 denotes the set of all possible topics. The teacher model M (e.g.,

GPT-40) decomposes T into subtopics S = {s1,..., s, } and then synthesizes question—answer
pairs (g, @;x) for each subtopic s;, where j = 1, ..., n indexes the subtopics and k = 1,...,m;
indexes the QA pairs within subtopic s;. Each pair is generated as:
- FQA
(@k> @) ~ M(- | 55, D)
Here, DL = {(zi,y:)}Y, denotes a seed set of human-written QA examples. The syn-
thetic pairs form the dataset DEQ* = {(Gjk, k) } ;x> Which is filtered via a reward model (e.g.,

Nemotron-4-340B-Reward), defined as: R(G,a) = S.0_, oy - Metric;(g, @), where {Metric;}?_, =
{H,C,Co,Cuz,V} represent helpfulness, correctness, coherence, complexity, and verbosity, respec-
tively, and a; > 0 are predefined scalar weights. Only QA pairs satisfying the quality threshold
R(§,a) > T are retained, ensuring the dataset meets the quality standards required for downstream
student model fine-tuning. The resulting dataset DEQ* contains factual QA pairs related to chemical
process engineering. (b) The Direct Preference (%ptimization (DPO) dataset (refer to Figure[12)
is generated using the teacher model M (e.g., GPT-40 or Claude Haiku) and the reward model
R. For each subtopic s; € St (derived from a domain-level topic 1") and each synthetic question
djx € DEQ?, we sample two candidate responses from M:

gen
(d;_k’ aj_k) ~ M(- | ‘jjkvpgga?)
DDPO

Here, Ezjk is the preferred response, ;. is the dispreferred response, and Dgy is a seed set
of human-annotated preference pairs. The reward model R then computes the preference gap:
AR, = R(qjk, &j’k) — R(Gjk, a;y,), where R is defined as a weighted sum over five quality metrics:
{H,C,Co,Cx,V}, representing helpfulness, correctness, coherence, complexity, and verbosity,
respectively. Only preference triplets satisfying the quality threshold AR, > mppo are retained,
forming the final dataset:

Do = {(Gjk» @fy.,a5) | AR > Topo}

In summary, this pipeline automates the generation of high-quality preference-labeled datasets for
PFD/PID analysis tasks by combining teacher-model synthesis (&j‘k, &j_k) ~ M with multi-metric
reward-based filtering R, resulting in a DPO-optimized dataset tailored for domain-specific student
model training. (c) The SynDIP dataset (refer to Figure extends the teacher—student framework
to generate chemical process context, PFDs, and PIDs textual descriptions, organized as sequential
instruction—response pairs. The process context overview explains the why and how of a process
design, covering its background, operation, engineering decisions, and control. It outlines unit
operations, flow, reactions, and the rationale behind equipment and controls. For each target chemical,
the teacher model M (e.g., GPT-40 or Claude-3-Haiku) generates a process blueprint by, in response
to a fixed instruction template 73N (e.g., “Describe a chemical process for producing chemical X,
including raw materials, reactions, and equipment”), with: by ~ M (- | 2™, DY) where D3
is a seed set of human-authored process blueprints. Each blueprint by, is then processed in two
stages: (1) PFD generation via prompt zF™° (e.g., “Convert this blueprint to a PFD: [b;,]”), yielding:

fe ~ M(- | 28, by, DPD) where DFFY contains human-annotated PFD exemplars; and (2) PID

generation using prompt zF'° (e.g., “Generate a PID for this PFD: [fe), resulting in:

P~ M(- | 2™, fr, Do)

seed

19

694

695
696
697

698

699
700
701
702
703
704
705

707
708

709

710
71
712
713
714
715
716
77
718
719
720
721
722
723

724

725

726
727
728
729
730
731
732
733
734
735
736

737

738

740
741
742

where DFID contains human-annotated PID exemplars. The reward model R evaluates each

instruction—response pair (zy, §x)—where g5 € {Ek, fk,ﬁk}—using the composite metric set
{H,C,Co,Cx,V} (helpfulness, correctness, coherence, complexity, verbosity). The final Syn-
DIP dataset is defined as:

Dgg:DIP = {(IzYN75k7xEFD7fkaxEID7ﬁk) | R(szNvgk) + R(l‘EFDv fk) + R(xl]zIDvﬁk') 2 7-SYN}

ensuring that each entry includes validated process context, PFD, and PID descriptions for a complete
chemical process representation. (d) The LogiCore Dataset (refer to Figure extends our teacher—

student framework to generate multi-step reasoning question—answer pairs for PFD/PID analysis by

building upon the Dgg,? P dataset and extracting logical reasoning chains from its process descriptions.

For each seed instruction z; € DHM (human-annotated exemplars), the teacher model M (e.g.,
GPT-40) generates multiple logical QA pairs (Gi;,di;) ~ M(- | ;, DM, where j indexes the
generated pairs per seed and each a;; contains explicit chain-of-thought reasoning. These pairs are
filtered via the established reward model R (Nemotron-4-340B-Reward) using the same metrics:
R(Gij,a:5) = Z?Zl oy - Metric;(Gij, aij), where {Metric;}i, = {H,C,Co,Cz} (helpfulness,
correctness, coherence, complexity). The final dataset

Do = {(Guj, i) | R(Gij»@ij) > Tiogic}

retains only high-quality reasoning chains, with logical validity implicitly ensured through C' (factual
alignment with PFD/PID schematics) and C'o (stepwise flow coherence), maintaining full consistency
with our synthetic data generation framework. (e) The Local RAIT Dataset (refer to Figure [T5))

extends our teacher—student framework to retrieval-augmented generation. Unlike DggA and Dgeyff bIF
Local RAIT integrates retrieval mechanisms to ground M’s outputs in source documents, mitigating
hallucination risks. For each chemical process description from the SynDIP datasets in the ChemAtlas
database (stored as PDF documents containing process flow and instrumentation descriptions), the
raw text T is extracted and parsed into semantically coherent chunks Cr = {¢1, ..., ¢k }, where ¢ ~
Chunk(T") and each ¢, retains contextual continuity with neighboring chunks. The teacher model
M (GPT-40) then synthesizes QA pairs (i, dx) ~ M(- | c, DRAIT), conditioned on seed human
examples DRAIT = {(z, y;)} that include both questions and gold-standard retrieval-augmented
answers. This approach ensures (g, ay) are document-grounded, with ¢, providing explicit source
references for generated answers—critical for technical domains where factual alignment with

PFD/PID schematics is required.
Dot = (G, iy k) | R(Gr, ax) > 7 A LGk dn) > 4}

FQA
gen °

the reward score R(qx, ax) = Z?:l oy - Metric; (g, ay,) incorporates five metrics: H=Helpfulness,
C=Correctness, C'o=Coherence, Cz=Complexity, and V' =Verifiability against c;. The Likert scale
L(Gr,ax) € {1,...,5} (1=Poor, 3=Average, 5=Excellent) independently assesses answer quality
across three dimensions: helpfulness, correctness, and coherence. Only instances meeting both
criteria—7 for R and 4+ for L—are included in D{g“é’[faIRAIT. (f) The Global RAIT Dataset (refer to
Figure scales retrieval-augmented generation to both intra- and inter-document comprehension.
Chunks Cr are clustered into semantically related groups G; via cosine similarity sim(¢(c;), #(¢;)) >
~, where ¢ is a domain-tuned embedding model (fine-tuned on 7~ using contrastive learning) optimized
for cross-document semantic relationships. For cross-document groups, G; aggregates chunks from
multiple source PDFs. The teacher model M generates answers @; ~ M (+|G;, DS%Pal) conditioned

seed
on seed examples DZIP! that include inter-document QA pairs.

The QA pairs are filtered using the same reward model R and Likert scoring £ as D where

Dgen "M = (45,95, 45) |
R(dj) 2T/\£24}

where a; provides structured reasoning with evidence from multiple document chunks. Filtering

follows the same criteria as Dggﬁmp, applying both the reward threshold 7 and a Likert score

of £L > 4. By leveraging grouped chunk clusters, Global RAIT enables the student model to
generate contextually grounded responses that synthesize information across intra- and inter-document
contexts.

20

4)
* Assign score across multiple
Category: dimensions (helpfulness,
Closed-Ended QA correctness, coherence,
dataset ¢ Prompt GPT-4o to generate complexity and verbosity) using
multiple questions for each Nvidia-nemotron-4-340B
sub-topic reward model
. Sub-topics Questions Response . Filtering and
[[oRk Generation Generation Generation SeRilig Saving data]
« Prompt GPT-40 to generate ¢ Prompt GPT-40 to generate * Filtering Criterion:
multiple sub-topics responses for each Score > Threshold
question
Figure 11: The figure shows the pipeline for generating synthetic Factual QA dataset.
GPT-40 or claude-3-Haiku decomposes domain topics into subtopics and creates question-
answer pairs, which are filtered by the Nvidia Nemotron-4-340B reward model based on
metrics like correctness, coherence and etc. Only high-scoring pairs are retained for the
final dataset.
_ J
()
Category: Assi .
gn alignment score
Closed-Ended using Nvidia-nemotron-4-
DPO dataset * Prompt GPT-40 to 340B reward model for
gener,ate multiple each response and rejected
questlor)s for each ! response
sub-topic H
) Sub-topics Questions 1 . Filtering and
[e Generation Generation | 1 SEEig Saving data]
: i
* Prompt GPT-40 to generate :‘ Response ,: Filtering Criterion:
multiple sub-topics RS A 1. Chosen response score
> threshold
Prompt GPT-40 to generate 2. Rejected response score
chosen and rejected < threshold
response for each question
Figure 12: The figure illustrates the workflow for synthetic DPO dataset generation. GPT-40
or claude-3-Haiku generates questions with paired preferred and dispreferred responses.
The Nvidia Nemotron-4-340B reward model scores responses, and pairs are filtered to
L ensure the preferred response ranks significantly higher in quality.)
4)
Category:
Process Synthesis, PFDs and PIDs
Description Dataset
(SynDiP dataset)
Industrial Synthesis
Generation [PFD Generation] [PID Generation] Scoring
/ AN ™
! i]
= i|eP ! Nvidia- =
g | Nemotron- 3
_g i Clau 340B-reward %
1 [
1 |_3-Haiku &
Assign score using Nvidia-
[Proposers] [Aggregators] [Reward Model] nemotron-4-340B reward model
and filter low-quality outputs
Figure 13: The figure outlines the SynDIP dataset generation process. Teacher models
(GPT-40, Claude-3-Haiku) generate PFD and PID descriptions. The Nvidia Nemotron-4-
340B reward model validates, ensuring consistent quality across all outputs.)

21

Category:
Logical, Ci ing, C
sense and Factual knowledge
(LogiCore dataset)

Genera Generation

- 4, N P ~

I \ T H T c
i | { ! £ 5
i GPT-4o | ! ! Nvidia- i BCEG
Chemical-PFD-PID ! ! i | Nemotron- | £%23%
Q&A dataset i 340B-reward | | 22 L £
1 Claude- 1 932280
i I model ! < g E=
:‘ 3-Haiku } £83

* Assign score using Nvidia-
nemotron-4-340B reward model
and filter low-quality outputs

Figure 14: The figure outlines the generation pipeline for the LogiCore dataset. Starting with
the SynDIP dataset, GPT-40 and Claude-3-Haiku generate reasoning-augmented, Chain
of thought (CoT) question-answer pairs. The Nvidia Nemotron-4-340B reward model
scores outputs based on helpfulness, correctness, and coherence. High-quality responses
are filtered to create a final dataset for advanced reasoning and contextual comprehension
in process engineering.

* Assign alignment score using
Nvidia-nemotron-4-340B reward

model

Parse SEl 't GPT-4o t it
Documents to "°I’:pl t? ° gfenera : P __— -
extract text multiple questions for eac / \
chunk i | Reward Model- | |
i judg =
— g s [Questions R i i é. 3 %
. H 5 |—< h =5
Generation Generation i Machine : g :>; =
i | Evaluation (LLM- i -
* Prompt GPT-40 to i Judge) |
Text \, /
Chunks generate answers for = - o
each question Question:___
ert Scale Survey Context:

Answer:

Figure 15: The figure depicts the workflow for the Local RAIT dataset generation. Text
chunks are extracted from the seed SynDIP dataset, and GPT-40 generates retrieval-
grounded question-answer pairs. Outputs are evaluated using the Nemotron-4-340B reward
model and additional LLM-based validation. High-quality pairs are retained to build a
dataset for retrieval augmented instruction-tuning in process engineering tasks.

* Assign alignment score using
Nvidia-nemotron-4-3408
reward model

Parse
Documents
to extract

So
52
ﬁ'ﬂ

* Prompt GPT-40 to
generate multiple

>\

generate answers for C——— ’
each question

Question:___
Context:

g

p \

text éj questions for each chunk i _

s as-a-judge \ <2
. Questions Response i X9 g
p p Generation Generation | | Machine ! 2 § ©
a i Evaluation (LLM- i 8 Chs

i

% 2 * Prompt GPT-40 to :\ as-a-Judge) ','
g

Likert Scale Survey

o'
2
-3

Answer:____
Figure 16: The figure illustrates the Global RAIT dataset generation workflow. PDFs
are parsed, chunked, and grouped via semantic clustering to preserve context. A retriever
selects top-k relevant chunks using vector similarity of embeddings obtained from a sentence
embedding model. GPT-40 generates questions and multi-turn refined answers grounded in
the cross-document chunks. Outputs are validated through the Nvidia Nemotron-4-340B
reward model, LLM-based checks, and Likert-scale feedback, yielding a high-quality
dataset for instruction-tuning.

22

743

744
745
746
747
748
749
750

751

752

754
755
756

5.2.1 Computational Time Analysis for Synthetic Dataset Generation

Synthetic dataset generation follows a unified three-step pipeline: QA pair synthesis via teacher
LLM:s (e.g., GPT-40, Claude Haiku), reward model validation (Nemotron-4-340B), and multi-metric
filtering. SynDIP is the most time-intensive (2179.6 min) due to its sequential generation of PFDs
and PIDs. LogiCore (600.6 min) emphasizes multi-step reasoning; Global RAIT (480.4 min) involves
cross-document clustering; and Local RAIT (320.7 min) targets chunk-level QA generation. DPO
(201.8 min) and Factual QA (155.4 min) are faster, reflecting their simpler generation logic. This
reflects a clear trade-off between dataset complexity and computational cost (Figure [I7).

Knowledge-Graph 551.3
Global-RAIT 480.4

Local-RAIT 320.7

m

SynDiP - 2179.6

LogiCore - 600.6
DPO ADm.s

Closed-Ended QA ~[|155.4

Datasets

0 500 1000 1500 2000 2500
Computational Time (minutes)

Figure 17: Computational time for generating self-instruct synthetic datasets, including QA pair
creation, verification (using either the Nvidia Nemotron-4-340B reward model or an LLM-as-a-judge
approach), and quality filtering. SynDiP’s multi-stage generation (process context — PFD — PID)
requires significantly more time than simpler factual QA generation due to its iterative refinement
process

5.2.2 Carbon Emissions for Synthetic Dataset Generation

Carbon emissions from synthetic dataset generation, tracked via CodeCarborﬂ vary by dataset
type. SynDIP has the highest footprint (~1.25kg CO,) from its sequential PFD/PID generation.
LogiCore (~0.34kg) and Global RAIT (~0.26 kg) show moderate emissions, while DPO, Local
RAIT, and Factual QA achieve ~0.18-0.22 kg through optimized workflows. Figure [T8]illustrates
these efficiency tradeoffs between data quality and sustainability.

Knowledge-Graph
Global-RAIT

Local-RAIT

SynDiP 1.25

LogiCore 1 0.34

DPO

Closed-Ended QA - 0.18

00 02 04 06 08 10 12 14
Carbon Emissions (kg CO2)

Datasets

°
N
N

Figure 18: Carbon emissions (kg CO;) for synthetic dataset generation. SynDIP incurs the highest
emissions, while Factual QA, DPO, and Local RAIT exhibit the lowest.

"https://codecarbon.io/

23

https://codecarbon.io/

757

759
760
761
762
763
764

766
767
768
769
770
771
772

5.2.3 [Evaluation of Synthetic Datasets

Our teacher-student transfer learning framework utilizes large language models (LLMs) - with
GPT-40 and Claude-3-Haiku for generation and the NVIDIA-Nemotron-4-340B reward model for
evaluation - to create high-quality synthetic datasets for fine-tuning SLMs including Llama 3.2-1B,
Qwen 2.5-1.5B, and SmolLM2-135M. These models are specifically optimized for domain-specific
tasks involving PFD and PID analysis, interpretation, and generation. The approach enables precise
output ranking and filtering that aligns with human preference criteria throughout the synthetic
dataset creation and evaluation process. We rigorously evaluated each synthetic dataset using the
NVIDIA-Nemotron-4-340B reward model, which scores outputs on a 0-4 scale across five key metrics:
helpfulness, correctness, coherence, complexity, and verbosity. Figure [I9] presents the evaluation
results for the Factual QA dataset, while Figures and [2T] show the performance comparison
between chosen and rejected responses in the DPO dataset. Figure [22| demonstrates the quality
of the multi-stage SynDIP dataset generation process for producing PFDs and PIDs. Figure 23]
shows the evaluation of the multi-step reasoning in the LogiCore dataset. Figures24] (Local RAIT)
and 25| (Global RAIT) collectively demonstrate the quality and training-objective suitability of the
retrieval-augmented datasets.

4.0

3.5/

3.0

2.5

2.0

—

1.5

Mean Scores

1.0 T
1

0.5

o helpfulness correctness coherence compiexity verb‘osity
Quality Metrics
Figure 19: Evaluation results for the generated Factual QA dataset using the NVIDIA-Nemotron-4-
340B reward model. Each QA pair is scored on a 0—4 scale across five quality dimensions: helpfulness,
correctness, coherence, complexity, and verbosity, ensuring high-quality data for instruction tuning.

4.0

3.5

3.0

2.5/

2.0

Mean Scores

—

1.54

1.0 { T
1

0.5

0- T T
helpfulness correctness coherence complexity verbosity
Quality Metrics

Figure 20: Evaluation of chosen responses from the DPO dataset using the NVIDIA-Nemotron-4-
340B reward model. High-scoring responses across quality dimensions (helpfulness, correctness,
coherence) guide model fine-tuning toward human-preferred outputs.

24

4.0

3.5

3.0

2.5

2.0

Mean Scores

1.5

1.0

0.5

ol
helpfulness correctness coherence complexity verbosity
Quality Metrics

Figure 21: Evaluation of rejected responses from the DPO dataset using the NVIDIA-Nemotron-
4-340B reward model. Low-scoring responses across evaluation metrics demonstrate undesirable

output characteristics for preference optimization.
4.0

3.5/

3.0

2.5/

H

2.0

Mean Scores

1.5

1.0

0.5

0- -
helpfulness correctness coherence complexity verbosity
Quality Metrics

Figure 22: Quality evaluation of the synthetic SynDIP dataset using the NVIDIA-Nemotron-4-340B
reward model. Each chemical process description (PFD — PID) is scored across five key dimensions:
helpfulness, correctness, coherence, complexity, and verbosity, validating alignment with actual

process schematics. 4.0

3.5

3.0

-

2.5/

2.0

1.5

Mean Scores

1.0

0.5

0- .
helpfulness correctness coherence complexity verbosity
Quality Metrics

Figure 23: Quality evaluation of the reasoning-augmented LogiCore dataset using the NVIDIA-
Nemotron-4-340B reward model. Each multi-step response is scored across five dimensions (help-
fulness, correctness, coherence, complexity, and verbosity) to ensure logical validity and faithful
representation of PFD/PID schematics.

Mean Scores

4.0

3.5/

3.0

2.5

2.0

1.5

1.0

0.5

-

-
1

0- T T
helpfulness correctness coherence complexity verbosity

Quality Mterics

Figure 24: Quality evaluation of the Local RAIT synthetic dataset using the NVIDIA-Nemotron-4-
340B reward model. Performance across five metrics (helpfulness, correctness, coherence, complexity,
and verbosity) demonstrates the quality of retrieval-augmented QA pairs grounded in individual

document chunks.

Mean Scores

4.0

3.5/

3.0

2.5

2.0

1.5

1.0

0.5

-

T
1

0- T T
helpfulness correctness coherence complexity verbosity

Quality Metrics

Figure 25: Quality evaluation of the synthetic Global RAIT dataset using the NVIDIA-Nemotron-
4-340B reward model. The scores reflect the effectiveness of answers generated from clustered
document chunks, demonstrating robust intra-document and inter-document reasoning capabilities.

N, Vector-base
indexing of

property graph in
enterprise graph

Extract

Chemical

4D
]
o
=
F=}
S
2
o
=
=
7]
S
o
=

Generation

PFD Generation

PID Generation

Nvidia-
Nemotron
-340B-
reward
model

Knowledge
Graph Triples

store

B

@ neo|

Claude-
3-Haiku

.

~

|
1
E Text
1| Chunks Property Graph
i Graph
___________ ! database

a”

Figure 26: The figure illustrates the end-to-end Graph Retrieval-Augmented Generation (Graph
RAG) pipeline for PFD/PID interpretation in chemical process engineering. A multimodal agentic
framework—comprising expert agents coordinated by a meta-agent—retrieves and processes data
for knowledge graph construction. Unstructured documents are parsed into text chunks, from which
knowledge graph triples are extracted and structured into a property graph. The resulting graph is
vector-indexed for similarity-based retrieval. Validation leverages LLM-as-a-Judge (GPT-40) and
reward models (NVIDIA Nemotron-4-340B) to optimize knowledge extraction, ensuring factual
accuracy, coherence, and task relevance.

26

773

774

784

793

794
795
796
797
798
799
800
801
802

803

804

805

806
807

808

809
810
811

812

813

814

816

817

818
819

821
822

5.3 Graph Retrieval-Augmented Generation (Graph RAG)

Retrieval-Augmented Generation (RAG) enhances large language models (LLMs) by integrating
external knowledge databases, enabling precise fact retrieval for domain-specific question answer-
ing. Graph RAG [17, 11 [18]|(refer Figure [26) extends this paradigm by incorporating structured
knowledge graphs, which offer three key advantages: (1) relational data organization for complex
reasoning tasks; (2) explicit relationship traversal; and (3) multi-source information synthesis. This
architecture supports multi-hop reasoning across interconnected knowledge nodes, significantly
improving contextual understanding and response accuracy in open-domain question answering
(ODQA). The structured representation leads to more precise and contextually grounded responses
than conventional RAG approaches. As previously discussed, our framework employs specialized
agents for autonomous web navigation to collect chemical-specific multimodal data from online
sources, focusing on PFD and PID documentation. The aggregated web data is first stored as raw
documents and then transformed into knowledge graphs. This transformation begins by processing
unstructured documents into property graphs through the following steps. For each document ¢;, we
first segment its text into smaller chunks using a sliding window approach. Let C; = {¢1,¢a,...,car}
represent the set of text chunks from ¢;, where each chunk c; has length |¢;|. Using a window size w
and stride s, the sliding window technique generates chunks spanning positions p; to p; + w — 1,
where p; = 1 + (j — 1) - s. This overlapping segmentation preserves contextual continuity be-
tween chunks. To enhance semantic representation, we employ the language model My to generate
relational descriptions D; that capture inter-chunk relationships:

D; = Mo(c;, Ci\ {¢;})

The enriched chunk c;- = ¢; @ D; combines original content with its relational context, where @©
denotes concatenation, forming nodes in the knowledge graph. These augmented chunks support
downstream graph operations via structured triple representations of the form (subject, predicate,
object), where entities (subjects/objects) are connected through semantic predicates. For a given
enriched chunk c’j, the extraction process involves the following steps: (1) Entities are represented
as distinct nodes. Let E; = {e;1, €2, ..., €;K; } denote the set of entities extracted from ¢, where
eji, is the k-th entity and K; = |E,| is the entity count. (2) Inter-entity relations are represented
as directed edges. Define the set of predicates as P; = {rjem | 1 < k # m < K}, where g,
denotes the relation between entities €5 and e;,,,. The extracted triples from c are:

7; = {(6j}€77“jkm,€jm) ‘ 1<k#m< Kj}

Each triple (ejk, Tikm, ejm) represents a directed relation from ey, to e, via predicate r;i,,. The
union of triples from all enriched chunks C] = {c},c5,...,c},} forms the knowledge graph G;,
where entity nodes connect via predicate edges. Each entity ey, is linked to its source chunk c} using
an origin relation:

(ejk, BELONGS_TO, ¢}), Vej, € Ej

where BELONGS_TO denotes the entity-chunk association. The resulting knowledge graph captures
both semantic relationships (via triples) and source attribution (via origin links). The knowledge
graph G; is formally defined as a directed graph G; = (V;, &;), with:

Vi={cd,....dytU{ep|i=1,....,M;k=1,...,K;}
comprising chunk nodes c} and entity nodes e;;. The edge set &; includes: (1) Semantic relation
edges:

E = {(ejrsTjkmrejm) | =1,...,M;1 <k #m < K;}
(2) Structural containment edges:

EM = {(e) |5 =1,..., Mk =1,...,K;}

The complete edge setis & = E{d U&e™. This heterogeneous graph structure—combining chunk and
entity nodes with relational and containment edges—enables robust graph-based retrieval, reasoning,
and generation. To improve knowledge retrieval accuracy, we implement a two-step entity resolution
process to identify and merge duplicate entities referring to the same concept. Each entity e;y, is
encoded as a vector embedding v, using a text embedding model to capture semantic representation.

27

823
824
825

826

827
828

829

830
831
832
833
834
835
836

837

838
839

840
841
842
843
844
845
846
847
848
849
850
851

853
854
855
856
857
858

859

860

861

862
863

864

865
866

867

For any pair of entities e;; (from chunk c}) and e;/js (from chunk c},), we assess conceptual
equivalence through sequential similarity evaluations. First, we compute cosine similarity between
their embeddings:

:)) _ Yk Yk
sim(ok 05) = o o]

If the semantic similarity exceeds a threshold 7;y,, we conduct a secondary evaluation using normal-
ized Levenshtein distance:

. dlev(ejk7ej’k’)
max(|e;ixl, [€j/])

str_sim(ejx, ejip) = 1

Here, diev(€;k, €j/1) is the Levenshtein distance between entity strings, and |e;z|, |e; x| are their
lengths. Entities are merged as duplicates only when both similarity metrics exceed their respective
thresholds 7, (semantic) and 7, (string-based), ensuring robust entity consolidation. We apply the
hierarchical Leiden algorithm to detect communities Cj, at various granularities within the knowledge
graph G;, aiming to optimize modularity Myj,q. Modularity measures the quality of a community
structure by comparing the density of intra-community edges to the expected density if edges were
placed randomly while preserving node degrees. It is defined as:

1 d;d;
Mytod = % Z {Aij - Qmj} 5(01"03‘)
%7

where A;; is the adjacency matrix (1 if an edge exists between nodes 7 and j, O otherwise), d; and d;
are the degrees of nodes ¢ and j, respectively, and m is the total number of edges in the graph. The

term Céi:j represents the expected number of edges between ¢ and j under the configuration model.
The function 6(c;, ¢;) is the Kronecker delta, equal to 1 if nodes 7 and j belong to the same community
and 0 otherwise. A community C, = (V¢, , Ec,,) is a subgraph where the nodes V¢, C V; and edges
Ec, C €&; are more densely connected internally than to nodes outside the community. These
communities organize the graph into densely connected subgraphs, typically representing specific
topics or contexts. This structure enhances retrieval by scoping searches within relevant communities
and facilitates reasoning by grouping related facts necessary for multi-step inference. The hierarchical
Leiden algorithm decomposes G; = (V;, &;) into L disjoint communities {C, }%_, through modularity
maximization, where Cy, = (Ve, , Ec,) denotes the k-th community subgraph. This optimization
proceeds iteratively through three phases: (1) local node reassignment to neighboring communities
to improve modularity; (2) aggregation of communities into super-nodes to construct a reduced
graph; and (3) repetition of this procedure on the coarse-grained graph until convergence, yielding
a hierarchical community structure. For complex reasoning tasks, relevant information often spans
multiple communities, necessitating efficient retrieval by identifying communities aligned with query-
specific subgraphs. To achieve this, we rank the top- K communities {C1,Ca, . ..,Ck } based on their
cosine similarity to the user query Q and the summaries of relationship paths within each community.
Each community Cy, is summarized using the language model M, which encodes its relational edges
53: (subject-predicate-object triples) into a summary s;. The summarization process is formalized
as:

Sp = M@(Eée;) = argmax P(S | E(’;e}})

where P(S | 5{;‘?) is the likelihood of generating a summary .S conditioned on the set of relation
edges. The summary s, retains the semantic (predicate) relationships of the original subgraph. These
summaries are then encoded into vector embeddings v(sy) using a text-embedding model, enabling
efficient similarity computation with the query embedding v(Q):

(v(Q), v(sk))
[o()] lv(sw)

The top-K communities with the highest similarity scores are selected and combined into a query-
specific subgraph Gg = (Vo, &£g), defined as:

K K
Vo= Ve, €o=J¢
k=1 k=1

sim(Q,Cy) =

28

868
869
870
871
872

873
874

875

876
877
878

880
881
882
883

885
886
887
888
889

891
892
893
894
895
896

898
899

where Vg and £ are the union of nodes and edges, respectively, from the selected top-K communities.
This subgraph captures dependencies across disparate facts while retaining critical relationships
necessary to answer the user query. Communities Cy are precomputed via the Leiden algorithm,
ensuring modularity-optimized clustering. The top-K selection scales sublinearly with graph size, as
coarse-grained retrieval via community summaries reduces search space before fine-grained traversal.
Finally, the language model My generates the answer A by conditioning on the query Q and the
subgraph Gg:

A= My(Q,Gq) = argmax P(4| Q,Go)

where P(fl | Q,Gq) denotes the likelihood of generating the answer grounded in the retrieved
subgraph. Figure 27| visualizes the Neo4j knowledge graph’s nodes (chunks and entities) and edges,
supporting Graph RAG’s reasoning and retrieval process.

Database information - @

| e
[Nodes(10605)
* __Entity__ (__Node__) Chunk (entity GIaphl) Table RAW &0 Results overview
[C] =
@ Relationships (29,901) = Nodes (26) N
* Absorbedin Achieved by g - --Entity__(21)
Achieved through Achieves Activated by ¢ --Node__(26) *(26)
Activated incaseof Actsas Adheres to & - Chunk (5) (€nity (21)
Adjusts Affects Aimsto Aims toensure i e Relationships (25)
Aims tominimize Aims to provide Alert N = *(25) MENTIONS (22)
Alignswith Allows Analyze Cot - & & NEXT(I) SOURCE(2)
Analyzedusing Analyzes Applications in = = ~ -
Are Areavailable for Are bundled into N »
Are by-productsof Are coated with = - Ead e
s —

Are component of Are components in

Last update: 11:26:10 &'

Figure 27: Visualization of the Neo4j knowledge graph constructed for the Graph RAG framework,
showing a subset of a larger graph containing 10,605 nodes and 29,901 edges. The graph includes
two types of nodes: chunk nodes (text segments enriched with contextual relationships) and entity
nodes (named concepts extracted from text). Edges represent MENTIONS (linking entities to their
originating chunks) and semantic relationships between entities, modeled as subject—predicate—object
triples. This structured organization supports multi-hop reasoning and community-based retrieval,
enabling the generation of accurate, context-rich descriptions of chemical processes such as PFDs
and PIDs.

5.4 Additional Results

We present a comparative evaluation of Llama-3.2-1B and SmolLM-135M across successive fine-
tuning stages on the respective test splits of SFT datasets (Factual QA, SynDIP, and LogiCore), pref-
erence alignment fine-tuning datasets (DPQO), and retrieval-augmented fine-tuning (RAFT) datasets
(Local/Global RAIT). We report their performance against a comprehensive set of evaluation metrics.
As shown in Figures the evaluation was conducted using both token-level n-gram overlap
metrics (BLEU, ROUGE-1/2/L, METEOR, SacreBLEU) and embedding-based semantic similarity
metrics (BERTScore and Sentence-BERT cosine similarity), with all scores normalized to the [0,1]
interval. We report the Llama-3.2-1B performance on the test splits of the Factual QA, SynDIP, and
LogiCore datasets (see Figure [28a). The language model demonstrates strong semantic alignment,
evidenced by high BERTScore and sentence similarity, despite lower performance on n-gram metrics,
indicating a preference for paraphrastic generation over lexical overlap. In contrast, SmolLM-135M
performance on the same test splits (see Figure 28d) exhibits relatively higher n-gram scores and
sentence similarity while achieving moderate BERTScore, suggesting a tendency toward surface-level
fidelity. When evaluated on the DPO dataset test split, Llama-3.2-1B (refer to Figure [28b) achieves
high semantic similarity scores, whereas SmolLM-135M (Figure demonstrates balanced im-
provements across both lexical and semantic metrics, reflecting effective alignment via instruction
tuning. For the retrieval-augmented tasks, Llama-3.2-1B performance on the test splits of the Local
and Global RAIT datasets (refer to Figure [28c|) continues to show dominant semantic scores relative
to n-gram metrics. SmolLM-135M (Figure [28f) exhibits comparatively lower scores across most
metrics, with sentence similarity remaining the strongest, suggesting diminished generalization ability

29

"

°
I
°

o

®
4
®

4

EY
14
EY

14
»

14
»
Metric Score

Metric Score

e
N

=]
N
I

0.0 0.0
L FF &S &
™ & 3
MY q-°°0 Q~°°° ¢°°0 ,6«959 ‘)’é&" ‘}&\\”
Evaluation Metrics Evaluation Metrics
(a) Llama-3.2-1B evaluated on test splits of Factual (b) Llama-3.2-1B evaluated on the DPO test split
QA, SynDIP, and LogiCore after Supervised Fine- after Direct Preference Optimization (DPO).
Tuning (SFT).
1.0 1.0
0.8 0.8
g g
S 0.6 g 0.6
w w
£ oa £ oa
H s
0.2 0.2
0.0 0.0
Evaluation Metrics Evaluation Metrics
(c) Llama-3.2-1B evaluated on test splits of Local (d) SmolLLM-135M evaluated on test splits of Fac-
and Global RAIT after Retrieval-Augmented Instruc- tual QA, SynDIP, and LogiCore after Supervised
tion Tuning (RAIT). Fine-Tuning (SFT).
1.0 1.0
0.8] 0.8
4 4
S 0.6 g 0.6
w w
% oa 5 oa
= s
0.2 0.2
o0 N & ~ a ~ ol:lo S o-0
& O < < & o 2 &
N <& ©' ©' © < Q' ¢
& & &S &{@ ‘f, 6\\\
Evaluation Metrics Evaluation Metrics
(e) SmolLM-135M evaluated on the DPO test split (f) SmolLM-135M evaluated on test splits of Local
after Direct Preference Optimization (DPO). and Global RAIT after Retrieval-Augmented Instruc-
tion Tuning (RAIT).

Figure 28: Quantitative evaluation of Llama-3.2-1B and SmolLM-135M across three fine-tuning
stages: (1) Supervised Fine-Tuning (SFT) on Factual QA, SynDIP, and LogiCore; (2) Direct Prefer-
ence Optimization (DPO) using the DPO dataset; and (3) Retrieval-Augmented Instruction Tuning
(RAIT) on Local and Global RAIT. Performance is evaluated on held-out test splits for each phase
using both n-gram overlap metrics (BLEU, ROUGE, METEOR, SacreBLEU) and semantic similarity
measures (BERTScore, sentence similarity).

900 under retrieval-augmented long-context settings. These plots(see Figures [28p-e) provide phase-by-
901 phase performance insights, highlighting how successive fine-tuning regimes induce distinct response
902 behaviors across models in terms of semantic coherence, lexical fidelity, and alignment with training
903 objectives.

30

w
°

N
w

I
n

Helpfulness Score
N
o

B A:Llama W/FT W/GraphRAG
B B:Llama W/FT W/o GraphRAG
B C:Llama W/o FT W/o GraphRAG
D:Llama W/o FT W/GraphRAG
B E:SmolLM W/GraphRAG

=3 F:SmolLM W/o GraphRAG

i
°

°
)

0.0
D E F

c
Model variants
(a) Comparison of reward model helpfulness scores
showing that both fine-tuning and retrieval augmen-
tation improve practical utility, with Liama-3.2-1B
variants consistently outperforming SmolLM2-135M
across all configurations

w
°

~N
w

Coherence Score
n N
n °

EEm A:Llama W/FT W/GraphRAG
B:Llama W/FT W/o GraphRAG
C:Llama W/o FT W/o GraphRAG
B D:Llama W/o FT W/GraphRAG
0 E:SmollLM W/GraphRAG

3 F:SmolLM W/o GraphRAG

1.0

0.5

0.0
D E F

c
Model variants
(c) Coherence analysis revealing that fine-tuned mod-
els produce more logically structured outputs, with
Llama-3.2-1B exhibiting superior contextual conti-
nuity and narrative fluency

»
°

w
o

w
°

N
]

I
n

T

EEm A:Llama W/FT W/GraphRAG
EEm B:Llama W/FT W/o GraphRAG
B C:Llama W/o FT W/o GraphRAG
D:Llama W/o FT W/GraphRAG
B E:SmolLM W/GraphRAG

3 F:SmolLM W/o GraphRAG

Correctness Score
N
°

I
°

°
]

0.0

c D E F
Model variants

(b) Correctness evaluation demonstrating Graph
RAG’s substantial improvement in factual accuracy,

particularly for Llama-3.2-1B, confirming its effec-
tiveness in reducing hallucinations for knowledge-

intensive tasks

BN A:Llama W/FT W/GraphRAG
B:Llama W/FT W/o GraphRAG
C:Llama W/o FT W/o GraphRAG
B D:Llama W/o FT W/GraphRAG
B E:SmolLM W/GraphRAG

=3 F:SmolLM W/o GraphRAG

4.0

N w w
w o n

Complexity Score
I N
n °

Iy
°

e
n

0.0
4 D E F

Model variants
(d) Complexity scores showing fine-tuned models
generate more detailed responses, while retrieval aug-
mentation further enhances their capacity for multi-
layered reasoning

4.0

Verbosity Score
BooRE NN W W
° n o n o n

°
]

0.0

T

B A:Llama W/FT W/GraphRAG
:Llama W/FT W/o GraphRAG
:Llama W/o FT W/o GraphRAG
:Llama W/o FT W/GraphRAG
[E:SmolLM W/GraphRAG

0 F:SmollLM W/o GraphRAG

L[

D E F
Model variants

(e) Verbosity measurements indicating that fine-
tuning increases response length, while Graph RAG
produces more concise yet informative completions
by grounding generation in retrieved context

Figure 29: Performance evaluation of six model configurations on a 1.5K QA-pair out-of-distribution
benchmark, independent of all synthetic training datasets (Factual QA, SynDIP, LogiCore, DPO, and
RAIT). The Nvidia Nemotron-4-340B reward model assessed five key dimensions: (1) helpfulness
(practical utility), (2) correctness (factual accuracy), (3) coherence (logical flow), (4) complexity
(content depth), and (5) verbosity (response length). Results demonstrate that fine-tuning enhances
structural quality and content depth while Graph RAG significantly improves factual precision. The
Llama-3.2-1B model combining both techniques achieves optimal performance across all dimensions,
highlighting the complementary benefits of domain adaptation and structured knowledge retrieval for
complex chemical process understanding.

31

904
905
906
907
908
909
910
911
912
913
914
915

917
918
919
920
921
922

924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950

951

952
953
954
955
956
957
958
959
960

Additionally, we conduct a systematic evaluation of how fine-tuning (FT) and Graph RAG affect
quantitative performance across six language model variants, comprising two architectures at different
scales: the larger Llama-3.2-1B and the more compact SmolLM2-135M. Each variant represents a
distinct configuration (where W/ = With and W/o = Without): (a) Llama-3.2-1B W/FT W/Graph RAG,
(b) Llama-3.2-1B W/FT W/o Graph RAG, (c) Llama-3.2-1B W/o FT W/o Graph RAG, (d) Llama-
3.2-1B W/o FT W/Graph RAG, (e) SmolLM2-135M W/FT W/Graph RAG, and (f) SmolLM2-135M
W/FT W/o Graph RAG. We rigorously evaluate these variants using the NVIDIA Nemotron-4-340B
reward model across five key quantitative dimensions: helpfulness (practical utility), correctness
(factual accuracy), coherence (logical flow), complexity (depth of content), and verbosity (response
length), with detailed results presented in Figures 29-e on the 1.5K QA-pair out-of-distribution
benchmark. The evaluation reveals several key findings regarding model scale and methodological
impact. Among Llama-3.2-1B variants, the FT+Graph RAG configuration (variant a) demonstrates
superior performance, achieving peak scores in correctness and complexity by combining fine-
tuned capabilities with retrieved knowledge, albeit with increased verbosity from incorporating
supplementary knowledge graph content. The FT-only variant (b) maintains strong coherence and
helpfulness but shows limitations in knowledge-intensive tasks without retrieval support. Notably, the
Graph RAG-enabled Llama variant without FT (d) outperforms the baseline (c) in correctness, proving
retrieval augmentation can partially compensate for missing task-specific tuning. The complete
absence of both methods (variant c) yields the weakest performance, revealing the limitations of
relying solely on pretrained knowledge. For SmolLM2-135M, Graph RAG improves correctness
(variant e vs. f), but both configurations underperform relative to comparable Llama-3.2-1B variants
across all metrics, particularly in coherence and complexity, highlighting scale’s importance for
effectively utilizing both techniques. Results demonstrate FT substantially enhances overall response
quality by aligning models with domain requirements, while Graph RAG provides complementary
factual accuracy benefits. This synergy proves especially valuable in specialized domains like
chemical process synthesis, where both task adaptation and external knowledge integration are
crucial. The optimal configuration—Llama-3.2-1B with both FT and Graph RAG—achieves balanced
performance across all dimensions, successfully integrating structured retrieval with fine-tuned
understanding while maintaining reasonable verbosity. These findings carry significant implications
for deploying language models in technical domains requiring both factual precision and contextual
understanding. Figures present the training loss curves for Llama-3.2-1B and SmolLM2-
135M models fine-tuned using QLoRA on synthetic datasets from the ChemAtlas corpus. The
Llama-3.2-1B model shows strong convergence during supervised fine-tuning (SFT) on the Factual
QA, SynDIP, and LogiCore datasets (Figure [@, with loss decreasing from ~1.5 to 0.35 within 5
epochs (blue curve) and further improving to ~0.1 after 15 epochs (red curve). Direct Preference
Optimization (DPO) training (Figure [30b) achieves near-zero loss within the first epoch and maintains
stable performance throughout both 2-epoch and 5-epoch runs. For Retrieval-Augmented Instruction
Tuning (RAIT) (Figure[30c), the loss consistently decreases from ~0.15 to below 0.05 over 15 epochs.
In contrast, the smaller SmolLM2-135M exhibits slower convergence with higher variance across all
tasks. During SFT (Figure [30d), its loss declines from ~2.2 to 0.6 but shows significant training
instability. While DPO fine-tuning (Figure [30¢) also achieves near-zero loss rapidly, RAIT training
(Figure demonstrates more gradual improvement (~1.5 to 0.2) with persistent fluctuations.
These results highlight two key observations: (1) Llama-3.2-1B benefits substantially from extended
training durations, and (2) SmolLM?2-135M shows stronger dependence on fine-tuning methodology,
with DPO yielding more stable convergence than SFT. The computational cost analysis (Figures
reveals DPO requires the fewest GPU hours, while SFT and RAIT costs vary with dataset
complexity.

5.4.1 Evaluation on a Generalization Benchmark

We conduct a comparative evaluation of the fine-tuned Llama-3 1B model (Llama FT) against
GPT-4o0 using a held-out 1.5K QA-pair generalization benchmark dataset, as shown in Figure [32]
Performance is assessed across five core metrics—helpfulness, correctness, coherence, complexity,
and verbosity—each scored on a 0—4 scale using the Nvidia/Nemotron-4-340B reward model. This
out-of-distribution (OOD) benchmark is entirely disjoint from the synthetic datasets used during
model development—including both training and evaluation phases—which comprise Factual QA,
SynDIP, LogiCore, and Local/Global RAIT and DPO. Each dataset features predefined training,
validation, and test splits. As illustrated in Figure[32] GPT-4o consistently achieves high scores across
all metrics, establishing a strong performance baseline.

32

—— 5 epochs
1.2 —— 15 epochs

Training Loss
4 4
[, (-]

°
IS

o
N

0.0

0123456 7 8 9 101112131415 16
Epoch

(a) Supervised fine-tuning (SFT) loss for Llama 3.2

1B on Factual QA, SynDIP, and LogiCore datasets.

Training loss decreases from ~1.4 to 0.35 in 5 epochs

(blue) and reaches ~0.1 after 15 epochs (red), show-

ing consistent convergence.

1.0
—— 5 epochs

—— 15 epochs

° 4 4
B E) o

Training Loss

o
N

0.0+

0 1 2 3 45 6 7 8 9 1011121314 1516

Epoch
(c) Training loss for Llama 3.2 1B on multi-scale
RAIT datasets (Local/Global RAIT). The 5-epoch run
(blue) achieves ~0.15 loss, while 15 epochs (red)
reduce loss below 0.05, indicating effective learning.

0.5

0.4

©
w

Training Loss
(=]
N

°
-

0.0 .l“ll i
1

o 2 3 4 5

Epoch
(e) DPO loss for SmolLM2-135M. Initial loss of
0.35 reaches near-zero within one epoch and re-
mains stable through 5 epochs, demonstrating effi-
cient preference learning.

1.0
—— 5 epochs
—— 2 epochs
0.8
n
0.6
go.
o
£
c
5 0.4
E
0.2
0.0
1] 1 2 3 4 5

Epoch

(b) Direct Preference Optimization (DPO) loss for
Llama 3.2 1B. The loss converges to near-zero within
one epoch and maintains stability through both 2-
epoch (red) and 5-epoch (blue) training runs.

N
N

Training Loss
BB B oBN
N & o © (=}

Iy
°

01 2 3 45 6 7 8 9 10111213 141516
Epoch
(d) SFT loss for SmolLM2-135M on Factual QA,
SynDIP, and LogiCore datasets. Loss decreases from
~2.1 to ~0.6 over 15 epochs, with higher variance
than larger models.

1.6

Training Loss
o e e = = =
B o) o N »

e
N

0.0

01 2 3 45 6 7 8 9 1011121314 1516
Epoch
(f) Training loss for SmolLM2-135M on RAIT
datasets (Local/Global RAIT). Loss improves from
~1.4 to 0.2 over 15 epochs despite higher noise,
showing gradual learning.

Figure 30: Training loss curves across different fine-tuning approaches and model sizes. Top row
shows Llama 3.2 1B results for (a) supervised fine-tuning, (b) direct preference optimization, and
(c) RAIT training. Bottom row presents corresponding results for SmolLM2-135M, demonstrating
consistent learning patterns across model scales with expected variance differences.

RAIT 1463.4 RAIT 0.89

<)) (<))

£ £

c c

,=T’ pPO{ |[108.1 ,? ppo{ |0.06

@ @

£ £

'8 '8

QA 1315.2 QA | 0.76
0 250 500 750 1000 1250 1500 1750 0.0 0.2 0.4 0.6 0.8 1.0
Computational Time (minutes) Carbon Emissions (kg CO2)
(a) Computational requirements for Llama-3.2-1B. (b) Environmental impact for Llama-3.2-1B. Super-
RAIT demanded the most wall-clock time (1463.4 vised QA tuning produced the highest CO, emis-
min), followed by supervised QA tuning (1315.2 sions (0.89 kg), followed by RAIT (0.76 kg), with
min), with DPO being the fastest (108.1 min). DPO being the most efficient (0.06 kg).
RAIT 442.3 RAIT 0.26

o o

(= [

£ £

2 ppo{ (415 £ ppPo 0.04

Q Q

£ £

'8 ('8

QA1 640.3 QA{ 0.41
0 250 500 750 0.0 0.1 0.2 0.3 0.4 0.5
Computational Time (minutes) Carbon Emissions (kg CO2)

(¢) Computational requirements for SmolLM2- (d) Environmental impact for SmolLM2-135M.
135M. Supervised QA tuning required the most time RAIT emitted the most CO; (0.41 kg), followed
(640.3 min), followed by RAIT (442.3 min), with by supervised QA tuning (0.26 kg), with DPO being
DPO being the fastest (41.5 min). the most efficient (0.04 kg).

Figure 31: Comparison of computational efficiency and environmental impact for fine-tuning Llama-
3.2-1B (top) and SmolLM?2-135M (bottom) across three approaches: (1) supervised QA tuning, (2)
DPO, and (3) RAIT. Left panels (a,c) show wall-clock training time as a measure of computational
requirements. Right panels (b,d) show the resulting CO, emissions as a measure of environmental
impact. DPO was consistently the most efficient method in both dimensions.

I Llama FT model
3 Gpt-4o0

Mean Scores

helpfulness correctness coherence complexity verbosity

Quality Metrics
Figure 32: Performance comparison between the fine-tuned Llama-3.2-1B model and GPT-40 on
a held-out 1.5K QA-pair generalization benchmark, evaluated using the Nvidia/Nemotron-4-340B
reward model. GPT-4o establishes a strong baseline, outperforming Llama-3.2-1B in most metrics
(helpfulness, correctness, complexity). However, Llama-3.2-1B achieves comparable coherence and
significantly lower verbosity. Larger error bars indicate higher variance in Llama-3.2-1B’s responses.

34

961
962
963
964
965
966
967
968
969

971
972
973
974
975
976
977
978
979
980

981

982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998

ed Llama W/GraphRAG
ed Llama W/o GraphRAG
Pretrained Llama W/o GraphRAG Wj/o Feedback

Mean Scores
I = N N w w
° o ° n ° in

[4
o

0.0

verbosity

Quality Metrics
Figure 33: Zero-shot performance of the pretrained Llama-3.2-1B model across three configurations:
(1) GraphRAG + feedback, (2) GraphRAG only, and (3) no enhancements. Evaluated on the same
1.5K QA benchmark with the Nvidia/Nemotron-4-340B reward model (0—4 scale), the combined
GraphRAG+feedback variant achieves the highest scores, particularly in helpfulness and correctness.
Performance degrades progressively when either component is removed, demonstrating their syner-
gistic role in zero-shot generalization.

The fine-tuned Llama-3 1B model demonstrates competitive results: it nearly matches GPT-40 in
coherence, trails slightly in helpfulness and correctness, and produces significantly more concise
responses, as reflected by lower verbosity scores. However, the larger error bars for Llama-3 1B
suggest greater variability in performance across the generalization dataset. These results indicate
that despite its smaller size, Llama-3 1B rivals GPT-40 in key quality dimensions while offering
practical advantages in response brevity and computational efficiency. We further evaluate the zero-
shot performance of the pretrained Llama-3 1B model, augmented with GraphRAG and feedback
mechanisms, without any additional fine-tuning on synthetic datasets. As shown in Figure[33] we
test three configurations on the same 1.5K QA-pair generalization benchmark dataset: (1) Llama-3
1B with both GraphRAG and feedback, (2) Llama-3 1B with GraphRAG but without feedback, and
(3) Llama-3 1B without either GraphRAG or feedback. All configurations are evaluated using the
Nvidia/Nemotron-4-340B reward model across the same five metrics. The results demonstrate that
the configuration incorporating both GraphRAG and feedback consistently outperforms the other two
variants, with especially notable gains in helpfulness and correctness—approaching a reward score of
3.0. These findings underscore the synergistic benefit of retrieval and critique mechanisms, even in
the absence of task-specific fine-tuning, for improving zero-shot generalization. While coherence
remains largely similar across all configurations, the improvements in helpfulness and correctness
are more pronounced. Overall, GraphRAG substantially enhances language model performance by
enabling more accurate and useful responses, while feedback mechanisms independently contribute
meaningful quality improvements.

5.4.2 Ablation Study: Head-to-Head Multi-Metric Evaluation of Framework Variants.

We evaluate six framework variants to analyze the individual and combined effects of fine-tuning
(FT) and GraphRAG. Variant (A) represents the Llama-3.2 1B model w/ both fine-tuning and
GraphRAG enabled. Variant (B) uses the fine-tuned Llama-3.2 1B model but excludes GraphRAG
(w/o GraphRAG). Variant (C) employs the pre-trained Llama-3.2 1B model w/o fine-tuning but
w/ GraphRAG, while variant (D) serves as the baseline, featuring the pre-trained Llama-3.2 1B
model w/o fine-tuning and w/o GraphRAG. For the smaller model, variant (E) applies the fine-tuned
SmolLM2-135M model w/ GraphRAG, and variant (F) represents the fine-tuned SmolLM2-135M
model w/o GraphRAG. As shown in Figure [35] across all metrics—BERT (semantic similarity),
BLEU (n-gram precision), METEOR (lexical and semantic alignment), and ROUGE (unigram,
bigram, and longest-sequence overlap)—the results demonstrate that Variant A (Llama-3.2 1B w/
both fine-tuning and GraphRAG) consistently achieves the highest performance. Both fine-tuning
and GraphRAG independently improve performance beyond the baseline, while their combination
achieves peak performance. Specifically, Figure [35a) presents BERT scores, which assess semantic
similarity across the six framework variants. The results highlight the benefits of fine-tuning and
GraphRAG: Variant A (Llama-3.2 1B w/FT w/GraphRAG) achieves the highest score (0.9), indicating
superior semantic alignment. Comparisons among the Llama-3.2 1B variants (A—D) show that
fine-tuning and GraphRAG each independently improve performance over the baseline (D). A

35

999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038

similar positive effect occurs for the fine-tuned SmolLM2-135M model, where GraphRAG enhances
performance (E vs. F). These findings confirm that both methods improve semantic quality, with the
optimized Llama-3.2 1B model (Variant A) delivering the best performance. Figure 33[b) displays
BLEU scores, measuring n-gram precision across the six framework variants. Variant A (Llama-
3.2 1B w/FT w/GraphRAG) achieves the highest score (0.17), outperforming other variants by a
wide margin. Analysis of Llama-3.2 1B variants (A—D) shows that fine-tuning alone significantly
improves precision over the pre-trained baseline (D), while the addition of GraphRAG further boosts
performance (A vs. B). A comparable but smaller improvement occurs for the fine-tuned SmolLM2-
135M model with GraphRAG (E vs. F). These results indicate that both fine-tuning and GraphRAG
independently enhance precision, with their combined implementation in Variant A yielding optimal
results. Figure[35]c) presents METEOR scores evaluating lexical and semantic alignment across the
six variants. Fine-tuned Llama-3.2 1B models (Variants A and B, both >0.3) significantly outperform
non-fine-tuned counterparts (Variants C and D). GraphRAG provides additional gains for both Llama-
3.2 1B (A vs. B, C vs. D) and fine-tuned SmolLM2-135M (E vs. F), confirming fine-tuning’s primary
role in score enhancement with GraphRAG offering secondary benefits. Notably, the top Llama
configurations (A and B) consistently surpass all SmolLM2-135M variants. Figure [35[d) shows
ROUGE-1 unigram overlap results, with Variant A (Llama-3.2 1B w/FT w/GraphRAG) achieving
the highest score (>0.5). Both fine-tuning and GraphRAG independently improve performance over
the pre-trained baseline (Variant D), while GraphRAG also benefits the fine-tuned SmolLM2-135M
(E vs. F), demonstrating their synergistic effect on unigram overlap optimization with Variant A
delivering peak performance. Figure [35]e) displays ROUGE-2 scores measuring bigram overlap
across the six framework variants. Variant A (Llama-3.2 1B with both fine-tuning and GraphRAG)
achieves the highest score (>0.20). Both components independently enhance performance relative
to the baseline (Variant D), with the fine-tuned SmolLM2-135M also showing GraphRAG benefits
(E vs. F). Figure 35(f) shows ROUGE-L scores evaluating sentence-level alignment, where Variant
A again leads (0.26). Fine-tuning drives most improvement for Llama-3.2 1B (A vs. B) while
GraphRAG provides complementary gains, a pattern mirrored in SmolLM2-135M (E vs. F). These
results demonstrate that Variant A’s combined approach yields optimal performance, with fine-tuning
contributing primary improvements and GraphRAG offering secondary enhancements across both
metrics. The consistent pattern across ROUGE-2 and ROUGE-L confirms the synergistic effect of
these components in improving both bigram matching and longer-sequence alignment. Figure [34]a)
reports SacreBLEU scores (n-gram precision) across six model variants. Variant A (Llama-3.2
1B w/FT w/GraphRAG) achieves superior performance (= 0.168). Fine-tuning alone substantially
boosts Llama-3.2 1B’s scores (B vs. D), with GraphRAG providing further enhancement (A vs.
B). The pretrained baseline (D) performs weakest, while GraphRAG also benefits the fine-tuned
SmolLM2-135M (E vs. F). Llama-3.2 1B consistently outperforms SmolLM2-135M across all
variants. Figure[34(b) shows semantic alignment scores (> 0.85), with Variant A peaking at ~ 0.93.
Fine-tuning drives most improvement (B vs. D), while GraphRAG provides smaller gains (A vs. B).
The trend holds for both Llama-3.2 1B (A,B) and SmolLM2-135M (E,F), with baseline D performing

weakest.

B A:Llama W/FT W/Graph RAG

W/FT W/o Graph RAG

| =m W/o FT W/Graph RAG

=1 D:Llama W/o FT W/o Graph RAG
o

1.0

a
a W/o FT W/Graph RAG
a W/o FT W/o Graph RAG
[E:SmolLM W/FT W/Graph RAG
= F:SmolLM W/FT W/o Graph RAG

]
=
0.175 =
=

e
©

0.150

0.125

4
o

0.100

14
I

0.075

SacreBLEU Score
Similarity Score

0.050

e
N

0.025{ [N SR B [

0.000 0.0

A B E F A B

c c D
Model Variants Model Variants

(a) SacreBLEU evaluation showing n-gram precision. (b) Similarity score analysis reveals high semantic align-
Variant A (/20.168) demonstrates optimal performance, ment (>0.85) across variants. Variant A peaks at x20.93,
with fine-tuning providing major gains and GraphRAG slightly exceeding Variant B and significantly outper-
further enhancing results. forming smaller model configurations.

Figure 34: Additional metric evaluation (SacreBLEU, Similarity Score) for the six framework variants
on the 1.5K QA-pair generalization benchmark. Results confirm the pattern observed in Figure[33} (1)
fine-tuned Llama-3.2 1B variants (A and B) consistently outperform SmolLM2-135M counterparts
(E and F), (2) the baseline configuration (D) remains the weakest, and (3) Variant A (with both
fine-tuning and GraphRAG) delivers optimal performance across all quality dimensions.

36

1.0
B A:Llama W/FT W/Graph RAG
Il B:Llama W/FT W/o Graph RAG
0.175 B C:Llama W/o FT W/Graph RAG
B D:Ulama W/o FT W/o Graph RAG
1 E:SmolLM W/FT W/Graph RAG
B F:SmolLM W/FT Wjo Graph RAG

0.8

BERT Score
° °
IS £
BLEU Score

°
=
°
S

0.075

EE A:Llama W/FT W/Graph RAG
B B:Llama W/FT W/o Graph RAG
0.2 C:Llama W/o FT W/Graph RAG
D:Llama W/o FT W/o Graph RAG 0.025
E:SmolLM W/FT W/Graph RAG
[F:SmolLM W/FT W/o Graph RAG

0.050

0.000

o0 A B [D E F A B c D E F
Model Variants Model Variants
(a) BERTScore evaluation across six framework (b) BLEU score analysis showing n-gram precision
variants on the 1.5K QA-pair generalization improvements. Variant A (Llama-3.2 1B w/FT
benchmark. Variant A (Llama-3.2 1B w/FT w/GraphRAG) leads with a ~0.17 score,
w/GraphRAG) achieves the highest semantic outperforming other configurations by significant
similarity (~0.9), demonstrating the combined margins.

benefit of fine-tuning and GraphRAG.

e B A:Llama W/FT W/Graph RAG o6 Bl AcLlama W/FT W/Graph RAG
I B:Llama W/FT W/o Graph RAG Il B:Llama W/FT W/o Graph RAG
I C:Llama W/o FT W/Graph RAG B C:Llama W/o FT W/Graph RAG
0.4 B D:Llama W/o FT W/o Graph RAG 0.5 B D:Llama W/o FT W/o Graph RAG
3 E:SmollLM W/FT W/Graph RAG 0 E:SmolLM W/FT W/Graph RAG
Em F:SmollLM W/FT W/o Graph RAG B F:SmollLM W/FT W/o Graph RAG
e Qo4
o
E 0.3 o
é E 0.3
Fo.2 2
E 2 0.2
0.1 0.1
0.0 0.0
A B c D E F A B c D E F
Model Variants Model Variants
(c) METEOR scores assessing lexical and semantic (d) ROUGE-1 evaluation of unigram overlap.
alignment. Fine-tuned Llama-3.2 1B variants (A Variant A (Llama-3.2 1B w/FT w/GraphRAG)
and B) score >0.3, with GraphRAG providing achieves a >0.5 score, showing that both
additional gains (A vs. B). fine-tuning and GraphRAG independently improve
performance.
0.30 0.35
B A:Llama W/FT W/Graph RAG B A:Llama W/FT W/Graph RAG
B B:Llama W/FT W/o Graph RAG B B:Llama W/FT W/o Graph RAG
B C:Llama W/o FT W/Graph RAG 0.30 BN C:Llama W/o FT W/Graph RAG
0.25 [D:Llama W/o FT W/o Graph RAG [D:Llama W/o FT W/o Graph RAG
[E:SmollLM W/FT W/Graph RAG [E:SmolLM W/FT W/Graph RAG
B F:SmollLM W/FT W/o Graph RAG 0.25 @ F:SmolLM W/FT W/o Graph RAG
9 0.20 [
o o
@ @ 0.20
Yoas -
& &
5 § 0.15
g 0.10 [
0.10
0.05 0.05
0.00 0.00
A B c D E F A B c D E F
Model Variants Model Variants
(e) ROUGE-2 analysis of bigram overlap. Variant A (f) ROUGE-L assessment of longest common
maintains the lead (>0.20), with the fine-tuned subsequence. Variant A shows the best performance
SmolLM2-135M also benefiting from GraphRAG (~0.26), with fine-tuning driving most improvement
(E vs. F). and GraphRAG providing complementary benefits.

Figure 35: Comprehensive evaluation of six framework variants (A-F) using standard NLP met-
rics on the 1.5K QA-pair generalization benchmark. Results demonstrate that Variant A consis-
tently achieves the highest scores, with fine-tuning and GraphRAG offering complementary im-
provements. Configuration details: A=Llama-3.2 1B w/FT w/GraphRAG, B=Llama-3.2 1B w/FT
w/o GraphRAG, C=Llama-3.2 1B w/o FT w/GraphRAG, D=baseline (Llama-3.2 1B w/o FT w/o
GraphRAG), E=SmolLM2-135M w/FT w/GraphRAG, F=SmolLM2-135M w/FT w/o GraphRAG.

37

1039

1040
1041
1042
1043
1044
1045
1046
1047
1048
1049

1050

1051

1052
1053
1054
1055
1056
1057
1058

1059

1060
1061
1062
1063
1064
1065
1066

1067

1068

5.4.3 Computational Tradeoffs: Runtime and Carbon Costs Across Framework Variants

We analyze the computational efficiency and environmental footprint of the six framework variants
during evaluation on the 1.5K QA-pair generalization benchmark. Figure [36] quantifies runtime
and estimated CO, emissions across Llama-3.2 1B and SmolLM2-135M configurations. Larger
Llama variants (A-D) consistently require more inference time (Figure 36h) and produce higher
carbon emissions (Figure [36p) than compact SmolLM counterparts (E, F). Within each model family,
GraphRAG increases computational overhead and emissions—evident from comparisons A vs B, D
vs C, and E vs F. Variant D (Llama-3.2 1B w/o FT w/GraphRAG) incurs the highest computational
cost and carbon output, while Variant F (SmolLM2-135M w/FT w/o GraphRAG) is the most resource-
efficient. These results highlight a clear tradeoff between model size, retrieval augmentation, and
evaluation efficiency.

0
=
5
)
]
©

Model Variants
Model Variants

©
=
w
@
o
N

A ‘2854. A 1.73
o 500 1000 1500 2000 2500 3000 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Computational Time (minutes) Carbon Emissions (kg CO2)
(a) Model runtime (minutes) on the 1.5K QA-pair gen- (b) Estimated model CO, emissions during evaluation.
eralization benchmark. Llama-3.2 1B variants (A-D) re- Llama-3.2 1B variants (A-D) show higher emissions than
quire substantially longer inference time than SmolLM2- SmolLM2-135M variants (E, F). GraphRAG consistently
135M variants (E, F). Enabling GraphRAG increases increases environmental cost across all model variants
model runtime across all variants (A vs B, D vs C, E vs (A vs B, D vs C, E vs F). Variant D yields the highest
F). Variant D is slowest; Variant F is fastest. emissions; Variant F yields the lowest.

Figure 36: Evaluation-time computational cost and carbon impact across six framework variants
(A—F) on the 1.5K QA-pair generalization benchmark. (a) Model runtime in minutes. (b) Estimated
model CO; emissions in kg. SmolLM2-135M variants (E, F) are markedly more efficient than Llama
variants. GraphRAG increases both runtime and emissions across all configurations.

5.5 Inference Optimization Techniques

5.5.1 Width and Depth Pruning

Transformer-based language models are computationally expensive, with inference cost proportional
to model size multiplied by the sum of input and output tokens: Inference Cost o Model Size X
(Input Tokens + Output Tokens). Pruning[22} [49] 1481 39,50} 131 [30] is a model compression
technique that removes less critical components to reduce model size and inference costs while
preserving accuracy. This enables efficient deployment of smaller, faster, and more cost-effective
models in resource-constrained environments. We consider a small-scale transformer-based language
model represented as a parameterized function:

]:0 . RT X dmodel N RT xV

where T’ is the sequence length, dpoqe is the hidden dimensionality, and V is the vocabulary size. The
model consists of L stacked transformer blocks {7} esz each comprising a Grouped Query Attention
(GQA) module, a feedforward network (FFN), residual connections, and pre-layer normalization.
Grouped Query Attention (GQA) separates the number of query heads from key-value heads to
improve efficiency. Let H, and Hy, denote the number of query and key-value heads, respectively,
with H, > Hy,. The grouping factor g = H,/Hj, represents the number of query heads that
share each key-value head, and d, = dmode1/ Hy 18 the dimensionality per query head. Given input
X € RT*dmoet the linear projections are:

Q=XW? e RTHoxdn - K = XK ¢ RT>*Hioxn,
V = XWv c RTXHkdeh

38

1069
1070
1071

1072

1073
1074

1075

1076
1077
1078

1079

1080
1081
1082
1083
1084

1085

1086
1087

1088
1089
1090

1091

1092

1093
1094

1095
1096

1097

1098

1099

1100
1101

1102

1103
1104
1105
1106

1107
1108
1109

For each query head ¢ € {1,...,H,}, its associated key-value head is determined by k(i) =
[(¢ — 1)/g], which maps each query head to its corresponding key-value head by grouping g query
heads per key-value head. The attention output for head 7 is:

vV,

The final GQA output is obtained by concatenating all attention heads and applying an output
projection:

QK] .
O, = softmax <lk(l) Vi € RT*dn

GQA(X) = Concat(Oy,...,0p,)W°

where WO € Rmow X dmoet i the output projection matrix. The decoder language models implement
FFNs using Gated Linear Units (GLUs), which apply an activation function to one projection and use
it to gate another projection:

FEN(h) = W (oW - b) & (0" - 1))

where Wl(a), Wl(b) € Rémxdmae gre the gate and up-projection matrices, Wo € Rt X dir jg the down-
projection matrix, ¢ is an activation function (typically SiLU or GELU), and ® denotes element-wise
multiplication. The Width pruning reduces the intermediate FFN dimensionality dg by eliminating
unimportant neurons. For the j-th neuron output z; from the GLU, we estimate its importance using
gradient-based scoring:

oL }
0z;

where L is the task loss and D is the data distribution. This importance score /; quantifies the average
contribution of neuron j to the task loss. Neurons with the lowest I; values are pruned, reducing

"Zj

oo

the width to asz < dg by removing corresponding rows in Wl(a) and W(b) and columns in W5. The
depth pruning removes entire transformer blocks based on their COIltI'lbU.thIl to the task. For layer
¢ e {1,..., L}, its importance is computed as:

oL
0 _ (0)
15 || (2|

where h(®) is the residual output of block £, and (-, -) denotes the inner product. Layers with small

I® values are removed, and the retained set is denoted S C {1,..., L} with |S| = L < L. For

joint width and depth pruning, we introduce binary gates to control both layer and neuron retention:

7 € {0,1} for layer / retention and g()

computatlon becomes:

h() = h¢D 4 4O . FFN (GQAK(LN(h(‘Z*”)))

€ {0,1} for neuron j retention in layer ¢. The forward

where LN denotes layer normalization, and the gated FFN is defined as:
4 a)r - b)r .
FEN,’)(h) Zg< V[Walig) - (oW1 - b) - WV,))|

The constrained optimization objective combines empirical risk minimization with sparsity penalties
to achieve structured pruning:

L dg
min E) up [L(Fo,,9(X), y)] + M1 Z (1— (f)) + Ao Z Z (l)

[4
Y9 ==

where Fy - 4 is the pruned model with parameters 6 and gates v, g, (x, y) represents input-output
pairs from the training distribution D, L(-, -) is the task-specific loss function (e.g., cross-entropy),
A1 controls the depth sparsity penalty (number of pruned layers), and Ay controls the width sparsity
penalty (number of pruned neurons). To enable end-to-end differentiability, we relax the binary gates

using the Concrete distribution (also known as the Gumbel-Softmax trick). Each gate g() € [0,1] is
sampled as:

g§£)—0< (logoz()—|—logu—log(1—u)>)7 u~U(0,1)

39

1110
1111
1112
1113
1114

1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142

where u ~ U(0, 1) is a uniform random variable, o(-) is the sigmoid function, a'? is a learnable

logit parameter, and 7 > 0 is a temperature parameter controlling the smoothness of the relaxation.
A similar sampling strategy is applied to layer-level gates v(*). The joint pruning approach performs
structured pruning during fine-tuning to simultaneously optimize model performance and sparsity. The
optimization process learns both the pruned model structure and the corresponding parameters 6. After
training, components with binarized gates v() = 0 or g](»e) = 0 are permanently removed, retaining
only the most important neurons and layers. This structured sparsity approach achieves significant
model compression while maintaining downstream task accuracy. The regularization hyperparameters
A1 and A, control the trade-off between accuracy and compression, allowing practitioners to tune
the desired level of sparsity based on deployment constraints. Figure [37]demonstrates the effects of
width and depth pruning on model performance using five qualitative metrics scored from 0 to 4 scale
by the Nemotron-4-340B-Reward model. Both pruning methods generally decrease performance
scores as pruning percentages increase. Width pruning (Figure[37p) particularly affects correctness,
complexity, and helpfulness, showing notable drops at the 20% level, while coherence remains
relatively stable. Depth pruning (Figure [37p) more severely impacts coherence and complexity,
especially at higher pruning ratios (20% and 50%). Correctness shows resilience to low-level depth
pruning (1-5%) but declines significantly thereafter. Verbosity remains the least affected metric across
both methods at low to moderate pruning levels. Figures [38a and [38b] show the impact of width
and depth pruning on ChemEval benchmark performance for PFD/PID generation tasks involving
unseen chemicals. Both methods demonstrate quality degradation across all metrics as pruning
percentages increase. Width pruning (Figure [38a) at higher levels (particularly 20%) significantly
reduces correctness and complexity scores. Depth pruning (Figure 38b) similarly reduces overall
quality, with coherence and correctness notably impacted at 20% and 50% levels. Verbosity remains
the least affected metric for both pruning approaches on ChemEval tasks, indicating that structural
compression via either method hinders the model’s ability to generate accurate and coherent PFD/PID
descriptions for novel chemical processes. Figures 39 and [39b present the relationship between
computational time and pruning percentages for width and depth pruning, respectively. Figure 3%
shows that increasing width pruning correlates with decreased computational time: baseline (0%)
required 1350.2 minutes, 5% pruning took 1269.1 minutes, and 20% pruning took 1066.2 minutes.
Similarly, Figure [39p indicates that depth pruning also reduces computational time, with baseline
at 1350.2 minutes, decreasing through 1% (1342.8 min), 5% (1296.2 min), and 20% (1120.7 min),
achieving the most significant reduction at 50% depth pruning (796.6 minutes). Both figures illustrate
a consistent inverse relationship between pruning percentage and computational time.

P Pruning % Pruning %
=== 0% Pruning Verbosity == 0% Pruning
1% Pruning 5% Pruning
Emm 5% Pruning N 20% Pruning
20% Pruning)
c " == 50% Pruning Complexity
2 2
2 Coherence { E Coherence
Correctness Correctness
Helpfulness
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Score (0 to 4) Score (0 to 4)
(a) Impact of width pruning on fine-tuned model perfor- (b) Impact of depth pruning on fine-tuned model perfor-
mance using reward model scores (0-4 scale) across five met- mance using reward model scores (0-4 scale) across five
rics on the 1.5K QA-pair generalization benchmark. Higher metrics on the 1.5K QA-pair generalization benchmark. Per-
pruning percentages degrade correctness and helpfulness formance decline is most pronounced in coherence and com-
most significantly. plexity.

Figure 37: Evaluation of width (a) and depth (b) pruning effects on fine-tuned model quality.
Performance measured using reward model scores across five dimensions on the 1.5K QA-pair
generalization benchmark, demonstrating trade-offs between model compression and response quality.

40

1143
1144

1145
1146
1147
1148
1149
1150
1151
1152

1153
1154
1155
1156
1157

1158

1159
1160
1161

(— Pruning %
0% Pruning
——— 1% Pruning
= 5% Pruning
|——
20% Pruning
c ’ = 50% Pruning
v
T
e
=
Ci
0.0 0.5 1.0 1.5 2. 2.5 3.0 3.5 4.0

0
Score (0 to 4)

(a) Impact of width pruning on PFD/PID generation per-
formance using reward model scores (0-4 scale) on the
ChemEval benchmark. Quality degradation increases with

Pruning %
= 0% Pruning
5% Pruning

= 20% Pruning

Verbosity

Complexity

Coherence

Metric

Correctness

Helpfulness

0.0 0.5 1.0 15 2.0 2.5 3.0 3.5 4.0
Score (0 to 4)

(b) Impact of depth pruning on PFD/PID generation per-
formance using reward model scores (0-4 scale) on the
ChemEval benchmark. Layer removal leads to progressive

higher pruning percentages. performance decline.

Figure 38: Evaluation of width (a) and depth (b) pruning effects on specialized task performance for
zero-shot PFD/PID generation. Performance measured using reward model scores on the ChemEval
benchmark, illustrating compression impact on domain-specific capabilities.

20%_1“6.2

50% 796.6

1120.7

N
Q
X

1296.2 1269.1

1342.8

...
19
Pruning Percentage
o
=

Pruning Percentage
o
2

1350.2

e
N

1350.2

Q
B

250 500 750 1000 1250 1500 1750 250 500 750 1000 1250 1500 1750
Computational Time (minutes) Computational Time (minutes)

(b) Computational time reduction (minutes) as

a function of depth pruning percentage on the
fine-tuned model during evaluation.

(a) Computational time reduction (minutes) as
a function of width pruning percentage on the
fine-tuned model during evaluation.

Figure 39: Computational efficiency gains from width (a) and depth (b) pruning during evaluation.
Plots demonstrate runtime reduction (minutes) as pruning percentage increases, showing the potential
for faster inference with compressed models.

5.5.2 Test-Time Inference Scaling via Self-Consistency, Confidence-Weighted Entropy, and
Self-Reflection

To address limitations in factual accuracy, reliability, and reasoning robustness in small-scale language
models (SLMs), we propose a test-time inference scaling mechanism [3] [44],
[59. 4] 60} [5, [36] that combines three complementary strategies: (1) self-consistency decoding, (2)
confidence-weighted entropy scoring, and (3) a self-reflection-based revision mechanism. Unlike fine-
tuning or prompt engineering approaches, this method operates purely at inference time, requiring no
model parameter updates, and is particularly well-suited for tasks involving multi-step reasoning, such
as automatic generation of PFDs and PIDs. The first step involves multiple candidate generation via
Chain-of-Thought sampling. Given an input query x, the model generates a set of NV diverse reasoning
trajectories) =y, 5 ... y(™) where each candidate sequence y*) = (yy), yg), . ,yg,f)) €
VT is produced using stochastic decoding (e.g., nucleus sampling or top-k sampling) under a Chain-
of-Thought (CoT) prompting strategy. Here, V denotes the model vocabulary and T represents the
maximum generation length. At each decoding step ¢, the token yiz) is sampled from the conditional
distribution:
Pg(’l}‘$7y(<i2), VUGV)

where 6 denotes the LLM’s parameters and ygz refers to the prefix tokens up to decoding step ¢ — 1.
Next, we discuss the confidence-weighted entropy scoring mechanism. We evaluate the quality of

each generated sequence y(*) via a confidence-weighted entropy score that reflects model uncertainty

41

1162

1163

1164

1165

1166

1167
1168

1169

1170
171
172

1173

1174

1175

1176

1177

1178
1179

1180

1181

1182

1183

1184

1185

1186
1187
1188
1189

1190

1191
1192
1193

1194

1195

1196

per decoding step and overall sequence likelihood. At decoding step ¢, the model provides the
) (@),

predictive distribution Pt(i P

over the vocabulary V, conditioned on the input = and prefix y
Pt(i)(v) = FPy(v | x,yg), Vv e V.
The entropy of this distribution at decoding step ¢ for candidate i is:

HY = =3 PP (v)log PV (v),
veY

where H t(i) quantifies the model’s uncertainty about the token choice at decoding step t. To reflect
the relative importance or semantic salience of each token position in the generated output y(*), we

derive importance weights wgi), ceey wgf) using an attention-weighted gradient attribution method.

Specifically, let agi) denote the average attention weight received by the ¢-th generated token y,gi)
across all attention heads and layers in the LLM. We define the importance weight for decoding step
t as:

oLt
ael?)

T i
D=1 O‘z(s/))

(@)
t

wgl) = - T,
oL

o'y

where £(9) is the negative log-likelihood loss over the candidate sequence y(%), defined as:

T
LD == " 1og Py(y” | 2, y%)).
t=1
Here, 69 denotes the language model’s output logits at decoding step ¢ for candidate ¢, which are

oL@
oeV

o,
ae)

used to compute the gradient for the attention-weighted attribution. The gradient term

captures the sensitivity of the loss with respect to the predicted logits for token y,gi). This formulation

ensures the weights are normalized such thaTt:
Suf =7
t=1
(4)

These weights w; ’ provide a profile of token importance across the sequence, influenced by both

attention patterns and gradient magnitudes. Using the token-level entropies Ht(i) and the importance

weights wt(z), we compute the weighted average entropy for the complete candidate sequence y(¥):

T
7G6) _ 1 QR0
HD = Tzwt CHY.
t=1
This metric aggregates token-level uncertainty, assigning greater significance to uncertainty occurring

at decoding steps deemed important by the attention-gradient attribution. Lower values of Hff)
indicate higher confidence, particularly for semantically salient tokens. To measure the overall
likelihood of a generated sequence according to the model, we compute the normalized average
log-probability:

T
s 1 i i
74 — 7 E logPe(yt() Ix,yiz .
t=1

A higher (less negative) value of /(*) indicates that the sequence is more fluent or probable under the
model Py. To combine model confidence and fluency, we assign a final score to each candidate (%)
by balancing its weighted entropy and average log-likelihood:

Score(y) = X H — (1 —\) - 1),

where A € [0, 1] is a tunable hyperparameter controlling the trade-off between minimizing uncertainty
(favoring lower H. L(UZ)) and maximizing sequence likelihood (favoring higher £(")). A lower overall

42

1197
1198
1199

1200

1201
1202
1203
1204
1205
1206
1207

1208

1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

1242

1243
1244
1245
1246
1247
1248
1249
1250
1251
1252

Score(y(?)) indicates a more desirable candidate sequence, reflecting a better balance between
confidence and fluency. Next, we will discuss about the Top-K Candidate Selection. After computing
scores for all N generated sequences in)/, we rank them and select the top-K candidates:

Ytop-K = TopKy € Y (—Score(y), K) ,

where TopK (.S, K') denotes selecting the K elements with the highest values in set S (corresponding
here to the lowest scores after negation). Next, we will discuss about the Self-Reflection Mechanism.
Following the selection of top-K candidates Ytop-K, a self-reflection mechanism is applied to
enhance reasoning robustness. In the critique phase, an auxiliary model ¢ (which may be identical
to 0 or a separately fine-tuned model) critiques each candidate (") € Ytop-K, generating a critique
") = Critique ¢(y(i)) that aims to identify logical inconsistencies, missing justifications, or factual
inaccuracies in the reasoning trajectory. Subsequently, in the revision phase, the model uses the

critique to generate an improved sequence: yr(é3 = Reﬁectgb(y(i), c(i)). This yields a set of revised

candidates: Yrev = yr(ezv) : y(i) € Viop-k- Next, we will discuss the final Consensus Selection. For
the final aggregation, we form a consensus candidate pool combining the top-K original candidates
and their revisions: Veons = Yiop-k U Veev- A deterministic extraction function a(-) is then applied
to each candidate y € Y.ons to retrieve its final proposed answer (e.g., the concluding statement),
resulting in an answer set: A = {a(y) : ¥ € Veons}- The final output a* is determined by majority
vote over the extracted answers: a* = mode(.A), selecting the most frequently occurring answer
among the candidates. This multi-stage inference process—combining exploration through sampling,
confidence-weighted evaluation, targeted self-reflection, and robust consensus selection—significantly
improves output reliability without requiring model retraining. We demonstrate the efficacy of our
test-time inference scaling mechanism in significantly improving the reliability of Small Language
Models (SLMs) while maintaining their original parameterization. Our evaluation employs Llama-
3.2 1B model variants with a sophisticated inference pipeline combining: (1) Chain-of-Thought
sampling with N = 4 diverse reasoning trajectories, (2) confidence-weighted entropy scoring
(A = 0.5) for uncertainty-aware candidate selection, (3) Top-K filtering (' = 2) to retain high-quality
outputs, (4) internal self-reflection for iterative refinement, and (5) self-consistency aggregation
for final predictions. The experimental framework evaluates performance across three critical
benchmarks: instruction following (via Direct Preference Optimization; DPO), knowledge-intensive
question answering (using Retrieval-Augmented Generation; RAG), and general question answering
(through Supervised Fine-Tuning; SFT). Assessment leverages both traditional NLP metrics and fine-
grained qualitative dimensions—including Correctness, Coherence, Helpfulness, Complexity, and
Verbosity—with qualitative judgments provided by the Nemotron-4-340B reward model for consistent
evaluation. Results demonstrate consistent improvements across standard NLP metrics—including
METEOR, ROUGE variants, BERTScore, and Similarity (Figures A0H42)—indicating enhanced
lexical and semantic alignment. Qualitative assessment reveals particularly strong gains in factual
correctness (Figure f4)) and helpfulness (Figure 43, while maintaining baseline coherence levels
(Figure [43). These improvements are accompanied by moderate increases in output complexity
and verbosity (Figures 46 and[d7), representing an expected trade-off between generation richness
and conciseness. The success stems from the multi-stage architecture synergistically combining
exploratory sampling for diverse solution generation, confidence-guided filtering for high-quality
candidate selection, reflective refinement for iterative improvement, and consensus-based selection
for robust final predictions. This pipeline delivers markedly improved model reliability with strong
gains in factual accuracy, making it well-suited for high-stakes applications where computational
overhead is justified by the need for dependable performance.

5.6 Related Work

This section reviews recent advances in data-driven PFD and PID generation, highlighting their
methodologies, limitations, and gaps in industrial applicability. The Generative Flowsheet Trans-
former [53]] introduces a transformer-based model that autocompletes chemical process flowsheets by
treating them as linear text sequences using the SFILES 2.0 notation—a structured, text-based format
for representing process flow diagrams. The model is pre-trained on synthetic data and fine-tuned on
real flowsheet data, with both datasets converted into SFILES 2.0 strings. These strings serve as input
for learning the structural grammar of flowsheets, achieving low perplexity while enabling realistic
autocompletion. However, the method relies heavily on synthetic data, which poorly reflects industrial
variability, and suffers from limited real-world data, leading to unstable generalization. To address
the challenge of limited data availability, the **Randomized SFILES-based Data Augmentation

43

DPO: Baseline vs. Test-Time Scaling Metrics

1.0

I Baseline
[w/ Test-Time Scaling

o o o
» o ®

Metric Score

o
N

0.0

Evaluation Metrics
Figure 40: Comparison of standard NLP metrics on the DPO dataset using a fine-tuned Llama-3.2-
1B model. The plot contrasts baseline greedy decoding (blue) against test-time inference scaling
(orange). The scaling mechanism consistently improves metrics such as METEOR, ROUGE variants,
BERTScore, and Similarity, demonstrating enhanced output quality without model parameter updates.

RAG: Baseline vs. Test-Time Scaling Metrics

I Baseline
[w/ Test-Time Scaling

Metric Score

(}’ﬂ é:\« o°‘° V@o

& & & & & 4
Evaluation Metrics

Figure 41: Comparison of standard NLP metrics on the RAG dataset using a fine-tuned Llama-3.2-1B

model. Results from baseline greedy decoding (blue) are compared against those from test-time

inference scaling (orange). The scaling mechanism notably improves ROUGE-1, ROUGE-L, and

Similarity, showcasing its effectiveness over standard decoding.

QA: Baseline vs. Test-Time Scaling Metrics

1.0
B Baseline
[w/ Test-Time Scaling

e o o
») @

Metric Score

o
N

0.0

Evaluation Metrics

Figure 42: Comparison of standard NLP metrics on the General QA dataset using a fine-tuned
Llama-3.2-1B model. Test-time inference scaling (orange) outperforms baseline greedy decoding
(blue) across ROUGE-1, ROUGE-L, BERTScore, and Similarity, reinforcing the approach’s utility in
enhancing SLM robustness after fine-tuning.

44

»
o

Datasetr

[Original
3.5 @Z8 TestTimeScaling
3.0 | /I

N
n

Coherence Score
= N
wu o

Iy
=)

[
]

e
o

A B C D
Model variants

A: Llama W/FT W/GraphRAG
B: Llama W/FT W/o GraphRAG
C: Llama W/o FT W/o GraphRAG
D: Llama W/o FT W/GraphRAG

Figure 43: Effect of test-time inference scaling on Coherence Score across four Llama-3.2-1B vari-
ants (A: Fine-tuned with GraphRAG, B: Fine-tuned without GraphRAG, C: Base without GraphRAG,
D: Base with GraphRAG), evaluated on the LogiCore-DPO, GraphRAG-Retrieval QA, and Factual
QA datasets. Compared to baseline greedy decoding (‘Original’), the scaling mechanism (‘Test-
TimeScaling’) generally maintains or slightly improves coherence.

o
)

Dataset
I Original
BZm TestTimeScaling

w
n

w
o

N
2]

Correctness Score
=N
w o

[y
)

o
]

[
)

A B C D
Model variants

A: Llama W/FT W/GraphRAG
B: Llama W/FT W/o GraphRAG
C: Llama W/o FT W/o GraphRAG
D: Llama W/o FT W/GraphRAG

Figure 44: Effect of test-time inference scaling on Correctness Score across four Llama-3.2-
1B variants, evaluated on the LogiCore-DPO, GraphRAG-RetrievalQA, and Factual QA datasets.
Compared to baseline decoding (‘Original’), the scaling mechanism (‘TestTimeScaling’) yields
consistent and significant improvements in correctness across all configurations.

45

1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268

»
o

Dataset
[Origina
@28 TestTimeScaling

w
2]

w
)

N
n

Helpfulness Score
|
o wu o

o
n

o
o

N

A B
Model variants

A: Llama W/FT W/GraphRAG
B: Llama W/FT W/o GraphRAG
C: Llama W/o FT W/o GraphRAG
D: Llama W/o FT W/GraphRAG

Figure 45: Effect of test-time inference scaling on Helpfulness Score across four Llama-3.2-1B
variants, evaluated on the LogiCore-DPO, GraphRAG-Retrieval QA, and Factual QA datasets. The
scaling mechanism consistently improves helpfulness over baseline decoding across all variants.

4.0
Dataset
| [Original
3.5 @78 TestTimeScaling
3.0 -

| S

N
7,

Complexity Score
= N
n o

Ly
o

I
7,

o
°

A B
Model variants

A: Llama W/FT W/GraphRAG
B: Llama W/FT W/o GraphRAG
C: Llama W/o FT W/o GraphRAG
D: Llama W/o FT W/GraphRAG

Figure 46: Effect of test-time inference scaling on Complexity Score across four Llama-3.2-1B
variants, evaluated on the LogiCore-DPO, GraphRAG-Retrieval QA, and Factual QA datasets. The
scaling mechanism introduces a slight but consistent increase in generation complexity.

technique** proposes a text-based augmentation method for chemical process flowsheets using
SFILES 2.0 notation. This approach introduces an algorithm that applies randomized flowsheet
graph traversal and template-based mutations to generate structurally varied (non-canonical) yet
semantically equivalent flowsheet strings. The technique supports flowsheet-based process modeling
by expanding the diversity of machine-readable training data. However, the method is limited by its
dependence on the number of branching points, offering minimal augmentation for small flowsheets
while risking overrepresentation of larger flowsheets. Additionally, it only introduces syntactic varia-
tions without altering functional or topological features, limiting its ability to improve generalization
to structurally novel process designs. The SFILES2Seq framework [19] proposes a data-driven
sequence-to-sequence approach for the automatic prediction of control structures, generating PIDs
from PFDs. Using the SFILES 2.0 notation, both diagrams are encoded as structured text strings, en-
abling transformer-based translation. A TS5 encoder-decoder model is trained to map PFD sequences
to corresponding PID sequences, guided by a custom tokenizer that captures the syntax of unit
operations and control elements. The model is first pre-trained on synthetically generated examples,
created through a Markov chain-like process that assembles subprocess modules and inserts control
structures based on design heuristics. It is then fine-tuned on a small real-world dataset, though

46

1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291

1292

1293

1294
1295
1296
1297
1298
1299
1300
1301
1302

R
o

Dataset
[Origina
@28 TestTimeScaling

w
«

w
)

N
1%]

=
n

Verbosity Score
N
o

=
°

I
5,

o
o

A B [d D
Model variants

A: Llama W/FT W/GraphRAG
B: Llama W/FT W/o GraphRAG
C: Llama W/o FT W/o GraphRAG
D: Llama W/o FT W/GraphRAG

Figure 47: Effect of test-time inference scaling on Verbosity Score across four Llama-3.2-1B variants,
evaluated on the LogiCore-DPO, GraphRAG-RetrievalQA, and Factual QA datasets. The scaling
mechanism leads to a marginal yet consistent increase in verbosity compared to baseline decoding.

performance is limited by dataset size and variability. To improve generalization, augmented SFILES
2.0 strings are generated by varying branching and control unit placements. Beam search is used
during inference to produce multiple PID predictions, demonstrating that NLP models can effectively
support automated control structure generation from PFDs. Despite strong performance on synthetic
data, the method struggles with real-world generalization due to limited and diverse training samples.
The lack of constrained decoding and oversimplified synthetic data further limits its reliability in cap-
turing complex industrial control structures. PID-TALK [2] is a three-stage methodology for enabling
natural language interaction with PIDs. First, PIDs are transformed into graph representations that
capture both domain hierarchies and lexical interconnections among components. These graphs are
then enriched with semantic labels and properties to form labeled property graphs within a knowledge
graph framework. Finally, a graph-based retrieval-augmented generation (graph-RAG) approach
is employed, where the high-level knowledge graph provides context for large language models,
enabling efficient, context-aware querying of PID information while improving interpretability and
reducing hallucinations. Despite recent innovations, these approaches exhibit critical limitations
that restrict their practical applicability. Current methods are unable to autonomously generate
novel industrial PFDs and PIDs, limiting their ability to support new or customized process designs.
They often neglect the broader process context—such as operational objectives, feedstock-product
relationships, safety constraints, and design rationales—which is essential for producing technically
sound schematics. Additionally, many approaches rely heavily on inadequately curated synthetic
datasets, failing to capture the complexity and variability of real-world industrial processes. The
absence of rigorous simulator-backed validation further compounds these issues, as generated PFDs
and PIDs are not tested for operational safety, control robustness, or engineering feasibility, posing
significant risks in practical deployment.

5.7 Auxiliary Results

5.7.1 Composite Reward Group Relative Policy Optimization (GRPO)

We propose a modification to the standard Group Relative Policy Optimization (GRPO) [43]
151 27} 126] algorithm for direct fine-tuning of a small-scale language model (SLM). The SLM
acts as a policy network with parameters # € ©, where © C R? denotes the parameter space. It
implements a stochastic, autoregressive policy mg(y | «), mapping an input prompt € X to a
generated output y €). Our goal is to optimize # such that the model’s responses better align
with a ground-truth reference answer r,.. For each prompt x, we sample a group of G responses:
O(x) ={o01,09,...,06}, where o; ~ my,,(- | x). This group-level sampling enables relative
comparison of outputs within each group, facilitating targeted policy updates. We assign a composite
reward to each generated output o using a weighted combination of three quality metrics:

47

1303

1304
1305

1306

1307
1308
1309
1310
1311

1312

1313

1314

1315

1316

1317
1318

1319

1320
1321
1322

1323

1324

1325

1326
1327
1328
1329
1330
1331
1332
1333

1334
1335
1336
1337
1338
1339

r(0,r5) = 0.3 -7 (0,1,) + 0.2 - 7N (0,) + 0.5 - 1M (0, 7,.),

where "¢ (0, r,) is the ROUGE-L F1 score between o and the reference r,, measuring lexical and
semantic overlap. The length penalty 7'"¢" (o,) is defined as:
min (len(0), len(r))
"0 (0, r,) = ¢ max(len(o), len(r,))
0, otherwise,

x 0.5, iflen(r,) > 0,

with len(-) denoting token count. This term penalizes responses that deviate from the reference
length, yielding values in [0,0.5]. Lastly, 7M™ (o, r,) is a normalized score (€ [0,1]) from an
auxiliary LLM evaluating the correctness of o against r,.. For each generated output o; € O(x) where

i € {1,...,G}, we compute its composite reward 7; = r(0;, 7). To assess relative performance
within the group, we normalize these rewards by calculating the sample mean:

1 G
ﬂxzagri

and the sample standard deviation:

1 &
Sy
G

The normalized advantage for each output o; is then computed as:

" Ty — Uz
11i =)

Oz

This converts rewards to z-scores, highlighting outputs that significantly differ from the group mean
for policy updates. During fine-tuning, the SLM policy 7y autoregressively generates each output
0; =(0i1,--.,0i1,), where T; £ |o;]. For each token position ¢t € {1,...,T;}, the policy outputs
the probability 7y (0; ¢+ |z, 0; <) given prompt x and preceding tokens 0; < £ (0i1y---50i¢-1). To
maintain training stability, we sample the group O(x) using the old policy mg,,. For each token o; 4
in output o;, we compute the probability ratio:

7T0(0i,t | 1‘70i,<t)
To5a(0it | T, 01, <t)

Ti,t (9) =

Combining this ratio with the normalized advantage fTZ we define our modified GRPO objective:
G |oi
[11

el Z m Z min (ri7t(9)ﬁi,
=1

i=1

Jorro(0) =E zox,

O(z)~mo,

clip(r; +(0),1 —€,1 + 6)1&)

— BDxL (7o (- | @)||met(- | 2))

Here, e clips the probability ratio r; +(0) to [1 — €, 1 + €], preventing overly aggressive policy updates.
The KL divergence term 8 Dkr, (|| Trer) regularizes updates, where /3 controls the penalty strength
and 7 is typically the initial supervised fine-tuned model. This constraint ensures the policy
doesn’t deviate excessively from the reference, avoiding catastrophic forgetting of previously learned
knowledge. The fine-tuning procedure iterates through the following steps. For each input prompt z,
we first sample a group of G outputs O(z) = {o01,..., 05} independently from the old policy 7g,,.
Next, we compute composite rewards 7 (o;, ;) for each output o; using our weighted combination of
ROUGE, length, and LLM-based metrics. These rewards are normalized within the group via mean yi,,
and standard deviation o, calculations, producing relative advantage scores A;. For every token o; ; in
each generated output, we compute probability ratios r; ;(8) = mg(0;.¢ | T, 04, <1) /70,4 (0it | T, 05 <t)
and construct the clipped surrogate objective Jgrpo(#). The policy parameters 6 are updated via
gradient ascent on this objective, followed by synchronizing the old policy (6,14 <) for the next
iteration. This process holistically improves response quality by combining multiple reward metrics.
We use gradient ascent because GRPO maximizes the reward objective Jgrpo (), unlike supervised

48

1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365

learning which minimizes losses. The update 6 < 6 + oV Jgreo () is mathematically equivalent
to descent on —Jgrpo(#). Our modified GRPO algorithm eliminates the need for a separate value
network through three key mechanisms: (1) computing composite rewards for each output, (2)
normalizing these rewards within each group to obtain relative advantages, and (3) performing direct
policy optimization via token-level updates. The SLM 7 thereby achieves efficient, end-to-end
reinforcement learning that enhances performance while preserving generation diversity, all within
a computationally lightweight framework. Figures 48] and [49] present the training loss trajectories
for a Llama 3.2 1B model fine-tuned using Group Relative Policy Optimization (GRPO) on two
distinct synthetic dataset categories. Figure 48|displays results for QA-style datasets (Factual QA,
SynDIP, and LogiCore), which enhance domain knowledge and reasoning for PFD/PID interpretation.
Figure 9] shows corresponding results for retrieval-augmented instruction datasets (Local RAIT
and Global RAIT), designed to ground responses in retrieved contextual information. Both figures
demonstrate consistent convergence patterns: a rapid initial loss reduction followed by gradual
stabilization over approximately 10 epochs for QA datasets and 13 epochs for RAIT datasets. These
results confirm GRPO’s effectiveness in optimizing language models for specialized chemical process
engineering tasks. Figures [50]and [51] compare the performance of Supervised Fine-Tuning (SFT)
and Composite Reward Group Relative Policy Optimization (GRPO) applied to the Llama 3.2 1B
and SmolLM2-135M models across five quality dimensions, as evaluated by a reward model. On the
1.5K QA-pair generalization benchmark (Figure[50), the GRPO-trained Llama 3.2 1B demonstrates
superior performance in helpfulness and correctness, while its SFT-trained counterpart achieves the
highest coherence. In contrast, when evaluated on the out-of-distribution ChemEval dataset (Figure
[51)—designed to test generalization to unseen chemical processes—the GRPO-trained Llama 3.2 1B
consistently outperforms both the SFT-trained Llama 3.2 1B and the SFT-trained SmolLM2-135M
across helpfulness, correctness, coherence, and complexity, while all models show comparable
verbosity. These results highlight GRPO’s advantage in producing more robust and accurate model
behavior on novel chemical tasks compared to standard SFT.

2.0

1.8

1.6

In
FS

Training Loss
R
N

e o o »m
2 o ® o

o
N

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Epoch

Figure 48: Training loss progression for Llama 3.2 1B fine-tuned with GRPO on QA datasets (Factual
QA, SynDIP, LogiCore), showing convergence within 10 epochs.

2.0

1.8

1.6

Training Loss
e o B kB M
N (-] o N £

I
»

°
N

o 1 2 3 4 5 6 7 8 9 10
Epoch

Figure 49: Training loss progression for Llama 3.2 1B fine-tuned with GRPO on retrieval-augmented
datasets (Local RAIT, Global RAIT), achieving convergence in 13 epochs.

1366
1367

1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393

B SFTTrained Llama
=1 SFT-Trained SmolLM
3.59 BN GRPO-Trained Llama

Mean Scores
!ﬂ N
u (=}

Iy
°

e
n

04
helpfulness correctness coherence complexity verbosity
Quality Metrics

Figure 50: Performance comparison of GRPO and SFT fine-tuning on Llama 3.2 1B and SmolLM2-
135M models, evaluated on the 1.5K QA-pair generalization benchmark. Bars show mean scores
across five quality metrics: helpfulness, correctness, coherence, complexity, and verbosity.

4.0

M SFT-Trained Llama
3 SFT-Trained SmolLM

3.57 BN GRPO-Trained Llama

w
°

N
]

Mean Scores
" N
w (=}

Iy
o

e
n

0
helpfulness correctness coherence complexity verbosity

Quality Metrics

Figure 51: Generalization performance of GRPO vs. SFT fine-tuning on Llama 3.2 1B and SmolLM2-
135M models, evaluated on the out-of-distribution ChemEval dataset. GRPO shows clear advantages
across helpfulness, correctness, coherence, and complexity, with similar verbosity across models.

5.7.2 t-SNE/PCA Analysis of Semantic Structure in LLMs vs. Web-Derived Process
Descriptions

We performed t-SNE and PCA visualizations to analyze the clustering behavior of process flow and
instrumentation text embeddings derived from structured language model outputs (GPT-40, Claude
Haiku) and agentic web-retrieved ChemAtlas corpus data. These projections quantify inter-chemical
consistency (semantic similarity of process descriptions across related substances) and intra-chemical
coherence (semantic similarity across multiple descriptions of the same chemical, per LLM and
web-retrieved data), revealing how chemically analogous production processes group in embedding
space. Differences are illustrated using OpenAl’s text-embedding-3-small embeddings [33]], which
encode latent structural relationships and semantic similarities among chemical processes. For
GPT-40-generated outputs, Figures [52]and [53]display tight, well-separated clusters, indicating strong
semantic alignment among chemicals with analogous synthesis pathways, equipment types, or control
strategies. Descriptions of related chemical processes—such as those sharing similar unit operations or
instrumentation—are embedded proximally, while distinct processes remain clearly differentiated. In
contrast, Haiku-generated outputs (Figures[54]and [53)) exhibit moderately compact clusters, reflecting
consistent grouping of chemically similar processes with enhanced structural fidelity compared to
web-derived data. Conversely, web-retrieved content (Figures[56]and [57) shows diffuse, overlapping
clusters, reflecting greater variability in process descriptions from heterogeneous sources. The t-SNE
and PCA plots of web-retrieved process flow and instrumentation descriptions reveal a combination
of overlapping and distinct clusters, demonstrating partial inter-chemical consistency. Although some
chemical processes form well-defined groupings, the overall dispersion highlights structural diversity
and semantic variability inherent in uncurated web content. These clustering patterns enable few-shot
prompting by identifying semantically similar chemical processes, allowing language models to
transfer structural knowledge—including unit operation sequences, flow configurations, and control
logic—from established processes to novel chemical production scenarios. This capability can be
further enhanced through teacher-student transfer learning. Larger models initially learn to recognize
and leverage these semantic clusters, then distill this knowledge into smaller, more efficient language
models. By retrieving industrial production processes from chemically similar neighbors within the

50

1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407

1408

1409
1410

same cluster, even compact models can generate accurate, contextually grounded process descriptions
for previously unseen chemicals—requiring only minimal task-specific supervision. Overall, the
PCA and t-SNE visualizations (Figures [52H57) reveal that LLM-generated structured outputs produce
tighter clustering with higher semantic consistency and clearer inter-chemical separation compared
to web-derived content, which exhibits noisier, less discriminative patterns. The similarity score
distributions between text embeddings (Figures [58H60) further illustrate these differences. GPT-
40 and Claude-3-Haiku show the strongest alignment (Figure [58), peaking at 0.7-0.8, indicating
robust semantic consistency in chemical process representations. While GPT-40 also aligns with
web-retrieved data (Figure[59), the similarity scores peak at a lower range (0.6-0.7), reflecting greater
variability and reduced structural coherence. Haiku-web comparisons (Figure[60) follow a similar
but more dispersed trend, with weaker overall alignment. These results demonstrate that while web
content shows partial semantic overlap, LLM-generated descriptions exhibit significantly stronger
internal consistency. The higher inter-model similarity underscores the reliability of synthetic outputs
in representing chemical processes compared to unstructured web sources.

5

t-SNE Dim 2

-6 -a -2 0 2 a 6

t-SNE Dim 1
Figure 52: t-SNE visualization of GPT-40-generated process embeddings (SynDIP dataset) from the
ChemAtlas corpus. Well-separated, compact clusters demonstrate high inter-chemical consistency in
PFD/PID descriptions.

0.25

0.154

0.054

PCA Dim 2

—0.054

—0.154

-0.25 T T T T T T T T
-0.30-0.25-0.20-0.15-0.10-0.05 0.00 0.05 0.10 0.15 0.20

PCA Dim 1
Figure 53: PCA visualization of GPT-40-generated process embeddings from the ChemAtlas corpus.
Tight clustering in the first two principal components reflects high semantic consistency and strong
domain alignment across chemical production pathways.

5.8 KV Caching and Paged Attention

We implement a critical optimization technique to enhance the memory efficiency and computational
throughput of fine-tuned SLMs during autoregressive decoding. In autoregressive transformer

51

1411
1412
1413
1414
1415

1416

1417
1418
1419
1420
1421
1422
1423

6
44
21
N
£
a
w 9
4
7))
&
—2
_4
-6 .
-6 -4 -2 0 2 a4 6
t-SNE Dim 1

Figure 54: t-SNE visualization of Claude-3-Haiku-generated process flow and instrumentation
description embeddings from the ChemAtlas corpus. Distinct clusters reveal semantic relationships
in the embedding space, showing moderate separation. This indicates improved inter-chemical
consistency and more stable intra-chemical representations compared to web-retrieved data.

0.25

0.15

0.054

PCA Dim 2

—0.054

-0.154

-0.

251 - - - - - - - ; ;
—0.20-0.15-0.10-0.05 0.00 0.05 0.10 0.15 0.20 0.25 0.30
PCA Dim 1

Figure 55: PCA visualization of Claude-3-Haiku-generated process description embeddings from
the ChemAtlas corpus (first two principal components). Moderate clustering quality indicates better
structural consistency and improved grouping of chemically similar production processes compared
to web-sourced data.

decoding, at each step ¢, the model processes previously available tokens—comprising (1) the original

prompt tokens {x1, ..., 2, } and (2) the generated tokens up to that point {@,, 11, ..., 2;—1 }—and
computes a query vector ¢; € R%. This query attends to all previously processed tokens via their
cached key vectors k; € R? and value vectors vj € R?, where j = 1,...,i — 1. The attention

mechanism computes a weighted sum over the values based on query-key interactions:

i—1 T
. 4 kj)
Attention(g;, K, V) = E softmax | = v
(@) (vd)’

Here, K = [ki,...,ki_1] € RE-DXdand V = [vy,...,v;_1] € RE=D*d denote the cached
key-value (KV) matrices for all previously processed tokens. The memory contiguity issue arises
because the logical KV cache expands dynamically during decoding, necessitating storage of (i —
1) x d-dimensional matrices per layer and head at each step <. The linearly growing KV cache in
standard autoregressive attention consumes significant memory, causing fragmentation and restricting
achievable batch sizes. Coupled with its quadratic computational complexity, this substantially
reduces overall throughput. Conventionally, the KV cache is stored contiguously, requiring pre-

=1

52

8
6 %
Ood% o D(%;;% o
4 o %@@@o
N o o0 © 92
£ ¢ ol S THD |
8 2 ﬁﬂq;;‘;ﬁc%’ %S 808 8 B o
u ..q.osdo'oocoo. o (TP O BY
w .% oo. g{%&?? ° % %% o .G.f o.:g © :: &
° o 09 O ® ° ..o '
fah wie Ba, XA g
—2 °0@6 0 Pno © %% @ % o e ® s‘
?‘-‘2'_"5,:- b e T i
 ©0°) ® o
-4 ‘ﬁ .“' 8
-6 _'4 -2 6 2 4 6
t-SNE Dim 1

Figure 56: t-SNE visualization of web-retrieved process description embeddings from the ChemAtlas
corpus. Diffuse, overlapping cluster formations indicate weaker inter-chemical consistency and lower

structural coherence compared to LLM-generated data.
0.5

0.44

0.34

0.2

0.14

0.0

PCA Dim 2

-0.14

—0.2

-0.34

-0.4

-0.5 v v N v v T v v - :
-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 04 0.5
PCA Dim 1

Figure 57: PCA visualization of web-retrieved process description embeddings from the ChemAtlas
corpus (primary variance directions). Loosely distributed embeddings suggest weaker structural
coherence and less distinct process groupings compared to synthetic sources.

300

250

200

Frequency
=
[
)

100

50

0 : :
0.0 0.2 0.4 0.6 0.8 1.0
Similarity Scores

Figure 58: Cosine similarity distribution between GPT-40 and Claude-3-Haiku process description
embeddings. The 0.7-0.8 peak reflects strong semantic agreement and structural coherence in
PFD/PID representations.

53

1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437

1438

1439
1440
1441
1442

300

250 26.6%

200

16.7°

Frequency
=
w
o

100

50

. . 0.8 1.0
Similarity Scores

Figure 59: Cosine similarity distribution between GPT-40-generated and web-retrieved process
embeddings. The broader 0.6-0.7 peak indicates moderate alignment with greater variability than
Haiku-generated content.

225

200

19.8%

[
~N
(5]

18.2%

=
°d
o

[

N

(5]
=
W
Y
=

Frequency
=
(=]
o
-
i
s
i

~N
o

u
o

N
(4

0 ; = "
0.0 0.2 0.4 0.6 0.8 1.0
Similarity Scores

Figure 60: Cosine similarity distribution between Claude-3-Haiku and web-retrieved process em-
beddings. The diffuse 0.6-0.7 distribution suggests weaker alignment than GPT-40-generated
representations.

allocation of a fixed-size buffer for the maximum sequence length L« per sequence to avoid
expensive reallocations. This approach exhibits inefficiency due to variable sequence lengths and
dynamic growth. It induces internal fragmentation where allocated memory remains underutilized
when L < Ly.. More critically, it causes external fragmentation: concurrent sequences each
occupy a contiguous block, and asynchronous completion creates variably-sized gaps between active
allocations. GPU memory evolves into a discontiguous layout of allocated and free regions. Even
with sufficient aggregate free memory, non-contiguous segmentation may prevent allocation of large
contiguous blocks. Reallocation for sequences exceeding L,,x imposes substantial O(L) time and
memory overhead. These inefficiencies reduce maximum viable batch sizes and degrade serving
throughput. To address these memory inefficiencies, PagedAttention [24} 38}, 135] adapts the virtual
memory paging paradigm from operating systems. The system replaces contiguous GPU memory
allocations with a block-based KV cache management strategy, partitioning each sequence’s key-
value cache into fixed-size blocks storing B consecutive tokens. We formally define the j-th KV
block as:

Kj =[k(j—1)B+1---- kjB] ERP*Y V= [vg_1yps1,-..,v58] € RPX?

The architecture’s innovation centers on per-sequence block tables that map logical block indices to
physical memory locations. This indirection enables three critical features: (1) non-contiguous storage
where blocks occupy arbitrary GPU memory addresses, (2) the system only allocates physical memory
for a block when that specific block is actually needed for computation (a "cache miss"), rather than

54

1443
1444
1445

1446

1447

1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462

1463

1464
1465
1466
1467

1468

1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492

reserving all memory upfront, and (3) memory sharing where multiple sequences reference identical
blocks (particularly beneficial for shared prompt prefixes). Attention computation reformulates as a
block-wise operation. For token position ¢, the output o; becomes:

[i/B] T
q; Kj)
0; = E softmax %
(Vd !

The softmax operation maintains mathematical equivalence with standard attention through global
normalization across all blocks. Each block contributes a score matrix A;; = q;'— K; / Vd € RE, with
the implementation optimizing performance through (i) efficient grouped memory reads (coalescing),
(ii) predictive loading of upcoming data blocks (prefetching), and (iii) thread-safe block allocation
(atomic resolution). This design eliminates internal fragmentation via fixed B-sized blocks and
removes external fragmentation through non-contiguous allocation, while copy-on-write semantics
preserve memory sharing benefits. The result is significantly improved memory utilization that
directly enables larger batch sizes, longer sequence handling, and superior throughput - critical
advantages for production deployment. While PagedAttention eliminates memory fragmentation
through non-contiguous block-level KV caching, it preserves the original memory footprint per
parameter since key and value vectors remain stored in high-precision formats (FP32/FP16). To
achieve further compression, we implement group-wise quantization for the KV cache—a training-
free technique that reduces memory requirements during autoregressive decoding. For each cached
block containing key matrix K; € RZ*4 and value matrix V; € R®*4, we independently quantize
column-wise groups using group-specific parameters (4, z4). The quantization of group g in K
follows:

3 K9) 5
K](-g)z \‘Oj —zgw , Kj(.g) :ag~(KJ(-g)+zg)
g

where K j(q) € 7B*ds contains quantized integers (typically INT4/8), and K j(-g) denotes the de-
quantized approximation. An identical transformation applies to value matrices V;. To minimize
quantization error, we incorporate second-order Hessian information that identifies sensitive parame-
ters through the diagonal Hessian matrix H € R4

max(K](.g)) —min(K§g)) L \‘min(K;g))—‘
5 g = |

%9 = o 1

Qg

This Hessian-aware approach enables aggressive 4-bit quantization while maintaining model accu-
racy by preserving high-curvature parameters. The block structure of PagedAttention optimizes
dequantization efficiency through contiguous storage of group metadata (o, 24). The combined
technique delivers dual benefits: PagedAttention manages memory fragmentation through block
paging, while quantization reduces memory consumption per parameter by 4x (INT4 vs FP16).
This enables larger batch sizes (increased throughput), longer sequence lengths (expanded context),
and efficient deployment on memory-constrained hardware. We evaluate the inference-time effi-
ciency gains enabled by PagedAttention combined with KV cache quantization. By managing the
Key-Value (KV) cache in non-contiguous, fixed-size blocks, this approach mitigates internal and
external memory fragmentation inherent in standard contiguous caching while significantly improving
inference performance. Since PagedAttention is an inference-only optimization that preserves model
output quality, we focus exclusively on system-level metrics rather than quality measures such as
BLEU, ROUGE, or reward scores discussed elsewhere. The efficiency metrics evaluated include
inference throughput (tokens generated per second), maximum batch size (largest number of parallel
sequences processed), peak GPU memory usage (in GB), and average per-sequence latency (gen-
eration time in seconds). We benchmarked our best-performing fine-tuned model, LLaMA-3.2 1B
(with fine-tuning and Graph RAG, Variant A), on an NVIDIA V100 GPU using a 500-example subset
of the held-out 1.5K QA-pair generalization benchmark dataset. The results, shown in Figure 61}
demonstrate significant efficiency improvements. PagedAttention enabled an approximately 2.0x
increase in maximum batch size (16 versus 8) and improved inference throughput by nearly 1.8
(100 vs. 55 tokens/sec) compared to the baseline. While the LLaMA-3.2 1B model requires only
2.3 GB of VRAM in FP16 precision, the larger batch size with PagedAttention increased peak GPU
memory usage slightly (4.8 GB vs. 4.5 GB) due to greater sequence parallelism. However, memory
utilization was substantially more efficient due to reduced fragmentation. The average generation

55

1493
1494
1495
1496
1497

1498

1499
1500
1501
1502
1503

1504

1505
1506
1507

1508

1509
1510
1511

1512

1513
1514
1515
1516
1517

1518

1519

1520
1521
1522
1523
1524
1525
1526
1527
1528

latency for a 2048-token sequence was approximately 39.8 seconds, with only a marginal increase
(5-10%) attributable to block management overhead. These findings demonstrate PagedAttention’s
practical benefits for serving fine-tuned SLMs, especially in RAG-based applications with long,
variable-length contexts. This technique complements model-centric optimizations, enabling more
scalable real-world deployments.

Inference Performance Comparison: Standard KV Cache vs. Paged Attention

Maximum Achievable Batch Size Inference Throughput Peak Memory for Max Batch Size Avg. Generation Latency (2048 Tokens)

16 100 398

45

Throughput (Tokens/sec)

20

00 o
Standard KV Cache Paged Attention Standard KV Cache Paged Attention

Standard KV Cache Paged Attention Standard kv Cache Paged Attention

Figure 61: Inference performance comparison between standard KV cache and PagedAttention
combined with KV cache quantization on LLaMA-3.2 1B. Four key metrics are displayed: maximum
achievable batch size, inference throughput (tokens/sec), peak GPU memory (GB) at maximum batch
size, and average generation latency (s) for 2048-token sequences.

5.9 Low-Latency LLM Decoding Strategies

LetV ={1,2,...,|V|} C Zs(denote the vocabulary of a causal language model M with parameters
6, where |V| is the vocabulary size. Given a fixed input prompt g = (21, %2, ...,2s) € V* of length
s, the goal is to autoregressively generate a target sequence Y = (y1,¥2,...,yr) € VT of length T,
where each token y; € V. The language model defines a conditional probability distribution over the
next token:

Prr(ye | y<t,20:0), whereyoy = (y1,...,¥t-1)

This reflects the causal (left-to-right) nature of the generation process—each token prediction depends
only on previous tokens and the fixed prompt. In greedy (deterministic) decoding, the most probable
token is selected at each step:

yp = argmax Py (v | y<t, 203 0)
veEV

This results in decoding latency that scales linearly with the sequence length 7. To enable parallel
decoding, we reformulate the generation task as a system of fixed-point equations. For each position
te{l,...,T}, define:

Fy(Y,Y<tsx0) = yr — argrlr)lgécPM(v | Y<t,@0;6) =0

This system can be solved using Jacobi iteration, which computes speculative updates in parallel at
each iteration based on previous estimates. The method trades increased per-step latency for reduced
total generation time (i.e., faster completion of the full response). Speculation involves parallel
guessing of multiple future tokens without sequential verification. Verification checks whether these

speculative guesses match the outputs that greedy decoding would produce. Let k € Zx(denote the

iteration index, and let y,{k] € V be the estimate of token y, at iteration k. The Jacobi update rule is:

yH = arggleagPM(v |y 205 0)

where y[f; U= (y&kil], e ,yi’i;”). While Jacobi iteration enables parallel updates, speculative

tokens generated without sequential verification may introduce inconsistencies, potentially discarding
valid generation paths. Consequently, Jacobi decoding alone lacks convergence guarantees and
offers limited empirical speedup. To address these limitations, Lookahead Decoding [12} 63|
introduces a hybrid approach combining speculative Jacobi-based multi-token generation with a
structured verification mechanism. While each decoding step incurs higher latency due to parallel
computation and verification overhead, the method reduces the total number of sequential steps
required to generate the complete response. The decoding process maintains several key components:
The confirmed output prefix o = (01,...,0;_1) € V!~ consists of tokens verified to match

56

1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539

1540

1541
1542
1543
1544
1545
1546
1547
1548
1549
1550

1551

1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577

1578

1579
1580

standard greedy decoding outputs. A token trajectory window W € VN*L tracks speculative
predictions, where N € Z-; represents the number of retained Jacobi iterations and L € Z
denotes the number of parallel lookahead positions, with L < T" constraining the local speculation
horizon. Each entry W, ; corresponds to the token predicted at iteration r for lookahead position
j. For each column j € {1,..., L}, the system constructs vertical decoding trajectories as N-gram
candidates g; = (W1 j,...,Wy,;) € VN by vertically traversing the window W across iterations,
with each g; representing a complete speculative decoding path originating from the confirmed
prefix o. These trajectories are aggregated in the N-gram candidate pool C C V¥ defined as
C=1{yg;|je{l,...,L}}. During the lookahead phase, the system updates the final row Wy 1.1,
through parallel speculative token generation across all lookahead positions. For each position
j €{1,..., L}, the speculative token Wy ; is predicted via:

Wy = afglglea\iiPM (U ‘ (Winin(N=1,j—1),j—15 - - -» Wi_j—min(N—1,j—1)) » 0, To; 9)

This prediction considers three factors: (1) the confirmed prefix o = (o1, ...,0t—1), (2) the original
input prompt z, and (3) a causal diagonal context from window W € VN *L containing up to N—1
previously predicted tokens. The context is selected through a systematic traversal decreasing both
row index 7 from min(N—1,5—1) to 1 and column index j’ from j—1 to j — min(N—1,j—1),
strictly maintaining autoregressive dependencies while enabling parallel computation. This allows
efficient generation of the complete final row Wy 1.7, without violating causal constraints. Following
lookahead updates, the system constructs vertical N-grams g; = (W3 j,..., Wiy ;) for each position
and adds them to candidate pool C. The verification phase then retrieves up to G candidates from
C satisfying g; = 0,1 and sequentially verifies each candidate g; = (g;,...,9}) forr =1to N
through the comparison:

?
T o , 1 r—1Y\.
gj_argglea‘i(PM(U‘ (x03017'"70t717gj7"'7gj),0)

Verification yields either full acceptance, where all N tokens match greedy decoding outputs and
are appended to o, or partial acceptance where only the verified prefix (gjl-, ey g;’l) is retained
when verification fails at position . The window W then shifts rightward by the number of accepted
tokens, discarding unverified speculative entries, thereby maintaining equivalence to standard greedy
decoding while enabling speculative parallel generation. The lookahead and verification phases
form a hybrid predict—verify—commit decoding pipeline, enabling speculative multi-token generation
while preserving exact output semantics. While increasing per-step latency, Lookahead Decoding
is a lossless, parallel algorithm that maintains exact output fidelity while reducing the total number
of sequential steps needed to generate the complete response. It combines token-level Jacobi
speculation with [V-gram-level greedy verification through a structured two-dimensional window and
N-gram cache. This architecture trades increased FLOPs per step for reduced total generation time,
scales effectively with parallel compute, and requires no model modifications or auxiliary networks.
In summary, the Lookahead Decoding significantly reduces generation latency by speculatively
predicting multiple future tokens in parallel and verifying them against the base model. This
approach decodes multiple tokens per forward pass, cutting sequential steps while maintaining greedy
decoding’s exact output. We evaluated two metrics: generation latency (total time per sequence) and
throughput (tokens/second). We evaluated the fine-tuned LLaMA-3.2 1B model using both standard
greedy decoding and Lookahead Decoding (with N=5 iterations and L=10 lookahead positions) on
an NVIDIA V100 GPU, benchmarking performance across 500 examples from our 1.5K QA test
set. The results demonstrate substantial gains: latency for 2048-token sequences dropped from 40.5s
to 21.3s (1.9x speedup), while throughput rose from 50.6 to 96.1 tokens/sec. Although parallel
speculation increases per-step FLOPs, it reduces total generation time without requiring auxiliary
models. This technique proves especially effective for SLMs like Llama-3.2 1B, nearly halving
latency without compromising output quality—particularly valuable for time-sensitive applications
like PFD/PID autogeneration. Its efficiency synergizes with optimizations such as Paged Attention
and pruning. Figure[62]illustrates these performance improvements.

5.10 FlashAttention (Optimizing Attention Computation)

FlashAttention [9} [8} 42,16, 1] improves attention computation by increasing throughput, reducing
latency, and lowering memory usage while maintaining exact equivalence to standard attention. For

57

1581
1582
1583

1584

1585
1586

1587

1588
1589
1590
1591
1592
1593
1594
1595

1596

1597
1598
1599
1600
1601
1602

1603

1604
1605
1606

1607
1608

1609

1610

1611
1612

Lookahead Decoding Performance (Llama-3.2 1B Model)

Sequence Generation Latency (2048 tokens) Inference Throughput Improvement

40.5 9.1

Throughput (tokens/sec)
2 = 5
g 8 8

5
8

g

0
Standard Decoding Lookahead Decoding Standard Decoding Lookahead Decoding

Figure 62: Comparative inference performance of the fine-tuned Llama-3.2 1B model under standard
greedy decoding and Lookahead Decoding (N=5, L=10). Results demonstrate a 1.9x latency
reduction (40.5s — 21.3s for 2048 tokens) and 90% higher throughput (50.6 — 96.1 tokens/sec).

the standard scaled dot-product attention mechanism, given query Q € RV*dr key K € RN *dx,
and value V' € RYV*% matrices, where NV is sequence length and dy,, d,, are dimensions, the attention
scores are computed as:

S = QK
Vg,
A causal mask M € RV*Y with M;; = —oo for j > i prevents attention to future positions. The

row-wise softmax produces attention probabilities:
__ exp(Sy)
TN

2 k=1xP(Sik)

yielding output O = PV € R™V*dv_ This standard approach requires materializing intermediate
matrices S, P € RVY*N | creating O(N?) memory overhead. The implementation suffers from
significant HBM-SRAM data movement: (1) Loading @, K, V' from HBM to SRAM; (2) Computing
S in SRAM; (3) Writing S back to HBM if SRAM overflows; (4) Reloading S to compute P; (5)
Writing P to HBM; (6) Reloading P and V for final output. These O(N?dj,) memory transfers
make bandwidth the dominant bottleneck. FlashAttention solves this via blockwise computation,
partitioning @ into T}, blocks {Q1, ..., Q7. } (Q; € RBr*dx)and K,V into T, blocks {K7, ..., K7.},
Vi, ., Vi b (K € RBexdr [V, € RBexdv) Block sizes satisfy:

ij

B,dy + B.dy + B.d, + B, B. < M

where M is SRAM capacity. The FlashAttention algorithm begins by initializing three components for
each query block @Q; € RPr*4: an output block O; € RB»* % (initialized to zero), a normalization
vector [; € RB" (set to zero), and a maximum vector m; € RZ" (initialized to —oc). The computation
proceeds through nested loops where the outer loop iterates over query blocks while the inner loop
processes corresponding key-value blocks (K; € RP¢ xdy V; € RB- *dv) For each block pair, the
algorithm first loads (X}, V;) into SRAM and computes the local attention scores:

K
Ekj = @ J
Vg,
When causal masking is required, the algorithm sets .S;;[r, ¢] = —oo for all positions where query

index r precedes key index c. The computation then progresses through three sequential steps: first
calculating row-wise maxima m;; [r] = maxi<.<n, 9:;[r, ¢], then computing exponentiated weights
Pt = exp(Si; — my;), and finally determining normalization factors I;;[r] = Zf;l Pir, cl.
These local statistics are incorporated into running values through numerically stable updates:

new
i

m; [r] = max(m;[r], mi;[r])
] = exp(mi[r] — mg™ [r])li[r] + exp(mi; [r] — mi®™ [r])li;[r]

The output block updates through careful combination of previous partial results with new attention-
weighted values:

58

1613

1614
1615
1616

1617

1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642

exp(m; — mi™);0; + exp(mq; — mgew)(Pi'}?“V})

new __

new
li

After processing all key-value blocks for a given query block, the final output O; writes back to
HBM. The backward pass employs an analogous blockwise strategy, recomputing .S;; and]52-]- using
saved statistics m; and I; to avoid storing full O(/N?) matrices. This approach computes gradients for
V; as Isi;dOi while deriving (); and K; gradients through standard softmax backpropagation with

recomputed P;;. Although increasing FLOPs by approximately 2x, this strategy dramatically reduces
memory requirements from O(N?) to O(Ndy,) while preserving the exact O(N?2d},) computational
complexity of standard attention. Through these combined optimizations - blockwise computation,
online softmax, and selective recomputation - FlashAttention achieves exact equivalence with standard
attention while minimizing HBM-SRAM transfers, delivering 2-4x fewer memory accesses and
up to 3x speedups for long sequences through its I/O-aware algorithm design. We implemented
FlashAttention to optimize memory access between GPU HBM and on-chip SRAM during inference
through its innovative tiling, recomputation, and kernel fusion techniques. This implementation-
level optimization computes mathematically identical attention outputs while significantly reducing
memory overhead and improving computational speed, particularly for long sequences, without
affecting model outputs or task metrics like BLEU and ROUGE scores. Benchmarking on an
NVIDIA H100 GPU with LLaMA-3.2 1B revealed substantial performance gains compared to
standard PyTorch attention. During training, FlashAttention doubled throughput from 8 to 16
examples per second while reducing peak GPU memory consumption by 15.6% (from 4.5 GB to 3.8
GB), enabling potential batch size increases or longer sequence training within the same memory
budget. For inference, we observed a 1.3x throughput improvement, increasing generation speed from
52 to 68 tokens per second, which typically corresponds to reduced latency. These improvements,
detailed in Figure [63] stem from FlashAttention’s I/O-aware design that minimizes costly data
movement between HBM and SRAM - a critical advantage for memory-bound attention operations.
FlashAttention works synergistically with other optimizations in our framework: Paged Attention
efficiently manages KV cache, Lookahead Decoding reduces sequential generation steps, while
FlashAttention accelerates the core attention computation itself. This combined approach creates a
highly efficient system for both training and deploying SLMs, particularly beneficial for compute-
intensive tasks like PFD/PID generation where it reduces development cycles and operational costs
while maintaining model performance.

FlashAttention-2 Performance (LLaMA-3.2 1B, H100 GPU)

Training Throughput Inference Throughput
ec)

Throu
) (okensisec) Peak GPU Memory (GB)

ing Th
(examplesis

1.3 speedup

GPU Memory (GB)

Flashatent

s (8-.16)

Figure 63: Performance comparison of Llama-3.2 1B using standard PyTorch attention versus
FlashAttention on NVIDIA V100 GPU, showing training throughput (examples/sec), inference
throughput (tokens/sec), and peak training memory usage (GB).

59

Dataset Type | Prompt

Factual QA
Dataset

You must generate exactly {n_questions} questions that are strictly and directly
related to the specific subtopic provided. No tangential, broad, or off-topic
questions are allowed.

The subtopic is: {sub_topics}

Your response must consist of precisely {n_questions} questions, each directly
pertaining to the subtopic, separated by a newline character, with absolutely no
additional text, numbering, explanations, or any other characters.

Deviation from the subtopic or any failure to generate exactly {n_questions}
questions as instructed will result in the output being considered invalid.

Chosen Response Prompt Template:

Generate a concise, relevant response to the given question. The response
should be directly related to the question, clear, and free of any unnecessary
information. It should be helpful, polite, and factually accurate.

The question is: {question}.

Provide only one response in plain text, with no additional explanations, intro-
ductions, or concluding remarks.

DPO Dataset

Rejected Response Prompt Template:

Generate a rejected response to the given question that is moderately inaccurate
compared to the accurate response. The rejected response may be incomplete or
less accurate, but it should still be relevant to the question.

The question is: {question}

Provide only one response in plain text, with no additional explanations, intro-
ductions, or concluding remarks.

LogiCore

Dataset Provide clear, accurate, and concise answers to the following questions. Adhere

strictly to the following rules to ensure high scores in the following categories:
Helpfulness: Ensure each answer is maximally helpful, fully addressing the
question in a way that effectively resolves the query.

Correctness: Every answer must be factually correct, accurately referencing
relevant details from the synthesis description (process context), Process Flow
Diagram (PFD), and Piping and Instrumentation Diagram (P&ID).
Coherence: Ensure that each answer is logically structured and flows smoothly,
making it easy for the reader to follow.

Complexity: Balance complexity appropriately; provide necessary depth with-
out making the answer overly complicated. Ensure the response is insightful
when needed.

Verbosity: Be concise but thorough. Include all essential details without adding
unnecessary information. Ensure that the length of the answer aligns perfectly
with the complexity of the question.

Failure to adhere to these rules will lead to lower scores and suboptimal perfor-
mance.

Synthesis Description: {synthesis_description}

Process Flow Diagram: {pfd_description}

Piping and Instrumentation Diagrams: {pid_description}

Questions: {questions}

Global/Local

RAIT Dataset Question: {question}

Context: {chunk}

Provide a concise, accurate, and fact-based answer to the question, using only
the information available in the provided context. The answer must be directly
derived from the context and should not include any external knowledge, specu-
lation, or interpretation. Ensure that the response is precise and strictly adheres
to the content of the context without introducing any additional information.

Table 1: [lustrative prompt templates employed within the self-instruct framework to generate distinct
synthetic datasets (Factual QA, DPO, LogiCore, RAIT) via teacher LLMs for subsequent instruction
tuning.

60

Dataset

Prompt
Type P
Industrial Synthesis Generation Prompt Template:
IS)YHDIP Provide a comprehensive and detailed description of the industrial synthesis process for
ataset

{chemical_name}. Your description should include:

» All key chemical reactions, including reactants, intermediates, and products.

* The types of reactors used (e.g., CSTR, PFR) and their operating conditions (e.g., tempera-
ture, pressure).

* Details of any purification steps, such as distillation, crystallization, or filtration, including
the equipment used.

* Handling and treatment of by-products and waste streams.

* Any recycling loops and the integration of heat exchange systems to optimize energy use.

* Specific safety measures taken during the synthesis, especially when dealing with hazardous
chemicals.

The description should be suitable for an engineer looking to understand the process in detail

for implementation in a large-scale industrial setting.

PFD Generation Prompt Template:

Based on the following synthesis description, create a detailed textual Process Flow Diagram

(PFD) for the synthesis of {chemical_name}. Your PFD should include:

* Major equipment involved at each step, such as reactors, heat exchangers, distillation
columns, separators, pumps, and compressors.

* The flow of raw materials, intermediates, and products through the process, including any
recycling streams.

* Details of heat integration, such as the use of heat exchangers to recover energy from
exothermic reactions or to preheat reactants.

* A clear representation of phases (e.g., gas, liquid, solid) in each unit operation, highlighting
phase transitions where applicable.

» Specific operating conditions at key stages, including temperatures, pressures, and flow
rates, to ensure proper operation.

* The identification of potential bottlenecks in the process flow, and suggestions for optimizing
throughput.

Ensure that the PFD is designed according to industry standards and is suitable for scaling up

to large-scale production.

P&ID Generation Prompt Template:

Create a detailed Piping and Instrumentation Diagram (P&ID) based on the following process

flow diagram (PFD) for the synthesis of {chemical_name}. The P&ID should include:

* Detailed placement of sensors (e.g., temperature, pressure, flow, and level sensors) at critical
points in the process to ensure precise monitoring.

 Specification of control valves, actuators, and control loops required to maintain process
parameters within the desired range, including examples of typical control strategies (e.g.,
feedback, feedforward, cascade control).

* Identification of safety instrumentation, such as pressure relief valves, emergency shutdown
systems, interlocks, and alarms, to prevent accidents and ensure compliance with safety
regulations.

* Details of the instrumentation needed for process optimization, such as advanced process
control (APC) systems, model predictive control (MPC), and real-time data analytics.

* Consideration of redundancy and reliability in the placement of key sensors and control
elements to ensure continuous operation and minimize downtime.

* Recommendations for the types of piping materials to be used, considering chemical
compatibility, temperature, and pressure of the process streams.

» Suggestions for the integration of control systems with a distributed control system (DCS)
or supervisory control and data acquisition (SCADA) system for centralized monitoring and
control.

Your P&ID suggestions should align with industry best practices and standards (e.g.,

ANSI/ISA-5.1) and be suitable for large-scale industrial production.

Table 2: Sequential prompt templates used for the multi-stage generation of the SynDIP dataset,
covering industrial synthesis descriptions, textual PFD generation, and subsequent textual P&ID

generation.

61

,]I),;;iset Question Ground Truth Response Model Response
Challenges associated with heat transfer .Key. heat transfer challenge s
What are the | .7 .. . in high-temperature reactors in-
in high-temperature reactors include ma- : .
challenges asso- . . clude material degradation, po-
Factual . . terial degradation, reduced thermal con- .
ciated with heat Lo . . tentially reduced thermal con-
QA L ductivity, increased risk of overheating, .
transfer in high- . ductivity at extreme tempera-
Dataset and the need for advanced cooling sys- . -
temperature re- tures, and increased risk of over-
tems to manage extreme temperatures . -
actors? . heating, often necessitating ad-
effectively. : .
vanced cooling solutions.
Chosen Response: The scale of pro-
duction impacts reactor design choices
by influencing the type of reactor se-
lected' (batch vs. continuous), size and Production scale heavily influ-
capacity requirements, heat and mass . .
. . ences reactor design, affecting
transfer considerations, and the need for .
How does the . the choice between batch and
automation and control systems to en- . L
scale of pro- . - continuous reactors, determining
DPO . sure efficiency and consistency at larger | . N .
duction impact size and capacity, impacting heat
Dataset . scales. .
reactor design . and mass transfer requirements,
- Rejected Response: The scale of pro- L
choices? S . . and dictating the necessary level
duction impacts reactor design choices .
. . ,_ | of automation and control sys-
mainly by determining the reactor’s
tems.
shape and color. Larger scales tend to
favor simpler designs, but they do not
significantly affect material selection or
the technology used.
.Wha.t are the CSTRs (Continuous Stirred-Tank Reac- Selegtlng a PFR. generally lgads
implications N . to higher efficiency and yield
tors) typically offer lower efficiency and | . : .
of reactor | _. . in acetone synthesis because it
. yield for acetone synthesis due to back- . -
type selection maintains reactant concentration
. mixing, leading to reactant dilution and . .
LogiCore | (CSTR vs. PFR) . gradients for better conversion.
reduced conversion. PFRs (Plug Flow
Dataset | on the overall . . . Conversely, a CSTR often re-
- Reactors) provide higher efficiency and - .
efficiency and | _. R . sults in lower efficiency due to
. yield by maintaining concentration gra- .. .
yield of the ace- | 7. . backmixing and reactant dilu-
. dients, enabling better reactant conver- | _. L. .
tone synthesis | . o, tion, although it might offer sim-
5 sion and selectivity.
process? pler temperature control.
Unreacted hydrocarbons and hydrogen
by-products from the synthesis of 1,3-
butadiene can be effectively managed | In 1,3-butadiene synthesis, un-
through several strategies. Unreacted | reacted hydrocarbons are typi-
How can unre- | hydrocarbons can be recycled back into | cally managed by recycling them
acted hydrocar- | the reactor or directed to a separate re- | back to the reactor or separat-
Global bons and hydro- | covery unit for further processing, ensur- | ing them for recovery. Hydro-
RAIT gen by-products | ing that valuable feedstock is not wasted. | gen by-products can be captured
Dataset | be managed in | Hydrogen, on the other hand, can be | and utilized, for instance, as fuel
the synthesis of | captured and utilized as a fuel source | or in other chemical processes,
1,3-butadiene? or for other chemical processes, thereby | which improves overall process
enhancing overall efficiency and sustain- | efficiency and material utiliza-
ability. This approach minimizes waste | tion.
and maximizes the utilization of raw ma-
terials in the production process.
What are the | The operating conditions for the final | The final synthesis of ammo-
Local operating condi- | synthesis of ammonium sulfate are a | nium sulfate typically operates
RAIT tions for the fi- | temperature maintained at 60-80°C and | at a temperature of 60-80°C and
Dataset nal synthesis of | atmospheric pressure. The reactor type | atmospheric pressure, using a
ammonium sul- | used for this synthesis is a Continuous | Continuous Stirred-Tank Reac-
fate? Stirred-Tank Reactor (CSTR). tor (CSTR).

Table 3: Comparison of model responses and ground truth responses across different synthetic dataset

types.

62

	Introduction
	Methodology
	Experiments
	Experimental Setup
	Results

	Conclusion
	Technical Appendix
	Agentic Web Search for Automated Extraction and Synthesis of PFD/PID Descriptions for Chemical Processes
	Synthetic Datasets Generation for PFD/PID Analysis
	Computational Time Analysis for Synthetic Dataset Generation
	Carbon Emissions for Synthetic Dataset Generation
	Evaluation of Synthetic Datasets

	Graph Retrieval-Augmented Generation (Graph RAG)
	Additional Results
	Evaluation on a Generalization Benchmark
	Ablation Study: Head-to-Head Multi-Metric Evaluation of Framework Variants.
	Computational Tradeoffs: Runtime and Carbon Costs Across Framework Variants

	Inference Optimization Techniques
	Width and Depth Pruning
	Test-Time Inference Scaling via Self-Consistency, Confidence-Weighted Entropy, and Self-Reflection

	Related Work
	Auxiliary Results
	Composite Reward Group Relative Policy Optimization (GRPO)
	t-SNE/PCA Analysis of Semantic Structure in LLMs vs. Web-Derived Process Descriptions

	KV Caching and Paged Attention
	Low-Latency LLM Decoding Strategies
	FlashAttention (Optimizing Attention Computation)

