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Abstract

Diffusion models for graph generation present
transformative capabilities in generating high-
quality graphs. However, controlling the proper-
ties of the generated graphs remains a challenging
task for the existing methods as they mainly focus
on uncontrolled graph generation from the data.
To address this limitation, we propose PRODIGY
(PROjected DIffusion for generating constrained
Graphs), a novel approach for controllable graph
generation that works with any pre-trained dif-
fusion model. This formalizes the problem of
controlled graph generation and identifies a class
of constraints (e.g., edge count, valency, etc.) ap-
plicable to practical graph generation tasks. At
the center of our approach is a plug-and-play
sampling process, based on projection-based opti-
mization to ensure that each generated graph satis-
fies the specified constraints. Experiments demon-
strate the effectiveness of PRODIGY in generat-
ing high-quality and diverse graphs that satisfy
the specified constraints while staying close to the
training distribution.

1. Introduction
Deep generative models have been used in the literature
to learn the underlying distribution of graph-structured
data (You et al., 2018; Jo et al., 2022; Niu et al., 2020;
Vignac et al., 2022; Liu et al., 2019; Shi et al., 2020). Re-
cently, diffusion-based models (Niu et al., 2020; Vignac
et al., 2022; Jo et al., 2022) have shown impressive per-
formance in generating graphs in an efficient manner and
achieving distributional realism that outperforms most of
its contemporary autoregressive and adversarial learning
frameworks. The ultimate objective of the graph generation
research is to enable large-scale simulation of realistic net-
works for domains such as network optimization (Xie et al.,
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2019), social network analysis (You et al., 2018; Grover
et al., 2019), and drug design (Yang et al., 2022).

However, even with their amazing performance on bench-
mark datasets, a major limitation of diffusion-based ap-
proaches stems from their inability to support meaningful
controllable generation. Existing methods sporadically sup-
port controllable generation (often termed conditional gener-
ation), by using a label to influence reverse diffusion with a
soft constraint (Song et al., 2020; Vignac et al., 2022). This
approach makes the conditional generation process obscure
and hampers interpretation and control over the generated
graph samples. In real-world applications like drug discov-
ery, precise control over the generated outputs for specific
features (e.g., the number of atoms or motifs in a molecule)
is crucial for a generative algorithm.

In this work, we fill this gap by investigating the problem of
controllable graph generation to generate graphs that belong
to a prior distribution while satisfying certain user-defined
hard constraints on the structure and/or attributes. This en-
ables interpretable control over the output of the generation
model. Specifically, we propose PRODIGY (PROjected
DIffusion for generating constrained Graphs), a plug-and-
play controllable generation method for graphs that can be
used to sample constrained graphs. In particular, we design
a Projected diffusion-based sampling process that can be
plugged over any pre-trained diffusion model. For a given
constraint, we project the solution to the constrained space
after each step of the reverse process. This guarantees that
the solution obtained after following the reverse diffusion
process would satisfy the constraint.

2. Problem Setup: Plug-and-Play Controllable
Graph Generation

Existing works study the problem of (unconstrained) graph
generation, where the objective is to generate new graphs
{G} given a set of training graphs Gtr ⊂ G such that the
new graphs are sampled from the same underlying distri-
bution p0 as Gtr. This is achieved using generative models
that estimate a probability distribution p̂ over the full set of
graphs G such that it is close to the original distribution, i.e.,
p̂ ≈ p0 (You et al., 2018; Niu et al., 2020; Jo et al., 2022).

We consider the problem of controllable graph generation,
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where the objective is to control the generation within a
given constrained set. In addition, the constraints are pro-
vided during the sampling stage such that the generative
model cannot be retrained – this requirement will allow
reusing existing models as-is.

Problem 1. (Plug-and-Play Controllable Graph Gener-
ation) Given a constrained set C ⊆ G and a pre-trained
graph generation model M trained on some training set
Gtr ∼ p0, generate new graphs {G} such that G ∼ p0 and
G ∈ C.

We assume a black-box access to the generative modelM
such that only the probability distribution p̂ can be accessed
during sampling. In other words, there is no access to the
training set Gtr or the model parameters Θ(M). This is a
practical assumption as these models and datasets are often
not released due to proprietary reasons (Ramesh et al., 2021;
OpenAI, 2023). Thus, the proposed constrained generation
solution must be flexible to the choice of the generative
model and the constraints. In this work, we considerM to
be any diffusion-based generative model as these are shown
to outperform other methods for graph generation (Niu et al.,
2020; Jo et al., 2022).

2.1. Constraints

Graph generation should be controlled for different con-
straints on the structure and derived properties. It is often
desired that the structure of the generated graph can be
controlled by the user. For example, a user may want to
control the number of edges, triangles, or the maximum
degree in the graph structure (Tabourier et al., 2011; Ying
& Wu, 2009). In particular, we consider the following three
constraints on the graph structure of non-attributed graphs:

1. Edge Count: The number of edges in the generated
graph is at most a constant B, i.e., |E| = 1

21
TA1 ≤ B

(undirected graph).

2. Triangle Count: The number of triangles in the gener-
ated graph is at most a constant T , i.e., 1

6 tr(A) ≤ T .

3. Degree: The maximum degree in the generated graph
is at most a constant δd. Thus, we restrict the degree
of each node to be δd, i.e., A1 ≤ δd1.

For molecular graphs, we have X ∈ Rn×F denoting
the one-hot encoding of each node being a certain atom
∈ {1, 2, · · · , F}. It is often desired that the generated
molecule is valid and has the given properties (molecular
weight, dipole moment, HOMO, etc.) (Liu et al., 2018; Vi-
gnac et al., 2022; Jo et al., 2022; Langevin et al., 2020; Shi
et al., 2020). In addition, restricting the number of atoms
of each type in the generated molecule is important for the
molecule to be valid. Here, we consider the following four
constraints for molecular graphs:

Forward ProcessForward Process

Pre-trained Diffusion Model

Existing Sampling [22, 7, 13] 
(uncontrollable)

Projected Sampling [ours] 
(controllable)

Figure 1: Constrained graph generation.

1. Valency: Assuming hidden Hydrogen atoms will be
added at the end (Jo et al., 2022; Vignac et al., 2022),
we want the number of connections to a certain atom to
be at most its valency, i.e., A1 ≤ Xv, where v ∈ ZF

>0

denotes the valency of each atom type.

2. Atom Count: The number of atoms of each type i in
the generated molecule is at most ci, i.e., XT1− c, for
a fixed vector c ∈ ZF

≥0.

3. Molecular Weight: Molecular weight of the generated
molecule is at most a constant W , i.e., 1TXm ≤ W ,
where m ∈ RF

>0 denotes the atomic weights of each
atom type.

4. Molecular Property: A general molecular property
cannot be formulated in simple terms of the graph struc-
ture. Thus, we predict a property of a molecular graph
by training a linear SGCN model (Wu et al., 2019) on a
regression task. Then, we consider a constraint that the
predicted property is at most a given constant p, i.e.,
1T ÂkXΘ ≤ p, where Â = D̃−1/2ÃD̃−1/2 is the
normalized adjacency matrix such that Ã = A+ I and
D̃ is a diagonal matrix storing the degrees of nodes in
Ã. Θ denotes the trained weights of the SGCN model.

3. Proposed Method: Projected Diffusion for
Constrained Graphs

We propose PROjected DIffusion for constrained Graphs
(PRODIGY), a plug-and-play sampling method for control-
lable graph generation for continuous-time diffusion models.
Figure 1 illustrates our idea and how it will enable controlled
graph generation.

Based on works in Mirrored Langevin Dynamics (Bubeck
et al., 2018; Hsieh et al., 2018), we extend the idea of Pro-
jected Gradient Descent of alternate dynamics and projec-
tion to sample from a constrained set. In particular, we
consider the following sampling process{

G̃t−1 ← Reverse(Gt, w̄t, t; f , g, sθ)
Gt−1 ← ΠC(G̃t−1),

(1)

where Reverse is some arbitrary discretization of the reverse
process of the continuous-time diffusion model. Figure 2 il-
lustrates the sampling process of our method as compared to
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(a) t = T/10 (b) t = T/2

(c) t = 3T/4 (d) t = T

Figure 2: Sampling process of PRODIGY (red) versus ex-
isting methods (blue) at different timesteps (t) for a con-
strained generation within an ℓ2 ball (gray) centered at the
origin and a radius of 0.1. PRODIGY generates points at the
periphery of the constrained set C, closest to the data density.
The original distribution is a Gaussian mixture model of two
equally likely normal distributions with means (1, 1) and
(−1,−1) and symmetric covariances of 0.01 and 0.009.

the existing sampling strategies. PRODIGY is able to sam-
ple within the constrained ℓ2 ball while existing strategies
fail to do that.

However, we also note that projection to an arbitrary con-
strained set can destroy the smoothness of the reverse pro-
cess. This is because Gt and Gt−1 can be very far apart
since the original sampling is designed to reverse the origi-
nal unconditional distribution and may be very different
from the constrained set. To account for this, we also
propose a smoother variant of Equation 1 as Gt−1 ←
(1− γt) G̃t−1 + γt ΠC(G̃t−1).

One can note that a higher γt implies a higher chance of
constraint satisfaction but also a higher distortion to the orig-
inal sampling process. Thus, we should select a lower γt
when the focus is to approximate the underlying distribution
p0 and a higher γt when we want to just satisfy the con-
straint. We handle this tradeoff by considering a polynomial
schedule on this parameter w.r.t. the diffusion timestep as
γt = poly(t) = (1− γ0)

(
T−t
T

)r
+ γ0, for some γ0, r ≥ 0.

3.1. Projection operators

Consider a constraint of the form C = {S = (SX ,SA) ∈
G : hC(S) ≤ 0}, i.e., that forms a sublevel set. In addition
to this, we also require the graphs to be undirected, have
zero self-loops, and be within a certain range of values.

Table 1: Projection Operators for the given constraints.
We have ΠC(G) = φ0(G) if hC(φ0(G)) ≤ 0, otherwise
φµ(G) such that hC(φµ(G)) = 0.

Constraint Constraint
Function (hC)

Projection (φµ = (φX
µ , φA

µ))

φX
µ φA

µ

Edge Count 1
21

TA1− B X P[0,1](A− µ11T /2 + I/2)
Triangle Count 1

6 tr(A3)− T X P[0,1](A− µA2/2)
Degree A1− δd1 X P[0,1](A− 1

2 (µ1
T + 1µT ) + Diag(µ))

Valency A1−Xv P[0,1](X) P[0,3](A− 1
2 (µ1

T + 1µT ) + Diag(µ))
Atom Count XT1− c P[0,1](X− 1µT ) P[0,3](A)

Molecular Weight 1TXm−W P[0,1](X− µ1mT ) P[0,3](A)

Molecular Property 1T ÂkXΘ− p P[0,1](X− µ(P̂[0,3](A)k)T1ΘT ) P[0,3](A)

Then, the projection operator is given as:

ΠC(G) = argmin
(SX ,SA)∈G

hC(SX ,SA)≤0

1
2∥SX−X∥22+ 1

2∥SA−A∥22, (2)

such that SX ∈ [Xm,XM ],SA ∈ [Am,AM ],ST
A =

SA,Diag(SA) = 0. This can be solved using the La-
grangian method, which gives us L(SX ,SA,hC ,λ,µ) =
1
2∥SX −X∥22 + 1

2∥SA −A∥22 + µ0 · hC(SX ,SA) + µ1 ·
(SX −Xm) +µ2 · (XM −SX) +µ3 · (SA −Am) +µ4 ·
(AM −SA)+

∑
i>j λij(SA[i, j]−SA[j, i])+

∑
i λiSA[i].

Karush–Kuhn–Tucker (KKT) conditions (Kuhn & Tucker,
2013) imply that the optimal solution S∗ should follow

(1) Stationarity. ∇SL|S∗ = 0, i.e. S∗
X − X +

µ0∇SX
hC(S

∗
X ,S∗

A) + µ1 − µ2 = 0, such that S∗
X ∈

[Xm,XM ] and S∗
A − A + µ0∇SA

hC(S
∗
X ,S∗

A) + µ3 −
µ4 +Λ = 0 such that S∗

A ∈ [Am,AM ] and Λ[i, j] = λij

if i > j, λi if i = j, and −λij otherwise.

(2) Primal and Dual feasibility. µ0,µ1,µ2,µ3,µ4 ≥ 0,
hC(S

∗
X ,S∗

A) ≤ 0, S∗
X ∈ [Xm,XM ], S∗

A ∈ [Am,AM ],
(S∗

A)
T = S∗

A, Diag(S∗
A) = 0

(3) Complementary Slackness (CS). µ0hC(S
∗) = 0,

µ1(S
∗
X−Xm) = 0, µ2(XM−S∗

X) = 0, µ3(S
∗
A−Am) =

0, µ4(AM − S∗
A) = 0.

Table 1 lists the projection operators for different constraint
functions. We defer the proofs to Appendix B. For each con-
straint (hC), we have ΠC(G) = φ0(G) if hC(φ0(G)) ≤ 0,
otherwise φµ(G) such that hC(φµ(G)) = 0. For most
constraints, we can note that hC and µ are scalars. Thus,
we solve for µ in hC(φµ(G)) = 0 using the bisection
method (Boyd et al., 2004). When hC (and thus, µ) are vec-
tors (as in the Degree, Valency, and Atom Count constraints),
we split hC into independent functions h

(i)
C and solve for

µi such that h(i)
C (φµi(G)) = 0 using the bisection method.

The split is done such that if h(i)
C (φµi

(G)) = 0 for all i ∈
[1,M ], then for µ = (µ1, µ2, · · · , µM ), hC(φµ(G)) ≤ 0.
Thus, the obtained solution would satisfy the constraint.

4. Experimental Setup
Datasets. We consider four generic datasets that include
Community-small, Ego-small, Grid (You et al., 2018), and
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Enzymes (Jo et al., 2022). In addition, we also consider two
molecular datasets, QM9 (Ramakrishnan et al., 2014) and
ZINC250k (Irwin et al., 2012). For a fair comparison, we fol-
low the standard experimental setup of existing works (You
et al., 2018; Jo et al., 2022). Please see Appendix C for
more details.

Base models. (1) EDP-GNN (Niu et al., 2020) follows
Langevin dynamics to sample only adjacency matrices, (2)
GDSS (Jo et al., 2022) samples both node attributes and ad-
jacency matrices at the same time from a diffusion process.

Metrics. We measure the performance of our method for
both the generation quality and their effectiveness in satisfy-
ing the given constraint. For the latter, we simply find the
proportion of generated graphs that satisfy the constraint,
i.e., VALC(G) := 1

N

∑
i∈N 1[Gi ∈ C], where we generate

N different graphs {Gi}. The quality of unconditionally
generated graphs is evaluated by comparing the distributions
of certain graph statistics between generated and test graphs
by using the maximum mean discrepancy (MMD) metric (Jo
et al., 2022; You et al., 2018). However, since our objective
is to specifically generate constrained graphs, comparing
against the whole test set is not correct as the difference in
the statistics could be due to the constraint itself. To account
for this, we filter the test set to only consider those graphs
that satisfy the constraint and find the MMD between the
generated graphs and the constrained test set.

5. Results
We show the empirical performance of PRODIGY to control
graph generation under different constraints. Below, we
provide results for only the most constrained setting with
the best parameter of γt and defer results for other settings
(including maximal constraint) to Appendix C.

Generic Graphs. We compare both the quality and the
constraint validity of the generated generic graphs under the
minimal constrained setting, where we choose the constraint
parameter equal to its minimum value in the test set for the
given constraint. For example, we consider the minimum
number of edges in the graph for the Edge Count constraint.
Table 2 shows the effect of plugging PRODIGY for sam-
pling the two base models under 3 different constraints.
We can note that the constraint validity with PRODIGY
sampling is almost always close to 1, i.e., almost all the gen-
erated graphs satisfy the constraint. PRODIGY increases
the constraint validity in GDSS by at least 20% and at most
100% across 4 datasets and 3 different constraints. We can
also note that the quality of the generated graphs is not
compromised due to PRODIGY sampling. In particular,
we find that the MMDs between the generated graphs and
the constraint-filtered graphs under PRODIGY sampling
are similar to the original sampling. Except for Grid, the

average MMD is increased by only 0.07 from the original
GDSS due to PRODIGY. Please refer to Appendix C for
more analysis and visualizations.

Flexibility of PRODIGY. Our method allows for an arbi-
trary constraint satisfaction (i.e. for any constraint parame-
ter) and an interpretable tuning hyperparameter γt. Figure 3
compares the original GDSS and different PRODIGY sam-
pling methods on a range of parameters for the Edge Count
constraint (|E| ≤ B ∈ [|E|min, |E|max]) on the Community
dataset. This shows that our method (γt > 0) can satisfy
constraints for any arbitrary parameter setting. We can note
a trade-off that while increasing γt leads to higher constraint
validity (VALC), it negatively affects the quality of gener-
ated graphs (an increase in the MMD scores). We also find
that choosing a higher power for polynomial scheduling
reduces the constraint validity since γt is low for most of
the diffusion process.

For EDP-GNN, we just use a fixed γt = 1 as it only con-
sists of a Langevin corrector and an identity predictor in
the sampling stage (Niu et al., 2020; Jo et al., 2022; Song
et al., 2020). Since there is no predictor step, each diffusion
timestep is independent and is not iterative. Thus, projecting
at each step has no effect on the dynamics. For GDSS, the
parameters that we used for the minimal constraint genera-
tion are provided in Table 7 in Appendix C.

Molecular Graphs. Table 3 shows the effect of plug-
ging PRODIGY in enabling the generation of molecules
under different constraints. For the valency constraint,
we consider the valencies C4+N5+O2−F− in QM9 and
C4+N3+O2−F−P5+S2+Cl−Br−I− in ZINC250k. For the
Atom Count, we constrained the generated molecule to only
contain C and O atoms for both datasets. We can note that
PRODIGY is able to give a near-perfect constraint validity
across the two datasets, while not compromising on the qual-
ity of the generated molecules. In particular, for the Atom
Count constraint, we are able to generate molecules with
only C and O with low enough NSPDK and FCD scores
(i.e., often lower than the original sampling). We can also
note that PRODIGY allows us to increase the validity of
the graph generation of GDSS using the Valency constraint.
Results for the molecular weight and molecular property
constraint are provided in Appendix C.

Molecular Property. Here, we use PRODIGY to generate
molecules with a specified molecular property. We fol-
low the framework of DiGress (Vignac et al., 2022) and
constrain the dipole moment (µ) and the highest occupied
molecular orbit (HOMO) of the generated molecules to be
close to a certain set of values. We train a simple graph
convolutional network (Wu et al., 2019), as described in
Section 2.1, to act as a proxy for the molecular property. We
then constrain the predicted property to lie within a range
of the given value. Following the conditional generation
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Table 2: Effect of PRODIGY on constrained generic graph generation. We choose the constraint parameter as the minimum
from the test dataset. MMD results are evaluated between generated graphs and constraint-filtered test graphs.

Community-small Ego-small Enzymes Grid

Deg.↓ Clus.↓ Orb.↓ Avg.↓ VALC ↑ Deg.↓ Clus.↓ Orb.↓ Avg.↓ VALC ↑ Deg.↓ Clus.↓ Orb.↓ Avg.↓ VALC ↑ Deg.↓ Clus.↓ Orb.↓ Avg.↓ VALC ↑

Edge
Count

EDP-GNN 0.362 0.366 0.125 0.285 0.23 0.199 0.469 0.036 0.235 0.23 0.117 0.12 0.004 0.080 0.56 1.005 0.033 0.455 0.498 0.75
+PRODIGY 0.083 0.379 0.006 0.156 0.12 0.055 0.006 0.000 0.020 0.62 0.247 0.008 0.000 0.085 0.95 1.854 0.000 0.905 0.92 1.00

GDSS 0.448 0.481 0.077 0.335 0.15 0.187 0.599 0.017 0.268 0.18 0.149 0.411 0.081 0.214 0.05 0.120 0.011 0.047 0.059 0.05
+PRODIGY 0.539 1.096 0.015 0.550 0.90 0.104 0.054 0.001 0.053 0.65 0.616 0.966 0.026 0.536 0.82 1.249 0.002 0.604 0.618 0.95

Triangle
Count

EDP-GNN 0.266 0.220 0.068 0.185 0.70 0.170 0.469 0.024 0.221 0.39 0.099 0.120 0.029 0.083 0.64 1.062 0.033 0.513 0.536 0.38
+PRODIGY 0.179 0.595 0.267 0.347 0.96 1.34 0.000 0.018 0.453 1.00 1.127 0.000 0.047 0.391 1.00 1.996 0.000 0.978 0.991 1.00

GDSS 0.319 0.187 0.049 0.185 0.70 0.160 0.599 0.005 0.255 0.32 0.236 0.222 0.016 0.158 0.03 0.154 0.011 0.050 0.072 0.00
+PRODIGY 0.293 0.183 0.048 0.175 0.90 1.34 0.00 0.018 0.453 1.00 0.056 0.298 0.028 0.127 0.96 1.996 0.000 0.978 0.991 1.00

Degree

EDP-GNN 0.288 0.202 0.079 0.190 0.38 0.156 0.173 0.037 0.122 0.36 0.117 0.12 0.004 0.080 0.52 1.062 0.033 0.513 0.536 0.50
+PRODIGY 0.117 0.726 0.252 0.365 0.44 0.042 0.022 0.000 0.022 0.63 0.242 0.000 0.000 0.081 1.00 1.717 0.000 0.958 0.892 1.00

GDSS 0.350 0.203 0.051 0.201 0.40 0.131 0.238 0.018 0.129 0.32 0.158 0.217 0.037 0.137 0.40 0.154 0.011 0.050 0.072 0.00
+PRODIGY 0.075 0.431 0.097 0.201 1.00 0.116 0.169 0.001 0.095 0.68 0.265 0.802 0.018 0.362 1.00 1.755 0.000 0.972 0.909 1.00
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Figure 3: Comparison of methods in generating Community graphs with an arbitrary B number of edges. Lower MMD
scores and higher constraint validity VALC are desired. We compare different values of γt parameter in our method. Note
that the lack of a data point is when sampling leads to a trivial solution of zero edges or an empty graph.

Table 3: Effect of PRODIGY on the constrained molecular
generation. The minimum constraint parameter is chosen
for the evaluation. The base model EDP-GNN with default
parameters (as in (Jo et al., 2022)) runs Out of Memory
(denoted by OOM) for ZINC250k dataset.

QM9 molecule graph dataset ZINC250k molecule graph dataset

Val. (%) ↑ Novel. (%) ↑ NSPDK ↓ FCD ↓ VALC ↑ Val. (%) ↑ Novel. (%) ↑ NSPDK ↓ FCD ↓ VALC ↑

Valency

EDP-GNN 96.95 76.74 0.05 6.15 0.97 OOM OOM OOM OOM OOM
+PRODIGY 96.29 76.68 0.07 6.23 0.96 OOM OOM OOM OOM OOM

GDSS 95.72 81.04 0.00 2.47 0.88 97.01 100.00 0.02 14.04 0.94
+PRODIGY 99.83 82.74 0.00 2.82 0.99 99.88 100.00 0.09 29.79 0.99

Atom
Count

EDP-GNN 96.95 76.74 0.014 8.63 0.37 OOM OOM OOM OOM OOM
+PRODIGY 98.06 54.36 0.018 5.66 1.00 OOM OOM OOM OOM OOM

GDSS 95.72 81.04 0.012 7.282 0.33 97.08 100.00 0.027 16.006 0.13
+PRODIGY 95.02 67.67 0.005 1.605 1.00 96.90 100.00 0.043 12.245 0.99

of Digress, we consider minimizing the mean absolute er-
ror (MAE) between the generated molecules and the first
hundred molecules of QM9 by constraining the predicted
property within a small bound from the median of these val-
ues (since the median minimizes the MAE). Table 4 shows
the performance of our sampling technique (on top of a pre-
trained GDSS) model against the DiGress baseline. We can
see that even after using a simple linear model for property
estimation, we can generate molecules with competitive µ
and HOMO as DiGress that employs a Graph Transformer
as the proxy. For more details, please refer Appendix C.

Table 4: MAE in the molecular properties of the controllably
generated molecules and the first 100 molecules in the QM9
dataset. µ is the dipole moment, and HOMO is the highest
occupied molecular orbit.

µ HOMO

DiGress (Unconditional) 1.71± .04 0.93± .01
DiGress+Guidance 0.81± .04 0.56± .01
GDSS+PRODIGY 1.09± .02 0.29± .10

6. Conclusion
Our work has shown that graph generation of diffusion mod-
els can be controlled by specific well-defined constraints.
We hope that this opens future research avenues in studying
the tradeoff between good quality and controllability of the
generated data across domains. Future works can focus
on further improving the quality of the generated graphs
while satisfying pre-specified user-defined constraints. One
can also study how to handle non-linear constraints on the
inputs so that more complex molecular property prediction
architectures can be used for the constraints.
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Appendix

A. Related Work
Graph Generation. In the literature, different graph gen-
eration models have been proposed using autoregressive
RNNs (You et al., 2018; Li et al., 2018), VAEs (Simonovsky
& Komodakis, 2018), normalizing flows (Shi et al., 2020;
Zang & Wang, 2020), EBMs (Liu et al., 2021), and diffusion
models (Niu et al., 2020; Jo et al., 2022; Vignac et al., 2022).
Among these, diffusion models have outperformed the other
existing models by a significant margin. However, all these
works focus on unconditional generation, i.e., the task of
generating realistic graphs given a set of training graphs.
Our work differs as we study the first constrained generation
for graph structures where an explicit constraint function is
made available during the sampling time.

Controlled Generation. Different sampling strategies can
be employed in a plug-and-play manner on top of a diffu-
sion model to generate graphs with a specific property. In
particular, one can do conditional generation (Song et al.,
2020) by simply updating the score term with∇ log pt(G)
with∇G log pt(G|y) = ∇G log pt(G)+∇G log pt(y|G),
where∇G log pt(G) is approximated with a parametrized
neural network for unconditional generation and pt(y|G)
is obtained by training a separate classifier for the condi-
tion y. However, when y is a known constraint function of
G, a differentiable probability distribution over G may not
be possible. Recently, other sampling strategies have been
proposed to control the generation for specific image-based
controls (Bar-Tal et al., 2023), and text-based controls (Li
et al., 2022). Specific graph-level controls remain an under-
studied area in the generation literature.

Projected Dynamics. Existing works have studied theoreti-
cal bounds on the number of steps required to sample using
a Projected Langevin Markov chain (Bubeck et al., 2018;
Hsieh et al., 2018) but it is not known whether they would
be effective to generate constrained graphs from real-world
distributions. Thus, we conduct systematic experiments in
this direction. In particular, we show superior controllability
of graph generation with our sampling by fixing the number
of edges, triangles, and maximum degree.

B. Projection Operators
1. Stationarity. ∇SL|S∗ = 0 =⇒ S∗

X − X +
µ0∇SX

hC(S
∗
X ,S∗

A) + µ1 − µ2 = 0 such that S∗
X ∈

[Xm,XM ] and S∗
A−A+µ0∇SA

hC(S
∗
X ,S∗

A)+µ3−
µ4 +Λ = 0 such that S∗

A ∈ [Am,AM ] and Λ[i, j] =
λij if i > j, λi if i = j, and −λij otherwise. It
is hard to solve this system of equations simultane-
ously as ∇hC can be non-linear so we assume either
∇SA

hC(S
∗
X ,S∗

A) = 0 or ∇SX
hC(S

∗
X ,S∗

A) = 0 de-
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pending on the form of hC(X,A).

2. Primal and Dual feasibility. µ0,µ1,µ2,µ3,µ4 ≥
0, hC(S

∗
X ,S∗

A) ≤ 0, S∗
X ∈ [Xm,XM ], S∗

A ∈
[Am,AM ], (S∗

A)
T = S∗

A, Diag(S∗
A) = 0.

3. Complementary Slackness (CS). µ0hC(S
∗) = 0,

µ1(S
∗
X −Xm) = 0, µ2(XM − S∗

X) = 0, µ3(S
∗
A −

Am) = 0, µ4(AM − S∗
A) = 0.

First, we note that µ0hC(S
∗) = 0, µ0 ≥ 0, and hC(S

∗) ≤
0 imply that if hC(S

∗(µ0 = 0)) ≤ 0 then µ0 = 0 other-
wise we find µ0 ≥ 0 such that hC(S

∗(µ0)) = 0.

We also note that µ1,2 can be replaced by a clamp operation
P[·,·] that clamps S∗

X within [Xm,XM ]. This is because if
a certain entry of S∗

X is within the range, then, the corre-
sponding µ = 0 (due to CS), and if not, we add/subtract a
µ ≥ 0 such that S∗

X = Xm or XM (CS). Similarly, we also
note that µ1,2 can be replaced by a clamp operation that
clamps S∗

X within [Am,AM ].

Thus, we can find S∗
X and S∗

A as ΠC(G) = φ0(G)
if hC(φ0(G)) ≤ 0, otherwise φµ(G) such that
hC(φµ(G)) = 0. Here, φµ = (φX

µ , φA
µ) can be found

for the following two cases:

1. ∇SA
hC(S

∗
X ,S∗

A) = 0: We get S∗
A = P[Am,AM ](A−Λ)

such that (S∗
A)

T = S∗
A, Diag(S∗

A) = 0. We assume
that the input A is undirected and has no self-loops, then,
Λ = 0 would be feasible. Thus, we get S∗

A = φA
µ(G) =

P[Am,AM ](A). We can find φX
µ by solving for S∗

X in the
equation S∗

X + µ0∇SX
hC(S

∗
X ,S∗

A) = X and then, clamp-
ing it within [Xm,XM ].

2. ∇SX
hC(S

∗
X ,S∗

A) = 0: We get S∗
X = φX

µ (G) =

P[Xm,XM ](X). We can find φA
µ by solving for S∗

A in the
equation S∗

A + µ0∇SA
hC(S

∗
X ,S∗

A) + Λ = A and then,
clamping it within [Am,AM ], while satisfying (S∗

A)
T =

S∗
A and Diag(S∗

A) = 0.

Projection Operators for constraints. In this section, we
discuss projection operators for the constraints mentioned
in Table 1. We first solve for φA

µ = S∗
A and φX

µ = S∗
X .

Then, we propose a way to solve hC(φµ(G)) = 0. Further,
we replace µ0 with µ in the Lagrangian without loss of
generality.

B.1. Edge Count (|E| ≤ B)

Find φµ. We have hC(SX ,SA) = hC(SA) =
1
21

TSA1−
B, SA ∈ [0,1],Diag(SA) = 0,ST

A = SA. Then, we can
note that ∇SX

hC = 0. Thus, we solve for S∗
A in S∗

A +
µ∇SA

hC(S
∗
A) + Λ = A. Since ∇SA

hC = 1
211

T , we get
S∗
A = A− µ

211
T−Λ. Satisfying Diag(S∗

A) = 0, (S∗
A)

T
=

S∗
A (given these conditions hold for A) implies Λii = −1/2

and Λij = Λji = 0. In other words, Λ = I/2. Thus,

S∗
A = A−µ/211T +µ/2I followed by clamping between

[0,1].

Find µ. To find µ, we can do a bisection method be-
tween max{0, 2(min(A) − 1)} and 2max(A). This is
because 1

21
TP[0,1](A− (min(A)− 1)11T + (min(A)−

1))1 =
(|V|

2

)
≥ B and 1

21
TP[0,1](A − max(A)11T +

max(A)I)1 = 1
21

T01 = 0 ≤ B.

Complexity. The bisection method finishes in
O(log(max(A) − max{0, (min(A) − 1)})/ξ) =
O(log( 1ξ )) for a tolerance level ξ, since A ∈ [0,1]. Finding
S∗
A involves only matrix operations (addition) that have

been highly optimized in Pytorch with the worst-case time
complexity of O(n2). Thus, we get the time complexity of
the projection operator as O(n2 log( 1ξ )).

B.2. Triangle Count (|△| = 1
6 tr(A3) ≤ T )

Find φµ. We have hC(SX ,SA) = hC(SA) =
1
6 tr(S3

A)−T ,
SA ∈ [0,1],Diag(SA) = 0,ST

A = SA. Then, we can
note that ∇SX

hC = 0. Thus, we solve for S∗
A in S∗

A +
µ∇SA

hC(S
∗
A) + Λ = A. Since ∇SA

hC = 1
2A

2, we get
S∗
A = A− µ

2A
2−Λ. Satisfying Diag(S∗

A) = 0, (S∗
A)

T
=

S∗
A (given these hold for A) implies Λ = 0. Thus, S∗

A =
A− µA2/2 followed by clamping between [0,1].

Find µ. We will find for µ using the bisection method here
as well. But it is non-trivial to obtain two points for which
1
6 tr(P[0,1](A− µA2/2)3)− T have opposite signs. Thus,
we assume that one such point is µ = 0 and search for the
first point > 0 with an opposite sign using a linear search
from µ with a fixed step size s. Then, we apply the bisection
method between 0 and the new point µ1 found using the
linear search.

Complexity. Linear search computes S∗
A for (µ1 − 0)/s

times to compare with value at µ = 0. The bisection method
finishes in O(log(µ1/ξ)) time. Again, finding S∗

A involves
only matrix operations (addition) that have been highly op-
timized in Pytorch with the worst-case time complexity of
O(n3). Thus, we get the time complexity of the projection
operator as O(n3(µ1/s+ log(µ1/ξ))).

B.3. Max Degree (dmax = A1 ≤ δd1)

Find φµ. We have hC(SX ,SA) = SA1 − δd1, SA ∈
[0,1],Diag(SA) = 0,ST

A = SA. Then, we can note that
∇SX

hC = 0 and we solve for S∗
A in S∗

A+µ·∇SA
hC(S

∗
A)+

Λ = A. In other words, for each row i, we get S∗
A[i, :

] = A[i, :] − µi1 − Λ[i, :] since ∇SA
h
(i)
C = 1. Due to

symmetricity, we obtain A[i, j]− µi −Λ[i, j] = A[j, i]−
µj −Λ[j, i] for all i, j, which gives us µi +Λ[i, j] = µj +
Λ[j, i]. We can thus let Λ[i, j] = 1

2 (µj − µi) for all i ̸=
j. For the diagonal entries, we want Λ[i, i] = −µi so
that S∗

A has no non-zero diagonal entries. Thus, we get
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S∗
A = A− 1

2 (µ1
T+1µT )+Diag(µ) followed by clamping

between [0,1].

Find µ. Since hC is a vector function, we cannot find
its root using the bisection method. Instead, we divide
hC(φµ) = 0 into multiple equations h̃(i)

C (φµi
) = 0 that we

can solve independently such that the root µ̃ obtained by
concatenating these µ̃is satisfies hC(φµ̃) ≤ 0.

In particular, we can just solve each row µi’s equation sepa-
rately and add it later to satisfy the symmetricity. Thus, we
have to solve for µ̃i ≥ 0 such that 1TP[0,1](A[i, :]−µ̃i1) =
δd. Thus, we solve for µ̃i for all i and use it to find µ̃ using
the bisection method between max{0, 2(min(A[i, :])− 1)}
and 2max(A[i, :]) (due to the same logic as for Edge Count
constraint). Note that if 1TP[0,1](A[i, :] − µ̃i1) = δd,
then 1TP[0,1](A[i, :] − (µ̃i + ϵ)1) ≤ δd, for all ϵ ≥ 0,
because (µ̃i + ϵ) ≥ µ̃i and it is a decreasing function.
We have ϵi to be µ̃j for different columns j. Thus,
P[0,1](A− 2

2 (µ̃1
T + 1µ̃T ) + 2Diag(µ̃))1 ≤ δd1.

Complexity. We solve n different equations using the bi-
section method in time O(log( 1ξ )) as A ∈ [0,1]. Note
that this can be done in a parallel manner by using the
Pytorch functionalities. Again, finding S∗

A involves only
matrix addition that has been highly optimized in Pytorch
with the worst-case time complexity of O(n2). Thus,
we get the time complexity of the projection operator as
O(n2 · n log(1/ξ)) = O(n3 log(1/ξ)).

B.4. Valency (A1 ≤ Xv)

Here, we fix X and let Xv = u denote the weighted valency
of each node in the graph. Then, the constraint becomes
similar to the Max Degree constraint and we follow the
same steps to find S∗

A = A − 1
2 (µ1

T + 1µT ) + Diag(µ)
except now, we clamp within [0,3] since it’s a molecular
graph and clamp X within [0,1] as well.

B.5. Atom Count (XT1− c)

Find φµ. We have hC(SX ,SA) = ST
X1 ≤ c, SX ∈ [0,1].

Then, we can note that ∇SA
hC(SX ,SA) = 0 and for each

column or atom type in X, we get S∗
X [:, j] = X[:, j]−µj1

T

since ∇SX
hC = 1. Thus, we get S∗

X = P[0,1](X− 1µT ).

Find µ. Since h is a vector-valued function, we cannot
obtain its root w.r.t. µ directly using the bisection method.
However, we make another observation that allows us to
do that. In particular, hC(φµ) = 0 can be divided into
F independent equations such that hj

C satisfies the jth col-
umn (S∗

X [:, j] − µj1
T )1 = cj . This can be solved inde-

pendently for each j using the bisection method between
[max{0,mini(Xij) − 1},maxi(Xij)] as

∑
i P[0,1](Xij −

maxi(Xij)) = 0 ≤ cj and
∑

i P[0,1](Xij − mini(Xij) +
1) = |V| ≥ cj .

Complexity. We solve F different equations using bisection
method with log( 1ξ ) steps each, as X ∈ [0,1]. Further, φX

µ

only involves a matrix addition that is almost constant in
Pytorch with worst-case complexity of O(n2). The total
complexity thus, becomes O(n2F log( 1ξ )).

B.6. Molecular Weight (1TXm ≤W )

Find φµ. We have hC(SX ,SA) = hC(SX ,SA) =
1TSXm ≤ W , SX ∈ [0,1]. Then, ∇SA

hC = 0 and
∇SX

hC(SX ,SA) = 1mT , which gives us S∗
X = X−1µT

followed by clamping within [0,1].

Find µ. It is non-trivial to find two end-points be-
tween which we can conduct the bisection method for
1TP[0,1](X − 1µT )m = W . Thus, we assume that one
such point is µ = 0 and search for the first point > 0 with
an opposite sign using a linear search from µ with a fixed
step size s. Then, we apply the bisection method between 0
and the new point µ1 found using the linear search.

Complexity. Linear search finds φX
µ for µ1/s different

values of µ. This is followed by a bisection method that
finishes in O(log(µ1/ξ)) steps. Computing φX

µ involves
just matrix addition that has been highly optimized in Py-
torch with worst-case complexity of O(n2). Thus, the total
time-complexity of the projection operator can be given as
O(n2(µ1/s+ log(µ1/ξ))).

B.7. Molecular Property (1T ÂkXΘ ≤ p)

Find φµ. We have hC(SX ,SA) = hC(SX ,SA) =

1T ÂkXΘ − p, SX ∈ [0,1]. We fix A and thus, as-
sume SA = P[0,3](A). Let P̂[0,3](A) denote the normal-
ized adjacency matrix corresponding to P[0,3](A). Then,
∇SA

hC = 0 and ∇SX
hC(SX ,SA) = (P̂[0,3](A)k)T1ΘT ,

which gives us S∗
X = X− µ(P̂[0,3](A)k)T1ΘT followed

by clamping within [0,1].

Find µ. It is non-trivial to find two end-points between
which we can conduct the bisection method for which there
is equality on hC . Thus, we assume that one such point is
µ = 0 and search for the first point > 0 with an opposite
sign using a linear search from µ with a fixed step size s.
Then, we apply the bisection method between 0 and the new
point µ1 found using the linear search.

Complexity. Linear search finds φX
µ for µ1/s different val-

ues of µ. This is followed by a bisection method that fin-
ishes in O(log(µ1/ξ)) steps. Computing φX

µ involves just
matrix multiplication that has been highly optimized in Py-
torch with worst-case complexity of O(n3). Thus, the total
time-complexity of the projection operator can be given as
O(n3(µ1/s+ log(µ1/ξ))).



Controllable Graph Generation using Projected Diffusion 10

B.8. Lower bound constraint

We note that we can also handle a lower-bound constraint
by just reversing the order inside hC . For instance, let us
consider the Molecular Property constraint, then we can
have h1

C = p1 − 1T ÂkXΘ and h2
C = 1T ÂkXΘ − p2.

These can be solved together as we now have µ1(p1 −
1T ÂkXΘ) = 0 and µ2(1

T ÂkXΘ − p2) = 0. Given
p1 ≤ p2, for any µ, either h1

C > 0 or h2
C > 0 or both h1

C ≤ 0
and h2

C ≤ 0. Thus, we get the projection operator as:

ΠC(G) =


φ0(G) ; p1 ≤ hC(φ0(G)) ≤ p2

φµ(G) ;hC(φ0(G)) > p2 ≥ p1;hC(φµ(G)) = p2

φµ(G) ;hC(φ0(G)) < p1 ≤ p2;hC(φµ(G)) = p1

(3)

such that both the equations can be solved using the bisec-
tion method. We use this approach for Molecular Property
constraint by bounding the predicted property to be within
an error term ε from the median property value.

C. Additional Experiments
C.1. Method Details

Following existing works on continuous diffusion models
on graphs (Jo et al., 2022; Niu et al., 2020), we simply round
the continuous graph at the end to obtain a discrete graph.
In particular, we do ⌊A0⌋ to obtain the discrete adjacency
matrix and the categorical attribute of each node i is found
as argmaxi X0[i].

For generic graphs, we compute MMDs for the distribu-
tions of degree (degree), clustering coefficient (cluster),
and the number of occurrences of orbits with 4 nodes (or-
bit). For molecules, we use the Fréchet ChemNet Dis-
tance (FCD) (Preuer et al., 2018) and Neighborhood Sub-
graph Pairwise Distance Kernel (NSPDK) MMD (Costa &
De Grave, 2010) between the generated and constrained
test graphs. We also consider the validity, uniqueness, and
novelty of the generated molecules to evaluate their qual-
ity. Note that validity of a molecule is calculated without
doing valency correction while allowing the atoms to have
a formal charge, if applicable.

C.2. Datasets

We consider the following 4 generic graph datasets:

1. Ego-small contains 200 small ego graphs from larger
Citeseer network (Sen et al., 2008).

2. Community-small consists of 100 randomly gener-
ated community graphs.

3. Enzymes has 587 protein graphs of the enzymes from
the BRENDA database (Schomburg et al., 2004).

4. Grid is a dataset of 100 standard 2D grids.

We also consider these 2 molecular graph datasets:

1. QM9 consists of 133k small molecules with [1, 9]
nodes and atoms as Carbon (C), Nitrogen (N), Oxygen
(O), and Fluorine (F).

2. ZINC250k consists of 250k molecules with [6, 38]
nodes and atoms as Carbon (C), Nitrogen (N), Oxy-
gen (O), Fluorine (F), Phosphorus (P), Chlorine (Cl),
Bromine (Br), and Iodine (I).

C.3. Results

Maximal Constrained Generation We first show that
the base performance of the diffusion model is not affected
due to PRODIGY sampling when we consider a maximal
constraint on the generation. A constraint is termed max-
imal when the given constraint is satisfied by the whole
test dataset. For example, if we set B to be the maximum
number of edges in the dataset, then, all the test graphs will
satisfy the constraint |E| ≤ B. Graph generation under
such a constraint should thus be similar to unconstrained
generation since the unconstrained generated graphs also
satisfy the maximal constraint. Here, we compare the qual-
ity of graphs generated by PRODIGY under such a maximal
constraint with state-of-the-art (unconstrained) graph gener-
ation methods.

Tables 5 and 6 compare the results of adding PRODIGY to
the two base models on the graph generation for generic and
molecular graphs respectively. For the maximal constraint,
we consider the maximum number of edges for the generic
graphs and the maximum molecular weight for molecular
graphs. We find that the generation performance of sam-
pling PRODIGY under a maximal constraint is competitive
with their unconstrained counterparts. In particular, for
molecular generation, we can note that PRODIGY sampling
remains within a factor of 7% for all the metrics for GDSS.
Thus, PRODIGY maintains the state-of-the-art performance
of these continuous-time diffusion models (i.e., GDSS (Jo
et al., 2022) and EDP-GNN (Niu et al., 2020)) when the
constraint is trivially satisfied by the test distribution (and
also, the unconstrained methods).

Visualizations Figures 4, 5, 6, 7 compare generations
of GDSS with GDSS+PRODIGY sampling on different
datasets given a maximal constraint. On the other hand,
generations by our method for minimal constraint for each
dataset are provided in Figures 8, 9, 10, 11. We can observe
that the generated graphs can satisfy the given constraints
while being close to the original distribution.

Standard Deviations We run our sampling for 3 different
random seeds and find standard deviations of at most 0.05
for all the MMD metrics and up to 0.00 for the constraint va-
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Table 5: Comparison of maximal constraint generation with unconstrained generation of generic graph datasets on the MMD
of different properties (lower is better). ⋆ We could not reproduce the results for EDP-GNN and GDSS as reported in their
papers. The values for the other methods are taken directly from their papers or the implementation of GDSS.

Community-small Ego-small Enzymes Grid

Deg.↓ Clus.↓ Orb.↓ Avg.↓ Deg.↓ Clus.↓ Orb.↓ Avg.↓ Deg.↓ Clus.↓ Orb.↓ Avg.↓ Deg.↓ Clus.↓ Orb.↓ Avg.↓
Deep-GMG (Li et al., 2018) 0.220 0.950 0.400 0.523 0.040 0.100 0.020 0.053 - - - - - - - -
Graph-RNN (You et al., 2018) 0.080 0.120 0.040 0.080 0.090 0.220 0.003 0.104 0.017 0.062 0.046 0.042 0.064 0.043 0.021 0.043
Graph-VAE (Simonovsky & Komodakis, 2018) 0.350 0.980 0.540 0.623 0.130 0.170 0.050 0.117 1.369 0.629 0.191 0.730 1.619 0.0 0.919 0.846
GNF (Liu et al., 2019) 0.200 0.200 0.110 0.170 0.030 0.100 0.001 0.044 - - - - - - - -

EDP-GNN (Niu et al., 2020)⋆ 0.120 0.071 0.046 0.079 0.020 0.043 0.006 0.023 1.011 0.791 0.239 0.681 1.062 0.033 0.513 0.536
+PRODIGY 0.503 0.116 0.247 0.288 0.018 0.048 0.005 0.024 1.306 1.000 0.261 0.856 1.861 0.000 0.974 0.945

GDSS (Jo et al., 2022)⋆ 0.170 0.090 0.079 0.113 0.023 0.010 0.013 0.015 0.034 0.078 0.003 0.038 0.154 0.011 0.050 0.072
+PRODIGY 0.132 0.077 0.044 0.084 0.029 0.030 0.013 0.024 0.265 0.466 0.020 0.250 0.514 0.022 0.437 0.324

Table 6: Comparison of maximal constraint generation with unconstrained generation of molecular graph datasets. Lower
NSPDK, FCD and higher Val. (%), Novel. (%) are desired. The values for the other methods are taken directly from their
papers or GDSS (Jo et al., 2022). The base model EDP-GNN with default parameters (as in (Jo et al., 2022)) runs Out of
Memory (denoted by OOM) for ZINC250k dataset.

QM9 molecule graph dataset ZINC250k molecule graph dataset

Val. w/o corr. (%) Novel. (%) ↑ NSPDK ↓ FCD ↓ Val. w/o corr. (%) Novel. (%) ↑ NSPDK ↓ FCD ↓
GraphAF (Shi et al., 2020) 67 88.83 0.020 5.268 68 100.00 0.044 16.289
MoFlow (Zang & Wang, 2020) 91.36 98.10 0.017 4.467 63.11 100.00 0.046 20.931
GraphEBM (Liu et al., 2021) 8.22 97.01 0.030 6.143 5.29 100.00 0.212 35.471

EDP-GNN (Niu et al., 2020) 96.95 76.74 0.055 6.15 OOM OOM OOM OOM
+PRODIGY 97.03 76.95 0.055 6.15 OOM OOM OOM OOM

GDSS (Jo et al., 2022) 95.72 86.27 0.003 2.900 97.01 100.00 0.019 14.656
+PRODIGY 96.10 81.04 0.003 2.477 96.10 100.00 0.017 15.696

Table 7: PRODIGY parameters for each setting for the
GDSS in the generic graph datasets

Constraint Community-small Ego-small Enzymes Grid

Edge Count poly(0.1, 1) poly(0.1, 5) poly(0, 1) poly(0, 5)
Triangle Count poly(0, 1) poly(0.1, 5) poly(0.1, 5) poly(0.1, 5)

Degree poly(0, 1) poly(0.1, 5) poly(0, 1) poly(0.1, 5)

Table 8: Time taken (in seconds) per diffusion timestep.
∗ denotes the time taken by the original (unconstrained)
GDSS sampling.

Original∗ Edge Count Triangle Count Degree

Community-small 0.47 0.58 0.51 0.57
Ego-small 0.04 0.13 0.07 0.13
Enzymes 0.07 0.41 0.11 0.22

Grid 0.24 0.52 0.24 0.43

lidity metric (for a given set of parameters for the PRODIGY
sampling).

Running Time We report the PRODIGY sampling time
for different constraints on different datasets with GDSS.
In particular, Table 8 reports the sampling time taken per
diffusion timestep.

Molecular Weight The minimal constraint is satisfied by
less than 0.1 − 0.5% of the molecules in the test set (i.e.

just 10-50 molecules out of a total 10000). This makes the
quality metrics difficult to calculate. However, we are still
able to get 75.36% of the molecules to satisfy the constraint
for GDSS.
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(a) GDSS (b) GDSS+PRODIGY

Figure 4: Comparison of maximal constraint generation on Community-small dataset

(a) GDSS (b) GDSS+PRODIGY

Figure 5: Comparison of maximal constraint generation on Ego-small dataset

(a) GDSS (b) GDSS+PRODIGY

Figure 6: Comparison of maximal constraint generation on Enzymes dataset
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(a) GDSS (b) GDSS+PRODIGY

Figure 7: Comparison of maximal constraint generation on Grid dataset

(a) Edge-Count (≤ 21) (b) Triangle-Count (≤ 30) (c) Max-Degree (≤ 5)

Figure 8: GDSS+PRODIGY generations for the minimal constrained setting on Community-small

(a) Edge-Count (≤ 3) (b) Triangle-Count (≤ 0) (c) Max-Degree (≤ 5)

Figure 9: GDSS+PRODIGY generations for the minimal constrained setting on Ego-small.

(a) Edge-Count (≤ 29) (b) Triangle-Count (≤ 18.67) (c) Max-Degree (≤ 5.11)

Figure 10: GDSS+PRODIGY generations for the minimal constrained setting on Enzymes
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(a) Edge-Count (≤ 21) (b) Triangle-Count (≤ 0) (c) Max-Degree (≤ 4)

Figure 11: GDSS+PRODIGY generations for the minimal constrained setting on Grid

(a) QM9 (b) ZINC250k

Figure 12: GDSS+PRODIGY generations for the Atom-Count constraint to generate molecules with only Carbon and
Oxygen atoms. We pick the 10 novel molecules (i.e., not in the dataset) with the maximum Tanimoto similarity with the test
dataset.
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