

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 GUIDED ACTOR-CRITIC: OFF-POLICY PARTIALLY OBSERVABLE REINFORCEMENT LEARNING WITH PRIVILEGED INFORMATION

006 **Anonymous authors**

007 Paper under double-blind review

ABSTRACT

013 Real-world decision-making systems often operate under partial observability due
014 to limited sensing or noisy information, which poses significant challenges for
015 reinforcement learning (RL). A common strategy to mitigate this issue is to leverage
016 privileged information—available only during training—to guide the learning
017 process. While existing approaches such as policy distillation and asymmetric
018 actor-critic methods make use of such information, they frequently suffer from
019 weak supervision or suboptimal knowledge transfer. In this work, we propose
020 Guided Actor-Critic (GAC), a novel off-policy RL algorithm that unifies privileged
021 policy and value learning under a guided policy iteration framework. GAC jointly
022 trains a fully observable policy and a partially observable policy using constrained
023 RL and supervised learning objectives, respectively. We theoretically establish
024 convergence in the tabular case and empirically validate GAC on challenging
025 benchmarks, including Brax, POPGym, and HumanoidBench, where it achieves
026 superior sample efficiency and final performance.

1 INTRODUCTION

030 In many real-world domains—ranging from robotics (Tang et al., 2025) and autonomous driving (Zhu
031 & Zhao, 2021) to finance (Fischer, 2018), and multi-agent systems (Zhang et al., 2021)—decision-
032 making agents must operate under partial observability. Limited or noisy sensing, occlusions, and
033 constrained instrumentation prevent direct access to the true environment state and complicate both
034 perception and control. Robotics offers a clear illustration: physical platforms frequently lack rich
035 sensing (e.g., dense tactile arrays or high-fidelity proprioception) or face substantial sensor noise
036 due to hardware cost and environmental disturbance. Importantly, however, richer signals are often
037 available during development or in simulation (e.g., full simulator state, contact forces, or privileged
038 diagnostics), and these training-time signals can be exploited to accelerate learning even when they
039 are not available at deployment.

040 We view such problems as Partially Observable Markov Decision Processes (POMDPs) (Kaelbling
041 et al., 1998) augmented with training-only privileged information (Vapnik & Vashist, 2009; Lam-
042 brechts et al., 2023). In this formulation, an agent must learn a policy that acts on limited observations
043 at execution time, while leveraging additional state or side-information during training to improve
044 sample efficiency and robustness. This POMDP-with-privileged-information perspective is broadly
045 applicable: robotics is a natural and important example, but the same setup arises in other sequential
046 decision problems where richer development-time data exists (e.g., richer lab measurements in
047 healthcare, extra simulatable state in simulated environments, or additional diagnostic signals in
048 industrial control).

049 Two main approaches have been proposed to leverage privileged information (Cai et al., 2024): The
050 first is privileged *policy* learning, also known as expert policy distillation (Czarnecki et al., 2019) or
051 teacher-student learning, where a teacher policy is trained using privileged inputs and then distilled
052 into a student policy operating under partial observability. However, if the teacher policy fails to
053 account for the student’s limited observations, the distillation may lead to suboptimal performance
(Warrington et al., 2020; Cai et al., 2024). The second is privileged *value* learning, where a value
function (or Q-function) trained with privileged information is used to guide the learning of a partially

observable policy, commonly known as asymmetric actor-critic (Pinto et al., 2018). While this approach provides indirect supervision via the RL objective, it lacks the strong guidance that direct policy supervision can offer.

Recently, Guided Policy Optimization (GPO) (Li & Xie, 2025) has been proposed as a more structured method that integrates both privileged *policy* and *value* learning. GPO jointly trains a privileged policy and a partially observable policy, enforcing alignment between the two. This setup offers more effective supervision while mitigating the shortcomings of distillation alone. However, GPO typically relies on on-policy samples to maintain behavioral consistency between the two policies, which significantly limits sample efficiency, especially in expensive robotic settings.

In this paper, we introduce a novel off-policy algorithm that exploits privileged information during training. We formulate a guided policy iteration framework that jointly optimizes a privileged policy via a constrained RL objective and a partially observable learner policy via a supervised learning objective. We show that, in the tabular setting, iterative evaluation and improvement lead both policies to converge to the same optimal solution. Building on this foundation, we propose a practical deep RL algorithm called **Guided Actor-Critic (GAC)**, which approximates this framework using neural networks. We validate our approach on several challenging benchmarks, including Brax (Freeman et al., 2021), POPGym (Morad et al., 2023), and HumanoidBench (Sferrazza et al., 2024). Our results demonstrate that GAC can effectively utilize privileged information in complex POMDPs with high sample efficiency.

2 BACKGROUND

2.1 NOTATION

We consider a Partially Observable Markov Decision Process (POMDP) (Kaelbling et al., 1998), defined by the tuple $\langle \mathcal{S}, \mathcal{A}, r, \mathcal{P}, \mathcal{O}, \gamma \rangle$, where \mathcal{S} is the set of states, \mathcal{A} is the set of actions, r is the reward function, \mathcal{P} is the transition probability function, \mathcal{O} is the observation function, and γ is the discount factor. At each time step t , the agent receives a partial observation $o_t \sim \mathcal{O}(\cdot | s_t)$ of the underlying state $s_t \in \mathcal{S}$. Based on o_t or the full action-observation history $\tau_t = \{o_0, a_0, o_1, a_1, \dots, o_t\}$, the agent selects an action $a_t \in \mathcal{A}$. The environment then transitions to the next state $s_{t+1} \sim \mathcal{P}(s_{t+1} | s_t, a_t)$, and the agent receives a reward $r_t = r(s_t, a_t)$. We denote by $\rho_\pi(s_t)$ and $\rho_\pi(s_t, a_t)$ the state and state-action marginals of the trajectory distribution induced by a policy $\pi(a_t | \tau_t)$. The agent's objective is to find an optimal policy $\pi^* : \tau \rightarrow \Delta(\mathcal{A})$ that maximizes the expected return:

$$J(\pi) = \sum_{t=0}^T \mathbb{E}_{(s_t, a_t) \sim \rho_\pi} [r(s_t, a_t)]. \quad (1)$$

For notational simplicity, we use s to refer to the true state or any form of privileged information available during training, and o to represent the available information at execution time, including partial observations and history.

2.2 LEARNING WITH PRIVILEGED INFORMATION

The general idea of using additional information available only during training traces back to early work on learning with privileged information (Vapnik & Vashist, 2009). Following the categorization in (Cai et al., 2024), empirical approaches to RL with privileged information can be broadly divided into two paradigms: privileged *policy* learning and privileged *value* learning.

In privileged policy learning (also known as expert distillation (Chen et al., 2020; Nguyen et al., 2022; Margolis et al., 2021) or teacher-student learning (Lee et al., 2020; Miki et al., 2022; Shenfeld et al., 2023a)), the key idea is to exploit the fact that learning in a fully observable MDP is generally easier and more well-understood. These methods first train a privileged expert policy μ that has access to the full state s , and then distill its behavior into a partially observable policy π . The distillation objective can be formalized as:

$$\min_{\pi \in \Pi} \mathbb{E}_{s \sim d_\beta} [D(\mu(\cdot | s), \pi(\cdot | o))], \quad (2)$$

where β is a given behavior policy, and D is a divergence measure (e.g., KL divergence). While this approach appears intuitive and promising—since it directly supervises the student using the

108 expert policy—recent studies (Cai et al., 2024) have shown that the resulting policy can still be
 109 strictly suboptimal, even given unlimited data. We present an illustrative example from the classical
 110 *TigerDoor* problem (Littman et al., 1995) in Appendix B.

111 In contrast, privileged value learning, also known as asymmetric actor-critic (Pinto et al., 2018;
 112 Andrychowicz et al., 2020; Baisero & Amato, 2021), leverages privileged information in the value
 113 function (e.g., the Q-function) during training, while keeping the policy conditioned only on partial
 114 observations. Variants of this approach (Andrychowicz et al., 2020; Pinto et al., 2018; Baisero
 115 et al., 2022; Zhang et al., 2020) include asymmetric versions of PPO (Schulman et al., 2017),
 116 DDPG (Lillicrap et al., 2019), DQN (Mnih et al., 2015), and SAC (Haarnoja et al., 2018) . This
 117 approach is also widely used in multi-agent reinforcement learning under the centralized training
 118 with decentralized execution (CTDE) paradigm (Oliehoek et al., 2008; Kraemer & Banerjee, 2016),
 119 where privileged information (e.g., the joint observations of all agents) is naturally available during
 120 training but not during execution. However, a key limitation of privileged value learning is that
 121 it only provides *indirect* supervision to the policy through the RL objective, which may be less
 122 sample-efficient compared to the direct supervised signals provided by expert policies in privileged
 123 policy learning.

124 Another line of work attempts to reconstruct latent representations of privileged information from
 125 partial observations. This is common in vision-based robotic tasks, for example, inferring robot
 126 proprioception from camera images. While effective in certain applications, these methods often lack
 127 generality across broader POMDP settings. A more comprehensive discussion of related work is
 128 deferred to Appendix A.

129 2.3 GUIDED POLICY OPTIMIZATION

131 A recently proposed paradigm, known as Guided Policy Optimization (GPO) (Li & Xie, 2025)
 132 integrates both privileged policy and privileged value learning into a unified framework. GPO builds
 133 upon the ideas from Guided Policy Search (GPS) (Levine & Koltun, 2013b; Zhang et al., 2016a;
 134 Montgomery & Levine, 2016), leveraging a privileged policy (referred to as the guider μ) and a
 135 privileged value function to guide the training of a partially observable policy (referred to as the
 136 learner π).

137 Concretely, GPO co-trains the guider and learner jointly: the guider is trained using PPO under
 138 full state observability, and the learner is trained via supervision from the guider. Critically, GPO
 139 introduces a constraint on the divergence between the guider and learner policies. This ensures that the
 140 guider remains close enough to the learner’s behavior to provide meaningful and effective guidance.
 141 This setup allows GPO to inherit the theoretical guarantees of privileged value learning, while also
 142 framing the supervision process from the guider as a form of privileged policy learning. In this sense,
 143 GPO can be viewed as a hybrid approach that unifies the strengths of both paradigms. However, since
 144 GPO is built upon trust-region methods like PPO, it is inherently an on-policy algorithm, which may
 145 lead to lower sample efficiency compared to off-policy alternatives.

146 3 METHOD

149 In this section, we introduce our off-policy guided actor-critic algorithm. Our approach builds upon
 150 the divergence-augmented policy iteration framework proposed by (Wang et al., 2019). We begin
 151 by presenting a theoretical derivation of our method, verify its convergence to the optimal policy
 152 within the policy class, and then describe a practical algorithm motivated by this theory. Following
 153 the convention in GPO, we refer to the privileged policy as the *guider* and the partially observable
 154 policy as the *learner*.

155 3.1 GUIDED POLICY ITERATION

157 Our method shares the core principle of GPO—co-training the guider and learner while keeping them
 158 closely aligned, so that the learner benefits from the supervision provided by the more informed guider.
 159 Therefore, we formalize the guider’s objective as a constrained reinforcement learning problem:

$$161 J(\mu) = \sum_{t=0}^T \mathbb{E}_{(s_t, a_t) \sim \rho_\mu} [r(s_t, a_t)] \quad s.t. \quad D_{KL}(\mu(\cdot|s_t) \parallel \pi(\cdot|o_t)) \leq \epsilon, \quad (3)$$

162 where the KL constraint ensures alignment between the guider and learner policies. Since solving
 163 the above constrained problem directly is difficult, we adopt a more tractable soft-constrained
 164 formulation:

$$165 \quad J(\mu) = \sum_{t=0}^T \mathbb{E}_{(s_t, a_t) \sim \rho_\mu} [r(s_t, a_t) - \alpha D_{\text{KL}}(\mu(\cdot|s_t) \parallel \pi(\cdot|o_t))], \quad (4)$$

168 where α is a tunable coefficient that controls the strength of the KL regularization. Based on this,
 169 we derive a general guided policy iteration algorithm that alternates between *policy evaluation* and
 170 *policy improvement* for both the guider and learner.

171 In the policy evaluation step of guided policy iteration, we need to estimate the value of any policy
 172 pair (μ, π) according to the objective in equation 5. For fixed μ and π , the *guided Q-value* can be
 173 computed iteratively via a modified Bellman backup operator:

$$174 \quad \mathcal{T}^{\mu, \pi} Q^{\mu, \pi}(s_t, a_t) = r(s_t, a_t) + \gamma \mathbb{E}_{s_{t+1} \sim p}[V(s_{t+1})], \quad (5)$$

176 where the *guided state value* is defined as:

$$177 \quad V(s_t) = \mathbb{E}_{a_t \sim \mu}[Q^{\mu, \pi}(s_t, a_t) - \alpha \log \frac{\mu(a_t|s_t)}{\pi(a_t|o_t)}]. \quad (6)$$

180 By repeatedly applying $\mathcal{T}^{\mu, \pi}$, we can obtain the converged guided Q-value function for the given
 181 policies:

182 **Lemma 3.1 (Guided Policy Evaluation).** *Let $\mathcal{T}^{\mu, \pi}$ be the Bellman backup operator, and let*
 183 *$Q^0 : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$ be any initial function with $|\mathcal{A}| < \infty$. Define $Q^{k+1} = \mathcal{T}^{\mu, \pi} Q^k$. Then the sequence*
 184 *Q^k converges.*

186 *Proof.* See Appendix C. □

188 In the policy improvement step, we update both the guider and the learner using the estimated
 189 Q-values. The guider is updated by minimizing the KL divergence to the learner policy modulated by
 190 the exponential of the Q-function:

$$191 \quad \mu_{\text{new}}(\cdot|s_t) = \arg \min_{\mu \in \Pi_\mu} D_{\text{KL}} \left(\mu(\cdot|s_t) \parallel \frac{\pi_{\text{old}}(\cdot|o_t) \exp(\frac{1}{\alpha} Q^{\mu_{\text{old}}, \pi_{\text{old}}}(s_t, \cdot))}{Z(s_t)} \right), \quad (7)$$

194 where Π_μ is the policy class of μ , and $Z(s_t)$ is the partition function which normalizes the distribution
 195 and can be ignored for gradient-based optimization.

196 The learner is then updated to minimize the KL divergence to the new guider policy:

$$198 \quad \pi_{\text{new}}(\cdot|o_t) = \arg \min_{\pi \in \Pi_\pi} D_{\text{KL}}(\mu_{\text{new}}(\cdot|s_t) \parallel \pi(\cdot|o_t)), \quad (8)$$

200 where Π_π is the learner's policy class. This two-step update leads to performance improvement
 201 respect to the objective in equation 4, as stated below:

202 **Lemma 3.2 (Guided Policy Improvement).** *Let $\mu_{\text{old}} \in \Pi_\mu$, $\pi_{\text{old}} \in \Pi_\pi$, and let $\mu_{\text{new}}, \pi_{\text{new}}$ be the*
 203 *solutions to equation 7 and equation 8. Then:*

$$204 \quad Q^{\mu_{\text{new}}, \pi_{\text{new}}}(s_t, a_t) \geq Q^{\mu_{\text{old}}, \pi_{\text{old}}}(s_t, a_t) \quad \forall (s_t, a_t) \in \mathcal{S} \times \mathcal{A} \quad (9)$$

206 *Proof.* See Appendix C. □

208 The full guided policy iteration algorithm alternates between the guided policy evaluation and guided
 209 policy improvement steps, and it will provably converge to the policy μ^* and π^* in tabular case, as
 210 formally described in the following theorem:

212 **Theorem 3.3 (Guided Policy Iteration).** *Repeated application of guided policy evaluation (Lemma*
 213 *3.1) and guided policy improvement (Lemma 3.2) from any $\mu \in \Pi_\mu$ and $\pi \in \Pi_\pi$ converges to policy*
 214 *μ^* and π^* .*

215 *Proof.* See Appendix C. □

One key distinction between our Guided Policy Iteration and standard policy iteration is the presence of two simultaneously updated policies: the *guider* and the *learner*. To understand their respective convergence behaviors, recall that the guider policy μ takes the privileged state s as input, whereas the learner policy π relies only on the partial observation o . If both policies share the same parametrization, then it follows naturally that $\Pi_\pi \subseteq \Pi_\mu$, since the guider—having access to more informative inputs—possesses strictly greater representational capacity.

To obtain a closed-form characterization of convergence, we introduce a simplifying assumption: Π_μ is expressive enough to drive the KL divergence in equation 7 to zero. This assumption is generally reasonable, as it merely requires that the privileged guider be capable of imitating a Q-value-modulated version of the learner policy. Under this assumption, the update rule reduces to one involving only the learner policy π , as formalized in the following lemma:

Lemma 3.4. *Suppose Π_μ is expressive enough such that the KL divergence in equation 7 can be minimized to zero. Then, the policy improvement step for the learner policy π can be reformulated as:*

$$J(\pi) = \mathbb{E}_{a_t \sim \pi_{old}} \left[\exp \left(\frac{1}{\alpha} Q^{\mu_{old}, \pi_{old}}(s_t, a_t) \right) \log \pi(a_t | o_t) \right]. \quad (10)$$

Eventually, both the guider and learner policies converge to the same optimal policy:

$$\pi^* = \mu^* = \arg \max_{\pi \in \Pi_\pi} \mathbb{E}_{a_t \sim \pi} [Q^*(s_t, a_t)], \quad (11)$$

where Q^* denotes the optimal Q-function.

Proof. See Appendix C. □

This lemma indicates that the guider and learner will ultimately converge to the same optimal policy with respect to expected return. In contrast to maximum entropy reinforcement learning (Haarnoja et al., 2018)—where the optimal policy is biased when $\alpha \neq 0$ —our guided policy iteration converges to the unbiased optimal policy, regardless of the choice of α . Although the learning dynamics during training are affected by α , the convergence guarantee makes the algorithm more robust to its tuning.

It is also worth noting that our framework shares conceptual similarities with the formulation of Maximum a Posteriori Policy Optimization (MPO) (Abdolmaleki et al., 2018), particularly when viewing its non-parametric auxiliary distribution as analogous to our guider policy. Further discussion is provided in Appendix D.

3.2 GUIDED ACTOR-CRITIC

The theoretical results discussed above are primarily applicable to tabular settings. To extend these ideas to large-scale continuous domains, we now introduce a practical algorithm based on function approximation and stochastic gradient optimization. We consider the following parameterized components: a guided Q-function $Q_\theta(s_t, a_t)$, a guider policy $\mu_\phi(a_t | s_t)$, and a learner policy $\pi_\psi(a_t | o_t)$. The parameters of these networks are denoted by θ , ϕ and ψ , respectively.

The guided Q-function is trained by minimizing the Bellman residual:

$$J_Q(\theta) = \mathbb{E}_{(s_t, a_t, r_t, s_{t+1}) \sim \mathcal{D}, a_{t+1} \sim \mu} \left[(Q_\theta(s_t, a_t) - (r_t + \gamma(Q_{\bar{\theta}}(s_{t+1}, a_{t+1}) - \alpha \log \frac{\mu_\phi(a_{t+1} | s_{t+1})}{\pi_\psi(a_{t+1} | o_{t+1})})))^2 \right], \quad (12)$$

where $\bar{\theta}$ denotes the parameters of a target Q-function, maintained as an exponential moving average of θ to stabilize training.

The policy parameters are optimized by minimizing the expected KL divergence as described in equation 13 and equation 14:

$$J_\mu(\phi) = \mathbb{E}_{s_t \sim \mathcal{D}, a_t \sim \mu} [\alpha D_{KL}(\mu_\phi(\cdot | s_t) \| \pi_\psi(\cdot | o_t)) - Q_\theta(s_t, a_t)], \quad (13)$$

$$J_\pi(\psi) = \mathbb{E}_{s_t \sim \mathcal{D}} [D_{KL}(\mu_\phi(\cdot | s_t) \| \pi_\psi(\cdot | o_t))]. \quad (14)$$

In addition to learning from the guider via KL supervision, the learner can also benefit from reinforcement learning using trajectories collected by the guider policy, as the two policies are closely aligned.

270 To evaluate the learner’s performance under this setting, we introduce an additional Q-function
 271 $Q_\varphi(s_t, a_t)$ trained by the following:
 272

$$273 J'_Q(\varphi) = \mathbb{E}_{(s_t, a_t, r_t, s_{t+1}) \sim \mathcal{D}, a_{t+1} \sim \pi} \left[(Q_\varphi(s_t, a_t) - (r_t + \gamma Q_{\bar{\varphi}}(s_{t+1}, a_{t+1}))^2 \right], \quad (15)$$

275 and modify the learner’s objective accordingly:

$$276 J_\pi(\psi) = \mathbb{E}_{s_t \sim \mathcal{D}, a_t \sim \pi} [\alpha D_{\text{KL}}(\mu_\phi(\cdot | s_t) \| \pi_\psi(\cdot | o_t)) - Q_\varphi(s_t, a_t)]. \quad (16)$$

278 The temperature parameter α controls the strength of KL regularization, but tuning it can be challenging
 279 since reward magnitudes may vary significantly over time and across tasks. Instead, we adopt an
 280 automatic adjustment mechanism that adapts α to match a target KL divergence ϵ , which is easier to
 281 specify:

$$282 J(\alpha) = \mathbb{E}_{s_t \sim \mathcal{D}} [-\alpha D_{\text{KL}}(\mu_\phi(\cdot | s_t) \| \pi_\psi(\cdot | o_t)) - \alpha \epsilon], \quad (17)$$

283 where ϵ is a predefined target KL divergence.

285 The complete algorithm is summarized in Algorithm 1, where we employ clipped double Q-learning
 286 to mitigate overestimation bias, following prior work (Haarnoja et al., 2018; Fujimoto et al., 2018).
 287 The method alternates between collecting experiences using the guider policy and updating the
 288 networks using mini-batches sampled from a replay buffer. Unlike GPO, the proposed method can
 289 leverage off-policy data while ensuring that the guider remains imitable. Further implementation
 290 details are provided in Appendix E.

291 4 EXPERIMENTS

294 In this section, we evaluate the empirical performance of GAC across various domains. Section 4.1
 295 analyzes GAC on partially observable and noisy continuous control tasks in the Brax environment
 296 (Freeman et al., 2021). Section 4.2 examines GAC’s performance on memory-based tasks from
 297 POPGym (Morad et al., 2023). Section 4.3 presents results on more challenging high-dimensional
 298 tasks from HumanoidBench (Sferrazza et al., 2024). Finally, Section 4.4 provides a discussion about
 299 the limitation of GAC. Additional ablation studies are provided in Appendix F.3.

300 4.1 CONTINUOUS CONTROL TASKS IN BRAX

302 We evaluate GAC and baselines on several classic continuous control tasks in Brax under partial
 303 observability and observation noise. We treat joint velocities as privileged information accessible
 304 only during training. To simulate sensor inaccuracies, we add Gaussian noise with zero mean and
 305 standard deviation σ to the partial observations. We compare GAC against TGRL (Shenfeld et al.,
 306 2023b) (privileged policy learning), asymmetric SAC, GPO-clip (Li & Xie, 2025), RMA (Kumar
 307 et al., 2021) (representation learning), and standard SAC (Haarnoja et al., 2018). Figure 1 reports the
 308 performance of all methods across different noise levels over 2M environment steps. For fairness, we
 309 allocate 1M steps for teacher pretraining in TGRL and RMA and another 1M for student training.
 310 Since GPO-clip is on-policy, it is evaluated after 10M steps.

311 As shown in the figure, GAC consistently outperforms the baselines in both sample efficiency and
 312 final performance. Several observations emerge: First, privileged policy learning methods such as
 313 TGRL are less suitable for POMDPs with privileged information. This is due to their reliance on a pre-
 314 trained teacher, which often leads to suboptimal student policies since the teacher leverages privileged
 315 observations unavailable to the student. Notably, as the noise level increases, the same pre-trained
 316 teacher (each row) becomes progressively less effective—TGRL’s performance degrades significantly
 317 (e.g., *Ant* tasks with $\sigma = 0.2, 0.3$), even underperforming SAC in more difficult settings (e.g.,
 318 *HumanoidStandup*). This suggests that the cost of teacher pretraining may be unjustified in highly
 319 asymmetric settings. Second, RMA also performs poorly because privileged representations cannot be
 320 faithfully reconstructed from noisy partial observations. Once reconstruction fails, the policy receives
 321 inputs outside its training distribution and may behave arbitrarily. Third, SAC-asym demonstrates
 322 relatively stable performance, but its performance gap with GAC indicates the limitations of using
 323 privileged information solely in value estimation, a point we explore further in the next subsection.
 324 Last, although both GPO and GAC exploit privileged policy and value information, GAC benefits
 325 significantly from off-policy learning, achieving superior sample efficiency. For instance, GAC’s

Figure 1: Performance comparison of GAC, SAC-asy, SAC, TGRL and GPO-clip on Brax. Partial observations are corrupted with Gaussian noise $N(0, \sigma)$.

performance at 2M steps clearly surpasses GPO-clip at 10M steps, except on *HumanoidStandup* task. It is also worth noting that GAC experiences a performance drop on the *Humanoid* task with $\sigma = 0.3$, which highlights a known limitation of GAC discussed in Section 4.4.

An additional set of image-based experiments is provided in Appendix F.2, where the true state serves as privileged information and only images are available as observations.

4.2 MEMORY TASKS IN POPGYM

In this subsection, we evaluate GAC on a suite of memory-intensive tasks from the POPGym benchmark. These experiments are designed to assess the ability of GAC to train effective memory-based models in both the actor and critic networks—an essential capability for POMDPs, where agents must leverage historical information for decision-making. The selected tasks include various card and board games that require extracting relevant patterns from observation histories. Privileged information in this setting is constructed as a summarized recorder of the observation history; further implementation details can be found in Appendix F.

Figure 2 reports performance across 15 POPGym tasks, comparing GAC to asymmetric SAC and standard SAC. As shown, GAC consistently demonstrates superior sample efficiency across most tasks, with the exception of a few particularly challenging ones where all methods struggle. GAC’s advantage stems from its formulation, where the partially observable learner is directly supervised by the privileged guider, enabling more effective training in environments with long-term dependencies. In contrast, asymmetric SAC does not outperform standard SAC as significantly as it does in Brax, likely due to the limited utility of privileged value functions in memory-based settings. This highlights

Figure 2: Performance comparison of GAC, SAC-asym, SAC on POPGym.

a key limitation of privileged value learning: since it only provides indirect supervision via the RL objective, it may be less effective than the direct guidance offered by a privileged policy. Additionally, GAC’s success is partly attributed to the tight alignment between the guider and learner, avoiding the sub-optimality that can arise when the expert policy is too optimal (see Section 4.4).

4.3 CONTINUOUS CONTROL TASKS IN HUMANOIDBENCH

HumanoidBench is a high-dimensional simulated robotics benchmark featuring a humanoid robot equipped with dexterous hands, supporting a variety of challenging whole-body manipulation and locomotion tasks (Sferrazza et al., 2024).

We evaluate the algorithms on 8 manipulation tasks, where we retain all standard observations and additionally provide tactile feedback as privileged information during training, allowing us to evaluate how well algorithms can exploit such information. We also include 8 locomotion tasks. Since these are similar to the Brax setting, we report their results in Appendix F.2.

Figure 3: Performance comparison of GAC, SAC-asym, SAC_w_tact and SAC_wo_tact on manipulation tasks of HumanoidBench.

Figure 3 presents the performance of four algorithms on various manipulation tasks. Here, *SAC_w_tact* denotes SAC with tactile information available during both training and evaluation, while *SAC_wo_tact* refers to SAC trained and evaluated without any tactile input. These baselines serve to evaluate the contribution of tactile sensing to task performance. As illustrated in the figure, *SAC_w_tact* generally outperforms *SAC_wo_tact* across most tasks—except for *basketball*—underscoring the importance of tactile input for manipulation. Interestingly, in tasks such as *bookshelf_hard* and *spoon*, both GAC and asymmetric SAC—where tactile information is used only

432 during training—surpass the performance of SAC_w_tact. We hypothesize that this is due to the high
 433 dimensionality of the tactile data (over 10^3), which far exceeds that of the standard observation space
 434 (typically around 10^2). While tactile input is rich and informative, its complexity may hinder effective
 435 learning when used directly. Overall, GAC achieves substantial performance gains in scenarios where
 436 privileged information is available, demonstrating the potential of leveraging such information during
 437 training to enhance sample efficiency and policy effectiveness.

438

439

440 4.4 DISCUSSION

441

442 In this subsection, we discuss the lim-
 443 itations of GAC. In the *Humanoid* tasks with a high noise scale ($\sigma = 0.3$), we observe that GAC’s per-
 444 formance unexpectedly deteriorates, de-
 445 spite strong results under lower noise
 446 levels. This degradation is illustrated
 447 in Figure 4, where the KL diver-
 448 gence between the guider and learner
 449 fails to converge to the desired value
 450 (10^{-3}). The underlying reason is that
 451 the regularization coefficient α must
 452 be bounded to prevent it from becom-
 453 ing excessively large and causing nu-
 454 merical instability. As a result, the ability to minimize the KL divergence is inherently limited.
 455 Nevertheless, we emphasize that such worst-case outcomes are rare. In our experiments, this issue
 456 appeared in only a single task, suggesting that while the limitation is genuine, it does not generally
 457 compromise the effectiveness of GAC. Addressing this challenge is left as an avenue for future work.

458

459 Another factor is the choice of the tar-
 460 get KL divergence, which may influ-
 461 ence GAC’s performance. As shown
 462 in Figure 5, setting the target KL
 463 too high leads to an overly dominant
 464 guider that provides limited action-
 465 able feedback to the learner. Con-
 466 versely, setting it too low results in an
 467 overly conservative guider that offers
 468 minimal advantage over the learner,
 469 thereby failing to guide effectively.
 470 Fortunately, GAC is generally robust
 471 as long as the target KL is selected
 472 appropriately—for example, within the range [0.001, 0.1]. A practical heuristic is to tailor the target
 473 KL based on the degree of privileged information: the more privileged the information, the smaller
 474 the target KL should be. For instance, in the Brax domain, we adopt smaller target KL values
 475 for environments with higher noise levels (see Table 3). Similarly, in HumanoidBench, we use
 476 smaller target KLS for manipulation tasks (Table 6), where tactile sensing provides highly privileged
 477 observations.

478

479

5 CONCLUSION

480

481

482 We propose Guided Actor-Critic (GAC), an off-policy RL algorithm that leverages the strengths
 483 of both privileged policy learning and privileged value learning, while mitigating their respective
 484 limitations to achieve sample-efficient training. Our theoretical analysis introduces guided policy
 485 iteration, which we prove converges to the optimal policy. Based on this foundation, we derive the
 486 GAC algorithm and demonstrate empirically that it outperforms state-of-the-art methods in both
 487 privileged policy and value learning. These results highlight the potential of the guided RL framework
 488 for effectively exploiting privileged information in POMDPs.

Figure 4: Performance comparison between the guider and learner in GAC (left). KL divergence between them (right).

Figure 5: Performance of GAC with different target KL.

486 REFERENCES
487

488 Abbas Abdolmaleki, Jost Tobias Springenberg, Yuval Tassa, Rémi Munos, Nicolas Heess, and
489 Martin A. Riedmiller. Maximum a posteriori policy optimisation. *CoRR*, abs/1806.06920, 2018.
490 URL <http://arxiv.org/abs/1806.06920>.

491 OpenAI: Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Józefowicz, Bob McGrew,
492 Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex Ray, Jonas Schneider,
493 Szymon Sidor, Josh Tobin, Peter Welinder, Lilian Weng, and Wojciech Zaremba. Learning
494 dexterous in-hand manipulation. *The International Journal of Robotics Research*, 39(1):3–20,
495 2020. doi: 10.1177/0278364919887447.

496 Andrea Baisero and Christopher Amato. Unbiased asymmetric reinforcement learning under partial
497 observability. *arXiv preprint arXiv:2105.11674*, 2021.

498 Andrea Baisero, Brett Daley, and Christopher Amato. Asymmetric DQN for partially observable
499 reinforcement learning. In James Cussens and Kun Zhang (eds.), *Proceedings of the Thirty-Eighth
500 Conference on Uncertainty in Artificial Intelligence*, volume 180 of *Proceedings of Machine
501 Learning Research*, pp. 107–117. PMLR, 01–05 Aug 2022. URL <https://proceedings.mlr.press/v180/baisero22a.html>.

502 503

504 Amir Beck and Marc Teboulle. Mirror descent and nonlinear projected subgradient methods for
505 convex optimization. *Operations Research Letters*, 31(3):167–175, 2003.

506

507 James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
508 Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
509 Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL
510 <http://github.com/jax-ml/jax>.

511 Yang Cai, Xiangyu Liu, Argyris Oikonomou, and Kaiqing Zhang. Provable partially ob-
512 servable reinforcement learning with privileged information. In A. Globerson, L. Mackey,
513 D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), *Advances in Neu-
514 ral Information Processing Systems*, volume 37, pp. 63790–63857. Curran Associates, Inc.,
515 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/74d188c51d97fcfbc0269f584d6a53b7-Paper-Conference.pdf.

516

517 Kai-Wei Chang, Akshay Krishnamurthy, Hal Daumé, III, and John Langford. Learning to search better
518 than your teacher. In Francis Bach and David Blei (eds.), *Proceedings of the 32nd International
519 Conference on Machine Learning*, volume 37 of *Proceedings of Machine Learning Research*,
520 pp. 2058–2066, Lille, France, 07–09 Jul 2015. PMLR. URL <https://proceedings.mlr.press/v37/changb15.html>.

521

522 Yevgen Chebotar, Karol Hausman, Marvin Zhang, Gaurav Sukhatme, Stefan Schaal, and Sergey
523 Levine. Combining model-based and model-free updates for trajectory-centric reinforcement
524 learning. In *International conference on machine learning*, pp. 703–711. PMLR, 2017a.

525

526 Yevgen Chebotar, Mrinal Kalakrishnan, Ali Yahya, Adrian Li, Stefan Schaal, and Sergey Levine. Path
527 integral guided policy search. In *2017 IEEE international conference on robotics and automation
(ICRA)*, pp. 3381–3388. IEEE, 2017b.

528

529 Dian Chen, Brady Zhou, Vladlen Koltun, and Philipp Krähenbühl. Learning by cheating. In
530 *Conference on robot learning*, pp. 66–75. PMLR, 2020.

531

532 Wojciech Czarnecki, Siddhant Jayakumar, Max Jaderberg, Leonard Hasenclever, Yee Whye Teh,
533 Nicolas Heess, Simon Osindero, and Razvan Pascanu. Mixmatch agent curricula for reinforcement
534 learning. In Jennifer Dy and Andreas Krause (eds.), *Proceedings of the 35th International
535 Conference on Machine Learning*, volume 80 of *Proceedings of Machine Learning Research*,
536 pp. 1087–1095. PMLR, 10–15 Jul 2018. URL <https://proceedings.mlr.press/v80/czarnecki18a.html>.

537

538 Wojciech M. Czarnecki, Razvan Pascanu, Simon Osindero, Siddhant Jayakumar, Grzegorz Swirszez,
539 and Max Jaderberg. Distilling policy distillation. In Kamalika Chaudhuri and Masashi Sugiyama
(eds.), *Proceedings of the Twenty-Second International Conference on Artificial Intelligence and*

540 Statistics, volume 89 of *Proceedings of Machine Learning Research*, pp. 1331–1340. PMLR, 16–18
 541 Apr 2019. URL <https://proceedings.mlr.press/v89/czarnecki19a.html>.

542

543 Yonathan Efroni, Chi Jin, Akshay Krishnamurthy, and Sobhan Miryoosefi. Provable reinforcement
 544 learning with a short-term memory. In *International Conference on Machine Learning*, pp. 5832–
 545 5850. PMLR, 2022.

546 Thomas G Fischer. Reinforcement learning in financial markets-a survey. Technical report, FAU
 547 discussion papers in economics, 2018.

548

549 Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon Whiteson.
 550 Counterfactual multi-agent policy gradients. In *Proceedings of the AAAI conference on artificial
 551 intelligence*, volume 32, 2018.

552 C. Daniel Freeman, Erik Frey, Anton Raichuk, Sertan Girgin, Igor Mordatch, and Olivier Bachem.
 553 Brax - a differentiable physics engine for large scale rigid body simulation, 2021. URL <http://github.com/google/brax>.

554

555 Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in actor-
 556 critic methods. In Jennifer Dy and Andreas Krause (eds.), *Proceedings of the 35th International
 557 Conference on Machine Learning*, volume 80 of *Proceedings of Machine Learning Research*,
 558 pp. 1587–1596. PMLR, 10–15 Jul 2018. URL <https://proceedings.mlr.press/v80/fujimoto18a.html>.

559

560

561 Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
 562 maximum entropy deep reinforcement learning with a stochastic actor. In *International conference
 563 on machine learning*, pp. 1861–1870. PMLR, 2018.

564

565 Danijar Hafner, Timothy P. Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with
 566 discrete world models. *CoRR*, abs/2010.02193, 2020. URL <https://arxiv.org/abs/2010.02193>.

567

568 Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
 569 through world models, 2024. URL <https://arxiv.org/abs/2301.04104>.

570

571 Mehmet Haklidir and Hakan Temeltaş. Guided soft actor critic: A guided deep reinforcement learning
 572 approach for partially observable markov decision processes. *IEEE Access*, 9:159672–159683,
 573 2021. doi: 10.1109/ACCESS.2021.3131772.

574

575 Edward S. Hu, James Springer, Oleh Rybkin, and Dinesh Jayaraman. Privileged sensing scaffolds
 576 reinforcement learning, 2024. URL <https://arxiv.org/abs/2405.14853>.

577

578 Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Planning and acting in
 579 partially observable stochastic domains. *Artificial Intelligence*, 101(1):99–134, 1998. ISSN
 0004-3702. doi: [https://doi.org/10.1016/S0004-3702\(98\)00023-X](https://doi.org/10.1016/S0004-3702(98)00023-X). URL <https://www.sciencedirect.com/science/article/pii/S000437029800023X>.

580

581 Christoph Killing, Adam Villaflor, and John M. Dolan. Learning to robustly negotiate bi-directional
 582 lane usage in high-conflict driving scenarios. In *2021 IEEE International Conference on Robotics
 583 and Automation (ICRA)*, pp. 8090–8096, 2021. doi: 10.1109/ICRA48506.2021.9561071.

584

585 Landon Kraemer and Bikramjit Banerjee. Multi-agent reinforcement learning as a rehearsal for
 586 decentralized planning. *Neurocomputing*, 190:82–94, 2016.

587

588 Ashish Kumar, Zipeng Fu, Deepak Pathak, and Jitendra Malik. Rma: Rapid motor adaptation for
 589 legged robots. *arXiv preprint arXiv:2107.04034*, 2021.

590

591 Gaspard Lambrechts, Adrien Bolland, and Damien Ernst. Informed pomdp: Leveraging additional
 592 information in model-based rl. *arXiv preprint arXiv:2306.11488*, 2023.

593

594 Joonho Lee, Jemin Hwangbo, Lorenz Wellhausen, Vladlen Koltun, and Marco Hutter. Learning
 595 quadrupedal locomotion over challenging terrain. *Science Robotics*, 5(47):eabc5986, 2020. doi:
 596 10.1126/scirobotics.abc5986. URL <https://www.science.org/doi/abs/10.1126/scirobotics.abc5986>.

594 Sergey Levine and Pieter Abbeel. Learning neural network policies with guided policy search under
 595 unknown dynamics. *Advances in neural information processing systems*, 27, 2014.

596

597 Sergey Levine and Vladlen Koltun. Variational policy search via trajectory optimization. *Advances
 598 in neural information processing systems*, 26, 2013a.

599

600 Sergey Levine and Vladlen Koltun. Guided policy search. In Sanjoy Dasgupta and David McAllester
 601 (eds.), *Proceedings of the 30th International Conference on Machine Learning*, volume 28 of
 602 *Proceedings of Machine Learning Research*, pp. 1–9, Atlanta, Georgia, USA, 17–19 Jun 2013b.
 603 PMLR. URL <https://proceedings.mlr.press/v28/levine13.html>.

604

605 Yueheng Li and Guangming Xie. Leveraging additional information in POMDPs with guided policy
 606 optimization, 2025. URL <https://openreview.net/forum?id=VRRuYBaq9u>.

607

608 Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
 609 David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning, 2019.
 610 URL <https://arxiv.org/abs/1509.02971>.

611

612 Michael L. Littman, Anthony R. Cassandra, and Leslie Pack Kaelbling. Learning policies for partially
 613 observable environments: scaling up. In *Proceedings of the Twelfth International Conference on
 614 International Conference on Machine Learning*, ICML’95, pp. 362–370, San Francisco, CA, USA,
 615 1995. Morgan Kaufmann Publishers Inc. ISBN 1558603778.

616

617 Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mordatch. Multi-agent
 618 actor-critic for mixed cooperative-competitive environments. *Advances in neural information
 619 processing systems*, 30, 2017.

620

621 Gabriel B Margolis, Tao Chen, Kartik Paigwar, Xiang Fu, Donghyun Kim, Sangbae Kim, and Pulkit
 622 Agrawal. Learning to jump from pixels. *arXiv preprint arXiv:2110.15344*, 2021.

623

624 Takahiro Miki, Joonho Lee, Jemin Hwangbo, Lorenz Wellhausen, Vladlen Koltun, and Marco Hutter.
 625 Learning robust perceptive locomotion for quadrupedal robots in the wild. *Science robotics*, 7(62):
 626 eabk2822, 2022.

627

628 Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei Rusu, Joel Veness, Marc Bellemare,
 629 Alex Graves, Martin Riedmiller, Andreas Fidjeland, Georg Ostrovski, Stig Petersen, Charles
 630 Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane
 631 Legg, and Demis Hassabis. Human-level control through deep reinforcement learning. *Nature*,
 632 518:529–33, 02 2015. doi: 10.1038/nature14236.

633

634 William H Montgomery and Sergey Levine. Guided policy search via approximate mirror
 635 descent. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett (eds.),
 636 *Advances in Neural Information Processing Systems*, volume 29. Curran Associates, Inc.,
 637 2016. URL https://proceedings.neurips.cc/paper_files/paper/2016/file/a00e5eb0973d24649a4a920fc53d9564-Paper.pdf.

638

639 Steven Morad, Ryan Kortvelesy, Matteo Bettini, Stephan Liwicki, and Amanda Prorok. POPGym:
 640 Benchmarking partially observable reinforcement learning. In *The Eleventh International Conference
 641 on Learning Representations*, 2023. URL <https://openreview.net/forum?id=chDrutUTs0K>.

642

643 Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward transformations:
 644 Theory and application to reward shaping. In *Icml*, volume 99, pp. 278–287, 1999.

645

646 Hai Nguyen, Andrea Baisero, Dian Wang, Christopher Amato, and Robert Platt. Leveraging fully
 647 observable policies for learning under partial observability. *arXiv preprint arXiv:2211.01991*,
 648 2022.

649

650 Frans A Oliehoek, Matthijs TJ Spaan, and Nikos Vlassis. Optimal and approximate q-value functions
 651 for decentralized pomdps. *Journal of Artificial Intelligence Research*, 32:289–353, 2008.

652

653 Lerrel Pinto, Marcin Andrychowicz, Peter Welinder, Wojciech Zaremba, and Pieter Abbeel. Asym-
 654 metric actor critic for image-based robot learning. *RSS*, 2018.

648 Dean A Pomerleau. Efficient training of artificial neural networks for autonomous navigation. *Neural*
 649 *computation*, 3(1):88–97, 1991.
 650

651 Haozhi Qi, Ashish Kumar, Roberto Calandra, Yi Ma, and Jitendra Malik. In-hand object rotation via
 652 rapid motor adaptation. In *Conference on Robot Learning*, pp. 1722–1732. PMLR, 2023.

653 Tabish Rashid, Mikayel Samvelyan, Christian Schroeder de Witt, Gregory Farquhar, Jakob Foerster,
 654 and Shimon Whiteson. Monotonic value function factorisation for deep multi-agent reinforcement
 655 learning. *Journal of Machine Learning Research*, 21(178):1–51, 2020. URL <http://jmlr.org/papers/v21/20-081.html>.
 656

657 Stephane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and structured
 658 prediction to no-regret online learning. In Geoffrey Gordon, David Dunson, and Miroslav Dudík
 659 (eds.), *Proceedings of the Fourteenth International Conference on Artificial Intelligence and*
 660 *Statistics*, volume 15 of *Proceedings of Machine Learning Research*, pp. 627–635, Fort Lauderdale,
 661 FL, USA, 11–13 Apr 2011. PMLR. URL <https://proceedings.mlr.press/v15/ross11a.html>.
 662

663

664 Sasha Salter, Dushyant Rao, Markus Wulfmeier, Raia Hadsell, and Ingmar Posner. Attention-
 665 privileged reinforcement learning. In *Conference on Robot Learning*, pp. 394–408. PMLR, 2021.

666

667 Simon Schmitt, Jonathan J. Hudson, Augustin Zídek, Simon Osindero, Carl Doersch, Wojciech M.
 668 Czarnecki, Joel Z. Leibo, Heinrich Küttler, Andrew Zisserman, Karen Simonyan, and S. M. Ali
 669 Eslami. Kickstarting deep reinforcement learning. *CoRR*, abs/1803.03835, 2018. URL <https://arxiv.org/abs/1803.03835>.
 670

671 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 672 optimization algorithms. *CoRR*, abs/1707.06347, 2017. URL <https://arxiv.org/abs/1707.06347>.
 673

674

675 Younggyo Seo, Junsu Kim, Stephen James, Kimin Lee, Jinwoo Shin, and Pieter Abbeel. Multi-view
 676 masked world models for visual robotic manipulation. In *International Conference on Machine*
 677 *Learning*, pp. 30613–30632. PMLR, 2023.

678

679 Pierre Sermanet, Corey Lynch, Yevgen Chebotar, Jasmine Hsu, Eric Jang, Stefan Schaal, Sergey
 680 Levine, and Google Brain. Time-contrastive networks: Self-supervised learning from video. In
 681 *2018 IEEE international conference on robotics and automation (ICRA)*, pp. 1134–1141. IEEE,
 682 2018.

683

684 Carmelo Sferrazza, Dun-Ming Huang, Xingyu Lin, Youngwoon Lee, and Pieter Abbeel. Humanoid-
 685 bench: Simulated humanoid benchmark for whole-body locomotion and manipulation. *arXiv*
 686 preprint [arXiv:2403.10506](https://arxiv.org/abs/2403.10506), 2024.

687

688 Idan Shafefeld, Zhang-Wei Hong, Aviv Tamar, and Pulkit Agrawal. TGRL: An algorithm for teacher
 689 guided reinforcement learning. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara
 690 Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), *Proceedings of the 40th International*
 691 *Conference on Machine Learning*, volume 202 of *Proceedings of Machine Learning Research*,
 692 pp. 31077–31093. PMLR, 23–29 Jul 2023a. URL <https://proceedings.mlr.press/v202/shenfeld23a.html>.
 693

694

695 Idan Shafefeld, Zhang-Wei Hong, Aviv Tamar, and Pulkit Agrawal. Tgrl: An algorithm for teacher
 696 guided reinforcement learning. In *International Conference on Machine Learning*, pp. 31077–
 697 31093. PMLR, 2023b.

698

699 Jialin Song, Ravi Lanka, Albert Zhao, Yisong Yue, and Masahiro Ono. Learning to search via self-
 700 imitation. *CoRR*, abs/1804.00846, 2018. URL <https://arxiv.org/abs/1804.00846>.
 701

702 Chen Tang, Ben Abbatematteo, Jiaheng Hu, Rohan Chandra, Roberto Martín-Martín, and Peter
 703 Stone. Deep reinforcement learning for robotics: A survey of real-world successes. *Proceedings*
 704 *of the AAAI Conference on Artificial Intelligence*, 39(27):28694–28698, Apr. 2025. doi: 10.
 705 1609/aaai.v39i27.35095. URL <https://ojs.aaai.org/index.php/AAAI/article/view/35095>.

702 Voot Tangkaratt, Nontawat Charoenphakdee, and Masashi Sugiyama. Robust imitation learning
 703 from noisy demonstrations. In Arindam Banerjee and Kenji Fukumizu (eds.), *Proceedings of The 24th International Conference on Artificial Intelligence and Statistics*, volume 130
 704 of *Proceedings of Machine Learning Research*, pp. 298–306. PMLR, 13–15 Apr 2021. URL
 705 <https://proceedings.mlr.press/v130/tangkaratt21a.html>.

706

707 Manan Tomar, Lior Shani, Yonathan Efroni, and Mohammad Ghavamzadeh. Mirror descent policy op-
 708 timization. *CoRR*, abs/2005.09814, 2020. URL <https://arxiv.org/abs/2005.09814>.

709

710 Faraz Torabi, Garrett Warnell, and Peter Stone. Behavioral cloning from observation. *arXiv preprint*
 711 *arXiv:1805.01954*, 2018.

712

713 Vladimir Vapnik and Akshay Vashist. A new learning paradigm: Learning using privileged infor-
 714 mation. *Neural Networks*, 22(5):544–557, 2009. ISSN 0893-6080. doi: <https://doi.org/10.1016/j.neunet.2009.06.042>. URL <https://www.sciencedirect.com/science/article/pii/S0893608009001130>. Advances in Neural Networks Research: IJCNN2009.

715

716

717 Aaron Walsman, Muru Zhang, Sanjiban Choudhury, Ali Farhadi, and Dieter Fox. Impossibly good
 718 experts and how to follow them. In *International Conference on Learning Representations*, 2023.
 719 URL <https://api.semanticscholar.org/CorpusID:259267611>.

720

721 Qing Wang, Yingru Li, Jiechao Xiong, and Tong Zhang. Divergence-augmented policy optimization.
 722 *Advances in Neural Information Processing Systems*, 32, 2019.

723

724 Andrew Warrington, Jonathan Wilder Lavington, A. Scibior, Mark W. Schmidt, and Frank D. Wood.
 725 Robust asymmetric learning in pomdps. In *International Conference on Machine Learning*, 2020.
 726 URL <https://api.semanticscholar.org/CorpusID:229923742>.

727

728 Luca Weihs, Unnat Jain, Iou-Jen Liu, Jordi Salvador, Svetlana Lazebnik, Aniruddha Kem-
 729 bhavi, and Alex Schwing. Bridging the imitation gap by adaptive insubordination. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), *Ad-
 730 vances in Neural Information Processing Systems*, volume 34, pp. 19134–19146. Curran Asso-
 731 ciates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/file/9fc664916bce863561527f06a96f5ff3-Paper.pdf.

732

733 Feiyang Wu, Xavier Nal, Jaehwi Jang, Wei Zhu, Zhaoyuan Gu, Anqi Wu, and Ye Zhao. Learn to
 734 teach: Sample-efficient privileged learning for humanoid locomotion over diverse terrains, 2025.
 735 URL <https://arxiv.org/abs/2402.06783>.

736

737 Jun Yamada, Marc Rigter, Jack Collins, and Ingmar Posner. Twist: Teacher-student world model
 738 distillation for efficient sim-to-real transfer, 2023. URL <https://arxiv.org/abs/2311.03622>.

739

740 Yijun Yang, Tianyi Zhou, Kanxue Li, Dapeng Tao, Lusong Li, Li Shen, Xiaodong He, Jing Jiang,
 741 and Yuhui Shi. Embodied multi-modal agent trained by an llm from a parallel textworld, 2024.
 742 URL <https://arxiv.org/abs/2311.16714>.

743

744 Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and Yi Wu. The
 745 surprising effectiveness of PPO in cooperative multi-agent games. In *Thirty-sixth Conference on*
 746 *Neural Information Processing Systems Datasets and Benchmarks Track*, 2022.

747

748 Haoran Zhang, Chenkun Yin, Yanxin Zhang, and Shangtai Jin. Self-guided actor-critic: Reinforce-
 749 ment learning from adaptive expert demonstrations. In *2020 59th IEEE Conference on Decision*
 750 *and Control (CDC)*, pp. 572–577, 2020. doi: 10.1109/CDC42340.2020.9304004.

751

752 Kaiqing Zhang, Zhuoran Yang, and Tamer Başar. Multi-agent reinforcement learning: A selective
 753 overview of theories and algorithms. *Handbook of reinforcement learning and control*, pp. 321–384,
 754 2021.

755

Marvin Zhang, Zoe McCarthy, Chelsea Finn, Sergey Levine, and Pieter Abbeel. Learning deep
 756 neural network policies with continuous memory states. In *2016 IEEE international conference on*
 757 *robotics and automation (ICRA)*, pp. 520–527. IEEE, 2016a.

756 Tianhao Zhang, Gregory Kahn, Sergey Levine, and Pieter Abbeel. Learning deep control policies for
 757 autonomous aerial vehicles with mpc-guided policy search. In *2016 IEEE International Conference*
 758 *on Robotics and Automation (ICRA)*, pp. 528–535, 2016b. doi: 10.1109/ICRA.2016.7487175.

760 Zeyu Zhu and Huijing Zhao. A survey of deep rl and il for autonomous driving policy learning. *IEEE*
 761 *Transactions on Intelligent Transportation Systems*, 23(9):14043–14065, 2021.

763 THE USE OF LARGE LANGUAGE MODELS (LLMs)

764 LLMs are used to polish the paper writing.

765 A RELATED WORKS

766 **Guided Policy Search (GPS).** Guided Policy Search is a family of algorithms initially proposed
 767 by (Levine & Koltun, 2013b). Unlike direct policy search methods that optimize policy parame-
 768 ters end-to-end, GPS introduces an intermediate policy—typically a time-varying linear-Gaussian
 769 controller—learned via trajectory optimization. This controller then serves as a teacher for a par-
 770 ameterized neural network policy, which is trained through supervised learning. The GPS procedure
 771 consists of two key phases:

- 772 • **Control Phase:** A control policy interacts with the environment to minimize costs while
 773 ensuring learnability by the neural network policy.
- 774 • **Supervised Phase:** The neural network policy is trained via supervised learning to imitate
 775 the control policy.

776 In addition to the foundational works on GPS (Levine & Koltun, 2013a; Levine & Abbeel, 2014;?),
 777 our formulation is closely related to the approach in (Montgomery & Levine, 2016), which employs
 778 constrained LQR optimization for the control policies and supervised learning for the neural policy.
 779 This setup inherits the monotonic improvement guarantee of mirror descent (Beck & Teboulle, 2003),
 780 thereby ensuring consistent progress in policy performance. Over time, GPS has been extended
 781 in several directions, including integration with path integral methods (Chebotar et al., 2017b),
 782 combination with LQR techniques (Chebotar et al., 2017a), incorporation of memory models (Zhang
 783 et al., 2016a), and hybridization with model predictive control (Zhang et al., 2016b).

784 **Privileged Policy Learning.** Privileged policy learning, also known as expert distillation or teacher-
 785 student learning, refers to the paradigm where an expert policy—often with access to privileged
 786 information—is used to guide the learning of a student policy. A basic approach involves first training
 787 a privileged expert policy, followed by imitation learning techniques such as Behavioral Cloning (BC)
 788 (Pomerleau, 1991; Torabi et al., 2018) or DAgger (Ross et al., 2011). However, this two-stage method
 789 is often suboptimal, especially when the expert itself is suboptimal or when privileged information
 790 leads to behavior that is difficult to imitate directly. To address these limitations, recent approaches
 791 in policy distillation combine expert supervision with RL, jointly optimizing a composite objective
 792 that balances expert guidance and task reward (Schmitt et al., 2018; Czarnecki et al., 2018; 2019).
 793 For example, (Nguyen et al., 2022) integrate expert supervision into SAC (Haarnoja et al., 2018)
 794 by replacing the entropy term with a divergence between the student and expert policies. (Weihs
 795 et al., 2021) propose a dynamic mechanism that adjusts the balance between BC and RL based on
 796 the student’s ability to imitate the expert. (Walsman et al., 2023) employ potential-based reward
 797 shaping (Ng et al., 1999) using the expert’s value function to steer policy gradients. (Shenfeld et al.,
 798 2023b) augment the entropy term in SAC to blend expert guidance with task rewards, modulating the
 799 trade-off based on the student’s relative performance.

800 While these methods can be applied to POMDPs with privileged information, most do not explicitly
 801 address the expert’s training process, assuming instead that a high-quality expert is readily available.
 802 However, it has been shown that directly training a privileged expert without considering the student’s
 803 limitations can lead to suboptimal outcomes for the student policy (Cai et al., 2024). Therefore,
 804 relying on such methods without carefully designing the expert or accounting for the cost of expert
 805 training may not yield the best results—particularly in settings where expert training is expensive or
 806 constrained.

Privileged Value Learning. Privileged value learning, also known as asymmetric actor-critic, leverages privileged information in the value function (or Q-function) during policy evaluation, while the policy itself operates under partial observations. This approach can be naturally extended from standard RL algorithms such as DQN (Mnih et al., 2015), PPO (Schulman et al., 2017), DDPG (Lillicrap et al., 2019), and SAC (Haarnoja et al., 2018). For instance, (Baisero et al., 2022) propose a model-based asymmetric policy iteration framework, later relaxed into a model-free variant based on DQN. (Andrychowicz et al., 2020) employ asymmetric PPO to learn dexterous in-hand manipulation policies that perform vision-based object reorientation using a physical Shadow Dexterous Hand. (Pinto et al., 2018) introduce asymmetric DDPG for image-based robotic control, where the critic has access to full state information while the actor learns from images alone. Similarly, (Killing et al., 2021) apply asymmetric SAC to address high-conflict scenarios in autonomous driving. In addition, privileged value learning is also widely adopted in cooperative multi-agent RL (Foerster et al., 2018; Lowe et al., 2017; Rashid et al., 2020; Yu et al., 2022) under the centralized training with decentralized execution (CTDE) paradigm (Oliehoek et al., 2008; Kraemer & Banerjee, 2016), where each agent must act based on its local observation and action history, while the critic can access global (privileged) information during training.

Compared to privileged policy learning, privileged value learning avoids issues related to the suboptimality and does not incur the cost of training a separate expert policy. However, since supervision is provided indirectly through the RL objective, it may be less sample-efficient than methods that leverage direct expert supervision.

Privileged representation learning and world models. This line of work attempts to reconstruct latent representations of privileged information from partial observations. This is common in vision-based robotic tasks, for example, Sermanet et al. (2018); Seo et al. (2023) use multi-view setups (e.g., image-based manipulation with additional camera views) to learn more informative embeddings. Others (Lee et al., 2020; Salter et al., 2021; Kumar et al., 2021; Qi et al., 2023) leverage privileged simulator states during training and design policies that operate on both observed and inferred states. Such methods typically require careful architectural design, domain knowledge, and feature engineering, or rely on favorable structural properties of the POMDP (e.g., decodability (Efroni et al., 2022)). While effective in certain applications, these methods often lack generality across broader POMDP settings.

Privileged World Models. Beyond model-free approaches, several works explore how privileged information can enhance model-based RL. Seo et al. (2023), for example, improve DreamerV2 (Hafner et al., 2020) by training a single-view policy representation using multi-view data. More recently, Informed Dreamer (Lambrechts et al., 2023) strengthens DreamerV3’s (Hafner et al., 2024) representation learning and world modeling by predicting privileged information during training. Scaffolder (Hu et al., 2024) further leverages privileged sensing across multiple training-only components—including world models, critics, exploration policies, and representation learning—to improve the target policy in sensory scaffolding scenarios. TWIST (Yamada et al., 2023) introduces a teacher–student distillation framework in which a state-trained teacher world model supervises a vision-based student model trained with domain-randomized imagery, enabling efficient sim-to-real transfer in model-based RL.

Co-training methods. Co-training methods (Chang et al., 2015; Tangkaratt et al., 2021; Song et al., 2018; Yang et al., 2024) can be seen as an extension of privileged policy learning, where the teacher and student policies are trained simultaneously rather than separately. This joint training paradigm is particularly well-suited for POMDPs with privileged information, as it avoids the extra cost of pretraining the teacher and may potentially mitigate the suboptimality issues commonly associated with privileged policy learning. Co-training typically relies on shared experience or regularization between the teacher and student, enabling more synergistic learning. Several works have explored co-training in this context. For example, (Haklıdir & Temeltaş, 2021) and (Salter et al., 2021) propose training two RL agents (using SAC and DDPG, respectively), where one has full observability and the other operates asymmetrically; the two agents alternate in collecting experiences and are optimized jointly. (Warrington et al., 2020) introduces adaptive asymmetric DAgger, where the expert is trained via RL and the student learns by imitation; a mixture of the two policies is used during data collection, following the DAgger framework. (Wu et al., 2025) co-trains a privileged teacher using PPO and a partially observable student through imitation, with both policies alternating their interaction with the environment.

864 However, many existing co-training approaches are empirical in nature and not explicitly designed to
 865 address the suboptimality induced by privileged policy learning. Recently, (Li & Xie, 2025) proposed
 866 Guided Policy Optimization (GPO), which combines the strengths of both privileged policy and
 867 value learning. GPO offers the same theoretical performance guarantees as privileged value learning
 868 while benefiting from the supervised structure of privileged policy learning. GPO follows a four-step
 869 iterative procedure:

- 870 • **Data Collection:** Collect trajectories by executing the guider’s policy, denoted as $\mu^{(k)}$.
- 871 • **Guider Training:** Update the guider $\mu^{(k)}$ to $\hat{\mu}^{(k)}$ according to RL objective $V_{\mu^{(k)}}$.
- 872 • **Learner Training:** Update the learner to $\pi^{(k+1)}$ by minimizing the distance $D(\pi, \hat{\mu}^{(k)})$.
- 873 • **Guider Backtracking:** Set $\mu^{(k+1)}(\cdot|s) = \pi^{(k+1)}(\cdot|o)$ for all states s before the next
 874 iteration.

875 The final step—guider backtracking—is the key distinction from prior co-training methods, ensuring
 876 the monotonic policy improvement property of GPO. Compared to our method GAC, both GPO and
 877 GAC can be interpreted within the broader framework of policy mirror descent (Beck & Teboulle,
 878 2003; Tomar et al., 2020), where the guider acts as an intermediate step in the learner’s policy update.

882 B TIGERDOOR EXAMPLE

883 Table 1: TigerDoor problem

$s \setminus a$	a_L	a_R	a_l
s_L	1	0	-0.1
s_R	0	1	-0.1

884 The classical *TigerDoor* problem (Littman et al., 1995) describes a scenario in which a tiger is hidden
 885 behind one of two doors. The state space is $\mathcal{S} = \{s_L, s_R\}$, where s_L and s_R correspond to the tiger
 886 being behind the left or right door, respectively. The action space is $\mathcal{A} = \{a_L, a_R, a_l\}$, where a_L
 887 and a_R represent opening the left and right doors, and a_l represents listening to determine the tiger’s
 888 location. The payoff matrix is shown in Table 1.

889 Initially, the agent does not know the tiger’s location unless it takes the listen action a_l . The optimal
 890 policy is to first choose a_l (listen) and then open the door that has the tiger, yielding a reward of 0.9
 891 in expectation. However, if the agent has access to privileged information—such as the exact location
 892 of the tiger—a teacher policy trained with this information will simply learn to open the correct door
 893 directly. This becomes problematic when using such a teacher to supervise a student policy that lacks
 894 access to the privileged information. The student may imitate the teacher by directly choosing a door
 895 without learning to listen, leading to a suboptimal policy. This example illustrates a key limitation of
 896 privileged policy learning: pretraining a teacher with access to privileged information can result in a
 897 policy that is not only unhelpful but potentially harmful when used to guide a student that operates
 898 under partial observability.

900 C PROOFS

901 **Lemma C.1 (Guided Policy Evaluation).** *Consider the Bellman backup operator $\mathcal{T}^{\mu, \pi}$ and a
 902 mapping $Q^0 : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$ with $|\mathcal{A}| < \infty$, and define $Q^{k+1} = \mathcal{T}^{\mu, \pi} Q^k$. Then the sequence Q^k will
 903 converge.*

904 *Proof.* Define the KL divergence augmented reward as

$$905 r_{\pi, \mu}(s_t, a_t) = r(s_t, a_t) + \alpha \mathbf{D}_{\text{KL}}(\mu(\cdot|s_t) \parallel \pi(\cdot|o_t)) \quad (18)$$

906 and rewrite the update rule as

$$907 Q^{k+1}(s_t, a_t) = r_{\pi, \mu}(s_t, a_t) + \gamma \mathbb{E}_{s_{t+1} \sim p, a_{t+1} \sim \pi}[Q^k(s_{t+1}, a_{t+1})] \quad (19)$$

918 and apply the standard convergence results for policy evaluation. The assumption
919 $D_{\text{KL}}(\mu(\cdot|s_t)||\pi(\cdot|o_t)) < \infty$ is required to guarantee that the divergence augmented reward is
920 bounded. \square

921 **Lemma C.2 (Guided Policy Improvement).** *Let $\pi_{\text{old}} \in \Pi_{\pi}$, $\mu_{\text{old}} \in \Pi_{\mu}$ and π_{new} , μ_{new} be the
922 optimizer of the minimization problem defined by equation 7 and equation 8. Then $Q^{\mu_{\text{new}}, \pi_{\text{new}}}(s_t, a_t) \geq$
923 $Q^{\mu_{\text{old}}, \pi_{\text{old}}}(s_t, a_t)$ for all $(s_t, a_t) \in \mathcal{S} \times \mathcal{A}$.*

925 *Proof.* Considering the definition of μ_{new} in equation 7,

$$\begin{aligned} 927 \quad \mu_{\text{new}}(\cdot|s_t) &= \arg \min_{\mu \in \Pi_{\mu}} D_{\text{KL}}\left(\mu(\cdot|s_t) \middle\| \frac{\pi_{\text{old}}(\cdot|o_t) \exp(\frac{1}{\alpha} Q^{\mu_{\text{old}}, \pi_{\text{old}}}(s_t, \cdot))}{Z(s_t)}\right) \\ 928 \quad &= \arg \min_{\mu \in \Pi_{\mu}} J_{\mu_{\text{old}}, \pi_{\text{old}}}(\mu(\cdot|s_t)) \end{aligned} \quad (20)$$

931 It must be the case that $J_{\mu_{\text{old}}, \pi_{\text{old}}}(\mu_{\text{new}}(\cdot|s_t)) \leq J_{\mu_{\text{old}}, \pi_{\text{old}}}(\mu_{\text{old}}(\cdot|s_t))$. Hence

$$\begin{aligned} 933 \quad \mathbb{E}_{a_t \sim \mu_{\text{new}}} [\alpha \log \frac{\mu_{\text{new}}(a_t|s_t)}{\pi_{\text{old}}(a_t|o_t)} - Q^{\mu_{\text{old}}, \pi_{\text{old}}}(s_t, a_t)] &\leq \mathbb{E}_{a_t \sim \mu_{\text{old}}} [\alpha \log \frac{\mu_{\text{old}}(a_t|s_t)}{\pi_{\text{old}}(a_t|o_t)} - Q^{\mu_{\text{old}}, \pi_{\text{old}}}(s_t, a_t)], \\ 934 \quad & \end{aligned} \quad (21)$$

935 where the partition function $Z(s_t)$ cancels.

937 Similarly, considering the definition of π_{new} in equation 7, we have

$$\mathbb{E}_{a_t \sim \mu_{\text{new}}} [\log \frac{\mu_{\text{new}}(a_t|s_t)}{\pi_{\text{new}}(a_t|o_t)}] \leq \mathbb{E}_{a_t \sim \mu_{\text{new}}} [\log \frac{\mu_{\text{new}}(a_t|s_t)}{\pi_{\text{old}}(a_t|o_t)}]. \quad (22)$$

941 As a result,

$$\begin{aligned} 943 \quad \mathbb{E}_{a_t \sim \mu_{\text{new}}} [Q^{\mu_{\text{old}}, \pi_{\text{old}}}(s_t, a_t) - \alpha \log \frac{\mu_{\text{new}}(a_t|s_t)}{\pi_{\text{new}}(a_t|o_t)}] &\geq \mathbb{E}_{a_t \sim \mu_{\text{new}}} [Q^{\mu_{\text{old}}, \pi_{\text{old}}}(s_t, a_t) - \alpha \log \frac{\mu_{\text{new}}(a_t|s_t)}{\pi_{\text{old}}(a_t|o_t)}] \\ 944 \quad &\geq V^{\mu_{\text{old}}, \pi_{\text{old}}}(s_t) \end{aligned} \quad (23)$$

946 Next, consider the Bellman equation:

$$\begin{aligned} 948 \quad Q^{\mu_{\text{old}}, \pi_{\text{old}}}(s_t, a_t) &= r(s_t, a_t) + \gamma \mathbb{E}_{s_{t+1} \sim p} [V^{\mu_{\text{old}}, \pi_{\text{old}}}(s_{t+1})] \\ 949 \quad &\leq r(s_t, a_t) + \gamma \mathbb{E}_{s_{t+1} \sim p} [\mathbb{E}_{a_{t+1} \sim \mu_{\text{new}}} [Q^{\mu_{\text{old}}, \pi_{\text{old}}}(s_{t+1}, a_{t+1}) - \alpha \log \frac{\mu_{\text{new}}(a_{t+1}|s_{t+1})}{\pi_{\text{new}}(a_{t+1}|o_{t+1})}]] \\ 950 \quad &\dots \\ 951 \quad &\leq Q^{\mu_{\text{new}}, \pi_{\text{new}}}(s_t, a_t) \end{aligned} \quad (24)$$

955 \square

956 **Theorem C.3 (Guided Policy Iteration).** *Repeated application of guided policy evaluation (Lemma
957 3.1) and guided policy improvement (Lemma 3.2) from any $\mu \in \Pi_{\mu}$ and $\pi \in \Pi_{\pi}$ converges to policy
958 μ^* and π^* .*

960 *Proof.* Let μ_i and π_i be the policies at iteration i . By Lemma 3.2, the sequence Q^{μ_i, π_i} is monotonically
961 increasing. Since Q is bounded above for $\mu \in \Pi_{\mu}$ and $\pi \in \Pi_{\pi}$ (both the reward and entropy are
962 bounded), the sequence converges to some μ^* and π^* . \square

963 **Lemma C.4.** *Suppose Π_{μ} is expressive enough that the KL divergence in equation 7 can be minimized
964 to zero. The policy improvement of learner policy π can be viewed as:*

$$J(\pi) = \mathbb{E}_{a_t \sim \pi_{\text{old}}} [\exp(\frac{1}{\alpha} Q^{\mu_{\text{old}}, \pi_{\text{old}}}(s_t, a_t)) \log \pi(a_t|o_t)], \quad (25)$$

968 and finally the guider policy and learner policy will converge to the same optimal policy

$$\pi^* = \mu^* = \arg \max_{\pi \in \Pi} \mathbb{E}_{a_t \sim \pi} [Q^*(s_t, a_t)], \quad (26)$$

971 where Q^* is the optimal Q -function.

972 *Proof.* By assumption, we have
 973

$$974 \quad \mu_{\text{new}}(\cdot|s_t) = \frac{\pi_{\text{old}}(\cdot|o_t) \exp(\frac{1}{\alpha} Q^{\mu_{\text{old}}, \pi_{\text{old}}}(s_t, \cdot))}{Z(s_t)}. \quad (27)$$

$$975$$

976 Then, the update of the learner policy π will be
 977

$$978 \quad \pi_{\text{new}} = \arg \min_{\pi \in \Pi_{\pi}} D_{\text{KL}}(\mu_{\text{new}}(\cdot|s_t) \parallel \pi(\cdot|o_t))$$

$$979 \quad = \arg \min_{\pi \in \Pi_{\pi}} \mathbb{E}_{a_t \sim \mu_{\text{new}}} [-\log \pi(a_t|o_t)]$$

$$980 \quad = \arg \max_{\pi \in \Pi_{\pi}} \mathbb{E}_{a_t \sim \pi_{\text{old}}} [\exp(\frac{1}{\alpha} Q^{\mu_{\text{old}}, \pi_{\text{old}}}(s_t, a_t)) \log \pi(a_t|o_t)],$$

$$981$$

$$982$$

$$983$$

$$984$$

985 where we drop the terms that unrelated to π .
 986

987 Since the iteration converges to μ^* and π^* , by defining
 988

$$989 \quad J(\pi) = \mathbb{E}_{a_t \sim \pi} [\exp(\frac{1}{\alpha} Q^{\mu^*, \pi^*}(s_t, a_t)) \log \pi(a_t|o_t)], \quad (29)$$

$$990$$

$$991$$

992 we know that $J(\pi^*) \geq J(\pi)$ for all $\pi \in \Pi$. Moreover, we can derive from equation 29 that π^* is
 993 deterministic when $J(\pi)$ is maximized. Consequently, μ^* is deterministic and identical to π^* based
 994 on equation 27.
 995

996 Then, considering equation 20, we have
 997

$$998 \quad \mu^* = \pi^* = \arg \min_{\mu \in \Pi_{\mu}} J_{\mu^*, \pi^*}(\mu) = \arg \max_{\pi \in \Pi} \mathbb{E}_{a_t \sim \pi} [Q^*(s_t, a_t)]. \quad (30)$$

$$999$$

$$1000$$

$$1001$$

$$1002$$

1003 \square

997 D RELATIONSHIP TO MPO

$$1000$$

$$1001$$

$$1002$$

1003 Maximum a posterior Policy Optimization (MPO) (Abdolmaleki et al., 2018) is an actor-critic
 1004 algorithm which employs KL-regularization in the policy optimization step. Specifically, the objective
 1005 of MPO can be written as
 1006

$$1007 \quad J(q, \theta) = \mathbb{E}_q \left[\sum_{t=0}^{\infty} \gamma^t [r_t - \alpha D_{\text{KL}}(q(a|s_t) \parallel \pi(a|s_t, \theta))] \right] + \log p(\theta), \quad (31)$$

$$1008$$

$$1009$$

$$1010$$

1011 where q is an auxiliary distribution and p is a prior over policy parameters. If we drop the prior term
 1012 and regard q as the privileged guider μ , the objective is the same for GAC. Moreover, the actual
 1013 objective of MPO minimized by gradient descent takes the following form:
 1014

$$1015 \quad J(\theta) = \mathbb{E}_{s \sim \rho_{\theta'}} \left[\mathbb{E}_{a \sim \pi_{\theta'}} \left[\exp \left(\frac{1}{\eta} Q(s, a) \right) \log \pi_{\theta}(a|s) \right] - \alpha D_{\text{KL}}(\pi_{\theta'}(\cdot|s) \parallel \pi_{\theta}(\cdot|s)) \right], \quad (32)$$

$$1016$$

$$1017$$

1018 which is also similar to the equation 10 in lemma 3.4. Although there are strong connections
 1019 between the formulation GAC and MPO, there are several key differences. First, GAC deals
 1020 with asymmetric observation, while MPO deals with regular MDPs. Second, MPO utilizes a non-
 1021 parametric representation of q , while GAC’s guider μ is explicitly parameterized. Third, MPO’s
 1022 behavioral policy is π while GAC’s is the guider μ , which allows to potentially collect better
 1023 trajectories. Last, in the policy evaluation step, MPO adopts standard off-policy evaluation, while
 1024 GAC’s is specialized for guided Q-value, which is similar to SAC.
 1025

1019 E IMPLEMENTATION DETAILS

$$1020$$

1021 In this section, we present the implementation details of GAC. The pseudo code of our algorithm is
 1022 provided in Algorithm 1, where we utilize six trainable networks, one for guider policy, one for learner
 1023 policy, two Q-networks for guider and two Q-networks for learner. We utilize the guider to interact
 1024 with environment and collect corresponding experience in the replay buffer, and execute update
 1025 analogous to off-policy RL algorithm using the loss function defined in equation 12, equation 15,
 equation 13, equation 16 and equation 17.

1026 Both policy networks parameterize Gaussian actions by outputting a mean and a standard deviation;
 1027 actions are obtained by sampling from the Gaussian and applying a *tanh* transform. Since the learner
 1028 does not require active exploration at execution time, we share the standard-deviation parameter
 1029 between guider and learner and stop gradients through the shared std when computing the KL-
 1030 divergence; only the means are updated by the KL loss. For guider exploration we use the same
 1031 entropy regularization scheme and target entropy as SAC. Additional low-level implementation
 1032 details (network architectures, optimizer hyperparameters, seed handling) will be provided in the
 1033 code release.

1034

1035

Algorithm 1: Guided Actor-Critic

1036

Input: $\theta_1, \theta_2, \phi, \psi, \varphi_1, \varphi_2$; // Initial parameters
 1037 $\bar{\theta}_1 \leftarrow \theta_1, \bar{\theta}_2 \leftarrow \theta_2, \bar{\varphi}_1 \leftarrow \varphi_1, \bar{\varphi}_2 \leftarrow \varphi_2$; // Initialize target network
 1038 $\mathcal{D} \leftarrow \emptyset$; // Initialize replay buffer
for each iteration **do**
 1040 **for** each environment step **do**
 1041 $\mathbf{a}_t \sim \mu_\phi(\mathbf{a}_t | s_t)$; // Sample action from guider
 1042 $s_{t+1} \sim p(s_{t+1} | s_t, \mathbf{a}_t)$; // Sample transition
 1043 $\mathcal{D} \leftarrow \mathcal{D} \cup \{(s_t, \mathbf{a}_t, r_t, s_{t+1})\}$; // Store transition
 1044 **end**
 1045 **for** each gradient step **do**
 1046 **for** $i \in \{1, 2\}$ **do**
 1047 $\theta_i \leftarrow \theta_i - \lambda_Q \hat{\nabla}_{\theta_i} J_Q(\theta_i)$; // Update Q-function through
 1048 equation 12
 1049 $\varphi_i \leftarrow \varphi_i - \lambda_Q \hat{\nabla}_{\varphi_i} J_Q(\varphi_i)$; // Update Q-function through
 1050 equation 15
 1051 **end**
 1052 $\phi \leftarrow \phi - \lambda_\mu \hat{\nabla}_\phi J_\mu(\phi)$; // Update guider policy through
 1053 equation 13
 1054 $\psi \leftarrow \psi - \lambda_\pi \hat{\nabla}_\psi J_\pi(\psi)$; // Update learner policy through
 1055 equation 16
 1056 $\alpha \leftarrow \alpha - \lambda_\alpha \hat{\nabla}_\alpha J(\alpha)$; // Adjust temperature through equation 17
 1057 **for** $i \in \{1, 2\}$ **do**
 1058 $\theta_i \leftarrow \tau \theta_i + (1 - \tau) \bar{\theta}_i$; // Update target network
 1059 $\varphi_i \leftarrow \tau \varphi_i + (1 - \tau) \bar{\varphi}_i$; // Update target network
 1060 **end**
 1061 **end**
 1062 **end**
 1063 **Output:** $\theta_1, \theta_2, \phi, \psi, \varphi_1, \varphi_2$; // Optimized parameters

1064

1065

1066

1067

F EXPERIMENTAL SETTINGS

1069

F.1 HYPERPARAMETERS

1070

1071

1072

The hyperparameters used in the experiments from Section 4.1, 4.2, and 4.3 are listed in Table 2, Table 4, and Table 5, respectively. All SAC-based methods share the same set of core hyperparameters. For GAC, the only additional hyperparameter is the target KL divergence, which is selected from a predefined set. The specific target KL values for each task are detailed in Table 3 and Table 6. The heuristic for selecting the target KL is based on the asymmetry between the guider and learner observations. When the privileged observation is substantially different from the partial observation (e.g., Brax tasks with high noise levels, or manipulation tasks in HumanoidBench), a smaller target KL is preferred. When the privileged observation can be partially inferred from the partial observation (e.g., tasks in POPGym), a larger target KL is appropriate.

1080
1081
1082 Table 2: Hyperparameters of GAC and SAC in Brax.
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097

Parameter	Value
optimizer	Adam
learning_rate	3e-4
number_of_environments	128
number_of_timesteps	2e6
episode_length	1000
replay_buffer_size	1e6
discount (γ)	0.99
grad_update_per_step	0.5
target_smoothing_coefficient	0.005
maximum_gradient_norm	1
batch_size	512
actor_hidden_layers	[256, 256]
critic_hidden_layers	[256, 256]
activation	SiLU
target_entropy	$-0.5 * \mathcal{A} $
target_kl	[0.01, 0.005, 0.001]

1098
1099 Table 3: GAC Environment Specific Parameters in Brax.
1100

Environment	target_kl [$\sigma = 0, \sigma = 0.1, \sigma = 0.2, \sigma = 0.3$]
Ant	[0.01, 0.005, 0.005, 0.001]
HalfCheetah	[0.01, 0.005, 0.001, 0.001]
Humanoid	[0.005, 0.001, 0.001, 0.001]
HumanoidStandup	[0.005, 0.005, 0.001, 0.001]
InvertedDoublePendulum	[0.001, 0.001, 0.001, 0.001]

1108 F.2 ADDITIONAL RESULTS
1109

1110 We provide the results of GAC, SAC-asym and DreamerV3 on 8 locomotion tasks in Figure 7. The
1111 partial observation is similar to Brax domain, where the velocity information of all joints is treated
1112 as privileged information and removed from the agent’s observation. Frame stacking is not adopted
1113 since we tried and found no significant performance difference. We observe that GAC consistently
1114 outperforms asymmetric SAC, highlighting its superior ability to leverage privileged information in
1115 complex, high-dimensional continuous control settings. Although DreamerV3 sometimes achieves
1116 higher performance, it is a model-based approach and thus considerably more computationally
1117 demanding and slower than model-free methods.

1118 We also report results of GAC and SAC-asym on six MuJoCo tasks in Figure 8. In this setting, the
1119 agent receives only image observations, while the privileged information corresponds to the robot’s
1120 true state. This mirrors common real-world scenarios where only camera inputs are available to
1121 capture robot locomotion. Again, GAC outperforms asymmetric SAC, demonstrating the generality
1122 of our approach across different observation modalities.

1123 F.3 ADDITIONAL ABLATIONS
1124

1125 This subsection presents additional ablation studies for GAC. Recall that we use separate Q-functions
1126 for the guider and the learner, denoted as Q_θ and Q_φ , respectively. To examine the impact of this
1127 design choice, we evaluate a variant where the learner directly uses the guider’s Q-function Q_θ ,
1128 referred to as GAC_share. We also assess the importance of the auxiliary RL loss for the learner by
1129 removing it—i.e., using Equation 14 instead of Equation 16—a variant we denote as GAC_wo_Q. As
1130 shown in Figure 6, GAC achieves better performance with both the auxiliary RL loss and separate
1131 Q-functions. While GAC_share performs comparably in most cases and outperforms GAC_wo_Q,
1132 the results suggest that the auxiliary RL loss significantly benefits learner training. Moreover, using
1133 a distinct Q-function for the learner provides a more accurate value estimation, since the guider’s
Q-function is biased from the learner’s perspective.

1134
1135
1136 Table 4: Hyperparameters of GAC and SAC in POPGym.
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148

Parameter	Value
optimizer	Adam
learning_rate	3e-4
number_of_environments	1
number_of_timesteps	1e7
replay_buffer_size	1e6
discount (γ)	0.99
grad_update_per_step	1 / number_of_environments
batch_size	32 * episode_length
actor_hidden_layers	[256, 256, 256(GRU), 256]
critic_hidden_layers	[256, 256, 256(GRU), 256]
activation	SiLU
target_entropy	$-0.9 * \log(1/ \mathcal{A})$
target_kl	0.05

1149
1150 Table 5: Hyperparameters of GAC and SAC in HumanoidBench.
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167

Parameter	Value
optimizer	Adam
learning_rate	3e-4
number_of_environments	128
number_of_timesteps	2e6
episode_length	1000
replay_buffer_size	1e6
discount (γ)	0.99
grad_update_per_step	1
target_smoothing_coefficient	0.005
maximum_gradient_norm	1
batch_size	64
actor_hidden_layers	[256, 256]
critic_hidden_layers	[256, 256]
activation	ReLU
target_entropy	$-0.5 * \mathcal{A} $
target_kl (locomotion)	[0.02, 0.01, 0.005]
target_kl (manipulation)	[0.01, 0.001, 0.0001]

1169
1170 F.4 ENVIRONMENT DESCRIPTIONS1171
1172 We provide a brief overview of the environments used and the pre-defined privileged information.1173
1174 **Brax** (Freeman et al., 2021). Brax is an open source library for rigid body simulation with a focus
1175 on performance and parallelism on accelerators, written in JAX (Bradbury et al., 2018). The task in
1176 Brax contains a series of OpenAI gym-style MuJoCo-like tasks. We choose the *Ant*, *HalfCheetah*,
1177 *Humanoid*, *HumanoidStandup* and *InvertedDoublePendulum*. The privileged information is defined
1178 as the velocity and angular velocity of all joints, the dimension of the observation is described in
Table 71179
1180 **POPGym** (Morad et al., 2023). POPGym contains a diverse collection of partially observable
1181 environments, where we choose some card games and broad games. We provide a brief description
of the task and privileged information below:1182
1183
1184
1185
1186
1187

- **Autoencode:** During the WATCH phase, a deck of cards is shuffled and played in sequence to the agent with the watch indicator set. The watch indicator is unset at the last card in the sequence, where the agent must then output the sequence of cards in order. The privileged information is the exact card that should be output at each timestep.
- **Battleship:** A partially observable version of Battleship game, where the agent has no access to the board and must derive its own internal representation. Observations contain

1188
1189

Table 6: GAC Environment Specific Parameters in HumanoidBench.

1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Figure 6: Ablation study of GAC on Brax.

either HIT or MISS and the position of the last salvo fired. The privileged information is a recorder that tracks all previous actions taken by the agent.

Figure 7: Performance comparison of GAC, SAC-asym and DreamerV3 on locomotion tasks in HumanoidBench.

Figure 8: Performance comparison of GAC and SAC-asym on image-based tasks in MuJoCo.

- **Concentration:** A deck of cards is shuffled and spread out face down. The player flips two cards at a time face up, receiving a reward if the flipped cards match. The privileged information is a recorder that tracks all previous flipped cards.
- **MineSweeper:** The computer game MineSweeper, but the agent does not have access to the board. Each observation contains the position and number of adjacent mines to the last square “clicked” by the agent. The privileged information is a recorder that tracks all previous observations.
- **Repeat Previous:** At the first timestep, the agent receives one of four values and a remember indicator. Then it randomly receives one of the four values at each successive timestep without the remember indicator. The agent is rewarded for outputting the observation from some constant k timesteps ago. The privileged information is the exact value that should be output at each timestep.

HumanoidBench (Sferrazza et al., 2024). HumanoidBench is a high-dimensional simulated robotics benchmark featuring a humanoid robot equipped with dexterous hands, supporting a variety of challenging whole-body manipulation and locomotion tasks. For the locomotion tasks, the privileged information is defined as the velocity and angular velocity of all joints and objects. For the manipulation tasks, the privileged information is defined as the tactile feedback.

1296
1297

Table 7: Observation space data for the tasks chosen in Brax.

1298
1299
1300
1301
1302
1303
1304

Task	Original obs_dim	Partial obs_dim	Privileged obs_dim
Ant	27	13	14
HalfCheetah	17	8	9
Humanoid	244	155	89
HumanoidStandup	244	155	89
InvertedDoublePendulum	8	5	3

1305
1306

Table 8: Observation space data for the tasks chosen in HumanoidBench.

1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323

Task	Original obs_dim	Partial obs_dim	Privileged obs_dim
h1-basketball-v0	64	33	31
h1-crawl-v0	51	26	25
h1-highbar_simple-v0	51	26	25
h1-hurdle-v0	51	26	25
h1-maze-v0	51	26	25
h1-pole-v0	51	26	25
h1-slide-v0	51	26	25
h1-walk-v0	51	26	25
h1touch-basketball-v0	164	164	1344
h1touch-bookshelf_hard-v0	308	308	1344
h1touch-bookshelf_simple-v0	308	308	1344
h1touch-insert_normal-v0	190	190	1344
h1touch-insert_small-v0	164	164	1344
h1touch-room-v0	229	229	1344
h1touch-spoon-v0	167	167	1344
h1touch-window-v0	171	171	1344

1324

Figure 9: Performance comparison including COSIL.

1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Figure 10: Performance comparison between tuned GAC and GAC with default target KL.

Figure 11: Performance comparison including asymmetric MPO.

Figure 12: The temperature α and KL divergence between guider and learner during training.