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ABSTRACT

Real-world decision-making systems often operate under partial observability due
to limited sensing or noisy information, which poses significant challenges for
reinforcement learning (RL). A common strategy to mitigate this issue is to leverage
privileged information—available only during training—to guide the learning
process. While existing approaches such as policy distillation and asymmetric
actor-critic methods make use of such information, they frequently suffer from
weak supervision or suboptimal knowledge transfer. In this work, we propose
Guided Actor-Critic (GAC), a novel off-policy RL algorithm that unifies privileged
policy and value learning under a guided policy iteration framework. GAC jointly
trains a fully observable policy and a partially observable policy using constrained
RL and supervised learning objectives, respectively. We theoretically establish
convergence in the tabular case and empirically validate GAC on challenging
benchmarks, including Brax, POPGym, and HumanoidBench, where it achieves
superior sample efficiency and final performance.

1 INTRODUCTION

In many real-world domains—ranging from robotics (Tang et al., 2025) and autonomous driving (Zhu
& Zhao, 2021) to finance (Fischer, 2018), and multi-agent systems (Zhang et al., 2021)—decision-
making agents must operate under partial observability. Limited or noisy sensing, occlusions, and
constrained instrumentation prevent direct access to the true environment state and complicate both
perception and control. Robotics offers a clear illustration: physical platforms frequently lack rich
sensing (e.g., dense tactile arrays or high-fidelity proprioception) or face substantial sensor noise
due to hardware cost and environmental disturbance. Importantly, however, richer signals are often
available during development or in simulation (e.g., full simulator state, contact forces, or privileged
diagnostics), and these training-time signals can be exploited to accelerate learning even when they
are not available at deployment.

We view such problems as Partially Observable Markov Decision Processes (POMDPs) (Kaelbling
et al., 1998) augmented with training-only privileged information (Lambrechts et al., 2023). In this
formulation, an agent must learn a policy that acts on limited observations at execution time, while
leveraging additional state or side-information during training to improve sample efficiency and
robustness. This POMDP-with-privileged-information perspective is broadly applicable: robotics is a
natural and important example, but the same setup arises in other sequential decision problems where
richer development-time data exists (e.g., richer lab measurements in healthcare, extra simulatable
state in simulated environments, or additional diagnostic signals in industrial control).

Two main approaches have been proposed to leverage privileged information (Cai et al., 2024): The
first is privileged policy learning, also known as expert policy distillation (Czarnecki et al., 2019) or
teacher-student learning, where a teacher policy is trained using privileged inputs and then distilled
into a student policy operating under partial observability. However, if the teacher policy fails to
account for the student’s limited observations, the distillation may lead to suboptimal performance
(Warrington et al., 2020; Cai et al., 2024). The second is privileged value learning, where a value
function (or Q-function) trained with privileged information is used to guide the learning of a partially
observable policy, commonly known as asymmetric actor-critic (Pinto et al., 2018). While this
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approach provides indirect supervision via the RL objective, it lacks the strong guidance that direct
policy supervision can offer.

Recently, Guided Policy Optimization (GPO) (Li & Xie, 2025) has been proposed as a more structured
method that integrates both privileged policy and value learning. GPO jointly trains a privileged
policy and a partially observable policy, enforcing alignment between the two. This setup offers
more effective supervision while mitigating the shortcomings of distillation alone. However, GPO
typically relies on on-policy samples to maintain behavioral consistency between the two policies,
which significantly limits sample efficiency, especially in expensive robotic settings.

In this paper, we introduce a novel off-policy algorithm that exploits privileged information during
training. We formulate a guided policy iteration framework that jointly optimizes a privileged policy
via a constrained RL objective and a partially observable learner policy via a supervised learning
objective. We show that, in the tabular setting, iterative evaluation and improvement lead both policies
to converge to the same optimal solution. Building on this foundation, we propose a practical deep
RL algorithm called Guided Actor-Critic (GAC), which approximates this framework using neural
networks. We validate our approach on several challenging benchmarks, including Brax (Freeman
et al., 2021), POPGym (Morad et al., 2023), and HumanoidBench (Sferrazza et al., 2024). Our results
demonstrate that GAC can effectively utilize privileged information in complex POMDPs with high
sample efficiency.

2 BACKGROUND

2.1 NOTATION

We consider a Partially Observable Markov Decision Process (POMDP) (Kaelbling et al., 1998),
defined by the tuple ⟨S,A, r,P,O, γ⟩, where S is the set of states, A is the set of actions, r
is the reward function, P is the transition probability function, O is the observation function,
and γ is the discount factor. At each time step t, the agent receives a partial observation ot ∼
O(· | st) of the underlying state st ∈ S. Based on ot or the full action-observation history
τt = {o0, a0, o1, a1, . . . , ot}, the agent selects an action at ∈ A. The environment then transitions to
the next state st+1 ∼ P(st+1 | st, at), and the agent receives a reward rt = r(st, at). We denote by
ρπ(st) and ρπ(st, at) the state and state-action marginals of the trajectory distribution induced by a
policy π(at | τt). The agent’s objective is to find an optimal policy π∗ : τ → ∆(A) that maximizes
the expected return:

J(π) =

T∑
t=0

E(st,at)∼ρπ [r(st, at)]. (1)

For notational simplicity, we use s to refer to the true state or any form of privileged information
available during training, and o to represent the available information at execution time, including
partial observations and history.

2.2 LEARNING WITH PRIVILEGED INFORMATION

Following the categorization in (Cai et al., 2024), empirical approaches to RL with privileged
information can be broadly divided into two paradigms: privileged policy learning and privileged
value learning.

In privileged policy learning (also known as expert distillation (Chen et al., 2020; Nguyen et al., 2022;
Margolis et al., 2021) or teacher-student learning (Lee et al., 2020; Miki et al., 2022; Shenfeld et al.,
2023a)), the key idea is to exploit the fact that learning in a fully observable MDP is generally easier
and more well-understood. These methods first train a privileged expert policy µ that has access
to the full state s, and then distill its behavior into a partially observable policy π. The distillation
objective can be formalized as:

min
π∈Π

Es∼dβ [D(µ(·|s), π(·|o))], (2)

where β is a given behavior policy, and D is a divergence measure (e.g., KL divergence). While
this approach appears intuitive and promising—since it directly supervises the student using the
expert policy—recent studies (Cai et al., 2024) have shown that the resulting policy can still be
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strictly suboptimal, even given unlimited data. We present an illustrative example from the classical
TigerDoor problem (Littman et al., 1995) in Appendix B.

In contrast, privileged value learning, also known as asymmetric actor-critic (Pinto et al., 2018;
Andrychowicz et al., 2020; Baisero & Amato, 2021), leverages privileged information in the value
function (e.g., the Q-function) during training, while keeping the policy conditioned only on partial
observations. Variants of this approach (Andrychowicz et al., 2020; Pinto et al., 2018; Baisero
et al., 2022; Zhang et al., 2020) include asymmetric versions of PPO (Schulman et al., 2017),
DDPG (Lillicrap et al., 2019), DQN (Mnih et al., 2015), and SAC (Haarnoja et al., 2018) . This
approach is also widely used in multi-agent reinforcement learning under the centralized training
with decentralized execution (CTDE) paradigm (Oliehoek et al., 2008; Kraemer & Banerjee, 2016),
where privileged information (e.g., the joint observations of all agents) is naturally available during
training but not during execution. However, a key limitation of privileged value learning is that
it only provides indirect supervision to the policy through the RL objective, which may be less
sample-efficient compared to the direct supervised signals provided by expert policies in privileged
policy learning.

Another line of work attempts to reconstruct latent representations of privileged information from
partial observations. This is common in vision-based robotic tasks, for example, inferring robot
proprioception from camera images. While effective in certain applications, these methods often lack
generality across broader POMDP settings. A more comprehensive discussion of related work is
deferred to Appendix A.

2.3 GUIDED POLICY OPTIMIZATION

A recently proposed paradigm, known as Guided Policy Optimization (GPO) (Li & Xie, 2025)
integrates both privileged policy and privileged value learning into a unified framework. GPO builds
upon the ideas from Guided Policy Search (GPS) (Levine & Koltun, 2013b; Zhang et al., 2016a;
Montgomery & Levine, 2016), leveraging a privileged policy (referred to as the guider µ) and a
privileged value function to guide the training of a partially observable policy (referred to as the
learner π).

Concretely, GPO co-trains the guider and learner jointly: the guider is trained using PPO under
full state observability, and the learner is trained via supervision from the guider. Critically, GPO
introduces a constraint on the divergence between the guider and learner policies. This ensures that the
guider remains close enough to the learner’s behavior to provide meaningful and effective guidance.
This setup allows GPO to inherit the theoretical guarantees of privileged value learning, while also
framing the supervision process from the guider as a form of privileged policy learning. In this sense,
GPO can be viewed as a hybrid approach that unifies the strengths of both paradigms. However, since
GPO is built upon trust-region methods like PPO, it is inherently an on-policy algorithm, which may
lead to lower sample efficiency compared to off-policy alternatives.

3 METHOD

In this section, we introduce our off-policy guided actor-critic algorithm. Our approach builds upon
the divergence-augmented policy iteration framework proposed by (Wang et al., 2019). We begin
by presenting a theoretical derivation of our method, verify its convergence to the optimal policy
within the policy class, and then describe a practical algorithm motivated by this theory. Following
the convention in GPO, we refer to the privileged policy as the guider and the partially observable
policy as the learner.

3.1 GUIDED POLICY ITERATION

Our method shares the core principle of GPO—co-training the guider and learner while keeping them
closely aligned, so that the learner benefits from the supervision provided by the more informed guider.
Therefore, we formalize the guider’s objective as a constrained reinforcement learning problem:

J(µ) =

T∑
t=0

E(st,at)∼ρµ
[
r(st, at)

]
s.t. DKL(µ(·|st)||π(·|ot)) ≤ ϵ, (3)
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where the KL constraint ensures alignment between the guider and learner policies. Since solving
the above constrained problem directly is difficult, we adopt a more tractable soft-constrained
formulation:

J(µ) =

T∑
t=0

E(st,at)∼ρµ
[
r(st, at)− αDKL(µ(·|st)||π(·|ot))

]
, (4)

where α is a tunable coefficient that controls the strength of the KL regularization. Based on this,
we derive a general guided policy iteration algorithm that alternates between policy evaluation and
policy improvement for both the guider and learner.

In the policy evaluation step of guided policy iteration, we need to estimate the value of any policy
pair (µ, π) according to the objective in equation 5. For fixed µ and π, the guided Q-value can be
computed iteratively via a modified Bellman backup operator:

T µ,πQµ,π(st, at) = r(st, at) + γEst+1∼p[V (st+1)], (5)

where the guided state value is defined as:

V (st) = Eat∼µ[Q
µ,π(st, at)− α log

µ(at|st)
π(at|ot)

]. (6)

By repeatedly applying T µ,π, we can obtain the converged guided Q-value function for the given
policies:

Lemma 3.1 (Guided Policy Evaluation). Let T µ,π be the Bellman backup operator, and let
Q0 : S ×A → R be any initial function with |A| <∞. Define Qk+1 = T µ,πQk. Then the sequence
Qk converges.

Proof. See Appendix C.

In the policy improvement step, we update both the guider and the learner using the estimated
Q-values. The guider is updated by minimizing the KL divergence to the learner policy modulated by
the exponential of the Q-function:

µnew(·|st) = arg min
µ∈Πµ

DKL

(
µ(·|st)

∥∥∥∥πold(·|ot) exp( 1
α
Qµold,πold(st, ·))

Z(st)

)
, (7)

where Πµ is the policy class of µ, and Z(st) is the partition function which normalizes the distribution
and can be ignored for gradient-based optimization.

The learner is then updated to minimize the KL divergence to the new guider policy:

πnew(·|ot) = arg min
π∈Ππ

DKL
(
µnew(·|st)

∥∥π(·|ot)), (8)

where Ππ is the learner’s policy class. This two-step update leads to performance improvement
respect to the objective in equation 4, as stated below:

Lemma 3.2 (Guided Policy Improvement). Let µold ∈ Πµ, πold ∈ Ππ, and let µnew, πnew be the
solutions to equation 7 and equation 8. Then:

Qµnew,πnew(st, at) ≥ Qµold,πold(st, at) ∀(st, at) ∈ S ×A (9)

Proof. See Appendix C.

The full guided policy iteration algorithm alternates between the guided policy evaluation and guided
policy improvement steps, and it will provably converge to the policy µ∗ and π∗ in tabular case, as
formally described in the following theorem:

Theorem 3.3 (Guided Policy Iteration). Repeated application of guided policy evaluation (Lemma
3.1) and guided policy improvement (Lemma 3.2) from any µ ∈ Πµ and π ∈ Ππ converges to policy
µ∗ and π∗.

Proof. See Appendix C.
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One key distinction between our Guided Policy Iteration and standard policy iteration is the presence
of two simultaneously updated policies: the guider and the learner. To understand their respective
convergence behaviors, recall that the guider policy µ takes the privileged state s as input, whereas the
learner policy π relies only on the partial observation o. If both policies share the same parametrization,
then it follows naturally that Ππ ⊆ Πµ, since the guider—having access to more informative
inputs—possesses strictly greater representational capacity.

To obtain a closed-form characterization of convergence, we introduce a simplifying assumption:
Πµ is expressive enough to drive the KL divergence in equation 7 to zero. This assumption is
generally reasonable, as it merely requires that the privileged guider be capable of imitating a Q-
value–modulated version of the learner policy. Under this assumption, the update rule reduces to one
involving only the learner policy π, as formalized in the following lemma:

Lemma 3.4. Suppose Πµ is expressive enough such that the KL divergence in equation 7 can be
minimized to zero. Then, the policy improvement step for the learner policy π can be reformulated as:

J(π) = Eat∼πold

[
exp(

1

α
Qµold,πold(st, at)) log π(at|ot)

]
. (10)

Eventually, both the guider and learner policies converge to the same optimal policy:

π∗ = µ∗ = arg max
π∈Ππ

Eat∼π[Q
∗(st, at)], (11)

where Q∗ denotes the optimal Q-function.

Proof. See Appendix C.

This lemma indicates that the guider and learner will ultimately converge to the same optimal policy
with respect to expected return. In contrast to maximum entropy reinforcement learning (Haarnoja
et al., 2018)—where the optimal policy is biased when α ̸= 0—our guided policy iteration converges
to the unbiased optimal policy, regardless of the choice of α. Although the learning dynamics during
training are affected by α, the convergence guarantee makes the algorithm more robust to its tuning.

It is also worth noting that our framework shares conceptual similarities with the formulation of
Maximum a Posteriori Policy Optimization (MPO) (Abdolmaleki et al., 2018), particularly when
viewing its non-parametric auxiliary distribution as analogous to our guider policy. Further discussion
is provided in Appendix D.

3.2 GUIDED ACTOR-CRITIC

The theoretical results discussed above are primarily applicable to tabular settings. To extend these
ideas to large-scale continuous domains, we now introduce a practical algorithm based on function
approximation and stochastic gradient optimization. We consider the following parameterized com-
ponents: a guided Q-function Qθ(st, at), a guider policy µϕ(at|st), and a learner policy πψ(at|ot).
The parameters of these networks are denoted by θ, ϕ and ψ, respectively.

The guided Q-function is trained by minimizing the Bellman residual:

JQ(θ) = E(st,at,rt,st+1)∼D,at+1∼µ

[(
Qθ(st, at)− (rt + γ(Qθ̄(st+1, at+1)− α log

µϕ(at+1|st+1)

πψ(at+1|ot+1)
))
)2]

,

(12)
where θ̄ denotes the parameters of a target Q-function, maintained as an exponential moving average
of θ to stabilize training.

The policy parameters are optimized by minimizing the expected KL divergence as described in
equation 13 and equation 14:

Jµ(ϕ) = Est∼D,at∼µ
[
αDKL(µϕ(·|st)∥πψ(·|ot))−Qθ(st, at)], (13)

Jπ(ψ) = Est∼D
[
DKL(µϕ(·|st)∥πψ(·|ot))]. (14)

In addition to learning from the guider via KL supervision, the learner can also benefit from reinforce-
ment learning using trajectories collected by the guider policy, as the two policies are closely aligned.

5
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To evaluate the learner’s performance under this setting, we introduce an additional Q-function
Qφ(st, at) trained by the following:

J ′
Q(φ) = E(st,at,rt,st+1)∼D,at+1∼π

[(
Qφ(st, at)− (rt + γQφ̄(st+1, at+1)

)2]
, (15)

and modify the learner’s objective accordingly:

Jπ(ψ) = Est∼D,at∼π
[
αDKL(µϕ(·|st)∥πψ(·|ot))−Qφ(st, at)]. (16)

The temperature parameter α controls the strength of KL regularization, but tuning it can be challeng-
ing since reward magnitudes may vary significantly over time and across tasks. Instead, we adopt an
automatic adjustment mechanism that adapts α to match a target KL divergence ϵ, which is easier to
specify:

J(α) = Est∼D[−αDKL(µϕ(·|st)∥πψ(·|ot))− αϵ], (17)
where ϵ is a predefined target KL divergence.

The complete algorithm is summarized in Algorithm 1, where we employ clipped double Q-learning
to mitigate overestimation bias, following prior work (Haarnoja et al., 2018; Fujimoto et al., 2018).
The method alternates between collecting experiences using the guider policy and updating the
networks using mini-batches sampled from a replay buffer. Unlike GPO, the proposed method can
leverage off-policy data while ensuring that the guider remains imitable. Further implementation
details are provided in Appendix E.

4 EXPERIMENTS

In this section, we evaluate the empirical performance of GAC across various domains. Section 4.1
analyzes GAC on partially observable and noisy continuous control tasks in the Brax environment
(Freeman et al., 2021). Section 4.2 examines GAC’s performance on memory-based tasks from
POPGym (Morad et al., 2023). Section 4.3 presents results on more challenging high-dimensional
tasks from HumanoidBench (Sferrazza et al., 2024). Finally, Section 4.4 provides a discussion about
the limitation of GAC. Additional ablation studies are provided in Appendix F.3.

4.1 CONTINUOUS CONTROL TASKS IN BRAX

We evaluate GAC and baselines on several classic continuous control tasks in Brax under partial
observability and observation noise. We treat joint velocities as privileged information accessible
only during training. To simulate sensor inaccuracies, we add Gaussian noise with zero mean and
standard deviation σ to the partial observations. We compare GAC against TGRL (Shenfeld et al.,
2023b) (privileged policy learning), asymmetric SAC, GPO-clip (Li & Xie, 2025), RMA (Kumar
et al., 2021) (representation learning), and standard SAC (Haarnoja et al., 2018). Figure 1 reports the
performance of all methods across different noise levels over 2M environment steps. For fairness, we
allocate 1M steps for teacher pretraining in TGRL and RMA and another 1M for student training.
Since GPO-clip is on-policy, it is evaluated after 10M steps.

As shown in the figure, GAC consistently outperforms the baselines in both sample efficiency and
final performance. Several observations emerge: First, privileged policy learning methods such as
TGRL are less suitable for POMDPs with privileged information. This is due to their reliance on a pre-
trained teacher, which often leads to suboptimal student policies since the teacher leverages privileged
observations unavailable to the student. Notably, as the noise level increases, the same pre-trained
teacher (each row) becomes progressively less effective—TGRL’s performance degrades significantly
(e.g., Ant tasks with σ = 0.2, 0.3), even underperforming SAC in more difficult settings (e.g.,
HumanoidStandup). This suggests that the cost of teacher pretraining may be unjustified in highly
asymmetric settings. Second, RMA also performs poorly because privileged representations cannot be
faithfully reconstructed from noisy partial observations. Once reconstruction fails, the policy receives
inputs outside its training distribution and may behave arbitrarily. Third, SAC-asym demonstrates
relatively stable performance, but its performance gap with GAC indicates the limitations of using
privileged information solely in value estimation, a point we explore further in the next subsection.
Last, although both GPO and GAC exploit privileged policy and value information, GAC benefits
significantly from off-policy learning, achieving superior sample efficiency. For instance, GAC’s
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Figure 1: Performance comparison of GAC, SAC-asym, SAC, TGRL and GPO-clip on Brax. Partial
observations are corrupted with Gaussian noise N(0, σ).

performance at 2M steps clearly surpasses GPO-clip at 10M steps, except on HumanoidStandup task.
It is also worth noting that GAC experiences a performance drop on the Humanoid task with σ = 0.3,
which highlights a known limitation of GAC discussed in Section 4.4.

An additional set of image-based experiments is provided in Appendix F.2, where the true state serves
as privileged information and only images are available as observations.

4.2 MEMORY TASKS IN POPGYM

In this subsection, we evaluate GAC on a suite of memory-intensive tasks from the POPGym
benchmark. These experiments are designed to assess the ability of GAC to train effective memory-
based models in both the actor and critic networks—an essential capability for POMDPs, where
agents must leverage historical information for decision-making. The selected tasks include various
card and board games that require extracting relevant patterns from observation histories. Privileged
information in this setting is constructed as a summarized recorder of the observation history; further
implementation details can be found in Appendix F.

Figure 2 reports performance across 15 POPGym tasks, comparing GAC to asymmetric SAC and
standard SAC. As shown, GAC consistently demonstrates superior sample efficiency across most
tasks, with the exception of a few particularly challenging ones where all methods struggle. GAC’s
advantage stems from its formulation, where the partially observable learner is directly supervised by
the privileged guider, enabling more effective training in environments with long-term dependencies.
In contrast, asymmetric SAC does not outperform standard SAC as significantly as it does in Brax,
likely due to the limited utility of privileged value functions in memory-based settings. This highlights
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Figure 2: Performance comparison of GAC, SAC-asym, SAC on POPGym.

a key limitation of privileged value learning: since it only provides indirect supervision via the RL
objective, it may be less effective than the direct guidance offered by a privileged policy. Additionally,
GAC’s success is partly attributed to the tight alignment between the guider and learner, avoiding the
sub-optimality that can arise when the expert policy is too optimal (see Section 4.4).

4.3 CONTINUOUS CONTROL TASKS IN HUMANOIDBENCH

HumanoidBench is a high-dimensional simulated robotics benchmark featuring a humanoid robot
equipped with dexterous hands, supporting a variety of challenging whole-body manipulation and
locomotion tasks (Sferrazza et al., 2024).

We evaluate the algorithms on 8 manipulation tasks, where we retain all standard observations and
additionally provide tactile feedback as privileged information during training, allowing us to evaluate
how well algorithms can exploit such information. We also include 8 locomotion tasks. Since these
are similar to the Brax setting, we report their results in Appendix F.2.
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Figure 3: Performance comparison of GAC, SAC-asym, SAC_w_tact and SAC_wo_tact on manipu-
lation tasks of HumanoidBench.

Figure 3 presents the performance of four algorithms on various manipulation tasks. Here,
SAC_w_tact denotes SAC with tactile information available during both training and evaluation,
while SAC_wo_tact refers to SAC trained and evaluated without any tactile input. These base-
lines serve to evaluate the contribution of tactile sensing to task performance. As illustrated in
the figure, SAC_w_tact generally outperforms SAC_wo_tact across most tasks—except for basket-
ball—underscoring the importance of tactile input for manipulation. Interestingly, in tasks such as
bookshelf_hard and spoon, both GAC and asymmetric SAC—where tactile information is used only
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during training—surpass the performance of SAC_w_tact. We hypothesize that this is due to the high
dimensionality of the tactile data (over 103), which far exceeds that of the standard observation space
(typically around 102). While tactile input is rich and informative, its complexity may hinder effective
learning when used directly. Overall, GAC achieves substantial performance gains in scenarios where
privileged information is available, demonstrating the potential of leveraging such information during
training to enhance sample efficiency and policy effectiveness.

4.4 DISCUSSION
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Figure 4: Performance comparison between the guider and
learner in GAC (left). KL divergence between them (right).

In this subsection, we discuss the lim-
itations of GAC. In the Humanoid
tasks with a high noise scale (σ =
0.3), we observe that GAC’s perfor-
mance unexpectedly deteriorates, de-
spite strong results under lower noise
levels. This degradation is illustrated
in Figure 4, where the KL diver-
gence between the guider and learner
fails to converge to the desired value
(10−3). The underlying reason is that
the regularization coefficient α must
be bounded to prevent it from becom-
ing excessively large and causing nu-
merical instability. As a result, the ability to minimize the KL divergence is inherently limited.
Nevertheless, we emphasize that such worst-case outcomes are rare. In our experiments, this issue
appeared in only a single task, suggesting that while the limitation is genuine, it does not generally
compromise the effectiveness of GAC. Addressing this challenge is left as an avenue for future work.
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Figure 5: Performance of GAC with different target KL.

Another factor is the choice of the tar-
get KL divergence, which may influ-
ence GAC’s performance. As shown
in Figure 5, setting the target KL
too high leads to an overly dominant
guider that provides limited action-
able feedback to the learner. Con-
versely, setting it too low results in an
overly conservative guider that offers
minimal advantage over the learner,
thereby failing to guide effectively.
Fortunately, GAC is generally robust
as long as the target KL is selected
appropriately—for example, within the range [0.001, 0.1]. A practical heuristic is to tailor the target
KL based on the degree of privileged information: the more privileged the information, the smaller
the target KL should be. For instance, in the Brax domain, we adopt smaller target KL values
for environments with higher noise levels (see Table 3). Similarly, in HumanoidBench, we use
smaller target KLs for manipulation tasks (Table 6), where tactile sensing provides highly privileged
observations.

5 CONCLUSION

We propose Guided Actor-Critic (GAC), an off-policy RL algorithm that leverages the strengths
of both privileged policy learning and privileged value learning, while mitigating their respective
limitations to achieve sample-efficient training. Our theoretical analysis introduces guided policy
iteration, which we prove converges to the optimal policy. Based on this foundation, we derive the
GAC algorithm and demonstrate empirically that it outperforms state-of-the-art methods in both
privileged policy and value learning. These results highlight the potential of the guided RL framework
for effectively exploiting privileged information in POMDPs.
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THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs are used to polish the paper writing.

A RELATED WORKS

Guided Policy Search (GPS). Guided Policy Search is a family of algorithms initially proposed
by (Levine & Koltun, 2013b). Unlike direct policy search methods that optimize policy parame-
ters end-to-end, GPS introduces an intermediate policy—typically a time-varying linear-Gaussian
controller—learned via trajectory optimization. This controller then serves as a teacher for a param-
eterized neural network policy, which is trained through supervised learning. The GPS procedure
consists of two key phases:
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• Control Phase: A control policy interacts with the environment to minimize costs while
ensuring learnability by the neural network policy.

• Supervised Phase: The neural network policy is trained via supervised learning to imitate
the control policy.

In addition to the foundational works on GPS (Levine & Koltun, 2013a; Levine & Abbeel, 2014;?),
our formulation is closely related to the approach in (Montgomery & Levine, 2016), which employs
constrained LQR optimization for the control policies and supervised learning for the neural policy.
This setup inherits the monotonic improvement guarantee of mirror descent (Beck & Teboulle, 2003),
thereby ensuring consistent progress in policy performance. Over time, GPS has been extended
in several directions, including integration with path integral methods (Chebotar et al., 2017b),
combination with LQR techniques (Chebotar et al., 2017a), incorporation of memory models (Zhang
et al., 2016a), and hybridization with model predictive control (Zhang et al., 2016b).

Privileged Policy Learning. Privileged policy learning, also known as expert distillation or teacher-
student learning, refers to the paradigm where an expert policy—often with access to privileged
information—is used to guide the learning of a student policy. A basic approach involves first training
a privileged expert policy, followed by imitation learning techniques such as Behavioral Cloning (BC)
(Pomerleau, 1991; Torabi et al., 2018) or DAgger (Ross et al., 2011). However, this two-stage method
is often suboptimal, especially when the expert itself is suboptimal or when privileged information
leads to behavior that is difficult to imitate directly. To address these limitations, recent approaches
in policy distillation combine expert supervision with RL, jointly optimizing a composite objective
that balances expert guidance and task reward (Schmitt et al., 2018; Czarnecki et al., 2018; 2019).
For example, (Nguyen et al., 2022) integrate expert supervision into SAC (Haarnoja et al., 2018)
by replacing the entropy term with a divergence between the student and expert policies. (Weihs
et al., 2021) propose a dynamic mechanism that adjusts the balance between BC and RL based on
the student’s ability to imitate the expert. (Walsman et al., 2023) employ potential-based reward
shaping (Ng et al., 1999) using the expert’s value function to steer policy gradients. (Shenfeld et al.,
2023b) augment the entropy term in SAC to blend expert guidance with task rewards, modulating the
trade-off based on the student’s relative performance.

While these methods can be applied to POMDPs with privileged information, most do not explicitly
address the expert’s training process, assuming instead that a high-quality expert is readily available.
However, it has been shown that directly training a privileged expert without considering the student’s
limitations can lead to suboptimal outcomes for the student policy (Cai et al., 2024). Therefore,
relying on such methods without carefully designing the expert or accounting for the cost of expert
training may not yield the best results—particularly in settings where expert training is expensive or
constrained.

Privileged Value Learning. Privileged value learning, also known as asymmetric actor-critic,
leverages privileged information in the value function (or Q-function) during policy evaluation, while
the policy itself operates under partial observations. This approach can be naturally extended from
standard RL algorithms such as DQN (Mnih et al., 2015), PPO (Schulman et al., 2017), DDPG
(Lillicrap et al., 2019), and SAC (Haarnoja et al., 2018). For instance, (Baisero et al., 2022) propose a
model-based asymmetric policy iteration framework, later relaxed into a model-free variant based on
DQN. (Andrychowicz et al., 2020) employ asymmetric PPO to learn dexterous in-hand manipulation
policies that perform vision-based object reorientation using a physical Shadow Dexterous Hand.
(Pinto et al., 2018) introduce asymmetric DDPG for image-based robotic control, where the critic
has access to full state information while the actor learns from images alone. Similarly, (Killing
et al., 2021) apply asymmetric SAC to address high-conflict scenarios in autonomous driving. In
addition, privileged value learning is also widely adopted in cooperative multi-agent RL (Foerster
et al., 2018; Lowe et al., 2017; Rashid et al., 2020; Yu et al., 2022) under the centralized training with
decentralized execution (CTDE) paradigm (Oliehoek et al., 2008; Kraemer & Banerjee, 2016), where
each agent must act based on its local observation and action history, while the critic can access
global (privileged) information during training.

Compared to privileged policy learning, privileged value learning avoids issues related to the subopti-
mality and does not incur the cost of training a separate expert policy. However, since supervision
is provided indirectly through the RL objective, it may be less sample-efficient than methods that
leverage direct expert supervision.
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Privileged representation learning. This line of work attempts to reconstruct latent representations
of privileged information from partial observations. This is common in vision-based robotic tasks,
for example, Sermanet et al. (2018); Seo et al. (2023) use multi-view setups (e.g., image-based
manipulation with additional camera views) to learn more informative embeddings. Others (Lee et al.,
2020; Salter et al., 2021; Kumar et al., 2021; Qi et al., 2023) leverage privileged simulator states
during training and design policies that operate on both observed and inferred states. Such methods
typically require careful architectural design, domain knowledge, and feature engineering, or rely
on favorable structural properties of the POMDP (e.g., decodability (Efroni et al., 2022)). While
effective in certain applications, these methods often lack generality across broader POMDP settings.

Co-training methods. Co-training methods (Chang et al., 2015; Tangkaratt et al., 2021; Song et al.,
2018; Yang et al., 2024) can be seen as an extension of privileged policy learning, where the teacher
and student policies are trained simultaneously rather than separately. This joint training paradigm
is particularly well-suited for POMDPs with privileged information, as it avoids the extra cost of
pretraining the teacher and may potentially mitigate the suboptimality issues commonly associated
with privileged policy learning. Co-training typically relies on shared experience or regularization
between the teacher and student, enabling more synergistic learning. Several works have explored
co-training in this context. For example, (Haklidir & Temeltaş, 2021) and (Salter et al., 2021) propose
training two RL agents (using SAC and DDPG, respectively), where one has full observability and the
other operates asymmetrically; the two agents alternate in collecting experiences and are optimized
jointly. (Warrington et al., 2020) introduces adaptive asymmetric DAgger, where the expert is trained
via RL and the student learns by imitation; a mixture of the two policies is used during data collection,
following the DAgger framework. (Wu et al., 2025) co-trains a privileged teacher using PPO and a
partially observable student through imitation, with both policies alternating their interaction with the
environment.

However, many existing co-training approaches are empirical in nature and not explicitly designed to
address the suboptimality induced by privileged policy learning. Recently, (Li & Xie, 2025) proposed
Guided Policy Optimization (GPO), which combines the strengths of both privileged policy and
value learning. GPO offers the same theoretical performance guarantees as privileged value learning
while benefiting from the supervised structure of privileged policy learning. GPO follows a four-step
iterative procedure:

• Data Collection: Collect trajectories by executing the guider’s policy, denoted as µ(k).

• Guider Training: Update the guider µ(k) to µ̂(k) according to RL objective Vµ(k) .

• Learner Training: Update the learner to π(k+1) by minimizing the distance D(π, µ̂(k)).

• Guider Backtracking: Set µ(k+1)(·|s) = π(k+1)(·|o) for all states s before the next
iteration.

The final step—guider backtracking—is the key distinction from prior co-training methods, ensuring
the monotonic policy improvement property of GPO. Compared to our method GAC, both GPO and
GAC can be interpreted within the broader framework of policy mirror descent (Beck & Teboulle,
2003; Tomar et al., 2020), where the guider acts as an intermediate step in the learner’s policy update.

B TIGERDOOR EXAMPLE

Table 1: TigerDoor problem

s
a

aL aR al

sL 1 0 −0.1
sR 0 1 −0.1

The classical TigerDoor problem (Littman et al., 1995) describes a scenario in which a tiger is hidden
behind one of two doors. The state space is S = {sL, sR}, where sL and sR correspond to the tiger
being behind the left or right door, respectively. The action space is A = {aL, aR, al}, where aL
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and aR represent opening the left and right doors, and al represents listening to determine the tiger’s
location. The payoff matrix is shown in Table 1.

Initially, the agent does not know the tiger’s location unless it takes the listen action al. The optimal
policy is to first choose al (listen) and then open the door that has the tiger, yielding a reward of 0.9
in expectation. However, if the agent has access to privileged information—such as the exact location
of the tiger—a teacher policy trained with this information will simply learn to open the correct door
directly. This becomes problematic when using such a teacher to supervise a student policy that lacks
access to the privileged information. The student may imitate the teacher by directly choosing a door
without learning to listen, leading to a suboptimal policy. This example illustrates a key limitation of
privileged policy learning: pretraining a teacher with access to privileged information can result in a
policy that is not only unhelpful but potentially harmful when used to guide a student that operates
under partial observability.

C PROOFS

Lemma C.1 (Guided Policy Evaluation). Consider the Bellman backup operator T µ,π and a
mapping Q0 : S ×A → R with |A| <∞, and define Qk+1 = T µ,πQk. Then the sequence Qk will
converge.

Proof. Define the KL divergence augmented reward as

rπ,µ(st, at) = r(st, at) + αDKL(µ(·|st)||π(·|ot)) (18)

and rewrite the update rule as

Qk+1(st, at) = rπ,µ(st, at) + γEst+1∼p,at+1∼π[Q
k(st+1, at+1)] (19)

and apply the standard convergence results for policy evaluation. The assumption
DKL(µ(·|st)||π(·|ot)) < ∞ is required to guarantee that the divergence augmented reward is
bounded.

Lemma C.2 (Guided Policy Improvement). Let πold ∈ Ππ, µold ∈ Πµ and πnew, µnew be the
optimizer of the minimization problem defined by equation 7 and equation 8. ThenQµnew,πnew(st, at) ≥
Qµold,πold(st, at) for all (st, at) ∈ S ×A.

Proof. Considering the definition of µnew in equation 7,

µnew(·|st) = arg min
µ∈Πµ

DKL

(
µ(·|st)

∥∥∥∥πold(·|ot) exp( 1
αQ

µold,πold(st, ·))
Z(st)

)
= arg min

µ∈Πµ

Jµold,πold(µ(·|st))
(20)

It must be the case that Jµold,πold(µnew(·|st)) ≤ Jµold,πold(µold(·|st)). Hence

Eat∼µnew

[
α log

µnew(at|st)
πold(at|ot)

−Qµold,πold(st, at)
]
≤ Eat∼µold

[
α log

µold(at|st)
πold(at|ot)

−Qµold,πold(st, at)
]
,

(21)
where the partition function Z(st) cancels.

Similarly, considering the definition of πnew in equation 7, we have

Eat∼µnew

[
log

µnew(at|st)
πnew(at|ot)

] ≤ Eat∼µnew

[
log

µnew(at|st)
πold(at|ot)

]. (22)

As a result,

Eat∼µnew

[
Qµold,πold(st, at)− α log

µnew(at|st)
πnew(at|ot)

]
≥ Eat∼µnew

[
Qµold,πold(st, at)− α log

µnew(at|st)
πold(at|ot)

]
≥ V µold,πold(st)

(23)
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Next, consider the Bellman equation:

Qµold,πold(st, at) = r(st, at) + γEst+1∼p[V
µold,πold(st)]

≤ r(st, at) + γEst+1∼p[Eat∼µnew

[
Qµold,πold(st+1, at+1)− α log

µnew(at+1|st+1)

πnew(at+1|ot+1)
]

...

≤ Qµnew,πnew(st, at)
(24)

Theorem C.3 (Guided Policy Iteration). Repeated application of guided policy evaluation (Lemma
3.1) and guided policy improvement (Lemma 3.2) from any µ ∈ Πµ and π ∈ Ππ converges to policy
µ∗ and π∗.

Proof. Let µi and πi be the policies at iteration i, By Lemma 3.2, the sequence Qµi,πi is monotoni-
cally increasing. Since Q is bounded above for µ ∈ Πµ and π ∈ Ππ (both the reward and entropy are
bounded), the sequence converges to some µ∗ and π∗.

Lemma C.4. Suppose Πµ is expressive enough that the KL divergence in equation 7 can be minimized
to zero. The policy improvement of learner policy π can be viewed as:

J(π) = Eat∼πold

[
exp(

1

α
Qµold,πold(st, at)) log π(at|ot)

]
, (25)

and finally the guider policy and learner policy will converge to the same optimal policy

π∗ = µ∗ = argmax
π∈Π

Eat∼π[Q∗(st, at)], (26)

where Q∗ is the optimal Q-function.

Proof. By assumption, we have

µnew(·|st) =
πold(·|ot) exp( 1

αQ
µold,πold(st, ·))

Z(st)
. (27)

Then, the update of the learner policy π will be

πnew = arg min
π∈Ππ

DKL
(
µnew(·|st)

∥∥π(·|ot))
= arg min

π∈Ππ

Eat∼µnew [− log π(at|ot)]

= arg max
π∈Ππ

Eat∼πold

[
exp(

1

α
Qµold,πold(st, at)) log π(at|ot)

]
,

(28)

where we drop the terms that unrelated to π.

Since the iteration converges to µ∗ and π∗, by defining

J(π) = Eat∼π
[
exp(

1

α
Qµ

∗,π∗
(st, at)) log π(at|ot)

]
, (29)

we know that J(π∗) ≥ J(π) for all π ∈ Π. Moreover, we can derive from equation 29 that π∗ is
deterministic when J(π) is maximized. Consequently, µ∗ is deterministic and identical to π∗ based
on equation 27.

Then, considering equation 20, we have

µ∗ = π∗ = arg min
µ∈Πµ

Jµ∗,π∗(µ) = argmax
π∈Π

Eat∼π[Q∗(st, at)]. (30)
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D RELATIONSHIP TO MPO

Maximum a posterior Policy Optimization (MPO) (Abdolmaleki et al., 2018) is an actor-critic
algorithm which employs KL-regularization in the policy optimization step. Specifically, the objective
of MPO can be written as

J(q, θ) = Eq
[ ∞∑
t=0

γt
[
rt − αDKL

(
q(a|st)||π(a|st, θ)

)]]
+ log p(θ), (31)

where q is an auxiliary distribution and p is a prior over policy parameters. If we drop the prior term
and regard q as the privileged guider µ, the objective is the same for GAC. Moreover, the actual
objective of MPO minimized by gradient descent takes the following form:

J(θ) = Es∼ρθ′
[
Ea∼πθ′

[
exp

(
1

η
Q(s, a)

)
log πθ(a|s)

]
− αDKL(πθ′(·|s)||πθ(·|s))

]
, (32)

which is also similar to the equation 10 in lemma 3.4. Although there are strong connections
between the formulation GAC and MPO, there are several key differences. First, GAC deals
with asymmetric observation, while MPO deals with regular MDPs. Second, MPO utilizes a non-
parametric representation of q, while GAC’s guider µ is explicitly parameterized. Third, MPO’s
behavioral policy is π while GAC’s is the guider µ, which allows to potentially collect better
trajectories. Last, in the policy evaluation step, MPO adopts standard off-policy evaluation, while
GAC’s is specialized for guided Q-value, which is similar to SAC.

E IMPLEMENTATION DETAILS

In this section, we present the implementation details of GAC. The pseudo code of our algorithm is
provided in Algorithm 1, where we utilize six trainable networks, one for guider policy, one for learner
policy, two Q-networks for guider and two Q-networks for learner. We utilize the guider to interact
with environment and collect corresponding experience in the replay buffer, and execute update
analogous to off-policy RL algorithm using the loss function defined in equation 12, equation 15,
equation 13, equation 16 and equation 17.

Both policy networks parameterize Gaussian actions by outputting a mean and a standard deviation;
actions are obtained by sampling from the Gaussian and applying a tanh transform. Since the learner
does not require active exploration at execution time, we share the standard-deviation parameter
between guider and learner and stop gradients through the shared std when computing the KL-
divergence; only the means are updated by the KL loss. For guider exploration we use the same
entropy regularization scheme and target entropy as SAC. Additional low-level implementation
details (network architectures, optimizer hyperparameters, seed handling) will be provided in the
code release.

F EXPERIMENTAL SETTINGS

F.1 HYPERPARAMETERS

The hyperparameters used in the experiments from Section 4.1, 4.2, and 4.3 are listed in Table 2,
Table 4, and Table 5, respectively. All SAC-based methods share the same set of core hyperparameters.
For GAC, the only additional hyperparameter is the target KL divergence, which is selected from
a predefined set. The specific target KL values for each task are detailed in Table 3 and Table 6.
The heuristic for selecting the target KL is based on the asymmetry between the guider and learner
observations When the privileged observation is substantially different from the partial observation
(e.g., Brax tasks with high noise levels, or manipulation tasks in HumanoidBench), a smaller target
KL is preferred. When the privileged observation can be partially inferred from the partial observation
(e.g., tasks in POPGym), a larger target KL is appropriate.

F.2 ADDITIONAL RESULTS

We provide the results of GAC, SAC-asym and DreamerV3 on 8 locomotion tasks in Figure 7. The
partial observation is similar to Brax domain, where the velocity information of all joints is treated
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Algorithm 1: Guided Actor-Critic
Input: θ1, θ2, ϕ, ψ, φ1, φ2 ; // Initial parameters
θ̄1 ← θ1, θ̄2 ← θ2, φ̄1 ← φ1, φ̄2 ← φ2 ; // Initialize target network
D ← ∅ ; // Initialize replay buffer
for each iteration do

for each environment step do
at ∼ µϕ(at|st) ; // Sample action from guider
st+1 ∼ p(st+1|st,at) ; // Sample transition
D ← D ∪ {(st,at, rt, st+1)} ; // Store transition

end
for each gradient step do

for i ∈ {1, 2} do
θi ← θi − λQ∇̂θiJQ(θi) ; // Update Q-function through
equation 12

φi ← φi − λQ∇̂φi
JQ(φi) ; // Update Q-function through

equation 15
end
ϕ← ϕ− λµ∇̂ϕJµ(ϕ) ; // Update guider policy through
equation 13

ψ ← ψ − λπ∇̂ψJπ(ψ) ; // Update learner policy through
equation 16

α← α− λα∇̂αJ(α) ; // Adjust temperature through equation 17
for i ∈ {1, 2} do

θ̄i ← τθi + (1− τ)θ̄i ; // Update target network
φ̄i ← τφi + (1− τ)φ̄i ; // Update target network

end
end

end
Output: θ1, θ2, ϕ, ψ, φ1, φ2 ; // Optimized parameters

Table 2: Hyperparameters of GAC and SAC in Brax.

Parameter Value
optimizer Adam

learning_rate 3e-4
number_of_environments 128

number_of_timesteps 2e6
episode_length 1000

replay_buffer_size 1e6
discount (γ) 0.99

grad_update_per_step 0.5
target_smoothing_coefficient 0.005

maximum_gradient_norm 1
batch_size 512

actor_hidden_layers [256, 256]
critic_hidden_layers [256, 256]

activation SiLU
target_entropy −0.5 ∗ |A|

target_kl [0.01,0.005,0.001]

as privileged information and removed from the agent’s observation. Frame stacking is not adopted
since we tried and found no significant performance difference. We observe that GAC consistently
outperforms asymmetric SAC, highlighting its superior ability to leverage privileged information in
complex, high-dimensional continuous control settings. Although DreamerV3 sometimes achieves
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Table 3: GAC Environment Specific Parameters in Brax.

Environment target_kl [σ = 0, σ = 0.1, σ = 0.2, σ = 0.3]
Ant [0.01, 0.005, 0.005, 0.001]

HalfCheetah [0.01, 0.005, 0.001, 0.001]
Humanoid [0.005, 0.001, 0.001, 0.001]

HumanoidStandup [0.005, 0.005, 0.001, 0.001]
InvertedDoublePendulum [0.001, 0.001, 0.001, 0.001]

Table 4: Hyperparameters of GAC and SAC in POPGym.

Parameter Value
optimizer Adam

learning_rate 3e-4
number_of_environments 1

number_of_timesteps 1e7
replay_buffer_size 1e6

discount (γ) 0.99
grad_update_per_step 1 / number_of_environments

batch_size 32 * episode_length
actor_hidden_layers [256, 256, 256(GRU), 256]
critic_hidden_layers [256, 256, 256(GRU), 256]

activation SiLU
target_entropy −0.9 ∗ log(1/|A|)

target_kl 0.05

higher performance, it is a model-based approach and thus considerably more computationally
demanding and slower than model-free methods.

We also report results of GAC and SAC-asym on six MuJoCo tasks in Figure 8. In this setting, the
agent receives only image observations, while the privileged information corresponds to the robot’s
true state. This mirrors common real-world scenarios where only camera inputs are available to
capture robot locomotion. Again, GAC outperforms asymmetric SAC, demonstrating the generality
of our approach across different observation modalities.

F.3 ADDITIONAL ABLATIONS

This subsection presents additional ablation studies for GAC. Recall that we use separate Q-functions
for the guider and the learner, denoted as Qθ and Qφ, respectively. To examine the impact of this
design choice, we evaluate a variant where the learner directly uses the guider’s Q-function Qθ,
referred to as GAC_share. We also assess the importance of the auxiliary RL loss for the learner by
removing it—i.e., using Equation 14 instead of Equation 16—a variant we denote as GAC_wo_Q. As
shown in Figure 6, GAC achieves better performance with both the auxiliary RL loss and separate
Q-functions. While GAC_share performs comparably in most cases and outperforms GAC_wo_Q,
the results suggest that the auxiliary RL loss significantly benefits learner training. Moreover, using
a distinct Q-function for the learner provides a more accurate value estimation, since the guider’s
Q-function is biased from the learner’s perspective.

F.4 ENVIRONMENT DESCRIPTIONS

We provide a brief overview of the environments used and the pre-defined privileged information.

Brax (Freeman et al., 2021). Brax is an open source library for rigid body simulation with a focus
on performance and parallelism on accelerators, written in JAX (Bradbury et al., 2018). The task in
Brax contains a series of OpenAI gym-style MuJoCo-like tasks. We choose the Ant, HalfCheetah,
Humanoid, HumanoidStandup and InvertedDoublePendulum. The privileged information is defined
as the velocity and angular velocity of all joints, the dimension of the observation is described in
Table 7
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Table 5: Hyperparameters of GAC and SAC in HumanoidBench.

Parameter Value
optimizer Adam

learning_rate 3e-4
number_of_environments 128

number_of_timesteps 2e6
episode_length 1000

replay_buffer_size 1e6
discount (γ) 0.99

grad_update_per_step 1
target_smoothing_coefficient 0.005

maximum_gradient_norm 1
batch_size 64

actor_hidden_layers [256, 256]
critic_hidden_layers [256, 256]

activation ReLU
target_entropy −0.5 ∗ |A|

target_kl (locomotion) [0.02,0.01,0.005]
target_kl (manipulation) [0.01,0.001,0.0001]

Table 6: GAC Environment Specific Parameters in HumanoidBench.

Environment target_kl
h1-basketball-v0 0.005

h1-crawl-v0 0.02
h1-highbar_simple-v0 0.005

h1-hurdle-v0 0.01
h1-maze-v0 0.01
h1-pole-v0 0.01
h1-slide-v0 0.02
h1-walk-v0 0.01

h1touch-basketball-v0 0.01
h1touch-bookshelf_hard-v0 0.0001

h1touch-bookshelf_simple-v0 0.0001
h1touch-insert_normal-v0 0.0001
h1touch-insert_small-v0 0.001

h1touch-room-v0 0.01
h1touch-spoon-v0 0.0001

h1touch-window-v0 0.001

POPGym (Morad et al., 2023). POPGym contains a diverse collection of partially observable
environments, where we choose some card games and broad games. We provide a brief description
of the task and privileged information below:

• Autoencode: During the WATCH phase, a deck of cards is shuffled and played in sequence
to the agent with the watch indicator set. The watch indicator is unset at the last card in the
sequence, where the agent must then output the sequence of cards in order. The privileged
information is the exact card that should be output at each timestep.

• Battleship: A partially observable version of Battleship game, where the agent has no
access to the board and must derive its own internal representation. Observations contain
either HIT or MISS and the position of the last salvo fired. The privileged information is a
recorder that tracks all previous actions taken by the agent.

• Concentration: A deck of cards is shuffled and spread out face down. The player flips
two cards at a time face up, receiving a reward if the flipped cards match. The privileged
information is a recorder that tracks all previous flipped cards.
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Figure 6: Ablation study of GAC on Brax.
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Figure 7: Performance comparison of GAC, SAC-asym and DreamerV3 on locomotion tasks in
HumanoidBench.

• MineSweeper: The computer game MineSweeper, but the agent does not have access to
the board. Each observation contains the position and number of adjacent mines to the
last square “clicked” by the agent. The privileged information is a recorder that tracks all
previous observations.

• Repeat Previous: At the first timestep, the agent receives one of four values and a remember
indicator. Then it randomly receives one of the four values at each successive timestep
without the remember indicator. The agent is rewarded for outputting the observation from
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Figure 8: Performance comparison of GAC and SAC-asym on image-based tasks in MuJoCo.

Table 7: Observation space data for the tasks chosen in Brax.

Task Original obs_dim Partial obs_dim Privileged obs_dim
Ant 27 13 14

HalfCheetah 17 8 9
Humanoid 244 155 89

HumanoidStandup 244 155 89
InvertedDoublePendulum 8 5 3

some constant k timesteps ago. The privileged information is the exact value that should be
output at each timestep.

HumanoidBench (Sferrazza et al., 2024). HumanoidBench is a high-dimensional simulated robotics
benchmark featuring a humanoid robot equipped with dexterous hands, supporting a variety of
challenging whole-body manipulation and locomotion tasks. For the locomotion tasks, the privi-
leged information is defined as the velocity and angular velocity of all joints and objects. For the
manipulation tasks, the privileged information is defined as the tactile feedback.

Table 8: Observation space data for the tasks chosen in HumanoidBench.

Task Original obs_dim Partial obs_dim Privileged obs_dim
h1-basketball-v0 64 33 31

h1-crawl-v0 51 26 25
h1-highbar_simple-v0 51 26 25

h1-hurdle-v0 51 26 25
h1-maze-v0 51 26 25
h1-pole-v0 51 26 25
h1-slide-v0 51 26 25
h1-walk-v0 51 26 25

h1touch-basketball-v0 164 164 1344
h1touch-bookshelf_hard-v0 308 308 1344

h1touch-bookshelf_simple-v0 308 308 1344
h1touch-insert_normal-v0 190 190 1344
h1touch-insert_small-v0 164 164 1344

h1touch-room-v0 229 229 1344
h1touch-spoon-v0 167 167 1344

h1touch-window-v0 171 171 1344
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