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ABSTRACT

Large Language Models (LLMs) promise impressive capabilities, yet their multi-
billion-parameter scale makes on-device or low-resource deployment prohibitive.
Mixed-precision quantization offers a compelling solution, but existing methods
struggle when the average precision drops below four bits, as they rely on iso-
lated, layer-specific metrics that overlook critical inter-layer interactions affecting
overall performance. In this paper, we propose two innovations to address these
limitations. First, we frame the mixed-precision quantization problem as a coop-
erative game among layers and introduce Shapley-based Progressive Quantization
Estimation (SPQE) to efficiently obtain accurate Shapley estimates of layer sen-
sitivities and inter-layer interactions. Second, building upon SPQE, we propose
Interaction-aware Mixed-Precision Quantization (IMPQ), which translates these
Shapley estimates into a binary quadratic optimization formulation, assigning ei-
ther 2- or 4-bit precision to layers under strict memory constraints. Comprehen-
sive experiments conducted on Llama-3, Gemma-2, and Qwen-3 models across
three independent PTQ backends (Quanto, HQQ, GPTQ) demonstrate IMPQ’s
scalability and consistently superior performance compared to methods relying
solely on isolated metrics. Across average precisions spanning 4 bits down to 2
bits, IMPQ cuts Perplexity by 20 – 80 % relative to the best baseline, with the
margin growing as the bit-width tightens.

1 INTRODUCTION

LLMs have shown impressive performance across various NLP tasks, including text generation,
reasoning, and question answering (OpenAI et al., 2024; Touvron et al., 2023). However, their
effectiveness is closely tied to increasing model scales, now often reaching hundreds of billions
or trillions of parameters (Brown et al., 2020). This massive size creates significant memory and
computational demands, limiting deployment on resource-constrained devices such as mobiles, edge
sensors, or standard GPUs.

Quantization effectively compresses LLMs to reduce these deployment challenges. Among quan-
tization techniques, Post-Training Quantization (PTQ) is particularly useful, compressing models
and accelerating inference without costly retraining (Yao et al., 2024). Early PTQ approaches uni-
formly applied bit-widths to model weights and activations (Jacob et al., 2017). Techniques like
SmoothQuant improved uniform quantization by smoothing activation outliers (Xiao et al., 2024),
yet uniform quantization does not fully exploit layer-specific precision requirements in LLMs.
Mixed-precision PTQ addresses layer heterogeneity by assigning different bit-widths across model
layers. For example, critical layer weights might remain at 4 bits, while less sensitive layers use 2
bits, substantially reducing model size without retraining (Dettmers et al., 2023; Frantar et al., 2023;
Lin et al., 2024). Existing mixed-precision schemes typically determine bit allocation using isolated
metrics such as weight distributions, cosine similarity, activation sensitivity, or layer-specific scores
(Dumitru et al., 2024b; Li et al., 2023a; Sarhaddi et al., 2025; Hu et al., 2024). Some approaches
consider second-order information such as Hessians (Dong et al., 2019), but calculating Hessians for
large LLMs remains computationally challenging. While beneficial, these methods often overlook
how quantization errors propagate through the network, potentially misallocating high-precision re-
sources and impairing overall effectiveness.
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To overcome limitations associated with conventional layer-wise heuristics in mixed-precision quan-
tization, we frame this problem as a cooperative game among LLM layers and leverage Shapley
value analysis (Shapley, 1953; Ghorbani & Zou, 2020) to evaluate each layer’s expected marginal
contribution under quantization-induced interactions. Specifically, we define the game’s payoff as
the change in per-token negative log-likelihood resulting from quantization. Direct computation of
Shapley values is computationally prohibitive for LLMs; hence, we employ Monte-Carlo permuta-
tion sampling for efficient approximation.

Unlike prior interpretability approaches that measure layer contributions by complete pruning—an
approach known to severely degrade performance and result in unreliable, high-variance Shapley
estimates (Zhang et al., 2024)—we propose Shapley-based Progressive Quantization Estimation
(SPQE). SPQE uniformly quantizes the model to a moderate baseline precision and then progres-
sively reduces the precision of each layer to a lower precision within each Monte-Carlo sampled
permutation. This progressive strategy maintains model stability, allowing incremental rather than
catastrophic performance degradation. Consequently, our approach yields accurate and low-variance
Shapley estimates.

Building upon these Shapley estimates from SPQE, we introduce Interaction-aware Mixed-
Precision Quantization (IMPQ), a novel framework for optimal precision assignment. IMPQ con-
verts inferred layer sensitivities and inter-layer interactions into a quadratic surrogate model that
predicts the loss increase resulting from assigning either 2-bit or 4-bit precision to individual layers.
Minimizing this surrogate under predefined memory constraints yields a binary quadratic optimiza-
tion problem, where each binary variable determines the bit-width assigned to a specific layer. To
efficiently solve this problem, we linearize the quadratic objective into a Mixed-Integer Linear Pro-
gram (MILP), enabling standard optimization solvers to obtain globally optimal bit assignments.

Our contributions are:

• We propose SPQE, an efficient method leveraging cooperative game theory and progressive
quantization to accurately estimate layer sensitivities and inter-layer interactions in mixed-
precision quantization.

• We introduce IMPQ, a novel optimization framework that translates these layer sensitivity
estimates into optimal bit-width assignments via MILP.

• We conduct comprehensive ablation analyses examining how the number of permutations
sampled in SPQE and the inclusion of inter-layer interaction terms impact quantization
performance, providing critical insights for practical implementation.

Extensive evaluations on widely adopted models—including Llama-3, Gemma-2, and Qwen-
3—across three independent PTQ frameworks (Quanto, HQQ, GPTQ) demonstrate that IMPQ
consistently achieves superior performance compared to conventional methods relying on isolated,
layer-specific metrics for mixed-precision quantization at equivalent memory budgets.

2 RELATED WORKS

2.1 MIXED-PRECISION QUANTIZATION AND LAYER SENSITIVITY.

Quantization methods for LLMs aim to reduce computational and memory overhead by representing
parameters at lower precision, typically ranging from 2 to 8 bits Choi et al. (2018); Hubara et al.
(2021); Yao et al. (2022); Park et al. (2022); Gholami et al. (2022); Xi et al. (2023). Post-Training
Quantization (PTQ) is particularly appealing due to its efficiency, as it quantizes pre-trained models
without requiring retraining. PTQ techniques include static quantization, which uses calibration
datasets, and dynamic quantization, where scales are computed on-the-fly during inference Banner
et al. (2019); Zhu et al. (2023).

Recent research explores mixed-precision quantization strategies, assigning varying bit-widths
across layers based on their sensitivity. For instance, LLM-MQ Li et al. (2023b) employs gradient-
based sensitivity analysis, while TinyAgent Chen et al. (2024a) integrates TrimLLM (Hu et al.,
2024) and AWQ (Lin et al., 2024) with selective layer freezing to maintain accuracy. Methods
like ResQ Saxena et al. (2024) and CMPQ Chen et al. (2024b) enhance mixed-precision quan-
tization using low-rank residuals and channel-wise statistics, improving overall performance and
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hardware efficiency. Additionally, HAWQ Dong et al. (2019) leverages Hessian-based sensitivity
analysis, surpassing simpler sensitivity metrics. Dumitru et al. Dumitru et al. (2024b) propose
meta-layerwise quantization strategies, employing explicit metrics such as Layer Input Modifica-
tion and Z-score Distribution to allocate bit-width flexibly under memory constraints, effectively
complementing techniques like GPTQ Frantar et al. (2023) and Quanto Quanto (2024).

2.2 SHAPLEY-BASED LAYER IMPORTANCE

Existing quantization methods typically assess layers sensitivities independently using heuristics
like norm-based metrics or Hessian approximations, neglecting inter-layer dependencies. Recent
research integrates cooperative game theory, specifically Shapley values Shapley (1953), to quantify
layer importance based on marginal contributions across various subsets. For example, Neuron
Shapley (Ghorbani & Zou, 2020) uses Monte Carlo sampling to estimate how individual neurons
contribute to a network’s performance, and finds that removing neurons with the highest Shapley
values severely degrades accuracy.

For LLMs, previous research has effectively applied Shapley value analysis to identify critical lay-
ers influencing model Perplexity (Zhang et al., 2024). These studies primarily utilized Shapley
values for structured pruning, demonstrating improved pruning efficacy and model interpretability
compared to simpler heuristic methods (Sun et al., 2025; Adamczewski et al., 2024a;b). However,
these approaches rely heavily on layer pruning strategies, significantly limiting their application to
post-training quantization. Specifically, pruning leads to rapid performance degradation, causing
high variance in Shapley value estimates and restricting the number of layers that can be effectively
analyzed for interactions.

In contrast, our approach, SPQE, addresses this limitation by introducing the first practical applica-
tion of Shapley value analysis tailored specifically for post-training mixed-precision quantization.
By replacing abrupt layer pruning with progressive quantization, we ensure gradual performance
changes, resulting in lower variance Shapley estimates and allowing for more extensive considera-
tion of inter-layer interactions.

3 METHODS

3.1 THE SHAPLEY-BASED PROGRESSIVE QUANTIZATION ESTIMATION (SPQE)

In this work, we propose the Shapley-based Progressive Quantization Estimation (SPQE), a progres-
sive quantization scheme designed within a Shapley value framework to evaluate Transformer layer
importance for LLMs. Traditional pruning methods and direct quantization from full precision typi-
cally degrade model performance significantly and introduce high variance in Shapley estimates. In
contrast, SPQE maintains model stability, enabling accurate and low-variance Shapley value assess-
ments. Each Transformer layer acts as a “player” in a cooperative game, where quantization from
high to low precision represents the explicit ”removal” of a player.

Shapley values, grounded in cooperative game theory, provide a principled way to quantify each
player’s contribution to a team effort by averaging their marginal contributions across all possible
coalitions (Shapley, 1953). Formally, for a set of n players with value function v(·), the Shapley
value ϕi for player i is defined as the average payoff difference when i joins a coalition S that does
not include i:

ϕi =
∑

S⊆N\{i}

|S|!(n− |S| − 1)!

n!

(
v(S ∪ {i})− v(S)

)
(1)

we represent an LLM as an ordered set T = {1, 2, . . . , L} of layers. For a subset S ⊆ T of
layers, we define S as a set of layers with high precision while others are quantized to low precision.
Specifically, for a layer t ∈ T , its precision bt is determined by:

bt =

{
bhigh if t ∈ S

blow if t ∈ T \ S (2)

where bhigh and blow represent the high and low bit precisions (4- and 2-bit respectively). This
formulation allows us to systematically evaluate how different layer combinations affect model per-
formance under quantization.

3
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We use the average per-token negative log-likelihood (NLL) as pay-offs when estimating Shapley
values.

vNLL(S) = E(x,t)∼D
[
− log p

(
xt+1 | x≤t;S

)]
(3)

where D is the validation corpus.

To efficiently estimate Shapley values, we adopt Monte-Carlo permutation sampling. Specifically,
we sample M random permutations of the layers. For each permutation π = (π1, π2, . . . , πL),
which represents a random ordering of the layer indices {1, 2, . . . , L}, we start with uniformly
quantizing all layers in bhigh and progressively quantize a layer to blow according to the permutation
order. At each quantization step of quantizing layer πℓ, we denote the set of layers that remain at
bhigh by:

Sℓ+1 = {πℓ+1, . . . , πL} (4)

When quantizing layer ℓ from bhigh to blow, its marginal contribution to the model’s value function
is explicitly computed as the immediate change in the value function due to reducing this specific
layer’s precision:

∆vℓ = v(Sℓ)− v(Sℓ \ {πℓ}) = v(Sℓ)− v(Sℓ+1) (5)

After performing this calculation for all permutations and positions, we approximate the Shapley
value for layer i, denoted ϕ̂i, by averaging its marginal contributions across the M permutations:

ϕ̂i =
1

M

M∑
m=1

∆v
(m)
i (6)

This method effectively captures both individual layer sensitivity and inter-layer interactions under
progressive quantization.

3.2 INTERACTION-AWARE MIXED PRECISION QUANTIZATION (IMPQ)

Building upon SPQE, we now propose an extended approach explicitly designed for interaction-
aware mixed-precision quantization. Our goal is to optimally assign each Transformer layer either
2-bit or 4-bit precision by explicitly accounting for both individual layer sensitivities and cross-layer
interactions.

SECOND-ORDER TAYLOR ANALYSIS

Consider a Transformer with layers indexed by the ordered set T = {1, 2, . . . , L}. Quantizing layer i
introduces a perturbation ϵi to its weights, yielding perturbed weights W̃i = Wi+ϵi. The resulting
change in loss ∆L admits the second-order Taylor approximation

∆L ≈
L∑

i=1

g⊤i ϵi +

L∑
i=1

L∑
j=1

ϵ⊤i Hij ϵj (7)

where gi = ∇Wi
L captures linear sensitivity and Hij = ∇2

Wi,Wj
L captures pairwise interactions.

Empirically, both terms affect quantization-induced loss, underscoring the need to estimate them
explicitly.

FROM TAYLOR EXPANSION TO SHAPLEY-BASED APPROXIMATION

Direct evaluation of all gi and Hij is computationally infeasible for LLMs layers. Instead, we
leverage SPQE, which empirically estimates the marginal loss incurred when each layer is quantized
across M random permutations, producing empirical Shapley values ϕ̂i.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Specifically, we construct the covariance matrix C ∈ RM×L from empirical Shapley value devia-
tions, serving as a practical proxy for the Hessian interactions:

C =
1

M

(
∆vℓ − ϕ̂

)⊤(
∆vℓ − ϕ̂

)
, ϕ̂ = [ϕ̂1, . . . , ϕ̂L] (8)

Because finite sampling causes high variance in the off-diagonal terms of C, we therefore apply
diagonal shrinkage controlled by a hyperparameter α ∈ [0, 1]:

K = (1− α)C + α diag(C) (9)
where larger α suppresses noisy cross-layer interactions while smaller α preserves them.

Subsequently, we isolate individual first-order sensitivities ai by subtracting interaction contribu-
tions from empirical Shapley values:

ai = ϕ̂i −
∑
j ̸=i

Kij (10)

MIXED-INTEGER LINEAR PROGRAMMING FOR BIT ALLOCATION

Given the stabilized layer sensitivities a and interaction matrix K, we formulate the bit allocation as
a constrained quadratic optimization problem.

For each layer i, we introduce a binary decision variable qi ∈ {0, 1}, where qi = 1 indicates the
layer remains at low precision and qi = 0 means it is promoted to high precision. Our objective
is to minimize the approximated total loss increase induced by quantization, expressed through a
quadratic function involving both linear sensitivities and pairwise interactions:

∆L(q) = a⊤q+ q⊤Kq (11)
where q = (q1, · · · , qL).
To respect the memory constraints B given the byte cost ci for each layer to be promoted from lower-
bit to higher-bit, we impose a linear constraint limiting the number of layers maintained at high
precision. Putting these goals together, the resulting optimization is a binary quadratic programming
problem:

min
q∈{0,1}L

∆L(q) s.t.
L∑

i=1

ci(1− qi) ≤ B (12)

We solve this quadratic optimization by reformulating it into an equivalent Mixed-Integer Linear
Program. To linearize the quadratic term qiqj , we introduce auxiliary binary variables yij represent-
ing pairwise interactions, enforcing linear constraints:

yij ≥ qi + qj − 1, yij ≤ qi, yij ≤ qj , yij ∈ {0, 1} (13)
ensuring yij = 1 if and only if qi = qj = 1. This standard linearization transforms the quadratic
objective into a linear one in terms of q and auxiliary variables y, enabling efficient solution via
standard MILP solvers.

4 EXPERIMENTS

We evaluate IMPQ on three model families: Gemma-2 (2B, 9B) Team et al. (2024), Llama-3 (3.2B,
8B) Grattafiori et al. (2024), and Qwen3 (4B, 8B) Yang et al. (2025). Our evaluation focuses on
layerwise mixed-precision quantization, where we constrain the target model’s average bit-width
to a range between 2 and 4 bits. The diagonal shrinkage hyperparameter α is set to 0.5 across all
experiments.

To benchmark performance, we compare our method against three PTQ baselines: Quanto Quanto
(2024), HQQ Badri & Shaji (2023), and GPTQ Frantar et al. (2022). For Quanto and HQQ, we apply
a uniform scaling factor. This simple, calibration-free scaling allows for rapid quantization, though it
may result in worse quantization performance compared to the more time-consuming and resource-
intensive GPTQ method. We choose Quanto for our SPQE across all the models in our experiments
because it’s efficient in-place weight quantization and rapid layer processing are critical for the
efficiency of our estimation approach. Finally, we use SCIP Bolusani et al. (2024) as our MILP
solver. All experiments were conducted on a server with two NVIDIA A40 GPUs using a fixed seed
for reproducibility.
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4.1 EVALUATION CONFIGURATIONS

To evaluate our layer-wise quantization performance, we use Perplexity as our major evaluation
metric. Our evaluation framework uses different datasets for distinct purposes: Shapley value esti-
mation, and final performance assessment.

For Shapley value estimation purposes, we use the C4 dataset Raffel et al. (2020). We use the
training split of C4 for SPQE calibration and final bit allocation optimization, while the WikiText-2
validation split Merity et al. (2016) is used for the final quantization evaluation, providing unbiased
comparisons of language modeling performance across different quantization strategies.

Gemma-2-2B Gemma-2-9B Llama-3.2-3B

Llama-3.1-8B Qwen3-4B Qwen3-8B

Figure 1: Wikitext-2 Perplexity comparison of quantization methods across Gemma, Llama, Qwen
models on GPTQ.

We compare IMPQ against the following layer-wise mixed precision quantization methods:

• LLM-MQ Sensitivity Li et al. (2023a): Uses first-order Taylor approximations to measure
per-layer quantization sensitivity; assigns bit-widths to minimize performance loss.

• LIM (Layer Input Modification) Dumitru et al. (2024a): Scores layer importance via the
negative cosine similarity between input and output embeddings on a calibration set; larger
change suggests higher importance.

• ZD (Z-score Distribution) Dumitru et al. (2024a): Assesses importance by the proportion
of outlier weights in the target layer; no calibration data required. More outliers suggest
greater importance.

• Activation-based Scoring Kong et al.: Uses the Frobenius norm of layer activations; larger
norms suggest more critical layers.

4.2 RESULT ANALYSIS

Figure 1 and Table 1 illustrate comprehensive Perplexity comparisons across quantization methods
including Activation, Sensitivity, LIM, Z-Score, and IMPQ for multiple LLMs. The consistently su-
perior performance of IMPQ can be attributed to its effective integration of layer interaction effects
into the quantization process. Unlike baseline methods, which primarily assess layers in isolation,
IMPQ explicitly accounts for how quantization errors propagate through the network, thus signifi-
cantly reducing the overall Perplexity.

Performance across Quantization bit-widths. Across the models tested under GPTQ quantiza-
tion, IMPQ consistently delivers the lowest Perplexity values, with its advantages becoming more

6
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pronounced as bit precision decreases. In the lowest range of 2.01–2.5 bits, IMPQ achieves a Per-
plexity of 233.98 in Gemma-2B, representing a reduction of more than 79% and 81% relative to
Sensitivity at 1.12 × 103 and LIM at 1.25 × 103, respectively. Similar improvements are seen in
Gemma-2-9B, where IMPQ achieves 48.52 compared to Sensitivity’s 189.55 and LIM’s 214.03—re-
ductions of approximately 74% and 77%. As illustrated in Figure 1, this trend holds consistently
across the entire curve for Gemma-2-9B, where IMPQ maintains the lowest Perplexity across nearly
all bit-width, especially under more severe quantization constraints. Similarly, in Qwen3-4B, IMPQ
maintains a Perplexity of 697.28, substantially outperforming Sensitivity at 1.56 × 103 and LIM at
2.38×103 by margins of 55% and 71%. This further highlights IMPQ’s robustness under aggressive
quantization and its ability to scale effectively across architectures of varying scale and complexity.

As the bit budget increases, IMPQ continues to retain favorable Perplexity values with GPTQ quan-
tization. For example, at 2.5–3.0 bits, Llama-3.2-3B achieves a score of 73.11 with IMPQ, a 79%
reduction relative to Sensitivity’s 343.64. Similarly, Qwen3-8B records 82.74 with IMPQ compared
to Activation’s 101.55, reflecting a 19% improvement. Even in the highest precision range, 3.5–3.99
bits, IMPQ remains competitive. Llama-3.2-3B sees a Perplexity of 17.08, outperforming Z-Score’s
24.84 by 31%, and Qwen3-8B’s 19.03, slightly better than Activation’s 21.06. These results show
that IMPQ scales across diverse architectures and maintains low Perplexity under tighter bit con-
straints, as shown in Figure 1, by modeling inter-layer interactions effectively.

Model Bit Range GPTQ Quanto HQQ
Act. Sens. LIM ZD IMPQ Act. Sens. LIM ZD IMPQ Act. Sens. LIM ZD IMPQ

Gemma-2-2B

2.01–2.5 1.19 × 103 1.12 × 103 1.25 × 103 1.30 × 103 233.98 73.04 × 103 98.70 × 103 90.71 × 103 67.63 × 103 18.35 × 103 16.52 × 103 21.54 × 103 18.50 × 103 16.17 × 103 5.85 × 103

2.5–3.0 181.40 203.67 198.16 295.38 48.35 3.74 × 103 1.53 × 103 4.65 × 103 1.78 × 103 397.26 1.62 × 103 1.25 × 103 1.61 × 103 1.29 × 103 421.95

3.0–3.5 72.35 79.81 50.35 83.01 24.99 218.85 247.83 110.99 253.30 54.18 161.15 231.70 108.30 236.02 49.69

3.5–3.99 29.19 27.63 28.00 28.20 17.70 31.53 46.55 30.87 46.54 22.09 31.57 41.09 30.77 37.45 21.96

Gemma-2-9B

2.01–2.5 195.81 189.55 214.03 223.94 48.52 1.07 × 103 1.07 × 103 1.44 × 103 1.05 × 103 229.67 742.81 820.53 1.05 × 103 797.39 250.40

2.5–3.0 84.15 47.82 82.68 70.12 26.26 266.84 93.51 314.96 155.49 33.68 174.87 73.31 204.10 120.87 35.47

3.0–3.5 55.84 24.96 41.20 31.39 22.05 110.73 28.62 49.31 39.47 19.63 86.98 23.57 47.84 35.79 20.30

3.5–3.99 28.49 16.79 28.11 24.18 21.96 32.56 16.68 26.33 25.48 19.44 30.72 15.92 26.88 25.60 20.96

Llama-3.2-3B

2.01–2.5 1.41 × 103 1.81 × 103 1.34 × 103 1.48 × 103 362.59 24.05 × 103 13.15 × 103 30.98 × 103 20.00 × 103 10.20 × 103 10.89 × 103 5.92 × 103 11.44 × 103 8.76 × 103 5.02 × 103

2.5–3.0 185.60 343.64 164.43 334.56 73.11 643.87 791.20 729.46 1.12 × 103 378.42 360.72 493.52 370.54 643.17 133.79

3.0–3.5 61.44 70.75 58.08 55.64 33.90 67.24 79.57 63.59 72.84 38.86 51.11 59.38 45.34 50.02 31.31

3.5–3.99 23.63 25.56 24.61 24.84 17.08 23.99 25.99 23.67 24.04 17.43 22.12 23.25 21.48 21.74 16.05

Llama-3.1-8B

2.01–2.5 1.29 × 103 1.36 × 103 1.21 × 103 1.48 × 103 306.96 97.15 × 103 91.01 × 103 100.61 × 103 164.96 × 103 74.32 × 103 115.95 × 103 47.18 × 103 94.81 × 103 189.80 × 103 49.70 × 103

2.5–3.0 156.09 305.34 133.11 294.18 53.02 749.91 1.64 × 103 522.83 74.30 × 103 125.90 194.34 275.24 158.12 52.97 × 103 108.28

3.0–3.5 50.13 77.76 49.66 44.97 28.80 41.49 65.89 35.65 43.20 24.38 34.96 44.24 32.65 47.60 22.85

3.5–3.99 19.05 28.93 20.21 20.27 14.57 17.81 28.76 17.39 17.57 14.03 17.57 21.26 17.17 17.09 13.41

Qwen3-4B

2.01–2.5 1.75 × 103 1.56 × 103 2.38 × 103 2.22 × 103 697.28 412.37 × 103 548.73 × 103 257.78 × 103 928.68 × 103 127.86 × 103 105.06 × 103 116.57 × 103 103.93 × 103 182.17 × 103 53.58 × 103

2.5–3.0 180.44 408.11 322.61 687.04 157.65 116.54 × 103 42.63 × 103 20.72 × 103 1.21 × 106 4.96 × 103 18.40 × 103 30.55 × 103 24.17 × 103 44.38 × 103 10.82 × 103

3.0–3.5 90.69 94.18 86.38 152.59 54.01 2.07 × 103 2.14 × 103 1.05 × 103 14.42 × 103 417.44 313.47 9.28 × 103 401.89 3.56 × 103 134.40

3.5–3.99 32.52 38.26 46.05 43.82 26.42 122.50 240.26 97.68 577.45 49.10 51.39 1.74 × 103 57.13 254.76 32.07

Qwen3-8B

2.01–2.5 689.03 794.99 1.04 × 103 1.36 × 103 258.60 808.51 × 103 912.62 × 103 185.09 × 103 149.74 × 103 73.64 × 103 285.77 × 103 519.82 × 103 330.15 × 103 240.00 × 103 324.80 × 103

2.5–3.0 101.55 103.07 195.68 533.85 82.74 102.53 × 103 422.60 × 103 7.57 × 103 43.39 × 103 1.05 × 103 53.86 × 103 247.68 × 103 16.04 × 103 25.98 × 103 1.31 × 103

3.0–3.5 60.77 42.92 57.82 77.25 28.53 623.05 25.50 × 103 518.57 2.14 × 103 107.02 174.20 19.54 × 103 259.85 1.54 × 103 70.21

3.5–3.99 21.06 23.37 29.88 24.27 19.03 51.51 246.10 38.07 145.58 26.82 30.41 450.06 29.59 89.52 22.32

Table 1: Wikitext-2 Perplexity comparison across GPTQ, Quanto, and HQQ quantization baselines.

Performance across Quantization Methods. In addition to GPTQ, IMPQ consistently outper-
forms alternative baselines under both HQQ and Quanto quantization techniques. For instance,
when applying HQQ quantization to the Llama-3.1-8B model, IMPQ achieves an average Perplexity
improvement of 32.7% compared to the strongest baseline methods across all evaluated bit-widths.
Similarly, for the Gemma-2-9B model quantized using Quanto, IMPQ yields a substantial aver-
age Perplexity reduction of 52.3% relative to the best-performing baselines across all considered
bit-width.

Notably, these gains become even more pronounced at lower bit-width, consistent with the trend
observed under GPTQ. Specifically, when employing Quanto quantization on Gemma-2-9B at the
most constrained bit range (2.01–2.5 bits), IMPQ significantly reduces Perplexity by an average of
78.5% compared to the best baseline method (Sensitivity). Likewise, for the Llama-3.1-8B model
under HQQ quantization at similarly low bit-width (2.01–2.5 bits), IMPQ attains a 47.6% Perplexity
reduction over the LIM baseline. These results emphasize IMPQ’s robustness and effectiveness in
preserving model performance, particularly under aggressive quantization conditions.

However, the Sensitivity baseline underperforms on Llama and Qwen models under Quanto and
HQQ quantization due to its early selection of layers highly sensitive to quantization. This issue
arises from the layer-selection strategy rather than from the quantization methods themselves, as
confirmed by the better performance of other baselines.

Overall, these results clearly indicate IMPQ’s superior quantization performance. By explicitly
capturing these interactions, IMPQ efficiently mitigates accumulated quantization errors, yielding
significantly lower perplexities across various models and quantization precisions.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

5 ABLATION STUDY

We conduct a comprehensive ablation study to analyze the impact of key hyperparameters in our
SPQE framework, specifically examining how the number of Monte Carlo sampling affects quanti-
zation performance and layer importance estimation accuracy.

Sampling Avg PPL Rel. ∆ Avg (%) Rel. ∆ Geo. Mean (%)
10 19.78×103 NaN NaN
20 19.77×103 -0.04% -4.10%
30 19.49×103 -1.46% -12.66%
40 19.27×103 -2.58% -16.17%
50 19.22×103 -2.84% -19.93%
60 19.26×103 -2.60% -18.61%
70 19.37×103 -2.04% -15.06%
80 19.28×103 -2.55% -17.88%
90 19.27×103 -2.59% -18.83%

100 19.26×103 -2.65% -19.88%

Table 2: WikiText-2 Perplexity Analysis vs SPQE Sampling on Quanto

Effect of SPQE Sampling. A critical hyperparameter in SPQE is the number of Monte Carlo
permutation samples used to estimate Shapley values. Unlike prior Shapley-based layer impor-
tance approaches that rely on ablating entire layers–which often induces catastrophic performance
degradation and noisy estimates–our SPQE method quantizes layers progressively, resulting in much
smoother performance changes. This gradual degradation enables lower-variance Shapley estimates,
allowing meaningful signals even with relatively few samples.

We evaluate the impact of SPQE sample count on quantization quality using LLaMA 3.1-8B across
a range of 10 to 100 SPQE samples. Table 2 illustrates how increasing the number of Monte
Carlo samples affects the quantized model’s Perplexity on the WikiText-2 validation set using
Quanto quantization. As the sample count grows, the model’s post-quantization Perplexity improves
steadily, reflecting more precise Shapley value estimates that better capture layer sensitivities and
inter-layer interactions.

The relative delta measures the percentage change in a metric relative to the baseline (10 sam-
ples). The geometric mean relative delta summarizes a distribution of Perplexity values using the
geometric mean, which is effective for data spanning several orders of magnitude. This metric quan-
tifies the overall change in model performance against the baseline, indicating both the magnitude
and consistency of improvement.

Notably, even with as few as 10 random SPQE samples, clear layer importance patterns emerge.
For instance, the first and final transformer layers consistently appear as highly sensitive to quan-
tization across different models. This demonstrates that SPQE can capture fundamental layer im-
portance signals with minimal computational overhead. However, the returns diminish at higher
sample counts: beyond roughly 50 samples, additional samples yield diminishing improvements.
The relative delta for average Perplexity shows a maximum improvement of -2.84% at 50 samples,
with only marginal further gains to -2.65% at 100 samples. Similarly, the geometric mean rela-
tive delta reaches its maximum improvement of -19.93% at 50 samples, with only marginal further
gains to -19.88% at 100 samples. After 90 samples, the changes become negligible: the relative
delta changes by only 0.06% (from -2.59% to -2.65%) and the geometric mean changes by only
0.05% (from -18.83% to -19.88%). This convergence behavior provides a clear stopping criterion,
indicating that both metrics have effectively converged. Consequently, we adopt 100 samples in all
main experiments as a practical sweet spot, achieving near-maximal Perplexity improvement while
keeping the computational overhead manageable.

SPQE vs. Layer Pruning. To further show the advantages of SPQE over conventional layer
pruning for Shapley value estimation, we conduct a comparative analysis using the Llama 3.1-8B
model. As illustrated in Figure 2, the pruning-based approach results in a rapid and uncontrolled
escalation of Perplexity, reaching near-infinite values after the removal of only a few layers. This
phenomenon renders the marginal contribution estimates highly unstable and uninformative, thereby
impeding the reliable computation of both individual layer importance and inter-layer interactions
within the Shapley framework. The resulting high variance in Shapley estimates ultimately degrades
the quality of mixed-precision bit allocation, leading to suboptimal quantization performance.
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Figure 2: Comparison of perplexity for SPQE and layer pruning-based Shapley estimation on Llama
3.1-8B using Quanto. Layer pruning causes perplexity to diverge after 5 layers, while progressive
quantization remains stable.

In contrast, SPQE maintains model stability throughout the quantization process, exhibiting a
smooth and gradual increase in Perplexity as layers are progressively quantized from 4-bit to 2-
bit precision. This controlled degradation enables the accurate estimation of Shapley values with
substantially reduced variance, facilitating robust modeling of both individual and interaction ef-
fects across all layers. Empirically, the variance of Shapley estimates under SPQE is significantly
lower than that observed with pruning-based methods, supporting more effective and reliable bit
allocation in mixed-precision quantization.

6 DISCUSSION

Our findings present compelling evidence that the prevailing approach of using isolated, layer-
specific metrics is insufficient for effective low-bit quantization. The superior performance of IMPQ,
particularly in the sub-4-bit regime where inter-layer error propagation becomes most severe, con-
firms our central hypothesis: modeling quantization as a cooperative game that accounts for layer
interactions is critical. This marks a conceptual shift from viewing layers as independent entities
to understanding them as interconnected components whose collective behavior dictates the final
performance of the quantized model.

The primary limitation of our approach is the computational overhead associated with the SPQE-
based Shapley value estimation. For a model like Llama-3.1-8B, this process requires approximately
18 hours on a single A40 GPU. However, we argue that this is a practical trade-off. The cost is a one-
time analysis, which is then amortized across many deployments of the resulting highly-optimized
model. Furthermore, as our ablation study indicates, meaningful importance signals emerge with
relatively few SPQE samples, suggesting avenues for reducing this initial cost without catastrophic
loss in quality.

This research opens several promising directions for future work. First, the efficiency of the Shapley
estimation could be improved by exploring more advanced sampling techniques beyond standard
Monte Carlo, such as stratified Monte Carlo sampling, which may converge faster. Second, the
interaction-aware framework of IMPQ is not limited to quantization; its principles could be ex-
tended to other structured compression techniques, such as layer or head pruning, where component
interdependencies are equally critical. Finally, exploring a more granular set of precision assign-
ments beyond the binary 2/4-bit choice could yield further performance gains, although this would
increase the complexity of the optimization problem.

7 CONCLUSION

In this work, we demonstrate that modeling inter-layer dependencies is critical for effective low-
bit LLM quantization. To the best of our knowledge, we are the first to formalize mixed-precision
quantization as a cooperative game among layers. Our proposed framework, IMPQ, introduces
Shapley-based progressive estimation (SPQE) to capture interaction effects and formulates the bit
allocation as a solvable MILP. Comprehensive experiments show IMPQ consistently outperform-
ing prior methods across diverse models (Llama-3, Gemma-2, Qwen-3) and PTQ backends. The
framework achieves a significant perplexity reduction of 20% to 80% over the strongest baselines,
particularly as the bit-width tightens.
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A APPENDIX

EFFECT OF DIAGONAL SHRINKAGE ON IMPQ

Model α = 0.0 α = 0.5 α = 1.0

Llama 3.2-3B 2.83× 103 2.79× 103 2.81× 103

Table 3: Average Perplexity in the range of 2-bit and 4-bit across different alpha values for Llama
3.2-3B on Quanto.

We ablate the diagonal shrinkage hyperparameter α shown in Eq. 9, which balances preserving
cross-layer interactions - low α against suppressing off-diagonal noise - high α. On Llama 3.2-
3B, an intermediate value of α = 0.5 achieves the optimal perplexity of 2.79 × 103 as shown in
Table 3. This outperforms both using the full, noisy covariance matrix where α = 0.0 with Perplexiy
2.83 × 103 and completely ignoring interactions where α = 1.0 with Perplexity 2.81 × 103. This
result validates our core hypothesis: the off-diagonal terms contain both valuable interaction signals,
making α = 0.5 and α = 1.0 sub-optimal. Our shrinkage approach thus effectively filters this noise
while retaining essential interaction data, leading to more robust quantization results.

BASELINES

Z-SCORE BASELINE DESCRIPTION

The Z-score baseline, introduced by Dumitru et al. (2024b), provides a data-free approach for mea-
suring layer importance in transformer models. For a given layer Li, the Z-score distribution (ZD)
examines the proportion of weights that exhibit values significantly different from the mean. Specif-
ically, it calculates the ratio of weights whose z-scores exceed 1, where the z-score for a weight w
is defined as:

z =
w − µ

σ
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Here, µ represents the mean of all weights in the layer and σ their standard deviation. The final ZD
score for layer Li is computed as:

ZD(Li) =
|{w ∈ Li : z(w) > 1}|

|Li|

where |Li| denotes the total number of weights in layer i. This metric assumes that layers with more
outlier weights (those deviating significantly from the mean) are more important for the model’s
functionality. A key advantage of this approach is that it requires no calibration data, making it
particularly efficient for rapid layer importance assessment in large language models.

LAYER INPUT MODIFICATION (LIM) BASELINE DESCRIPTION

The Layer Input Modification (LIM) baseline, also introduced by Dumitru et al. (2024b), measures
how significantly a transformer layer modifies its input representations. Unlike the Z-score ap-
proach, LIM requires a calibration dataset. While the original work used PG19 (Rae et al., 2019),
in our experiments, we use 1000 samples from the C4 (Colossal Clean Crawled Corpus) training set
(Raffel et al., 2020) for fair comparison across all methods and models.

For a given layer Li, LIM computes the negative cosine similarity between the layer’s input embed-
dings LI

i and output embeddings LO
i :

LIM(Li) = − LI
i · LO

i

∥LI
i∥∥LO

i ∥

The intuition behind this metric is that layers that substantially transform their inputs (resulting in
low cosine similarity and thus a high negative score) are more important for the model’s function
than layers that make minimal modifications to their inputs. The negative sign ensures that more
important layers receive higher positive scores.

LLM-MQ SENSITIVITY SCORING DESCRIPTION

LLM-MQ (Li et al., 2023a) introduces a sensitivity-based precision allocation method that uses
first-order Taylor approximation to determine how sensitive each layer is to quantization. For a
given layer i with weights Wi, the method estimates how quantizing the weights to b bits (denoted
by quantization function Qb) affects the model’s loss function L:

L(Qb(Wi)) ≈ L(W) + gT
i (Wi −Qb(Wi))

where gi is the gradient of the loss function with respect to the weights of layer i. The sensitivity
score si,b for layer i at bit-width b is then computed as:

si,b = |gT
i (Wi −Qb(Wi))|

This score captures how much the quantization of a layer’s weights is expected to impact the model’s
performance. A higher score indicates that the layer is more sensitive to quantization and thus should
be allocated more bits to preserve model performance. The bit allocation is formulated as an integer
programming problem that minimizes the sum of sensitivity scores across all layers while respecting
memory budget constraints:

argmin
ci,b

N∑
i

∑
b

ci,b · si,b

s.t.
∑
b

ci,b = 1,

N∑
i

∑
b

ci,b · M(Qb(Wi)) ≤ B

ci,b ∈ {0, 1}, b ∈ {2, 3, 4}
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where ci,b is a binary indicator for whether layer i should use b bits, M calculates memory usage,
and B is the target memory budget. This formulation allows LLM-MQ to find a bit allocation that
minimizes performance degradation while meeting memory constraints.

ACTIVATION-BASED SCORING DESCRIPTION

Activation-based scoring (Kong et al.) assesses layer importance by calculating the Frobenius norm
of layer activations. For a given layer l with hidden states H(l) of shape (B, T,D) where B is batch
size, T is sequence length, and D is hidden dimension, the Frobenius norm is computed as:

∥H(l)∥F =

√√√√ B∑
b=1

T∑
t=1

Mb,t

D∑
k=1

(
H

(l)
b,t,k

)2

where Mb,t is the attention mask (1 for real tokens, 0 for padding). The importance score for layer i
is computed relative to the minimum norm across all layers:

si = 100× minj ∥H(j)∥F
∥H(i)∥F

RESULT VISUALIZATIONS ON QUANTO AND HQQ

Gemma-2-2B Gemma-2-9B Llama-3.2-3B

Llama-3.1-8B Qwen3-4B Qwen3-8B

Figure 3: Wikitext-2 Perplexity comparison of quantization methods across Gemma, Llama, Qwen
models on HQQ.
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Gemma-2-2B Gemma-2-9B Llama-3.2-3B

Llama-3.1-8B Qwen3-4B Qwen3-8B

Figure 4: Wikitext-2 Perplexity comparison of quantization methods across Gemma, Llama, Qwen
models on Quanto.
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